code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __UpperCAmelCase ( __lowercase ): '''simple docstring''' __lowerCAmelCase = '''pegasus''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self : Dict , _lowerCAmelCase : Dict=5_0265 , _lowerCAmelCase : Dict=1024 , _lowerCAmelCase : Union[str, Any]=12 , _lowerCAmelCase : Any=4096 , _lowerCAmelCase : str=16 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Optional[Any]=4096 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : Dict=1024 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : int=0 , _lowerCAmelCase : Any=False , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Optional[Any]=1 , **_lowerCAmelCase : Optional[int] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) @property def A (self : Dict ): return self.encoder_attention_heads @property def A (self : Optional[Any] ): return self.d_model
258
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ : '''simple docstring''' def __init__( self :str , a :str = None , a :uuid.UUID = None , a :Tuple=None , a :Optional[Any]=None ) -> str: if not conversation_id: __UpperCamelCase : Dict = uuid.uuida() if past_user_inputs is None: __UpperCamelCase : List[Any] = [] if generated_responses is None: __UpperCamelCase : Any = [] __UpperCamelCase : uuid.UUID = conversation_id __UpperCamelCase : List[str] = past_user_inputs __UpperCamelCase : List[str] = generated_responses __UpperCamelCase : Optional[str] = text def __eq__( self :Optional[int] , a :Optional[int] ) -> Union[str, Any]: if not isinstance(a , a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _lowerCamelCase ( self :Optional[int] , a :str , a :bool = False ) -> str: if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) __UpperCamelCase : Any = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: __UpperCamelCase : int = text def _lowerCamelCase ( self :List[str] ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __UpperCamelCase : Dict = None def _lowerCamelCase ( self :Optional[int] , a :str ) -> Optional[int]: self.generated_responses.append(a ) def _lowerCamelCase ( self :int ) -> Optional[Any]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self :List[str] ) -> List[Any]: __UpperCamelCase : Any = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): __UpperCamelCase : str = "user" if is_user else "bot" output += f'{name} >> {text} \n' return output @add_end_docstrings( __lowercase , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Tuple , *a :Tuple , **a :List[str] ) -> Tuple: super().__init__(*a , **a ) if self.tokenizer.pad_token_id is None: __UpperCamelCase : int = self.tokenizer.eos_token def _lowerCamelCase ( self :Optional[int] , a :List[Any]=None , a :str=None , a :int=None , **a :str ) -> List[str]: __UpperCamelCase : List[str] = {} __UpperCamelCase : List[str] = {} __UpperCamelCase : str = {} if min_length_for_response is not None: __UpperCamelCase : Optional[Any] = min_length_for_response if minimum_tokens is not None: __UpperCamelCase : List[str] = minimum_tokens if "max_length" in generate_kwargs: __UpperCamelCase : List[Any] = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __UpperCamelCase : List[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(a ) return preprocess_params, forward_params, postprocess_params def __call__( self :Dict , a :Union[Conversation, List[Conversation]] , a :List[Any]=0 , **a :Any ) -> Union[str, Any]: __UpperCamelCase : Optional[int] = super().__call__(a , num_workers=a , **a ) if isinstance(a , a ) and len(a ) == 1: return outputs[0] return outputs def _lowerCamelCase ( self :Tuple , a :Conversation , a :Dict=3_2 ) -> Dict[str, Any]: if not isinstance(a , a ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): __UpperCamelCase : str = self.tokenizer._build_conversation_input_ids(a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __UpperCamelCase : Optional[Any] = self._legacy_parse_and_tokenize(a ) if self.framework == "pt": __UpperCamelCase : Dict = torch.LongTensor([input_ids] ) elif self.framework == "tf": __UpperCamelCase : Any = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _lowerCamelCase ( self :Any , a :List[Any] , a :Optional[Any]=1_0 , **a :Tuple ) -> List[str]: __UpperCamelCase : Union[str, Any] = generate_kwargs.get("max_length" , self.model.config.max_length ) __UpperCamelCase : Dict = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) __UpperCamelCase : Dict = max_length - minimum_tokens __UpperCamelCase : Optional[int] = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: __UpperCamelCase : Dict = model_inputs["attention_mask"][:, -trim:] __UpperCamelCase : List[str] = model_inputs.pop("conversation" ) __UpperCamelCase : Optional[int] = max_length __UpperCamelCase : str = self.model.generate(**a , **a ) if self.model.config.is_encoder_decoder: __UpperCamelCase : List[str] = 1 else: __UpperCamelCase : Optional[int] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _lowerCamelCase ( self :List[Any] , a :str , a :Optional[int]=True ) -> Union[str, Any]: __UpperCamelCase : List[str] = model_outputs["output_ids"] __UpperCamelCase : Any = self.tokenizer.decode( output_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) __UpperCamelCase : int = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(a ) return conversation def _lowerCamelCase ( self :str , a :Conversation ) -> Dict: __UpperCamelCase : int = self.tokenizer.eos_token_id __UpperCamelCase : Any = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(a , add_special_tokens=a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(a , add_special_tokens=a ) ) if len(a ) > self.tokenizer.model_max_length: __UpperCamelCase : Union[str, Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
232
0
'''simple docstring''' from __future__ import annotations import time import numpy as np _lowercase : Union[str, Any] = [8, 5, 9, 7] _lowercase : Optional[int] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowercase : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self : int , lowercase_ : list[int] , lowercase_ : list[list[int]] , lowercase_ : list[list[int]] , ): lowercase_ : List[Any] = claim_vector lowercase_ : List[str] = allocated_resources_table lowercase_ : Optional[int] = maximum_claim_table def SCREAMING_SNAKE_CASE_ ( self : Any ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def SCREAMING_SNAKE_CASE_ ( self : Dict ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def SCREAMING_SNAKE_CASE_ ( self : str ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowercase_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return {self.__need().index(lowercase_ ): i for i in self.__need()} def SCREAMING_SNAKE_CASE_ ( self : Tuple , **lowercase_ : Dict ): lowercase_ : List[str] = self.__need() lowercase_ : Optional[int] = self.__allocated_resources_table lowercase_ : Dict = self.__available_resources() lowercase_ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: lowercase_ : Any = False for each_need in need_list: lowercase_ : Union[str, Any] = True for index, need in enumerate(lowercase_ ): if need > available_resources[index]: lowercase_ : Optional[int] = False break if execution: lowercase_ : List[Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase_ : Any = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(lowercase_ ) # update available/freed resources stack lowercase_ : int = np.array(lowercase_ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(lowercase_ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def SCREAMING_SNAKE_CASE_ ( self : int ): print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(lowercase_ ) + 1}''' + """ """.join(f'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(lowercase_ ) + 1}''' + """ """.join(f'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(lowercase_ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(lowercase_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def A_ ( A__ , A__ , A__ ) -> int: def get_masked_lm_array(A__ ): a__ : Dict = F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : List[str] = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : str = array.transpose() return torch.from_numpy(A__ ) def get_encoder_array(A__ ): a__ : Dict = F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : str = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : Tuple = array.transpose() return torch.from_numpy(A__ ) def get_encoder_layer_array(A__ , A__ ): a__ : str = F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : List[str] = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : str = array.transpose() return torch.from_numpy(A__ ) def get_encoder_attention_layer_array(A__ , A__ , A__ ): a__ : Tuple = F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : Dict = tf.train.load_variable(A__ , A__ ) a__ : List[Any] = array.reshape(A__ ) if "kernel" in name: a__ : Tuple = array.transpose() return torch.from_numpy(A__ ) print(F'Loading model based on config from {config_path}...' ) a__ : List[str] = BertConfig.from_json_file(A__ ) a__ : str = BertForMaskedLM(A__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): a__ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention a__ : BertSelfAttention = layer.attention.self a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_query_dense/kernel' , self_attn.query.weight.data.shape ) a__ : Optional[Any] = get_encoder_attention_layer_array( A__ , '_query_dense/bias' , self_attn.query.bias.data.shape ) a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_key_dense/kernel' , self_attn.key.weight.data.shape ) a__ : Union[str, Any] = get_encoder_attention_layer_array( A__ , '_key_dense/bias' , self_attn.key.bias.data.shape ) a__ : Dict = get_encoder_attention_layer_array( A__ , '_value_dense/kernel' , self_attn.value.weight.data.shape ) a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output a__ : BertSelfOutput = layer.attention.output a__ : Optional[Any] = get_encoder_attention_layer_array( A__ , '_output_dense/kernel' , self_output.dense.weight.data.shape ) a__ : Any = get_encoder_attention_layer_array( A__ , '_output_dense/bias' , self_output.dense.bias.data.shape ) a__ : str = get_encoder_layer_array(A__ , '_attention_layer_norm/gamma' ) a__ : Optional[Any] = get_encoder_layer_array(A__ , '_attention_layer_norm/beta' ) # Intermediate a__ : BertIntermediate = layer.intermediate a__ : Tuple = get_encoder_layer_array(A__ , '_intermediate_dense/kernel' ) a__ : Tuple = get_encoder_layer_array(A__ , '_intermediate_dense/bias' ) # Output a__ : BertOutput = layer.output a__ : Optional[Any] = get_encoder_layer_array(A__ , '_output_dense/kernel' ) a__ : List[str] = get_encoder_layer_array(A__ , '_output_dense/bias' ) a__ : Optional[int] = get_encoder_layer_array(A__ , '_output_layer_norm/gamma' ) a__ : Optional[int] = get_encoder_layer_array(A__ , '_output_layer_norm/beta' ) # Embeddings a__ : List[str] = get_encoder_array('_position_embedding_layer/embeddings' ) a__ : Dict = get_encoder_array('_type_embedding_layer/embeddings' ) a__ : Dict = get_encoder_array('_embedding_norm_layer/gamma' ) a__ : List[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head a__ : Tuple = model.cls.predictions.transform a__ : List[Any] = get_masked_lm_array('dense/kernel' ) a__ : Tuple = get_masked_lm_array('dense/bias' ) a__ : List[str] = get_masked_lm_array('layer_norm/gamma' ) a__ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) a__ : Union[str, Any] = get_masked_lm_array('embedding_table' ) # Pooling a__ : Any = BertPooler(config=A__ ) a__ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) a__ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(A__ ) # Integration test - should load without any errors ;) a__ : Any = BertForMaskedLM.from_pretrained(A__ ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) lowercase : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
99
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase : Tuple = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class A__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowercase = " ") -> Tuple: '''simple docstring''' a__ : Tuple = sentence_delimiter def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' return list(lowercase) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Tuple = [] for sent_idx, sentence in enumerate(lowercase): chars.extend(self.process_string(lowercase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase) - 1: chars.append(self.sentence_delimiter) return chars lowercase : Union[str, Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase : List[Any] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowercase : Optional[int] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowercase : Optional[Any] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def __lowercase ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , )["wer"] a__ : Optional[int] = 0 a__ : str = 0 for prediction, reference in zip(lowercase , lowercase): a__ : Optional[int] = jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
99
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : List[str] = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _snake_case ( A__ ): _lowercase : List[str] = '''gptj''' _lowercase : Tuple = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , a=5_0400 , a=2048 , a=4096 , a=28 , a=16 , a=64 , a=None , a="gelu_new" , a=0.0 , a=0.0 , a=0.0 , a=1E-5 , a=0.02 , a=True , a=5_0256 , a=5_0256 , a=False , **a , ) -> str: SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = rotary_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id super().__init__( bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a) class _snake_case ( A__ ): def __init__( self , a , a = "default" , a = None , a = False , ) -> Optional[Any]: super().__init__(a , task=a , patching_specs=a , use_past=a) if not getattr(self._config , 'pad_token_id' , a): # TODO: how to do that better? SCREAMING_SNAKE_CASE = 0 @property def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(a , direction='inputs') SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'past_sequence + sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return self._config.n_head def SCREAMING_SNAKE_CASE__ ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE = super(a , self).generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs['input_ids'].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(a), torch.zeros(a)) for _ in range(self.num_layers) ] SCREAMING_SNAKE_CASE = common_inputs['attention_mask'] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs['attention_mask'].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs['attention_mask'], torch.ones(a , a , dtype=a)] , dim=1) return ordered_inputs @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return 13
327
from math import isqrt def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = False return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]] def lowerCamelCase__ (_UpperCAmelCase = 10**8): SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
327
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) _lowerCamelCase : int = "cuda" if torch.cuda.is_available() else "cpu" def __lowerCamelCase ( A__ , A__=100 , A__=" " ) -> List[str]: """simple docstring""" UpperCamelCase = text.split(A__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(A__ ) , A__ )] def __lowerCamelCase ( A__ ) -> dict: """simple docstring""" UpperCamelCase , UpperCamelCase = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(A__ ): titles.append(title if title is not None else '' ) texts.append(A__ ) return {"title": titles, "text": texts} def __lowerCamelCase ( A__ , A__ , A__ ) -> dict: """simple docstring""" UpperCamelCase = ctx_tokenizer( documents['title'] , documents['text'] , truncation=A__ , padding='longest' , return_tensors='pt' )['input_ids'] UpperCamelCase = ctx_encoder(input_ids.to(device=A__ ) , return_dict=A__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCamelCase ( A__ , A__ , A__ , ) -> Optional[int]: """simple docstring""" ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCamelCase = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCamelCase = dataset.map(A__ , batched=A__ , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCamelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=A__ ) UpperCamelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCamelCase = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space UpperCamelCase = dataset.map( partial(A__ , ctx_encoder=A__ , ctx_tokenizer=A__ ) , batched=A__ , batch_size=processing_args.batch_size , features=A__ , ) # And finally save your dataset UpperCamelCase = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(A__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCamelCase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=A__ ) # And save the index UpperCamelCase = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(A__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = field( default=str(Path(_a ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) _SCREAMING_SNAKE_CASE = field( default=_a , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) _SCREAMING_SNAKE_CASE = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) _SCREAMING_SNAKE_CASE = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) _SCREAMING_SNAKE_CASE = field( default=str(Path(_a ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = field( default=_a , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) _SCREAMING_SNAKE_CASE = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = field( default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) _SCREAMING_SNAKE_CASE = field( default=128 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _lowerCamelCase : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _lowerCamelCase : Optional[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
28
from torch import nn def lowerCamelCase__ ( _A ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
187
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCAmelCase__ : Dict =logging.get_logger(__name__) lowerCAmelCase__ : Tuple ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ : Union[str, Any] ={ 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ : Optional[Any] ={ 'squeezebert/squeezebert-uncased': 5_12, 'squeezebert/squeezebert-mnli': 5_12, 'squeezebert/squeezebert-mnli-headless': 5_12, } lowerCAmelCase__ : List[Any] ={ 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = SqueezeBertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ): """simple docstring""" super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(lowerCAmelCase__ , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case SCREAMING_SNAKE_CASE_ : Any = strip_accents SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ : Dict = normalizer_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = do_lower_case def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
162
from __future__ import annotations def a__ ( A__ ): return len(set(A__ ) ) == len(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
162
1
from __future__ import annotations def A ( _lowercase ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowercase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowercase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
182
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """nllb-moe""" UpperCamelCase_ = ["""past_key_values"""] UpperCamelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , UpperCamelCase__ : List[str]=12_8112 , UpperCamelCase__ : str=1024 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Dict=16 , UpperCamelCase__ : Any=0.05 , UpperCamelCase__ : Any=0.05 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]="relu" , UpperCamelCase__ : Union[str, Any]=1024 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Any="float32" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=128 , UpperCamelCase__ : Tuple=64 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Dict=0.001 , UpperCamelCase__ : Optional[Any]=0.001 , UpperCamelCase__ : Optional[Any]="all" , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : List[Any]=1.0 , UpperCamelCase__ : str=0.2 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Tuple=False , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : int = d_model SCREAMING_SNAKE_CASE : Any = encoder_ffn_dim SCREAMING_SNAKE_CASE : List[Any] = encoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Dict = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE : List[Any] = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = init_std SCREAMING_SNAKE_CASE : int = encoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : List[str] = router_z_loss_coef SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef SCREAMING_SNAKE_CASE : int = decoder_sparse_step SCREAMING_SNAKE_CASE : Optional[int] = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : int = expert_capacity SCREAMING_SNAKE_CASE : Any = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) SCREAMING_SNAKE_CASE : str = router_dtype SCREAMING_SNAKE_CASE : List[Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : str = second_expert_policy SCREAMING_SNAKE_CASE : Optional[Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Optional[Any] = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[int] = moe_token_dropout SCREAMING_SNAKE_CASE : Optional[int] = output_router_logits super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
182
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowercase = s_dict.pop(lowerCAmelCase__ ) elif "subsample" in key: lowercase = s_dict.pop(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase = emb.weight.shape lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) lowercase = emb.weight.data return lin_layer def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) lowercase = mam_aaa['''args'''] lowercase = mam_aaa['''model'''] lowercase = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(lowerCAmelCase__ ) rename_keys(lowerCAmelCase__ ) lowercase = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowercase = args.share_decoder_input_output_embed lowercase = [int(lowerCAmelCase__ ) for i in args.conv_kernel_sizes.split(''',''' )] lowercase = SpeechaTextConfig( vocab_size=lowerCAmelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(lowerCAmelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCAmelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCAmelCase__ , num_beams=5 , max_length=200 , use_cache=lowerCAmelCase__ , decoder_start_token_id=2 , early_stopping=lowerCAmelCase__ , ) lowercase = SpeechaTextForConditionalGeneration(lowerCAmelCase__ ) lowercase , lowercase = model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0 and not set(lowerCAmelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f' but all the following weights are missing {missing}' ) if tie_embeds: lowercase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase = lm_head_weights model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowercase__ :Tuple = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
97
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ :Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ :int = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ :List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ :List[str] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
97
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase_( lowerCamelCase_ ) -> int: return x + 2 class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'x = 3' _lowercase : str = {} _lowercase : Dict = evaluate(lowerCamelCase, {}, state=lowerCamelCase) assert result == 3 self.assertDictEqual(lowerCamelCase, {'x': 3}) _lowercase : Any = 'x = y' _lowercase : Optional[Any] = {'y': 5} _lowercase : List[str] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 5, 'y': 5}) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = 'y = add_two(x)' _lowercase : Tuple = {'x': 3} _lowercase : List[Any] = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 5}) # Won't work without the tool with CaptureStdout() as out: _lowercase : Tuple = evaluate(lowerCamelCase, {}, state=lowerCamelCase) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = 'x = 3' _lowercase : Optional[int] = {} _lowercase : Tuple = evaluate(lowerCamelCase, {}, state=lowerCamelCase) assert result == 3 self.assertDictEqual(lowerCamelCase, {'x': 3}) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' _lowercase : Optional[int] = {'x': 3} _lowercase : Union[str, Any] = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 5}) self.assertDictEqual(lowerCamelCase, {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = 'x = 3\ny = 5' _lowercase : Tuple = {} _lowercase : Union[str, Any] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 5}) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = 'text = f\'This is x: {x}.\'' _lowercase : int = {'x': 3} _lowercase : Optional[int] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase, {'x': 3, 'text': 'This is x: 3.'}) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' _lowercase : Optional[int] = {'x': 3} _lowercase : str = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 2}) _lowercase : Union[str, Any] = {'x': 8} _lowercase : List[str] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 8, 'y': 5}) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[str] = 'test_list = [x, add_two(x)]' _lowercase : Dict = {'x': 3} _lowercase : Dict = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) self.assertListEqual(lowerCamelCase, [3, 5]) self.assertDictEqual(lowerCamelCase, {'x': 3, 'test_list': [3, 5]}) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = 'y = x' _lowercase : int = {'x': 3} _lowercase : List[str] = evaluate(lowerCamelCase, {}, state=lowerCamelCase) assert result == 3 self.assertDictEqual(lowerCamelCase, {'x': 3, 'y': 3}) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = 'test_list = [x, add_two(x)]\ntest_list[1]' _lowercase : Dict = {'x': 3} _lowercase : Optional[Any] = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 3, 'test_list': [3, 5]}) _lowercase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' _lowercase : Dict = {'x': 3} _lowercase : Tuple = evaluate(lowerCamelCase, {'add_two': add_two}, state=lowerCamelCase) assert result == 5 self.assertDictEqual(lowerCamelCase, {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = 'x = 0\nfor i in range(3):\n x = i' _lowercase : Optional[int] = {} _lowercase : Optional[int] = evaluate(lowerCamelCase, {'range': range}, state=lowerCamelCase) assert result == 2 self.assertDictEqual(lowerCamelCase, {'x': 2, 'i': 2})
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
59
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase_ = '''true''' def lowerCamelCase_ ( _a : List[Any] , _a : List[str]=82 , _a : Tuple=16 ): '''simple docstring''' set_seed(42 ) UpperCAmelCase_ : int = RegressionModel() UpperCAmelCase_ : List[Any] = deepcopy(_a ) UpperCAmelCase_ : Tuple = RegressionDataset(length=_a ) UpperCAmelCase_ : int = DataLoader(_a , batch_size=_a ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(_a , _a ) return model, ddp_model, dataloader def lowerCamelCase_ ( _a : Accelerator , _a : Optional[int]=False ): '''simple docstring''' UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) UpperCAmelCase_ : int = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(_a : str ): UpperCAmelCase_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_a , max_length=_a ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( _a , batched=_a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) UpperCAmelCase_ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_a : List[str] ): if use_longest: return tokenizer.pad(_a , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(_a , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(_a , shuffle=_a , collate_fn=_a , batch_size=16 ) def lowerCamelCase_ ( _a : Any , _a : int ): '''simple docstring''' UpperCAmelCase_ : int = Accelerator(dispatch_batches=_a , split_batches=_a ) UpperCAmelCase_ : Dict = get_dataloader(_a , not dispatch_batches ) UpperCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_a ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare(_a , _a ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase_ ( _a : Optional[int] , _a : Optional[Any] , _a : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = batch.values() with torch.no_grad(): UpperCAmelCase_ : str = model(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(_a ) targs.append(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = torch.cat(_a ), torch.cat(_a ) return logits, targs def lowerCamelCase_ ( _a : Accelerator , _a : str=82 , _a : str=False , _a : Dict=False , _a : Dict=16 ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_basic_setup(_a , _a , _a ) UpperCAmelCase_ , UpperCAmelCase_ : Any = generate_predictions(_a , _a , _a ) assert ( len(_a ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_a )}''' def lowerCamelCase_ ( _a : bool = False , _a : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = evaluate.load("""glue""" , """mrpc""" ) UpperCAmelCase_ , UpperCAmelCase_ : str = get_mrpc_setup(_a , _a ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = setup["""no"""] model.to(_a ) model.eval() for batch in dataloader: batch.to(_a ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**_a ) UpperCAmelCase_ : Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_a , references=batch["""labels"""] ) UpperCAmelCase_ : str = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : List[str] = model(**_a ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Union[str, Any] = batch["""labels"""] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_a , references=_a ) UpperCAmelCase_ : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Any = Accelerator(split_batches=_a , dispatch_batches=_a ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_a , _a ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[int] = Accelerator(split_batches=_a , dispatch_batches=_a ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_a , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) UpperCAmelCase_ : str = Accelerator() test_torch_metrics(_a , 512 ) accelerator.state._reset_state() def lowerCamelCase_ ( _a : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
59
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : str , _A : Dict , _A : List[Any]=7 , _A : int=3 , _A : List[Any]=30 , _A : int=400 , _A : Union[str, Any]=True , _A : int=None , _A : Dict=True , _A : Optional[Any]=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : Optional[Any]=True , _A : List[str]=1 / 255 , _A : List[Any]=True , ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ : List[str] = parent snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = min_resolution snake_case_ : Dict = max_resolution snake_case_ : str = do_resize snake_case_ : Optional[Any] = size snake_case_ : List[str] = do_normalize snake_case_ : Dict = image_mean snake_case_ : Any = image_std snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : List[Any] = do_pad def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self : str , _A : Dict , _A : Optional[Any]=False ) -> Union[str, Any]: """simple docstring""" if not batched: snake_case_ : Dict = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Dict = image.size else: snake_case_ ,snake_case_ : Dict = image.shape[1], image.shape[2] if w < h: snake_case_ : str = int(self.size['shortest_edge'] * h / w ) snake_case_ : Dict = self.size['shortest_edge'] elif w > h: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[str] = int(self.size['shortest_edge'] * w / h ) else: snake_case_ : str = self.size['shortest_edge'] snake_case_ : List[str] = self.size['shortest_edge'] else: snake_case_ : Tuple = [] for image in image_inputs: snake_case_ ,snake_case_ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : Optional[Any] = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[str] = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = DetaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'do_rescale' ) ) self.assertTrue(hasattr(_A , 'do_pad' ) ) self.assertTrue(hasattr(_A , 'size' ) ) def UpperCAmelCase_ ( self : str ) -> int: """simple docstring""" snake_case_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" snake_case_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : str = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ ,snake_case_ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) snake_case_ : Optional[Any] = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[Any] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase_ ( self : str ) -> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case_ : Tuple = json.loads(f.read() ) snake_case_ : str = {'image_id': 39769, 'annotations': target} # encode them snake_case_ : Optional[int] = DetaImageProcessor() snake_case_ : List[Any] = image_processing(images=_A , annotations=_A , return_tensors='pt' ) # verify pixel values snake_case_ : Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) snake_case_ : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area snake_case_ : Dict = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes snake_case_ : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) snake_case_ : Tuple = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1E-3 ) ) # verify image_id snake_case_ : str = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd snake_case_ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels snake_case_ : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify orig_size snake_case_ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size snake_case_ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case_ : Dict = json.loads(f.read() ) snake_case_ : str = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} snake_case_ : Dict = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case_ : Any = DetaImageProcessor(format='coco_panoptic' ) snake_case_ : Optional[Any] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt' ) # verify pixel values snake_case_ : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) snake_case_ : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area snake_case_ : Dict = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes snake_case_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) snake_case_ : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1E-3 ) ) # verify image_id snake_case_ : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd snake_case_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels snake_case_ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify masks snake_case_ : List[str] = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A ) # verify orig_size snake_case_ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size snake_case_ : Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) )
327
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Any = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowercase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
190
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''AutoImageProcessor''' lowerCAmelCase = '''AutoTokenizer''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = self.image_processor def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: __A : Any = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase) if images is not None: __A : Tuple = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase) if text is not None and images is not None: __A : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase) , tensor_type=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
190
1
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=768 ) -> int: '''simple docstring''' super().__init__(UpperCamelCase__ ) A_ = proj_size A_ = CLIPVisionModel(UpperCamelCase__ ) A_ = PaintByExampleMapper(UpperCamelCase__ ) A_ = nn.LayerNorm(config.hidden_size ) A_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling A_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=False ) -> List[Any]: '''simple docstring''' A_ = self.model(pixel_values=UpperCamelCase__ ) A_ = clip_output.pooler_output A_ = self.mapper(latent_states[:, None] ) A_ = self.final_layer_norm(UpperCamelCase__ ) A_ = self.proj_out(UpperCamelCase__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' super().__init__() A_ = (config.num_hidden_layers + 1) // 5 A_ = config.hidden_size A_ = 1 A_ = nn.ModuleList( [ BasicTransformerBlock(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , activation_fn="""gelu""" , attention_bias=UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ] ) def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' for block in self.blocks: A_ = block(UpperCamelCase__ ) return hidden_states
162
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> List[str]: '''simple docstring''' super().__init__() A_ = pad_token_id A_ = max_length A_ = vocab A_ = merges A_ = BytePairTokenizer(UpperCamelCase__ , UpperCamelCase__ , sequence_length=UpperCamelCase__ ) @classmethod def snake_case_ ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = [""" """.join(UpperCamelCase__ ) for m in tokenizer.bpe_ranks.keys()] A_ = tokenizer.get_vocab() return cls(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def snake_case_ ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = GPTaTokenizer.from_pretrained(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) return cls.from_tokenizer(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def snake_case_ ( cls , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return cls(**UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Dict: '''simple docstring''' A_ = self.tf_tokenizer(UpperCamelCase__ ) A_ = tf.ones_like(UpperCamelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length A_ = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ = pad_model_inputs( UpperCamelCase__ , max_seq_length=UpperCamelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
162
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
"""simple docstring""" def UpperCAmelCase ( a_, a_ ): '''simple docstring''' while b: lowerCamelCase , lowerCamelCase : Tuple = b, a % b return a def UpperCAmelCase ( a_, a_ ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(a_, a % b ) def UpperCAmelCase ( ): '''simple docstring''' print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}""" ) if __name__ == "__main__": main()
205
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __snake_case = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def a ( __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[Any] = state_dict.pop(__a ) UpperCamelCase__ :int = val def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase__ :Dict = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCamelCase__ :List[str] = value else: UpperCamelCase__ :Dict = value return new_state_dict def a ( __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase__ :Optional[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCamelCase__ :str = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ :Any = in_proj_weight[:256, :] UpperCamelCase__ :Tuple = in_proj_bias[:256] UpperCamelCase__ :Optional[int] = in_proj_weight[256:512, :] UpperCamelCase__ :Optional[Any] = in_proj_bias[256:512] UpperCamelCase__ :Tuple = in_proj_weight[-256:, :] UpperCamelCase__ :Dict = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase__ :List[str] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCamelCase__ :Optional[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ :Any = in_proj_weight[:256, :] UpperCamelCase__ :Optional[int] = in_proj_bias[:256] UpperCamelCase__ :Tuple = in_proj_weight[256:512, :] UpperCamelCase__ :Dict = in_proj_bias[256:512] UpperCamelCase__ :Any = in_proj_weight[-256:, :] UpperCamelCase__ :Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase__ :List[str] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCamelCase__ :Any = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase__ :Optional[Any] = in_proj_weight_cross_attn[:256, :] UpperCamelCase__ :Any = in_proj_bias_cross_attn[:256] UpperCamelCase__ :Any = in_proj_weight_cross_attn[256:512, :] UpperCamelCase__ :Dict = in_proj_bias_cross_attn[256:512] UpperCamelCase__ :str = in_proj_weight_cross_attn[-256:, :] UpperCamelCase__ :Tuple = in_proj_bias_cross_attn[-256:] def a ( __a , __a ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :str = image.size UpperCamelCase__ :Optional[Any] = max(__a , __a ) UpperCamelCase__ :List[Any] = 800 if '''detection''' in checkpoint_url else 1000 UpperCamelCase__ :Dict = target_max_size / current_max_size UpperCamelCase__ :Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :Any = F.to_tensor(__a ) UpperCamelCase__ :int = F.normalize(__a , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def a ( __a , __a , __a ) -> Dict: '''simple docstring''' logger.info('''Converting model...''' ) # load original state dict UpperCamelCase__ :Optional[Any] = torch.hub.load_state_dict_from_url(__a , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(__a , __a , __a ) UpperCamelCase__ :Any = rename_backbone_keys(__a ) # query, key and value matrices need special treatment read_in_q_k_v(__a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase__ :Dict = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCamelCase__ :Optional[Any] = state_dict.pop(__a ) UpperCamelCase__ :int = val # create HuggingFace model and load state dict UpperCamelCase__ :str = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCamelCase__ :List[str] = 15 UpperCamelCase__ :int = 2 UpperCamelCase__ :Tuple = {0: '''table''', 1: '''table rotated'''} UpperCamelCase__ :int = idalabel UpperCamelCase__ :Dict = {v: k for k, v in idalabel.items()} else: UpperCamelCase__ :int = 125 UpperCamelCase__ :List[str] = 6 UpperCamelCase__ :Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCamelCase__ :Dict = idalabel UpperCamelCase__ :Optional[Any] = {v: k for k, v in idalabel.items()} UpperCamelCase__ :List[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCamelCase__ :int = TableTransformerForObjectDetection(__a ) model.load_state_dict(__a ) model.eval() # verify our conversion UpperCamelCase__ :Dict = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCamelCase__ :Optional[Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=__a ) UpperCamelCase__ :Tuple = Image.open(__a ).convert('''RGB''' ) UpperCamelCase__ :int = normalize(resize(__a , __a ) ).unsqueeze(0 ) UpperCamelCase__ :Optional[int] = model(__a ) if "detection" in checkpoint_url: UpperCamelCase__ :Dict = (1, 15, 3) UpperCamelCase__ :List[Any] = torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) UpperCamelCase__ :Tuple = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: UpperCamelCase__ :Optional[Any] = (1, 125, 7) UpperCamelCase__ :Dict = torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) UpperCamelCase__ :List[Any] = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __a , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCamelCase__ :Union[str, Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(__a ) image_processor.push_to_hub(__a ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
97
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Any = Generator( cache_dir=UpperCamelCase_ , features=UpperCamelCase_ , generator=UpperCamelCase_ , gen_kwargs=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' if self.streaming: UpperCamelCase__ :Optional[Any] = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :int = None UpperCamelCase__ :Any = None UpperCamelCase__ :Any = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) UpperCamelCase__ :List[Any] = self.builder.as_dataset( split='''train''' , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset
97
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __SCREAMING_SNAKE_CASE :int = logging.getLogger(__name__) class A_ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str]=None ): super().__init__( snake_case_ , question_encoder_tokenizer=snake_case_ , generator_tokenizer=snake_case_ , index=snake_case_ , init_retrieval=snake_case_ , ) _UpperCAmelCase = None def lowercase ( self : Optional[Any] , snake_case_ : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _UpperCAmelCase = self._infer_socket_ifname() # avoid clash with the NCCL port _UpperCAmelCase = str(distributed_port + 1 ) _UpperCAmelCase = dist.new_group(ranks=snake_case_ , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase ( self : Optional[Any] ): return dist.get_rank(group=self.process_group ) == 0 def lowercase ( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : int=torch.floataa ): _UpperCAmelCase = torch.empty(snake_case_ , dtype=snake_case_ ) dist.scatter(snake_case_ , src=0 , scatter_list=snake_case_ , group=self.process_group ) return target_tensor def lowercase ( self : Dict ): _UpperCAmelCase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _UpperCAmelCase = next((addr for addr in addrs if addr.startswith("e" )) , snake_case_ ) return ifname def lowercase ( self : Any , snake_case_ : np.ndarray , snake_case_ : int ): # single GPU training if not dist.is_initialized(): _UpperCAmelCase , _UpperCAmelCase = self._main_retrieve(snake_case_ , snake_case_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case_ ) # distributed training _UpperCAmelCase = dist.get_world_size(group=self.process_group ) # gather logic _UpperCAmelCase = None if self._is_main(): _UpperCAmelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(snake_case_ )] dist.gather(torch.tensor(snake_case_ ) , dst=0 , gather_list=snake_case_ , group=self.process_group ) # scatter logic _UpperCAmelCase = question_hidden_states.shape[0] _UpperCAmelCase = [] _UpperCAmelCase = [] if self._is_main(): assert len(snake_case_ ) == world_size _UpperCAmelCase , _UpperCAmelCase = self._main_retrieve(torch.cat(snake_case_ ).numpy() , snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = torch.tensor(snake_case_ ), torch.tensor(snake_case_ ) _UpperCAmelCase = self._chunk_tensor(snake_case_ , snake_case_ ) _UpperCAmelCase = self._chunk_tensor(snake_case_ , snake_case_ ) _UpperCAmelCase = self._scattered(snake_case_ , [n_queries, n_docs] , target_type=torch.intaa ) _UpperCAmelCase = self._scattered(snake_case_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(snake_case_ )
366
'''simple docstring''' from sklearn.metrics import recall_score import datasets __SCREAMING_SNAKE_CASE :Any = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __SCREAMING_SNAKE_CASE :Tuple = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __SCREAMING_SNAKE_CASE :Optional[int] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def lowercase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[int]=None , snake_case_ : str=1 , snake_case_ : str="binary" , snake_case_ : int=None , snake_case_ : List[Any]="warn" , ): _UpperCAmelCase = recall_score( snake_case_ , snake_case_ , labels=snake_case_ , pos_label=snake_case_ , average=snake_case_ , sample_weight=snake_case_ , zero_division=snake_case_ , ) return {"recall": float(snake_case_ ) if score.size == 1 else score}
156
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase : A__ : int A__ : TreeNode | None = None A__ : TreeNode | None = None __lowerCamelCase = namedtuple("""CoinsDistribResult""", """moves excess""") def UpperCamelCase ( __lowerCamelCase : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(__lowerCamelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCamelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__lowerCamelCase ) != count_coins(__lowerCamelCase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(__lowerCamelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case , snake_case : List[str] = get_distrib(node.left ) snake_case , snake_case : List[str] = get_distrib(node.right ) snake_case : List[str] = 1 - left_distrib_excess snake_case : int = 1 - right_distrib_excess snake_case : List[str] = ( left_distrib_moves + right_distrib_moves + abs(__lowerCamelCase ) + abs(__lowerCamelCase ) ) snake_case : Tuple = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__lowerCamelCase , __lowerCamelCase ) return get_distrib(__lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
59
from __future__ import annotations __lowerCamelCase = list[list[int]] # assigning initial values to the grid __lowerCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowerCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCamelCase ( __lowerCamelCase : Matrix , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCamelCase ( __lowerCamelCase : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCamelCase ( __lowerCamelCase : Matrix ): if location := find_empty_location(__lowerCamelCase ): snake_case , snake_case : Union[str, Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): snake_case : List[Any] = digit if sudoku(__lowerCamelCase ) is not None: return grid snake_case : Union[str, Any] = 0 return None def UpperCamelCase ( __lowerCamelCase : Matrix ): for row in grid: for cell in row: print(__lowerCamelCase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") __lowerCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
59
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = '''transfo-xl''' UpperCamelCase : Optional[int] = ['''mems'''] UpperCamelCase : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , UpperCAmelCase__ : int=267735 , UpperCAmelCase__ : Union[str, Any]=[20000, 40000, 200000] , UpperCAmelCase__ : Union[str, Any]=1024 , UpperCAmelCase__ : Optional[Any]=1024 , UpperCAmelCase__ : Optional[int]=16 , UpperCAmelCase__ : Any=64 , UpperCAmelCase__ : Optional[int]=4096 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : str=18 , UpperCAmelCase__ : str=1600 , UpperCAmelCase__ : Any=1000 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=0 , UpperCAmelCase__ : Union[str, Any]=-1 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any="normal" , UpperCAmelCase__ : Union[str, Any]=0.0_1 , UpperCAmelCase__ : Any=0.0_1 , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : Tuple=1E-5 , UpperCAmelCase__ : Tuple=0 , **UpperCAmelCase__ : str , ) -> List[str]: _a : str = vocab_size _a : Dict = [] self.cutoffs.extend(UpperCAmelCase__ ) if proj_share_all_but_first: _a : Tuple = [False] + [True] * len(self.cutoffs ) else: _a : Tuple = [False] + [False] * len(self.cutoffs ) _a : Optional[int] = d_model _a : str = d_embed _a : Optional[Any] = d_head _a : int = d_inner _a : Optional[Any] = div_val _a : Optional[Any] = pre_lnorm _a : Any = n_layer _a : Optional[Any] = n_head _a : Optional[Any] = mem_len _a : Optional[int] = same_length _a : Union[str, Any] = attn_type _a : Any = clamp_len _a : Any = sample_softmax _a : Optional[Any] = adaptive _a : List[Any] = dropout _a : Optional[Any] = dropatt _a : List[Any] = untie_r _a : str = init _a : Any = init_range _a : Dict = proj_init_std _a : Optional[Any] = init_std _a : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def _lowercase ( self : str ) -> Dict: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowercase ( self : List[str] , UpperCAmelCase__ : Any ) -> Any: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
'''simple docstring''' import requests lowercase__ : int = '''''' # <-- Put your OpenWeatherMap appid here! lowercase__ : List[str] = '''https://api.openweathermap.org/data/2.5/''' def _lowerCAmelCase ( __snake_case : str = "Chicago" , __snake_case : str = APPID ) -> dict: return requests.get(URL_BASE + 'weather' , params=locals() ).json() def _lowerCAmelCase ( __snake_case : str = "Kolkata, India" , __snake_case : str = APPID ) -> dict: return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def _lowerCAmelCase ( __snake_case : float = 55.68 , __snake_case : float = 12.57 , __snake_case : str = APPID ) -> dict: return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowercase__ : Tuple = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
190
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __A : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_UpperCAmelCase , cache_dir=_UpperCAmelCase) __A : Optional[Any] = [t[-1] for t in os.walk(os.path.join(_UpperCAmelCase , os.listdir(_UpperCAmelCase)[0] , 'snapshots'))] __A : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_UpperCAmelCase) __A : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Optional[Any] = jax.random.PRNGKey(0) __A : int = 4 __A : Tuple = jax.device_count() __A : Union[str, Any] = num_samples * [prompt] __A : Tuple = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : str = replicate(_UpperCAmelCase) __A : Tuple = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = shard(_UpperCAmelCase) __A : Union[str, Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1514745) < 1e-3 assert np.abs(np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 49947.875) < 5e-1 __A : List[str] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(_UpperCAmelCase) == num_samples def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_UpperCAmelCase) __A : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Tuple = jax.random.PRNGKey(0) __A : Any = 50 __A : str = jax.device_count() __A : Union[str, Any] = num_samples * [prompt] __A : List[str] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Dict = replicate(_UpperCAmelCase) __A : Optional[Any] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : int = shard(_UpperCAmelCase) __A : Tuple = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05652401)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2383808.2)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase) __A : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : str = jax.random.PRNGKey(0) __A : Any = 50 __A : Optional[int] = jax.device_count() __A : int = num_samples * [prompt] __A : Optional[int] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Optional[int] = replicate(_UpperCAmelCase) __A : List[str] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = shard(_UpperCAmelCase) __A : str = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2373516.75)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) __A : Union[str, Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Any = jax.random.PRNGKey(0) __A : List[str] = 50 __A : Optional[int] = jax.device_count() __A : List[Any] = num_samples * [prompt] __A : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Union[str, Any] = replicate(_UpperCAmelCase) __A : Optional[Any] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : List[str] = shard(_UpperCAmelCase) __A : int = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2373516.75)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) __A ,__A : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , ) __A : Optional[Any] = scheduler.create_state() __A : Any = scheduler_state __A : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Union[str, Any] = jax.random.PRNGKey(0) __A : Optional[int] = 50 __A : Optional[Any] = jax.device_count() __A : Any = num_samples * [prompt] __A : Optional[Any] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : int = replicate(_UpperCAmelCase) __A : Any = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = shard(_UpperCAmelCase) __A : Union[str, Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.045043945)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2347693.5)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : int = jax.device_count() __A : List[Any] = num_samples * [prompt] __A : List[Any] = jax.random.split(jax.random.PRNGKey(0) , _UpperCAmelCase) __A ,__A : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase , ) __A : str = replicate(_UpperCAmelCase) __A : str = pipeline.prepare_inputs(_UpperCAmelCase) __A : str = shard(_UpperCAmelCase) __A : int = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) __A : Any = images[2, 0, 256, 10:17, 1] # With memory efficient attention __A ,__A : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase , use_memory_efficient_attention=_UpperCAmelCase , ) __A : Any = replicate(_UpperCAmelCase) __A : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase) __A : Optional[Any] = shard(_UpperCAmelCase) __A : List[Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __A : List[Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
190
1
def __lowerCamelCase ( a_ : list ) -> list: if len(lowercase_ ) <= 1: return [tuple(lowercase_ )] __SCREAMING_SNAKE_CASE :int = [] def generate(a_ : int , a_ : list ): __SCREAMING_SNAKE_CASE :Optional[Any] = [0] * n res.append(tuple(lowercase_ ) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = arr[i], arr[0] else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = arr[i], arr[c[i]] res.append(tuple(lowercase_ ) ) c[i] += 1 __SCREAMING_SNAKE_CASE :str = 0 else: __SCREAMING_SNAKE_CASE :List[Any] = 0 i += 1 generate(len(lowercase_ ) , lowercase_ ) return res if __name__ == "__main__": lowerCamelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase_ = [int(item) for item in user_input.split(",")] print(heaps(arr))
357
"""simple docstring""" def __lowerCamelCase ( a_ : str ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(a_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
239
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase : def __init__( self ) -> List[Any]: '''simple docstring''' _lowercase =False def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: '''simple docstring''' if not self.initialized: _lowercase =RagRetriever( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) _lowercase =True def A__ ( self ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase , _lowercase =self.retriever._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> Any: '''simple docstring''' if index is not None and index.is_initialized() and len(lowerCAmelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) _lowercase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for worker in self.retrieval_workers ] ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> List[str]: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _lowercase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] _lowercase , _lowercase =ray.get(random_worker.retrieve.remote(lowerCAmelCase , lowerCAmelCase ) ) else: _lowercase , _lowercase =self._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase ) @classmethod def A__ ( cls , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' return super(lowerCAmelCase , cls ).get_tokenizers(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) @classmethod def A__ ( cls , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> List[Any]: '''simple docstring''' _lowercase =kwargs.pop('config' , lowerCAmelCase ) or RagConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) _lowercase =RagTokenizer.from_pretrained(lowerCAmelCase , config=lowerCAmelCase ) _lowercase =rag_tokenizer.question_encoder _lowercase =rag_tokenizer.generator if indexed_dataset is not None: _lowercase ='custom' _lowercase =CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase ) else: _lowercase =cls._build_index(lowerCAmelCase ) return cls( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , retrieval_workers=lowerCAmelCase , index=lowerCAmelCase , )
205
def a ( A__ : str , A__ : bool = False ) -> str: """simple docstring""" if not isinstance(A__ , A__ ): _lowercase =F'''Expected string as input, found {type(A__ )}''' raise ValueError(A__ ) if not isinstance(A__ , A__ ): _lowercase =F'''Expected boolean as use_pascal parameter, found {type(A__ )}''' raise ValueError(A__ ) _lowercase =input_str.split('_' ) _lowercase =0 if use_pascal else 1 _lowercase =words[start_index:] _lowercase =[word[0].upper() + word[1:] for word in words_to_capitalize] _lowercase ='' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
205
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class __a ( _lowerCamelCase ): """simple docstring""" def __init__( self : Dict ): # test for the above condition self.test() def _lowerCAmelCase ( self : int ): UpperCamelCase__ : List[Any] =0 UpperCamelCase__ : List[str] =False while not completed: if counter == 1: self.reset() UpperCamelCase__ : Optional[Any] =self.advance() if not self.does_advance(lowercase_ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict =self.update(lowercase_ ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def _lowerCAmelCase ( self : Optional[Any] ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCAmelCase ( self : Tuple , lowercase_ : int ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCAmelCase ( self : str , lowercase_ : int ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCAmelCase ( self : Any ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCAmelCase ( self : Tuple ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _lowerCAmelCase ( self : Tuple , lowercase_ : int=False ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __a ( _lowerCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowercase_ : List[int] ): super(lowercase_ , self ).__init__() if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(lowercase_ , lowercase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase__ : List[Any] =token_ids UpperCamelCase__ : Union[str, Any] =len(self.token_ids ) UpperCamelCase__ : Tuple =-1 # the index of the currently fulfilled step UpperCamelCase__ : int =False def _lowerCAmelCase ( self : Optional[int] ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _lowerCAmelCase ( self : Optional[int] , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _lowerCAmelCase ( self : List[str] , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}''' ) UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : List[str] =False UpperCamelCase__ : Optional[int] =False if self.does_advance(lowercase_ ): self.fulfilled_idx += 1 UpperCamelCase__ : List[Any] =True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase__ : int =True UpperCamelCase__ : Dict =completed else: # failed to make progress. UpperCamelCase__ : Any =True self.reset() return stepped, completed, reset def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Tuple =False UpperCamelCase__ : int =0 def _lowerCAmelCase ( self : List[str] ): return self.seqlen - (self.fulfilled_idx + 1) def _lowerCAmelCase ( self : int , lowercase_ : str=False ): UpperCamelCase__ : Union[str, Any] =PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase__ : List[str] =self.seqlen UpperCamelCase__ : Optional[Any] =self.fulfilled_idx UpperCamelCase__ : Any =self.completed return new_constraint class __a : """simple docstring""" def __init__( self : Tuple , lowercase_ : List[List[int]] , lowercase_ : str=True ): UpperCamelCase__ : Tuple =max([len(lowercase_ ) for one in nested_token_ids] ) UpperCamelCase__ : int ={} for token_ids in nested_token_ids: UpperCamelCase__ : Union[str, Any] =root for tidx, token_id in enumerate(lowercase_ ): if token_id not in level: UpperCamelCase__ : List[Any] ={} UpperCamelCase__ : List[Any] =level[token_id] if no_subsets and self.has_subsets(lowercase_ , lowercase_ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f''' {nested_token_ids}.''' ) UpperCamelCase__ : Optional[Any] =root def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[Any] ): UpperCamelCase__ : Union[str, Any] =self.trie for current_token in current_seq: UpperCamelCase__ : Dict =start[current_token] UpperCamelCase__ : int =list(start.keys() ) return next_tokens def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : Tuple ): UpperCamelCase__ : Optional[Any] =self.next_tokens(lowercase_ ) return len(lowercase_ ) == 0 def _lowerCAmelCase ( self : str , lowercase_ : List[str] ): UpperCamelCase__ : List[str] =list(root.values() ) if len(lowercase_ ) == 0: return 1 else: return sum([self.count_leaves(lowercase_ ) for nn in next_nodes] ) def _lowerCAmelCase ( self : Dict , lowercase_ : Optional[int] , lowercase_ : List[str] ): UpperCamelCase__ : Any =self.count_leaves(lowercase_ ) return len(lowercase_ ) != leaf_count class __a ( _lowerCamelCase ): """simple docstring""" def __init__( self : Tuple , lowercase_ : List[List[int]] ): super(lowercase_ , self ).__init__() if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(lowercase_ , lowercase_ ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(lowercase_ , lowercase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase__ : int =DisjunctiveTrie(lowercase_ ) UpperCamelCase__ : Dict =nested_token_ids UpperCamelCase__ : Union[str, Any] =self.trie.max_height UpperCamelCase__ : Dict =[] UpperCamelCase__ : str =False def _lowerCAmelCase ( self : str ): UpperCamelCase__ : Tuple =self.trie.next_tokens(self.current_seq ) if len(lowercase_ ) == 0: return None else: return token_list def _lowerCAmelCase ( self : str , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}''' ) UpperCamelCase__ : Dict =self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _lowerCAmelCase ( self : List[Any] , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}''' ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : List[str] =False UpperCamelCase__ : Optional[int] =False if self.does_advance(lowercase_ ): self.current_seq.append(lowercase_ ) UpperCamelCase__ : List[str] =True else: UpperCamelCase__ : Any =True self.reset() UpperCamelCase__ : List[str] =self.trie.reached_leaf(self.current_seq ) UpperCamelCase__ : Dict =completed return stepped, completed, reset def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : List[str] =False UpperCamelCase__ : Union[str, Any] =[] def _lowerCAmelCase ( self : str ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : Tuple=False ): UpperCamelCase__ : Optional[Any] =DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase__ : Tuple =self.seqlen UpperCamelCase__ : Tuple =self.current_seq UpperCamelCase__ : Optional[Any] =self.completed return new_constraint class __a : """simple docstring""" def __init__( self : List[Any] , lowercase_ : List[Constraint] ): UpperCamelCase__ : Any =constraints # max # of steps required to fulfill a given constraint UpperCamelCase__ : Any =max([c.seqlen for c in constraints] ) UpperCamelCase__ : str =len(lowercase_ ) UpperCamelCase__ : Tuple =False self.init_state() def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : str =[] UpperCamelCase__ : List[Any] =None UpperCamelCase__ : Union[str, Any] =[constraint.copy(stateful=lowercase_ ) for constraint in self.constraints] def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : int =0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[Any] =[] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase__ : int =constraint.advance() if isinstance(lowercase_ , lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): token_list.extend(lowercase_ ) else: UpperCamelCase__ : Optional[int] =self.inprogress_constraint.advance() if isinstance(lowercase_ , lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): token_list.extend(lowercase_ ) if len(lowercase_ ) == 0: return None else: return token_list def _lowerCAmelCase ( self : int , lowercase_ : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase__ , UpperCamelCase__ : List[Any] =self.add(lowercase_ ) # the entire list of constraints are fulfilled if self.completed: break def _lowerCAmelCase ( self : Dict , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] =False, False if self.completed: UpperCamelCase__ : List[str] =True UpperCamelCase__ : List[Any] =False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : str =self.inprogress_constraint.update(lowercase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowercase_ ) ) UpperCamelCase__ : Union[str, Any] =None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase__ : Dict =None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase__ : List[Any] =True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowercase_ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[int] =pending_constraint.update(lowercase_ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(lowercase_ ) UpperCamelCase__ : Tuple =None if not complete and stepped: UpperCamelCase__ : Tuple =pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase__ : Union[str, Any] =( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase__ : Tuple =True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : str=True ): UpperCamelCase__ : Tuple =ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase__ : Dict =[ constraint.copy(stateful=lowercase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase__ : Any =self.inprogress_constraint.copy(stateful=lowercase_ ) UpperCamelCase__ : Optional[Any] =[constraint.copy() for constraint in self.pending_constraints] return new_state
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
0
import math def __magic_name__ ( __lowerCAmelCase : List[str] ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __magic_name__ ( __lowerCAmelCase : int = 1_0001 ) -> int: try: __lowerCamelCase = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) __lowerCamelCase = [] __lowerCamelCase = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'{solution() = }')
270
from collections import deque from .hash_table import HashTable class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , *_snake_case : Union[str, Any] , **_snake_case : Union[str, Any] ): super().__init__(*_snake_case , **_snake_case ) def snake_case_ ( self : List[Any] , _snake_case : List[Any] , _snake_case : Dict ): __lowercase : Any = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_snake_case ) __lowercase : List[Any] = self.values[key] def snake_case_ ( self : Any ): return ( sum(self.charge_factor - len(_snake_case ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case_ ( self : int , _snake_case : str , _snake_case : Optional[int]=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_snake_case ) == 0 ): return key return super()._collision_resolution(_snake_case , _snake_case )
156
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowercase__ : Optional[int] = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> List[str]: return (abs(source - target) / target) < 0.01 @pytest.mark.integration def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: a = _TestCommandArgs(dataset=__UpperCamelCase , all_configs=__UpperCamelCase , save_infos=__UpperCamelCase) a = TestCommand(*__UpperCamelCase) test_command.run() a = os.path.join(__UpperCamelCase , "README.md") assert os.path.exists(__UpperCamelCase) a = DatasetInfosDict.from_directory(__UpperCamelCase) a = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string")), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"])), "langs": Sequence(Value("string")), "spans": Sequence(Value("string")), }) , splits=[ { "name": "train", "num_bytes": 2_35_15_63, "num_examples": 1_00_00, }, { "name": "validation", "num_bytes": 23_84_18, "num_examples": 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) }) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: a , a = getattr(dataset_infos["default"] , __UpperCamelCase), getattr(expected_dataset_infos["default"] , __UpperCamelCase) if key == "num_bytes": assert is_apercent_close(__UpperCamelCase , __UpperCamelCase) elif key == "splits": assert list(__UpperCamelCase) == list(__UpperCamelCase) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes) else: result == expected
180
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Dict = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a = k.replace(__UpperCamelCase , __UpperCamelCase) if k.startswith("encoder"): a = k.replace(".attn" , ".self_attn") a = k.replace("norm1" , "self_attn_layer_norm") a = k.replace("norm2" , "final_layer_norm") elif k.startswith("decoder"): a = k.replace("norm1" , "self_attn_layer_norm") a = k.replace("norm2" , "encoder_attn_layer_norm") a = k.replace("norm3" , "final_layer_norm") return k def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> str: a = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: a = sd.pop(__UpperCamelCase) a = k.replace("layernorm_embedding" , "layer_norm") assert new_k not in sd a = v lowercase__ : Optional[Any] = ["START"] @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> int: a = torch.load(__UpperCamelCase , map_location="cpu") a = model["model"] a = BlenderbotConfig.from_json_file(__UpperCamelCase) a = BlenderbotForConditionalGeneration(__UpperCamelCase) a = m.model.state_dict().keys() a = [] a = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a = rename_state_dict_key(__UpperCamelCase) if new_k not in valid_keys: failures.append([k, new_k]) else: a = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__UpperCamelCase) m.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase) m.half() m.save_pretrained(__UpperCamelCase) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) lowercase__ : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
180
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ): _lowerCAmelCase : Dict = 1 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Dict = (32, 32) _lowerCAmelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def __A ( self ): def extract(*a__ , **a__ ): class __A : def __init__( self ): _lowerCAmelCase : Tuple = torch.ones([0] ) def __A ( self , a__ ): self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : List[Any] = self.dummy_cond_unet _lowerCAmelCase : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) _lowerCAmelCase : Union[str, Any] = self.dummy_vae _lowerCAmelCase : Tuple = self.dummy_text_encoder _lowerCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : Dict = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowerCAmelCase : List[str] = """A painting of a squirrel eating a burger""" _lowerCAmelCase : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _lowerCAmelCase : Dict = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _lowerCAmelCase : Any = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCAmelCase__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Dict = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.dummy_cond_unet _lowerCAmelCase : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _lowerCAmelCase : str = self.dummy_vae _lowerCAmelCase : Optional[Any] = self.dummy_text_encoder _lowerCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : int = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowerCAmelCase : str = """A painting of a squirrel eating a burger""" _lowerCAmelCase : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : str = output.images _lowerCAmelCase : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCAmelCase__ , )[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : str = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(pipe.scheduler , lowerCAmelCase__ ) assert pipe.safety_checker is None _lowerCAmelCase : str = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCAmelCase : Any = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ): _lowerCAmelCase : Tuple = self.dummy_cond_unet _lowerCAmelCase : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = self.dummy_vae _lowerCAmelCase : List[Any] = self.dummy_text_encoder _lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _lowerCAmelCase : Tuple = unet.half() _lowerCAmelCase : str = vae.half() _lowerCAmelCase : str = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase : Optional[int] = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : Dict = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowerCAmelCase : str = """A painting of a squirrel eating a burger""" _lowerCAmelCase : int = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCAmelCase__ ) _lowerCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowerCAmelCase : int = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _lowerCAmelCase : Any = 4003660346 _lowerCAmelCase : Dict = 7 # without safety guidance (sld_guidance_scale = 0) _lowerCAmelCase : str = torch.manual_seed(lowerCAmelCase__ ) _lowerCAmelCase : Tuple = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _lowerCAmelCase : int = torch.manual_seed(lowerCAmelCase__ ) _lowerCAmelCase : Dict = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : Dict = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowerCAmelCase : int = """padme amidala taking a bath artwork, safe for work, no nudity""" _lowerCAmelCase : Any = 2734971755 _lowerCAmelCase : Any = 7 _lowerCAmelCase : str = torch.manual_seed(lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : Any = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _lowerCAmelCase : int = torch.manual_seed(lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Optional[Any] = output.images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[Any] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowerCAmelCase : Tuple = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _lowerCAmelCase : Optional[int] = 1044355234 _lowerCAmelCase : Optional[Any] = 12 _lowerCAmelCase : Dict = torch.manual_seed(lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : Optional[Any] = output.images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _lowerCAmelCase : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : str = output.images _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] _lowerCAmelCase : int = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
44
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str: '''simple docstring''' if not batched: _UpperCamelCase = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): _UpperCamelCase , _UpperCamelCase = image.size else: _UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2] if w < h: _UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = self.size['''shortest_edge'''] else: _UpperCamelCase = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) _UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' pass def snake_case__ ( self : int ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''image_id''': 39769, '''annotations''': target} # encode them _UpperCamelCase = DeformableDetrImageProcessor() _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) ) @slow def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} _UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify masks _UpperCamelCase = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
324
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : set ) -> int: """simple docstring""" lowerCAmelCase_ : Tuple = len(lowerCAmelCase__ ), len(grid[0] ) if ( min(lowerCAmelCase__ , lowerCAmelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowerCAmelCase_ : Dict = 0 count += depth_first_search(lowerCAmelCase__ , row + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) count += depth_first_search(lowerCAmelCase__ , row - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) count += depth_first_search(lowerCAmelCase__ , lowerCAmelCase__ , col + 1 , lowerCAmelCase__ ) count += depth_first_search(lowerCAmelCase__ , lowerCAmelCase__ , col - 1 , lowerCAmelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase__ : int = HUGGINGFACE_HUB_CACHE lowercase__ : Tuple = """config.json""" lowercase__ : Union[str, Any] = """diffusion_pytorch_model.bin""" lowercase__ : List[Any] = """diffusion_flax_model.msgpack""" lowercase__ : List[str] = """model.onnx""" lowercase__ : List[Any] = """diffusion_pytorch_model.safetensors""" lowercase__ : Dict = """weights.pb""" lowercase__ : List[Any] = """https://huggingface.co""" lowercase__ : List[Any] = default_cache_path lowercase__ : Tuple = """diffusers_modules""" lowercase__ : Tuple = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowercase__ : List[str] = ["""fp16""", """non-ema"""] lowercase__ : Optional[Any] = """.self_attn"""
289
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> int: __lowerCamelCase = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) __lowerCamelCase = hex_num[0] == '''-''' if is_negative: __lowerCamelCase = hex_num[1:] try: __lowerCamelCase = int(UpperCamelCase__ , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) __lowerCamelCase = '''''' while int_num > 0: __lowerCamelCase = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' from itertools import product def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> list[int]: lowercase_ : List[Any] = sides_number lowercase_ : Dict = max_face_number * dice_number lowercase_ : List[str] = [0] * (max_total + 1) lowercase_ : Union[str, Any] = 1 lowercase_ : Dict = range(UpperCAmelCase__ , max_face_number + 1 ) for dice_numbers in product(UpperCAmelCase__ , repeat=UpperCAmelCase__ ): lowercase_ : Any = sum(UpperCAmelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase ( ) -> float: lowercase_ : Optional[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase_ : List[str] = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase_ : Union[str, Any] = 0 lowercase_ : Tuple = 9 lowercase_ : Optional[int] = 4 * 9 lowercase_ : List[Any] = 6 for peter_total in range(UpperCAmelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase_ : str = (4**9) * (6**6) lowercase_ : List[Any] = peter_wins_count / total_games_number lowercase_ : Dict = round(UpperCAmelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
239
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ): # Base Case if curr_ind == len(UpperCAmelCase_ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCAmelCase_ ) ): if valid_connection(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Insert current vertex into path as next transition A__ = next_ver # Validate created path if util_hamilton_cycle(UpperCAmelCase_ , UpperCAmelCase_ , curr_ind + 1 ): return True # Backtrack A__ = -1 return False def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int = 0 ): A__ = [-1] * (len(UpperCAmelCase_ ) + 1) # initialize start and end of path with starting index A__ = A__ = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCAmelCase_ , UpperCAmelCase_ , 1 ) else []
69
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _snake_case ( UpperCAmelCase_ : int="ro" , UpperCAmelCase_ : Optional[int]="en" , UpperCAmelCase_ : List[Any]="wmt16" , UpperCAmelCase_ : str=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) A__ = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) A__ = datasets.load_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) if save_dir is None: A__ = F"""{dataset}-{pair}""" A__ = Path(UpperCAmelCase_ ) save_dir.mkdir(exist_ok=UpperCAmelCase_ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets A__ = """val""" if split == """validation""" else split A__ = save_dir.joinpath(F"""{fn}.source""" ) A__ = save_dir.joinpath(F"""{fn}.target""" ) A__ = src_path.open("""w+""" ) A__ = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): A__ = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
69
1
"""simple docstring""" import os def UpperCAmelCase ( ) -> Union[str, Any]: with open(os.path.dirname(UpperCAmelCase ) + '/p022_names.txt' ) as file: snake_case_ = str(file.readlines()[0] ) snake_case_ = names.replace('"' , '' ).split(',' ) names.sort() snake_case_ = 0 snake_case_ = 0 for i, name in enumerate(UpperCAmelCase ): for letter in name: name_score += ord(UpperCAmelCase ) - 64 total_score += (i + 1) * name_score snake_case_ = 0 return total_score if __name__ == "__main__": print(solution())
69
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__: Optional[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str]=False ) -> Dict: __UpperCAmelCase : Dict = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __UpperCAmelCase : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _snake_case ( _lowercase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: str=13 , __lowerCamelCase: Any=7 , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: str=32 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[int]=37 , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: int=5_12 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Dict=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: Union[str, Any]=None , ) -> Optional[int]: __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : str = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : List[str] = embedding_size def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Tuple = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = TFMobileBertModel(config=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [input_ids, input_mask] __UpperCAmelCase : List[str] = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ) -> Optional[int]: __UpperCAmelCase : List[str] = TFMobileBertForMaskedLM(config=__lowerCamelCase ) __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = TFMobileBertForNextSentencePrediction(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : List[str] = model(__lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = TFMobileBertForSequenceClassification(config=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : Tuple = TFMobileBertForMultipleChoice(config=__lowerCamelCase ) __UpperCAmelCase : Dict = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Any = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Dict: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[int] = TFMobileBertForTokenClassification(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : Tuple = TFMobileBertForQuestionAnswering(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCamelCase ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __UpperCAmelCase : Dict = TFMobileBertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Any = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : str = model(__lowerCamelCase )[0] __UpperCAmelCase : Any = [1, 6, 3_05_22] self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : str = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
157
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self,__lowerCamelCase = 3,__lowerCamelCase = 3,__lowerCamelCase = ("DownEncoderBlock2D",),__lowerCamelCase = ("UpDecoderBlock2D",),__lowerCamelCase = (64,),__lowerCamelCase = 1,__lowerCamelCase = "silu",__lowerCamelCase = 3,__lowerCamelCase = 32,__lowerCamelCase = 256,__lowerCamelCase = 32,__lowerCamelCase = None,__lowerCamelCase = 0.18215,__lowerCamelCase = "group",): super().__init__() # pass init params to Encoder A__ = Encoder( in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,down_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,double_z=__lowerCamelCase,) A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 ) A__ = VectorQuantizer(__lowerCamelCase,__lowerCamelCase,beta=0.25,remap=__lowerCamelCase,sane_index_shape=__lowerCamelCase ) A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 ) # pass init params to Decoder A__ = Decoder( in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,up_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,norm_type=__lowerCamelCase,) @apply_forward_hook def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ): A__ = self.encoder(__lowerCamelCase ) A__ = self.quant_conv(__lowerCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowerCamelCase ) @apply_forward_hook def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = False,__lowerCamelCase = True ): # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ = self.quantize(__lowerCamelCase ) else: A__ = h A__ = self.post_quant_conv(__lowerCamelCase ) A__ = self.decoder(__lowerCamelCase,quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ): A__ = sample A__ = self.encode(__lowerCamelCase ).latents A__ = self.decode(__lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase )
39
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=0.999 , UpperCamelCase__ : Optional[int]="cosine" , )->Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) A__ = [] for i in range(UpperCamelCase__ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self,__lowerCamelCase = 1000,__lowerCamelCase = 0.0001,__lowerCamelCase = 0.02,__lowerCamelCase = "linear",__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = True,__lowerCamelCase = 0,__lowerCamelCase = "epsilon",__lowerCamelCase = 1.0,**__lowerCamelCase,): if kwargs.get('''set_alpha_to_one''',__lowerCamelCase ) is not None: A__ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''','''1.0.0''',__lowerCamelCase,standard_warn=__lowerCamelCase ) A__ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: A__ = torch.tensor(__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5,beta_end**0.5,__lowerCamelCase,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas,dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. A__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution A__ = 1.0 # setable values A__ = None A__ = torch.from_numpy(np.arange(0,__lowerCamelCase ).copy().astype(np.intaa ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): return sample def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) A__ = num_inference_steps A__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0,__lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) A__ = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) self.timesteps += self.config.steps_offset def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = 0.0,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = True,): # 1. get previous step value (=t+1) A__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process A__ = self.alphas_cumprod[timestep] A__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) A__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": A__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 A__ = model_output elif self.config.prediction_type == "sample": A__ = model_output A__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": A__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output A__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range,self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase,pred_original_sample=__lowerCamelCase ) def __len__( self ): return self.config.num_train_timesteps
39
1
from __future__ import annotations from math import pi def snake_case ( snake_case__ :float , snake_case__ :float , snake_case__ :float) -> dict[str, float]: if (inductance, frequency, reactance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if inductance < 0: raise ValueError("""Inductance cannot be negative""") if frequency < 0: raise ValueError("""Frequency cannot be negative""") if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""") if __name__ == "__main__": import doctest doctest.testmod()
180
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 32 def snake_case ( snake_case__ :Optional[int]) -> str: return int(x / 2**20) class a : """simple docstring""" def __enter__( self ) -> List[str]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _A = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCAmelCase_ ) -> Optional[int]: gc.collect() torch.cuda.empty_cache() _A = torch.cuda.memory_allocated() _A = torch.cuda.max_memory_allocated() _A = bamb(self.end - self.begin ) _A = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def snake_case ( snake_case__ :Accelerator , snake_case__ :int = 16 , snake_case__ :str = "bert-base-cased" , snake_case__ :int = 320 , snake_case__ :int = 160 , ) -> Dict: _A = AutoTokenizer.from_pretrained(snake_case__) _A = load_dataset( """glue""" , """mrpc""" , split={"""train""": F'''train[:{n_train}]''', """validation""": F'''validation[:{n_val}]'''}) def tokenize_function(snake_case__ :Optional[int]): # max_length=None => use the model max length (it's actually the default) _A = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _A = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case__) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(snake_case__ :List[str]): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""") return tokenizer.pad(snake_case__ , padding="""longest""" , return_tensors="""pt""") # Instantiate dataloaders. _A = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__) _A = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__) return train_dataloader, eval_dataloader def snake_case ( snake_case__ :Optional[int] , snake_case__ :Optional[int]) -> Optional[int]: # Initialize accelerator _A = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A = config["""lr"""] _A = int(config["""num_epochs"""]) _A = int(config["""seed"""]) _A = int(config["""batch_size"""]) _A = args.model_name_or_path set_seed(snake_case__) _A , _A = get_dataloaders(snake_case__ , snake_case__ , snake_case__ , args.n_train , args.n_val) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__) # Instantiate optimizer _A = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _A = optimizer_cls(params=model.parameters() , lr=snake_case__) if accelerator.state.deepspeed_plugin is not None: _A = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _A = 1 _A = (len(snake_case__) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _A = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: _A = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A , _A , _A , _A , _A = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) # We need to keep track of how many total steps we have iterated over _A = 0 # We also need to keep track of the stating epoch so files are named properly _A = 0 # Now we train the model _A = {} for epoch in range(snake_case__ , snake_case__): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case__): _A = model(**snake_case__) _A = outputs.loss _A = loss / gradient_accumulation_steps accelerator.backward(snake_case__) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin))) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used)) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked)) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin))) _A = tracemalloc.peaked + bamb(tracemalloc.begin) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""") , """w""") as f: json.dump(snake_case__ , snake_case__) def snake_case ( ) -> Optional[int]: _A = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""") parser.add_argument( """--model_name_or_path""" , type=snake_case__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case__ , ) parser.add_argument( """--output_dir""" , type=snake_case__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=snake_case__ , default=snake_case__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=snake_case__ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=snake_case__ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case__ , default=1 , help="""Number of train epochs.""" , ) _A = parser.parse_args() _A = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__) if __name__ == "__main__": main()
180
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowercase ( a__ : dict ) -> tuple: return (data["data"], data["target"]) def lowercase ( a__ : np.ndarray , a__ : np.ndarray ) -> XGBClassifier: _UpperCamelCase = XGBClassifier() classifier.fit(lowerCAmelCase__ , lowerCAmelCase__ ) return classifier def lowercase ( ) -> None: _UpperCamelCase = load_iris() _UpperCamelCase , _UpperCamelCase = data_handling(lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 ) _UpperCamelCase = iris['''target_names'''] # Create an XGBoost Classifier from the training data _UpperCamelCase = xgboost(lowerCAmelCase__ , lowerCAmelCase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , display_labels=lowerCAmelCase__ , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
365
"""simple docstring""" import numpy as np def lowercase ( a__ : Optional[Any] , a__ : str , a__ : Union[str, Any] , a__ : Any , a__ : List[str] ) -> Dict: _UpperCamelCase = int(np.ceil((x_end - xa) / h ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(a__ ): _UpperCamelCase = f(a__ , y[k] ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + h , y[k] + h * ka ) _UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
54
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=18 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :Dict = size if size is not None else {'''shortest_edge''': 20} UpperCamelCase__ :Tuple = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :str = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Optional[int] = min_resolution UpperCamelCase__ :Union[str, Any] = max_resolution UpperCamelCase__ :Optional[int] = do_resize UpperCamelCase__ :str = size UpperCamelCase__ :Union[str, Any] = do_center_crop UpperCamelCase__ :str = crop_size UpperCamelCase__ :Tuple = do_flip_channel_order def lowerCAmelCase__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowercase ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _a = MobileViTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = MobileViTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_flip_channel_order''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCamelCase__ :str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ :Tuple = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ :str = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ :Tuple = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
97
"""simple docstring""" import math def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = 2 _UpperCAmelCase = int(math.sqrt(lowercase ) ) # Size of every segment _UpperCAmelCase = [True] * (end + 1) _UpperCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(lowercase ) for i in range(start * start ,end + 1 ,lowercase ): _UpperCAmelCase = False start += 1 prime += in_prime _UpperCAmelCase = end + 1 _UpperCAmelCase = min(2 * end ,lowercase ) while low <= n: _UpperCAmelCase = [True] * (high - low + 1) for each in in_prime: _UpperCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(lowercase ,high + 1 ,lowercase ): _UpperCAmelCase = False for j in range(len(lowercase ) ): if temp[j] is True: prime.append(j + low ) _UpperCAmelCase = high + 1 _UpperCAmelCase = min(high + end ,lowercase ) return prime print(sieve(1_0**6))
289
0
UpperCamelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" assert len(str(_snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCAmelCase__ = year // 100 lowerCAmelCase__ = (5 * (century % 4) + 2) % 7 lowerCAmelCase__ = year % 100 lowerCAmelCase__ = centurian % 12 lowerCAmelCase__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCAmelCase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCAmelCase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
352
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Dict ) -> Optional[int]: lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = BlipImageProcessor() lowerCAmelCase__ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCAmelCase__ = BlipaProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).tokenizer def a ( self : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def a ( self : str ) -> int: shutil.rmtree(self.tmpdirname ) def a ( self : List[Any] ) -> Any: lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self : str ) -> Dict: lowerCAmelCase__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) lowerCAmelCase__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> str: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) lowerCAmelCase__ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> int: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Dict ) -> str: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def a ( self : str ) -> List[str]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Any: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
221
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> List[str]: snake_case_ = tempfile.mkdtemp() snake_case_ = SamImageProcessor() snake_case_ = SamProcessor(lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) def a_ ( self, **lowerCAmelCase__) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__).image_processor def a_ ( self) -> int: shutil.rmtree(self.tmpdirname) def a_ ( self) -> Optional[int]: snake_case_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] snake_case_ = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1)) for x in image_inputs] return image_inputs def a_ ( self) -> Union[str, Any]: snake_case_ = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_image_processor(do_normalize=lowerCAmelCase__, padding_value=1.0) snake_case_ = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=lowerCAmelCase__, padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = self.get_image_processor() snake_case_ = SamProcessor(image_processor=lowerCAmelCase__) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowerCAmelCase__, return_tensors='np') snake_case_ = processor(images=lowerCAmelCase__, return_tensors='np') input_feat_extract.pop('original_sizes') # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes') # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) @require_torch def a_ ( self) -> List[Any]: snake_case_ = self.get_image_processor() snake_case_ = SamProcessor(image_processor=lowerCAmelCase__) snake_case_ = [torch.ones((1, 3, 5, 5))] snake_case_ = [[1764, 2646]] snake_case_ = [[683, 1024]] snake_case_ = processor.post_process_masks(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) snake_case_ = processor.post_process_masks( lowerCAmelCase__, torch.tensor(lowerCAmelCase__), torch.tensor(lowerCAmelCase__)) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) # should also work with np snake_case_ = [np.ones((1, 3, 5, 5))] snake_case_ = processor.post_process_masks(lowerCAmelCase__, np.array(lowerCAmelCase__), np.array(lowerCAmelCase__)) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) snake_case_ = [[1, 0], [0, 1]] with self.assertRaises(lowerCAmelCase__): snake_case_ = processor.post_process_masks(lowerCAmelCase__, np.array(lowerCAmelCase__), np.array(lowerCAmelCase__)) @require_vision @require_tf class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> str: snake_case_ = tempfile.mkdtemp() snake_case_ = SamImageProcessor() snake_case_ = SamProcessor(lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) def a_ ( self, **lowerCAmelCase__) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__).image_processor def a_ ( self) -> Tuple: shutil.rmtree(self.tmpdirname) def a_ ( self) -> Dict: snake_case_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] snake_case_ = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1)) for x in image_inputs] return image_inputs def a_ ( self) -> Optional[int]: snake_case_ = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_image_processor(do_normalize=lowerCAmelCase__, padding_value=1.0) snake_case_ = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=lowerCAmelCase__, padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = self.get_image_processor() snake_case_ = SamProcessor(image_processor=lowerCAmelCase__) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowerCAmelCase__, return_tensors='np') snake_case_ = processor(images=lowerCAmelCase__, return_tensors='np') input_feat_extract.pop('original_sizes') # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes') # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) @require_tf def a_ ( self) -> int: snake_case_ = self.get_image_processor() snake_case_ = SamProcessor(image_processor=lowerCAmelCase__) snake_case_ = [tf.ones((1, 3, 5, 5))] snake_case_ = [[1764, 2646]] snake_case_ = [[683, 1024]] snake_case_ = processor.post_process_masks(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, return_tensors='tf') self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) snake_case_ = processor.post_process_masks( lowerCAmelCase__, tf.convert_to_tensor(lowerCAmelCase__), tf.convert_to_tensor(lowerCAmelCase__), return_tensors='tf', ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) # should also work with np snake_case_ = [np.ones((1, 3, 5, 5))] snake_case_ = processor.post_process_masks( lowerCAmelCase__, np.array(lowerCAmelCase__), np.array(lowerCAmelCase__), return_tensors='tf') self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) snake_case_ = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError): snake_case_ = processor.post_process_masks( lowerCAmelCase__, np.array(lowerCAmelCase__), np.array(lowerCAmelCase__), return_tensors='tf') @require_vision @require_torchvision class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> List[Any]: snake_case_ = tempfile.mkdtemp() snake_case_ = SamImageProcessor() snake_case_ = SamProcessor(lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) def a_ ( self, **lowerCAmelCase__) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__).image_processor def a_ ( self) -> int: shutil.rmtree(self.tmpdirname) def a_ ( self) -> Optional[Any]: snake_case_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] snake_case_ = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1)) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a_ ( self) -> str: snake_case_ = self.get_image_processor() snake_case_ = SamProcessor(image_processor=lowerCAmelCase__) snake_case_ = np.random.randint(0, 2, size=(1, 3, 5, 5)).astype(np.floataa) snake_case_ = [tf.convert_to_tensor(lowerCAmelCase__)] snake_case_ = [torch.tensor(lowerCAmelCase__)] snake_case_ = [[1764, 2646]] snake_case_ = [[683, 1024]] snake_case_ = processor.post_process_masks( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, return_tensors='tf') snake_case_ = processor.post_process_masks( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, return_tensors='pt') self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy())) @is_pt_tf_cross_test def a_ ( self) -> List[str]: snake_case_ = self.get_image_processor() snake_case_ = SamProcessor(image_processor=lowerCAmelCase__) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowerCAmelCase__, return_tensors='pt')['pixel_values'].numpy() snake_case_ = processor(images=lowerCAmelCase__, return_tensors='pt')['pixel_values'].numpy() snake_case_ = image_processor(lowerCAmelCase__, return_tensors='tf')['pixel_values'].numpy() snake_case_ = processor(images=lowerCAmelCase__, return_tensors='tf')['pixel_values'].numpy() self.assertTrue(np.allclose(lowerCAmelCase__, lowerCAmelCase__)) self.assertTrue(np.allclose(lowerCAmelCase__, lowerCAmelCase__)) self.assertTrue(np.allclose(lowerCAmelCase__, lowerCAmelCase__))
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset A : Any = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) A : Optional[Any] = dataset.iloc[:, 1:2].values A : List[str] = dataset.iloc[:, 2].values A , A , A , A : Tuple = train_test_split(X, y, test_size=0.2, random_state=0) A : List[Any] = PolynomialFeatures(degree=4) A : int = poly_reg.fit_transform(X) A : Optional[int] = LinearRegression() pol_reg.fit(X_poly, y) def a__ ( ): plt.scatter(__UpperCamelCase , __UpperCamelCase , color="red" ) plt.plot(__UpperCamelCase , pol_reg.predict(poly_reg.fit_transform(__UpperCamelCase ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (1, 2, 1) SCREAMING_SNAKE_CASE_ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE_ = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regressor.predict(__UpperCamelCase ) return y_pred[0] def a__ ( __UpperCamelCase ): train_user.sort() SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 2_5 ) SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 7_5 ) SCREAMING_SNAKE_CASE_ = qa - qa SCREAMING_SNAKE_CASE_ = qa - (iqr * 0.1) return low_lim def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] A : Optional[Any] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) A : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : List[str] = normalize_df[:, 0].tolist() A : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Tuple = x[: len(x) - 1] A : str = x[len(x) - 1 :] # for linear regression & sarimax A : Tuple = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : List[Any] = total_user[len(total_user) - 1 :] A : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
305
1
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = name _UpperCAmelCase = value _UpperCAmelCase = weight def __repr__( self ): """simple docstring""" return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def UpperCamelCase ( self ): """simple docstring""" return self.value def UpperCamelCase ( self ): """simple docstring""" return self.name def UpperCamelCase ( self ): """simple docstring""" return self.weight def UpperCamelCase ( self ): """simple docstring""" return self.value / self.weight def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Dict: """simple docstring""" _UpperCAmelCase = [] for i in range(len(__lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: """simple docstring""" _UpperCAmelCase = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase , _UpperCAmelCase = 0.0, 0.0 for i in range(len(__lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __A ( )-> Optional[Any]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
39
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
1
'''simple docstring''' class A__ ( _snake_case ): pass class A__ ( _snake_case ): pass class A__ : def __init__( self ) -> Any: '''simple docstring''' A_ = [ [], [], [], ] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> None: '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(UpperCamelCase__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def snake_case_ ( self ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ) -> str: '''simple docstring''' return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class A__ : def __init__( self ) -> Optional[Any]: '''simple docstring''' A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> None: '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: A_ = min(self.queue ) self.queue.remove(UpperCamelCase__ ) return data def __str__( self ) -> str: '''simple docstring''' return str(self.queue ) def UpperCAmelCase__ ( ) -> Tuple: A_ = FixedPriorityQueue() fpq.enqueue(0, 10 ) fpq.enqueue(1, 70 ) fpq.enqueue(0, 1_00 ) fpq.enqueue(2, 1 ) fpq.enqueue(2, 5 ) fpq.enqueue(1, 7 ) fpq.enqueue(2, 4 ) fpq.enqueue(1, 64 ) fpq.enqueue(0, 1_28 ) print(UpperCAmelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(UpperCAmelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCAmelCase__ ( ) -> Tuple: A_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(UpperCAmelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(UpperCAmelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
101
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , **UpperCamelCase__ ) A_ = Sql( cache_dir=UpperCamelCase__ , features=UpperCamelCase__ , sql=UpperCamelCase__ , con=UpperCamelCase__ , **UpperCamelCase__ , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , ) # Build dataset for splits A_ = self.builder.as_dataset( split="""train""" , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) A_ = dataset A_ = name A_ = con A_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ = num_proc A_ = to_sql_kwargs def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.to_sql_kwargs.pop("""sql""" , UpperCamelCase__ ) A_ = self.to_sql_kwargs.pop("""con""" , UpperCamelCase__ ) A_ = self.to_sql_kwargs.pop("""index""" , UpperCamelCase__ ) A_ = self._write(index=UpperCamelCase__ , **self.to_sql_kwargs ) return written def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ , A_ , A_ = args A_ = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs A_ = query_table( table=self.dataset.data , key=slice(UpperCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ = batch.to_pandas() A_ = df.to_sql(self.name , self.con , index=UpperCamelCase__ , **UpperCamelCase__ ) return num_rows or len(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' A_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: A_ , A_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCamelCase__ , UpperCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
101
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase ( _snake_case : int ) ->Dict: """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def lowercase ( _snake_case : str , _snake_case : Union[str, Any] ) ->Dict: """simple docstring""" __snake_case : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __snake_case : Union[str, Any] = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) __snake_case : List[Any] = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) __snake_case : str = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) __snake_case : Optional[Any] = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) __snake_case : str = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) __snake_case : List[str] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) __snake_case : Optional[Any] = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) __snake_case : str = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) __snake_case : str = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) __snake_case : Any = key.replace('''image_encoder.module''' , '''flava.image_model''' ) __snake_case : Tuple = key.replace('''text_encoder.module''' , '''flava.text_model''' ) __snake_case : Any = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) __snake_case : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) __snake_case : Any = key.replace('''text_projection''' , '''flava.text_projection''' ) __snake_case : Optional[Any] = key.replace('''image_projection''' , '''flava.image_projection''' ) __snake_case : Any = value.float() for key, value in codebook_state_dict.items(): __snake_case : Union[str, Any] = value return upgrade @torch.no_grad() def lowercase ( _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Dict , _snake_case : Dict=None ) ->Union[str, Any]: """simple docstring""" if config_path is not None: __snake_case : Dict = FlavaConfig.from_pretrained(_snake_case ) else: __snake_case : Optional[Any] = FlavaConfig() __snake_case : List[Any] = FlavaForPreTraining(_snake_case ).eval() __snake_case : Union[str, Any] = convert_dalle_checkpoint(_snake_case , _snake_case , save_checkpoint=_snake_case ) if os.path.exists(_snake_case ): __snake_case : List[str] = torch.load(_snake_case , map_location='''cpu''' ) else: __snake_case : List[str] = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' ) __snake_case : Any = upgrade_state_dict(_snake_case , _snake_case ) hf_model.load_state_dict(_snake_case ) __snake_case : int = hf_model.state_dict() __snake_case : Union[str, Any] = count_parameters(_snake_case ) __snake_case : List[Any] = count_parameters(_snake_case ) + count_parameters(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
102
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = CLIPTokenizer snake_case__ : Dict = CLIPTokenizerFast snake_case__ : List[Any] = True snake_case__ : Optional[Any] = {} snake_case__ : Dict = False def UpperCAmelCase_ ( self : Any ) -> Any: super().setUp() # fmt: off __SCREAMING_SNAKE_CASE = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] __SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) def UpperCAmelCase_ ( self : List[Any] , **UpperCAmelCase__ : Tuple ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any , **UpperCAmelCase__ : Optional[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[str]: __SCREAMING_SNAKE_CASE = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @require_ftfy def UpperCAmelCase_ ( self : Optional[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __SCREAMING_SNAKE_CASE = "xa\u0303y" + " " + "x\xe3y" __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on unicode of space type __SCREAMING_SNAKE_CASE = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type __SCREAMING_SNAKE_CASE = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __SCREAMING_SNAKE_CASE = F"""{text_of_1_token} {text_of_1_token}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase__ ) + 1, len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) __SCREAMING_SNAKE_CASE = F""" {text}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ) + 1, 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCAmelCase_ ( self : Optional[int] ) -> int: super().test_tokenization_python_rust_equals() def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: # CLIP always lower cases letters pass
54
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : int=None ,lowercase__ : Any=None ,*lowercase__ : Dict ,**lowercase__ : List[Any] ): super().__init__(*lowercase__ ,**lowercase__ ) if config is None: assert isinstance(self.model ,lowercase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F" {self.model.__class__}" ) __lowercase = self.model.config else: __lowercase = config __lowercase = data_args __lowercase = self.config.tgt_vocab_size if isinstance(self.config ,lowercase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" ''' padding..''' ) if self.args.label_smoothing == 0: __lowercase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __lowercase = label_smoothed_nll_loss def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if self.optimizer is None: __lowercase = ['''bias''', '''LayerNorm.weight'''] __lowercase = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] __lowercase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __lowercase = Adafactor __lowercase = {'''scale_parameter''': False, '''relative_step''': False} else: __lowercase = AdamW __lowercase = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } __lowercase = self.args.learning_rate if self.sharded_ddp: __lowercase = OSS( params=lowercase__ ,optim=lowercase__ ,**lowercase__ ,) else: __lowercase = optimizer_cls(lowercase__ ,**lowercase__ ) if self.lr_scheduler is None: __lowercase = self._get_lr_scheduler(lowercase__ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ): __lowercase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __lowercase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __lowercase = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: __lowercase = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=lowercase__ ) return scheduler def SCREAMING_SNAKE_CASE ( self : List[Any] ): if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : List[str] ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __lowercase = model(**lowercase__ ,use_cache=lowercase__ )[0] __lowercase = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models __lowercase , __lowercase = model(**lowercase__ ,labels=lowercase__ ,use_cache=lowercase__ )[:2] else: # compute label smoothed loss __lowercase = model(**lowercase__ ,use_cache=lowercase__ )[0] __lowercase = torch.nn.functional.log_softmax(lowercase__ ,dim=-1 ) __lowercase , __lowercase = self.loss_fn(lowercase__ ,lowercase__ ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : int ,lowercase__ : Dict ): __lowercase = inputs.pop('''labels''' ) __lowercase , __lowercase = self._compute_loss(lowercase__ ,lowercase__ ,lowercase__ ) return loss def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : nn.Module ,lowercase__ : Dict[str, Union[torch.Tensor, Any]] ,lowercase__ : bool ,lowercase__ : Optional[List[str]] = None ,): __lowercase = self._prepare_inputs(lowercase__ ) __lowercase = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __lowercase = self.model.generate( inputs['''input_ids'''] ,attention_mask=inputs['''attention_mask'''] ,**lowercase__ ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __lowercase = self._pad_tensors_to_max_len(lowercase__ ,gen_kwargs['''max_length'''] ) __lowercase = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data __lowercase , __lowercase = self._compute_loss(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __lowercase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __lowercase = self._pad_tensors_to_max_len(lowercase__ ,gen_kwargs['''max_length'''] ) return (loss, logits, labels) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Tuple ,lowercase__ : List[Any] ): # If PAD token is not defined at least EOS token has to be defined __lowercase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F" padded to `max_length`={max_length}" ) __lowercase = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) __lowercase = tensor return padded_tensor
52
'''simple docstring''' lowerCAmelCase__ = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.355_818, } def _A ( A__ , A__ , A__ ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowercase = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
52
1
import math def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ = 1 / 1_2_3_4_5 ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 3 while True: lowerCamelCase_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCamelCase__ ): lowerCamelCase_ = int(lowerCamelCase__ ) total_partitions += 1 if check_partition_perfect(lowerCamelCase__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCamelCase__ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
19
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class UpperCamelCase__( __A ): lowerCAmelCase__ : Union[str, Any] = 'transfo-xl' lowerCAmelCase__ : Any = ['mems'] lowerCAmelCase__ : Tuple = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,__UpperCAmelCase=26_77_35 ,__UpperCAmelCase=[2_00_00, 4_00_00, 20_00_00] ,__UpperCAmelCase=10_24 ,__UpperCAmelCase=10_24 ,__UpperCAmelCase=16 ,__UpperCAmelCase=64 ,__UpperCAmelCase=40_96 ,__UpperCAmelCase=4 ,__UpperCAmelCase=False ,__UpperCAmelCase=18 ,__UpperCAmelCase=16_00 ,__UpperCAmelCase=10_00 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=0 ,__UpperCAmelCase=-1 ,__UpperCAmelCase=True ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=True ,__UpperCAmelCase="normal" ,__UpperCAmelCase=0.0_1 ,__UpperCAmelCase=0.0_1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1e-5 ,__UpperCAmelCase=0 ,**__UpperCAmelCase ,) -> Tuple: A__ = vocab_size A__ = [] self.cutoffs.extend(__UpperCAmelCase ) if proj_share_all_but_first: A__ = [False] + [True] * len(self.cutoffs ) else: A__ = [False] + [False] * len(self.cutoffs ) A__ = d_model A__ = d_embed A__ = d_head A__ = d_inner A__ = div_val A__ = pre_lnorm A__ = n_layer A__ = n_head A__ = mem_len A__ = same_length A__ = attn_type A__ = clamp_len A__ = sample_softmax A__ = adaptive A__ = dropout A__ = dropatt A__ = untie_r A__ = init A__ = init_range A__ = proj_init_std A__ = init_std A__ = layer_norm_epsilon super().__init__(eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) @property def snake_case__ ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case__ ( self ,__UpperCAmelCase ) -> int: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
221
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCamelCase ): A__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) @slow def UpperCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCamelCase ): A__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) @slow def UpperCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: A__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) A__ = FlaxBertModel.from_pretrained(__lowerCamelCase ) A__ = tokenizer('''Do you support jax jitted function?''',return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() @slow def UpperCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: A__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) A__ = FlaxRobertaModel.from_pretrained(__lowerCamelCase ) A__ = tokenizer('''Do you support jax jitted function?''',return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,'''bert-base is not a local folder and is not a valid model identifier''' ): A__ = FlaxAutoModel.from_pretrained('''bert-base''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase,revision='''aaaaaa''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,'''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''',): A__ = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex(__lowerCamelCase,'''Use `from_pt=True` to load this model''' ): A__ = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
368
def UpperCamelCase__( UpperCamelCase__ : int = 1_00 )->int: A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"{solution() = }")
39
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> str: """simple docstring""" lowercase__ = params lowercase__ = np.array(_UpperCAmelCase ) lowercase__ = np.array([len(_UpperCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__(self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__(self : str ) -> Union[str, Any]: """simple docstring""" return len(self.lengths ) def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = self.params.max_model_input_size lowercase__ = self.lengths > max_len logger.info(f'''Splitting {sum(_UpperCAmelCase )} too long sequences.''' ) def divide_chunks(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ): return [l[i : i + n] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )] lowercase__ = [] lowercase__ = [] if self.params.mlm: lowercase__ , lowercase__ = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: lowercase__ , lowercase__ = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase__ = np.insert(_UpperCAmelCase , 0 , _UpperCAmelCase ) if sub_s[-1] != sep_id: lowercase__ = np.insert(_UpperCAmelCase , len(_UpperCAmelCase ) , _UpperCAmelCase ) assert len(_UpperCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_UpperCAmelCase ) new_tok_ids.extend(_UpperCAmelCase ) new_lengths.extend([len(_UpperCAmelCase ) for l in sub_seqs] ) lowercase__ = np.array(_UpperCAmelCase ) lowercase__ = np.array(_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = len(self ) lowercase__ = self.lengths > 11 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: lowercase__ = self.params.special_tok_ids["""unk_token"""] lowercase__ = len(self ) lowercase__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__ = (unk_occs / self.lengths) < 0.5 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" lowercase__ = [t[0] for t in batch] lowercase__ = [t[1] for t in batch] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) # Max for paddings lowercase__ = max(_UpperCAmelCase ) # Pad token ids if self.params.mlm: lowercase__ = self.params.special_tok_ids["""pad_token"""] else: lowercase__ = self.params.special_tok_ids["""unk_token"""] lowercase__ = [list(t.astype(_UpperCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_UpperCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_UpperCAmelCase ) assert all(len(_UpperCAmelCase ) == max_seq_len_ for t in tk_ ) lowercase__ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__ = torch.tensor(_UpperCAmelCase ) # (bs) return tk_t, lg_t
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCAmelCase__ = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) lowerCAmelCase__ = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) lowerCAmelCase__ = BeautifulSoup(res.text, '''html.parser''') lowerCAmelCase__ = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(f'''https://google.com{link.get('href')}''')
244
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCAmelCase__ = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = _TestCommandArgs(dataset=_SCREAMING_SNAKE_CASE , all_configs=_SCREAMING_SNAKE_CASE , save_infos=_SCREAMING_SNAKE_CASE ) UpperCamelCase = TestCommand(*_SCREAMING_SNAKE_CASE ) test_command.run() UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , "README.md" ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict.from_directory(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_351_563, "num_examples": 10_000, }, { "name": "validation", "num_bytes": 238_418, "num_examples": 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase , UpperCamelCase = getattr(dataset_infos["default"] , _SCREAMING_SNAKE_CASE ), getattr(expected_dataset_infos["default"] , _SCREAMING_SNAKE_CASE ) if key == "num_bytes": assert is_apercent_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif key == "splits": assert list(_SCREAMING_SNAKE_CASE ) == list(_SCREAMING_SNAKE_CASE ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
244
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self ,A__): return 0.0 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 512 lowercase = [1] + [0] * (size - 1) lowercase = [filter_type.process(lowerCAmelCase__ ) for item in inputs] lowercase = [0] * (samplerate - size) # zero-padding outputs += filler lowercase = np.abs(np.fft.fft(lowerCAmelCase__ ) ) lowercase = 20 * np.logaa(lowerCAmelCase__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowercase = get_bounds(lowerCAmelCase__ , lowerCAmelCase__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(lowerCAmelCase__ ) plt.show() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 512 lowercase = [1] + [0] * (size - 1) lowercase = [filter_type.process(lowerCAmelCase__ ) for item in inputs] lowercase = [0] * (samplerate - size) # zero-padding outputs += filler lowercase = np.angle(np.fft.fft(lowerCAmelCase__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(lowerCAmelCase__ , -2 * pi ) ) plt.show()
101
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ :str = logging.get_logger(__name__) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = '''huggingface/label-files''' lowercase = '''imagenet-1k-id2label.json''' lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = {v: k for k, v in idalabel.items()} lowercase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1000 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if "stem.conv" in name: lowercase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowercase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowercase = '''bit.''' + name if "bit" not in name and "classifier" not in name: lowercase = '''bit.encoder.''' + name return name def UpperCamelCase ( ): '''simple docstring''' lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' lowercase = get_config(lowerCAmelCase__ ) # load original model from timm lowercase = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val.squeeze() if '''head''' in key else val # load HuggingFace model lowercase = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor lowercase = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) lowercase = transform.transforms lowercase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase = prepare_img() lowercase = transform(lowerCAmelCase__ ).unsqueeze(0 ) lowercase = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): lowercase = model(lowerCAmelCase__ ) lowercase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": lowercase__ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) lowercase__ :List[str] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
101
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = "audio-spectrogram-transformer" def __init__( self : Optional[Any], UpperCAmelCase__ : Dict=7_6_8, UpperCAmelCase__ : Optional[Any]=1_2, UpperCAmelCase__ : Optional[int]=1_2, UpperCAmelCase__ : List[str]=3_0_7_2, UpperCAmelCase__ : List[str]="gelu", UpperCAmelCase__ : Dict=0.0, UpperCAmelCase__ : str=0.0, UpperCAmelCase__ : Any=0.02, UpperCAmelCase__ : Any=1E-12, UpperCAmelCase__ : Dict=1_6, UpperCAmelCase__ : Optional[int]=True, UpperCAmelCase__ : Union[str, Any]=1_0, UpperCAmelCase__ : List[Any]=1_0, UpperCAmelCase__ : Optional[int]=1_0_2_4, UpperCAmelCase__ : List[str]=1_2_8, **UpperCAmelCase__ : List[Any], ): super().__init__(**UpperCAmelCase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = patch_size __lowercase = qkv_bias __lowercase = frequency_stride __lowercase = time_stride __lowercase = max_length __lowercase = num_mel_bins
144
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCAmelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __UpperCAmelCase : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __UpperCAmelCase : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _lowercase ( self : Optional[int] ): __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) __lowercase = text_classifier("This is great !", top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) __lowercase = text_classifier(["This is great !", "This is bad"], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ], ) __lowercase = text_classifier("This is great !", top_k=1 ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior __lowercase = text_classifier("This is great !", return_all_scores=UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) __lowercase = text_classifier("This is great !", return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) __lowercase = text_classifier(["This is great !", "Something else"], return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ], ) __lowercase = text_classifier(["This is great !", "Something else"], return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ], ) @require_torch def _lowercase ( self : Dict ): import torch __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt", device=torch.device("cpu" ), ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def _lowercase ( self : Union[str, Any] ): __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline("text-classification" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 1.0}] ) __lowercase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "NEGATIVE", "score": 1.0}] ) __lowercase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def _lowercase ( self : Tuple ): __lowercase = pipeline("text-classification", framework="tf" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 1.0}] ) __lowercase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "NEGATIVE", "score": 1.0}] ) __lowercase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 0.988}] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ): __lowercase = TextClassificationPipeline(model=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowercase = "HuggingFace is in" __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) __lowercase = ["HuggingFace is in ", "Paris is in France"] __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}], ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowercase = text_classifier(UpperCAmelCase__, top_k=UpperCAmelCase__ ) __lowercase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [[{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N, [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N], ) __lowercase = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowercase = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(UpperCAmelCase__ ): text_classifier(UpperCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowercase = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}], ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
144
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = AltDiffusionPipeline _UpperCAmelCase :Any = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :Tuple = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Any = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase : int = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) UpperCamelCase : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase : Dict = CLIPTextModel(A_ ) UpperCamelCase : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase : Dict = 77 UpperCamelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' if str(A_ ).startswith("mps" ): UpperCamelCase : Union[str, Any] = torch.manual_seed(A_ ) else: UpperCamelCase : List[Any] = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __UpperCamelCase( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __UpperCamelCase( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Tuple = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase : List[Any] = RobertaSeriesModelWithTransformation(A_ ) UpperCamelCase : List[Any] = text_encoder UpperCamelCase : str = AltDiffusionPipeline(**A_ ) UpperCamelCase : Optional[Any] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : List[str] = self.get_dummy_inputs(A_ ) UpperCamelCase : Tuple = "A photo of an astronaut" UpperCamelCase : Dict = alt_pipe(**A_ ) UpperCamelCase : int = output.images UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : int = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : int = self.get_dummy_components() UpperCamelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=A_ ) torch.manual_seed(0 ) UpperCamelCase : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase : Optional[int] = RobertaSeriesModelWithTransformation(A_ ) UpperCamelCase : List[Any] = text_encoder UpperCamelCase : Dict = AltDiffusionPipeline(**A_ ) UpperCamelCase : Optional[Any] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Any = self.get_dummy_inputs(A_ ) UpperCamelCase : Optional[int] = alt_pipe(**A_ ) UpperCamelCase : Dict = output.images UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : Optional[Any] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=A_ ) UpperCamelCase : Union[str, Any] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Optional[Any] = "A painting of a squirrel eating a burger" UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = alt_pipe([prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase : Optional[Any] = output.images UpperCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase : Optional[Any] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=A_ , safety_checker=A_ ) UpperCamelCase : Optional[int] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : int = "A painting of a squirrel eating a burger" UpperCamelCase : int = torch.manual_seed(0 ) UpperCamelCase : Dict = alt_pipe([prompt] , generator=A_ , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase : Union[str, Any] = output.images UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[str] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
52
def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Optional[int] = int(_lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(_lowerCAmelCase ) UpperCamelCase , UpperCamelCase : Dict = divmod(_lowerCAmelCase , 2 ) return binary_recursive(_lowerCAmelCase ) + str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = str(_lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) UpperCamelCase : Optional[int] = "-" if number.startswith("-" ) else "" UpperCamelCase : Any = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F"""{negative}0b{binary_recursive(int(_lowerCAmelCase ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
52
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } __UpperCamelCase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: for attribute in key.split('.' ): SCREAMING_SNAKE_CASE = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: SCREAMING_SNAKE_CASE = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = fairseq_model.state_dict() SCREAMING_SNAKE_CASE = hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(SCREAMING_SNAKE_CASE_ )[0].split('.' )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace('*' , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: SCREAMING_SNAKE_CASE = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE = 'weight' else: SCREAMING_SNAKE_CASE = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE = name.split('.' ) SCREAMING_SNAKE_CASE = int(items[0] ) SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> List[str]: # load the pre-trained checkpoints SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = WavLMConfigOrig(checkpoint['cfg'] ) SCREAMING_SNAKE_CASE = WavLMOrig(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: SCREAMING_SNAKE_CASE = WavLMConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = WavLMConfig() SCREAMING_SNAKE_CASE = WavLMModel(SCREAMING_SNAKE_CASE_ ) recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_wavlm.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __UpperCamelCase = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
352
"""simple docstring""" import operator as op def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(SCREAMING_SNAKE_CASE_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(SCREAMING_SNAKE_CASE_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) stack.append( str(opr[x](int(SCREAMING_SNAKE_CASE_ ) , int(SCREAMING_SNAKE_CASE_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __UpperCamelCase = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
38
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _snake_case ( unittest.TestCase ): lowerCamelCase__: int = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__: Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__: Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__: List[str] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _lowerCamelCase ( self: Any , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] ) -> List[str]: __UpperCAmelCase : Dict = ZeroShotClassificationPipeline( model=__lowerCamelCase , tokenizer=__lowerCamelCase , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str ) -> Optional[int]: __UpperCAmelCase : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(__lowerCamelCase , {"sequence": ANY(__lowerCamelCase ), "labels": [ANY(__lowerCamelCase )], "scores": [ANY(__lowerCamelCase )]} ) # No kwarg __UpperCAmelCase : Optional[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(__lowerCamelCase , {"sequence": ANY(__lowerCamelCase ), "labels": [ANY(__lowerCamelCase )], "scores": [ANY(__lowerCamelCase )]} ) __UpperCAmelCase : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(__lowerCamelCase , {"sequence": ANY(__lowerCamelCase ), "labels": [ANY(__lowerCamelCase )], "scores": [ANY(__lowerCamelCase )]} ) __UpperCAmelCase : Any = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( __lowerCamelCase , {"sequence": ANY(__lowerCamelCase ), "labels": [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], "scores": [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) __UpperCAmelCase : int = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( __lowerCamelCase , {"sequence": ANY(__lowerCamelCase ), "labels": [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], "scores": [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) __UpperCAmelCase : Tuple = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(__lowerCamelCase , {"sequence": ANY(__lowerCamelCase ), "labels": [ANY(__lowerCamelCase )], "scores": [ANY(__lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 __UpperCAmelCase : List[str] = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( __lowerCamelCase , [ {"sequence": ANY(__lowerCamelCase ), "labels": [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], "scores": [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} for i in range(1 ) ] , ) __UpperCAmelCase : List[Any] = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( __lowerCamelCase , [ {"sequence": ANY(__lowerCamelCase ), "labels": [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], "scores": [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__lowerCamelCase ): classifier("" , candidate_labels="politics" ) with self.assertRaises(__lowerCamelCase ): classifier(__lowerCamelCase , candidate_labels="politics" ) with self.assertRaises(__lowerCamelCase ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(__lowerCamelCase ): classifier("Who are you voting for in 2020?" , candidate_labels=__lowerCamelCase ) with self.assertRaises(__lowerCamelCase ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(__lowerCamelCase ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=__lowerCamelCase , ) self.run_entailment_id(__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] ) -> Optional[int]: __UpperCAmelCase : Dict = zero_shot_classifier.model.config __UpperCAmelCase : List[Any] = config.labelaid __UpperCAmelCase : str = zero_shot_classifier.entailment_id __UpperCAmelCase : Dict = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) __UpperCAmelCase : Any = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __UpperCAmelCase : Dict = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __UpperCAmelCase : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) __UpperCAmelCase : int = original_labelaid self.assertEqual(__lowerCamelCase , zero_shot_classifier.entailment_id ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 1_00 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : int = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) __UpperCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def _lowerCamelCase ( self: Tuple ) -> Tuple: __UpperCAmelCase : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) __UpperCAmelCase : Tuple = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : List[str] = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) __UpperCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_76, 0.0_15, 0.0_09], } , ) __UpperCAmelCase : Optional[Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=__lowerCamelCase , ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def _lowerCamelCase ( self: List[Any] ) -> Any: __UpperCAmelCase : Tuple = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) __UpperCAmelCase : List[str] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_76, 0.0_15, 0.0_09], } , ) __UpperCAmelCase : Optional[Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=__lowerCamelCase , ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
157
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
0
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCamelCase_ (__A ): def __init__( self : int , lowerCAmelCase_ : Callable , lowerCAmelCase_ : Optional[Features] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[dict] = None , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : Optional[Any] , ) -> Optional[int]: super().__init__( features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , num_proc=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase_ : int = Generator( cache_dir=lowerCAmelCase_ , features=lowerCAmelCase_ , generator=lowerCAmelCase_ , gen_kwargs=lowerCAmelCase_ , **lowerCAmelCase_ , ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: # Build iterable dataset if self.streaming: UpperCAmelCase_ : Dict = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : int = None self.builder.download_and_prepare( download_config=lowerCAmelCase_ , download_mode=lowerCAmelCase_ , verification_mode=lowerCAmelCase_ , base_path=lowerCAmelCase_ , num_proc=self.num_proc , ) UpperCAmelCase_ : List[str] = self.builder.as_dataset( split="train" , verification_mode=lowerCAmelCase_ , in_memory=self.keep_in_memory ) return dataset
371
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = TFAutoModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = AutoModel.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = TFAutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = TFAutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = AutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : int = AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : str = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) UpperCAmelCase_ : Optional[Any] = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 )
253
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCamelCase_ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowerCamelCase_ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowerCamelCase_ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __magic_name__ ( __a : List[str] , __a : Optional[Any] ): '''simple docstring''' return float((preds == labels).mean() ) def __magic_name__ ( __a : List[Any] , __a : Dict , __a : int="binary" ): '''simple docstring''' UpperCamelCase__ = simple_accuracy(__a , __a ) UpperCamelCase__ = float(fa_score(y_true=__a , y_pred=__a , average=__a ) ) return { "accuracy": acc, "f1": fa, } def __magic_name__ ( __a : List[str] , __a : Dict ): '''simple docstring''' UpperCamelCase__ = {} for id_pred, label in zip(__a , __a ): UpperCamelCase__ = f"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" UpperCamelCase__ = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase__ = [(pred, label)] UpperCamelCase__ , UpperCamelCase__ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase__ , UpperCamelCase__ = zip(*__a ) UpperCamelCase__ = fa_score(y_true=__a , y_pred=__a , average="""macro""" ) fas.append(__a ) UpperCamelCase__ = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) UpperCamelCase__ = float(sum(__a ) / len(__a ) ) UpperCamelCase__ = sum(__a ) / len(__a ) UpperCamelCase__ = float(fa_score(y_true=__a , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ (self ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase_ (self ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif self.config_name == "cb": return acc_and_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , fa_avg="""macro""" ) elif self.config_name == "record": UpperCamelCase__ = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] UpperCamelCase__ = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] elif self.config_name == "multirc": return evaluate_multirc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
244
lowerCamelCase_ = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset(['''image''']) lowerCamelCase_ = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''image''']) lowerCamelCase_ = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''negative_prompt''']) lowerCamelCase_ = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) lowerCamelCase_ = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''image''', '''mask_image''']) lowerCamelCase_ = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''example_image''', '''image''', '''mask_image''']) lowerCamelCase_ = frozenset(['''class_labels''']) lowerCamelCase_ = frozenset(['''class_labels''']) lowerCamelCase_ = frozenset(['''batch_size''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset(['''batch_size''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt''']) lowerCamelCase_ = frozenset(['''input_tokens''']) lowerCamelCase_ = frozenset(['''input_tokens'''])
244
1
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = Path(__UpperCAmelCase ) snake_case_ = Path(__UpperCAmelCase ) dest_dir.mkdir(exist_ok=__UpperCAmelCase ) for path in src_dir.iterdir(): snake_case_ = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case_ = dest_dir.joinpath(path.name ) print(__UpperCAmelCase ) dest_path.open('''w''' ).write('''\n'''.join(__UpperCAmelCase ) ) if __name__ == "__main__": fire.Fire(minify)
355
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): @property def A_ ( self : Tuple ): torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A_ ( self : Dict ): snake_case_ = self.dummy_uncond_unet snake_case_ = ScoreSdeVeScheduler() snake_case_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_ ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_ , return_dict=lowercase_ )[ 0 ] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a ( unittest.TestCase ): def A_ ( self : Optional[int] ): snake_case_ = '''google/ncsnpp-church-256''' snake_case_ = UNetaDModel.from_pretrained(lowercase_ ) snake_case_ = ScoreSdeVeScheduler.from_pretrained(lowercase_ ) snake_case_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=lowercase_ ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
72
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Union[str, Any] = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[str] = "canine" def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=768 , snake_case__ : Tuple=12 , snake_case__ : Optional[Any]=12 , snake_case__ : Union[str, Any]=3072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : int=1_6384 , snake_case__ : str=16 , snake_case__ : Tuple=0.02 , snake_case__ : Dict=1E-12 , snake_case__ : Any=0 , snake_case__ : Optional[int]=0xe_000 , snake_case__ : List[str]=0xe_001 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : List[Any]=8 , snake_case__ : List[str]=1_6384 , snake_case__ : Union[str, Any]=128 , **snake_case__ : Tuple , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCamelCase_ : Tuple =max_position_embeddings lowerCamelCase_ : Optional[int] =hidden_size lowerCamelCase_ : Tuple =num_hidden_layers lowerCamelCase_ : Dict =num_attention_heads lowerCamelCase_ : str =intermediate_size lowerCamelCase_ : Dict =hidden_act lowerCamelCase_ : List[Any] =hidden_dropout_prob lowerCamelCase_ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase_ : Dict =initializer_range lowerCamelCase_ : Tuple =type_vocab_size lowerCamelCase_ : Optional[Any] =layer_norm_eps # Character config: lowerCamelCase_ : List[str] =downsampling_rate lowerCamelCase_ : List[Any] =upsampling_kernel_size lowerCamelCase_ : Any =num_hash_functions lowerCamelCase_ : Optional[int] =num_hash_buckets lowerCamelCase_ : Union[str, Any] =local_transformer_stride
144
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) A__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( ) -> int: lowerCamelCase_ : Tuple =argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCamelCase__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCamelCase__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCamelCase__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCamelCase__ , default="data/dump" , help="The dump file prefix." ) lowerCamelCase_ : Tuple =parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowerCamelCase_ : Tuple =BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : Optional[Any] =tokenizer.special_tokens_map["cls_token"] # `[CLS]` lowerCamelCase_ : Any =tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCamelCase_ : str =RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : List[Any] =tokenizer.special_tokens_map["cls_token"] # `<s>` lowerCamelCase_ : Any =tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": lowerCamelCase_ : Tuple =GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : Dict =tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` lowerCamelCase_ : Any =tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: lowerCamelCase_ : Optional[int] =fp.readlines() logger.info("Start encoding" ) logger.info(F"""{len(lowerCamelCase__ )} examples to process.""" ) lowerCamelCase_ : str =[] lowerCamelCase_ : Union[str, Any] =0 lowerCamelCase_ : List[str] =10_000 lowerCamelCase_ : int =time.time() for text in data: lowerCamelCase_ : List[str] =F"""{bos} {text.strip()} {sep}""" lowerCamelCase_ : str =tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) rslt.append(lowerCamelCase__ ) iter += 1 if iter % interval == 0: lowerCamelCase_ : List[Any] =time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowerCamelCase_ : Tuple =time.time() logger.info("Finished binarization" ) logger.info(F"""{len(lowerCamelCase__ )} examples processed.""" ) lowerCamelCase_ : Optional[Any] =F"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowerCamelCase_ : Optional[int] =tokenizer.vocab_size if vocab_size < (1 << 16): lowerCamelCase_ : int =[np.uintaa(lowerCamelCase__ ) for d in rslt] else: lowerCamelCase_ : Tuple =[np.intaa(lowerCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(lowerCamelCase__ , "wb" ) as handle: pickle.dump(rslt_ , lowerCamelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
144
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : Tuple = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : int = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : str = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : Union[str, Any] = [] for value in value_array: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : List[Any] = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Any = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : Tuple = temp_dist UpperCamelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
103
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') __UpperCAmelCase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: __UpperCAmelCase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __UpperCAmelCase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
103
1
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _lowerCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCAmelCase ( _a ): '''simple docstring''' def __init__(self : Optional[int] , _lowerCAmelCase : CLIPSegForImageSegmentation , _lowerCAmelCase : CLIPSegProcessor , _lowerCAmelCase : AutoencoderKL , _lowerCAmelCase : CLIPTextModel , _lowerCAmelCase : CLIPTokenizer , _lowerCAmelCase : UNetaDConditionModel , _lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowerCAmelCase : StableDiffusionSafetyChecker , _lowerCAmelCase : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: A = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , __lowerCamelCase , standard_warn=__lowerCamelCase ) A = dict(scheduler.config ) A = 1 A = FrozenDict(__lowerCamelCase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: A = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , __lowerCamelCase , standard_warn=__lowerCamelCase ) A = dict(scheduler.config ) A = True A = FrozenDict(__lowerCamelCase ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=__lowerCamelCase , segmentation_processor=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , ) def A (self : Dict , _lowerCAmelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def A (self : Union[str, Any] ): self.enable_attention_slicing(__lowerCamelCase ) def A (self : Union[str, Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase , __lowerCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A (self : Tuple ): if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__(self : Optional[Any] , _lowerCAmelCase : Union[str, List[str]] , _lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , _lowerCAmelCase : str , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 50 , _lowerCAmelCase : float = 7.5 , _lowerCAmelCase : Optional[Union[str, List[str]]] = None , _lowerCAmelCase : Optional[int] = 1 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : Optional[torch.Generator] = None , _lowerCAmelCase : Optional[torch.FloatTensor] = None , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : List[Any] , ): A = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) A = self.segmentation_model(**__lowerCamelCase ) A = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() A = self.numpy_to_pil(__lowerCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask A = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , )
258
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase_ : int = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" for attribute in key.split(""".""" ): UpperCamelCase :Dict = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: UpperCamelCase :Optional[int] = getattr(__magic_name__ , __magic_name__ ).shape else: UpperCamelCase :Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase :str = value elif weight_type == "weight_g": UpperCamelCase :int = value elif weight_type == "weight_v": UpperCamelCase :int = value elif weight_type == "bias": UpperCamelCase :List[Any] = value else: UpperCamelCase :Any = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Dict = fairseq_model.state_dict() UpperCamelCase :int = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase :str = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase :Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase :Optional[int] = True if "*" in mapped_key: UpperCamelCase :List[Any] = name.split(__magic_name__ )[0].split(""".""" )[-2] UpperCamelCase :int = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: UpperCamelCase :List[Any] = """weight_g""" elif "weight_v" in name: UpperCamelCase :List[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase :Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase :List[str] = """weight""" else: UpperCamelCase :Optional[int] = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" UpperCamelCase :Dict = full_name.split("""conv_layers.""" )[-1] UpperCamelCase :int = name.split(""".""" ) UpperCamelCase :str = int(items[0] ) UpperCamelCase :str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase :Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase :Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase :Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase :Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : str=None ) -> int: """simple docstring""" UpperCamelCase :List[Any] = torch.load(__magic_name__ ) UpperCamelCase :List[Any] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCamelCase :int = WavLMOrig(__magic_name__ ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCamelCase :List[Any] = WavLMConfig.from_pretrained(__magic_name__ ) else: UpperCamelCase :Any = WavLMConfig() UpperCamelCase :Dict = WavLMModel(__magic_name__ ) recursively_load_weights(__magic_name__ , __magic_name__ ) hf_wavlm.save_pretrained(__magic_name__ ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
38
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowercase: Dict = logging.get_logger() @dataclass class _lowercase : """simple docstring""" __A = 42 __A = field(default_factory=lowerCAmelCase ) __A = field(default_factory=lowerCAmelCase ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ , nn.Convad ) or isinstance(lowerCamelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__(self , lowerCamelCase_ ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ (self ): """simple docstring""" return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowercase : """simple docstring""" __A = 42 __A = 42 __A = 1 __A = field(default_factory=lowerCAmelCase ) __A = field(default_factory=lowerCAmelCase ) __A = True def __call__(self , lowerCamelCase_ ): """simple docstring""" a = Tracker(self.dest )(lowerCamelCase_ ).parametrized a = Tracker(self.src )(lowerCamelCase_ ).parametrized a = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip , lowerCamelCase_ ) ) a = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip , lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ , lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ ): """simple docstring""" super().__init__() a = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F'''Unexpected layer name {k}''' a = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) a = nn.ModuleDict(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return get_trunk_forward_outputs( lowerCamelCase_ , out_feat_keys=lowerCamelCase_ , feature_blocks=self._feature_blocks , ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__(self , lowerCamelCase_ ): """simple docstring""" if x not in self: a = self.convert_name_to_timm(lowerCamelCase_ ) a = partial(lambda: (timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval(), None) ) else: a = super().__getitem__(lowerCamelCase_ ) return val class _lowercase ( lowerCAmelCase ): """simple docstring""" def __getitem__(self , lowerCamelCase_ ): """simple docstring""" if "seer" in x and "in1k" not in x: a = RegNetModel else: a = RegNetForImageClassification return val def a( A : Dict , A : List[Any] , A : List[Tuple[str, str]] ) -> Union[str, Any]: """simple docstring""" for from_key, to_key in keys: a = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def a( A : str , A : Callable[[], nn.Module] , A : Callable[[], nn.Module] , A : RegNetConfig , A : Path , A : bool = True , ) -> List[str]: """simple docstring""" print(f'''Converting {name}...''' ) with torch.no_grad(): a , a = from_model_func() a = our_model_func(A ).eval() a = ModuleTransfer(src=A , dest=A , raise_if_mismatch=A ) a = torch.randn((1, 3, 224, 224) ) module_transfer(A ) if from_state_dict is not None: a = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: a = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] a = manually_copy_vissl_head(A , our_model.state_dict() , A ) our_model.load_state_dict(A ) a = our_model(A , output_hidden_states=A ) a = ( our_outputs.logits if isinstance(A , A ) else our_outputs.last_hidden_state ) a = from_model(A ) a = from_output[-1] if type(A ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: a = our_outputs.hidden_states[-1] assert torch.allclose(A , A ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=A , ) a = 224 if "seer" not in name else 384 # we can use the convnext one a = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=A ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=A , ) print(f'''Pushed {name}''' ) def a( A : Path , A : str = None , A : bool = True ) -> Dict: """simple docstring""" a = "imagenet-1k-id2label.json" a = 1000 a = (1, num_labels) a = "huggingface/label-files" a = num_labels a = json.load(open(cached_download(hf_hub_url(A , A , repo_type="dataset" ) ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} a = partial(A , num_labels=A , idalabel=A , labelaid=A ) a = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } a = NameToOurModelFuncMap() a = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(A : str , A : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: a = torch.hub.load_state_dict_from_url(A , model_dir=str(A ) , map_location="cpu" ) a = model_func() # check if we have a head, if yes add it a = files["classy_state_dict"]["base_model"]["model"] a = model_state_dict["trunk"] model.load_state_dict(A ) return model.eval(), model_state_dict["heads"] # pretrained a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a = partial( A , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( A , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , A , A , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( A , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , A , A , A , ) return config, expected_shape if __name__ == "__main__": _lowercase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowercase: Optional[int] = parser.parse_args() _lowercase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
369
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = field(default="automatic-speech-recognition", metadata={"include_in_asdict_even_if_is_default": True} ) __A = Features({"audio": Audio()} ) __A = Features({"transcription": Value("string" )} ) __A = "audio" __A = "transcription" def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) a = copy.deepcopy(self ) a = self.input_schema.copy() a = features[self.audio_column] a = input_schema return task_template @property def UpperCamelCase_ (self ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
71
0
from __future__ import annotations import math import random from typing import Any class _a : def __init__(self ) -> str: UpperCAmelCase_: list[Any] = [] UpperCAmelCase_: int = 0 UpperCAmelCase_: int = 0 def __snake_case (self ) -> Any: return self.head == self.tail def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: self.data.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_: Optional[Any] = self.tail + 1 def __snake_case (self ) -> Tuple: UpperCAmelCase_: Optional[int] = self.data[self.head] UpperCAmelCase_: Optional[int] = self.head + 1 return ret def __snake_case (self ) -> List[str]: return self.tail - self.head def __snake_case (self ) -> List[str]: print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class _a : def __init__(self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: List[str] = data UpperCAmelCase_: MyNode | None = None UpperCAmelCase_: MyNode | None = None UpperCAmelCase_: int = 1 def __snake_case (self ) -> List[Any]: return self.data def __snake_case (self ) -> Optional[int]: return self.left def __snake_case (self ) -> List[Any]: return self.right def __snake_case (self ) -> Any: return self.height def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: List[str] = data def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Dict = node def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCAmelCase_: str = node def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Any = height def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" if node is None: return 0 return node.get_height() def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" if a > b: return a return b def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" print("""left rotation node:""" , node.get_data() ) UpperCAmelCase_: int = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) UpperCAmelCase_: Dict = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) UpperCAmelCase_: List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" print("""right rotation node:""" , node.get_data() ) UpperCAmelCase_: Tuple = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) UpperCAmelCase_: Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) UpperCAmelCase_: Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: int = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: List[str] = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: List[Any] ): """simple docstring""" if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected UpperCAmelCase_: List[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCAmelCase_: Optional[Any] = right_rotation(lowerCAmelCase__ ) else: UpperCAmelCase_: Any = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: UpperCAmelCase_: List[str] = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCAmelCase_: Optional[int] = rl_rotation(lowerCAmelCase__ ) else: UpperCAmelCase_: str = left_rotation(lowerCAmelCase__ ) UpperCAmelCase_: int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" while True: UpperCAmelCase_: List[str] = root.get_right() if right_child is None: break UpperCAmelCase_: List[Any] = right_child return root.get_data() def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" while True: UpperCAmelCase_: Optional[int] = root.get_left() if left_child is None: break UpperCAmelCase_: str = left_child return root.get_data() def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: int = root.get_left() UpperCAmelCase_: Tuple = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCAmelCase_: List[Any] = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) elif left_child is not None: UpperCAmelCase_: Tuple = left_child elif right_child is not None: UpperCAmelCase_: List[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): UpperCAmelCase_: List[Any] = left_rotation(lowerCAmelCase__ ) else: UpperCAmelCase_: Optional[int] = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): UpperCAmelCase_: List[Any] = right_rotation(lowerCAmelCase__ ) else: UpperCAmelCase_: int = lr_rotation(lowerCAmelCase__ ) UpperCAmelCase_: int = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class _a : def __init__(self ) -> Union[str, Any]: UpperCAmelCase_: MyNode | None = None def __snake_case (self ) -> int: return get_height(self.root ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: print("""insert:""" + str(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_: Union[str, Any] = insert_node(self.root, _SCREAMING_SNAKE_CASE ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: print("""delete:""" + str(_SCREAMING_SNAKE_CASE ) ) if self.root is None: print("""Tree is empty!""" ) return UpperCAmelCase_: str = del_node(self.root, _SCREAMING_SNAKE_CASE ) def __str__(self, ) -> Optional[Any]: # a level traversale, gives a more intuitive look on the tree UpperCAmelCase_: List[str] = '' UpperCAmelCase_: Dict = MyQueue() q.push(self.root ) UpperCAmelCase_: Dict = self.get_height() if layer == 0: return output UpperCAmelCase_: List[Any] = 0 while not q.is_empty(): UpperCAmelCase_: str = q.pop() UpperCAmelCase_: Optional[int] = ' ' * int(math.pow(2, layer - 1 ) ) output += space if node is None: output += "*" q.push(_SCREAMING_SNAKE_CASE ) q.push(_SCREAMING_SNAKE_CASE ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space UpperCAmelCase_: str = cnt + 1 for i in range(100 ): if cnt == math.pow(2, _SCREAMING_SNAKE_CASE ) - 1: UpperCAmelCase_: Union[str, Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCAmelCase_ (): """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() a : List[str] = AVLtree() a : int = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
147
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCAmelCase : Any = logging.get_logger(__name__) def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = WavaVecaForSequenceClassification.from_pretrained(a , config=a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict['projector.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = downstream_dict['projector.bias'] SCREAMING_SNAKE_CASE_ : List[str] = downstream_dict['model.post_net.linear.weight'] SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict['model.post_net.linear.bias'] return model def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = WavaVecaForAudioFrameClassification.from_pretrained(a , config=a ) SCREAMING_SNAKE_CASE_ : Dict = downstream_dict['model.linear.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = downstream_dict['model.linear.bias'] return model def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaForXVector.from_pretrained(a , config=a ) SCREAMING_SNAKE_CASE_ : Tuple = downstream_dict['connector.weight'] SCREAMING_SNAKE_CASE_ : Any = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] SCREAMING_SNAKE_CASE_ : Optional[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] SCREAMING_SNAKE_CASE_ : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] SCREAMING_SNAKE_CASE_ : Any = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] SCREAMING_SNAKE_CASE_ : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] SCREAMING_SNAKE_CASE_ : Optional[int] = downstream_dict['objective.W'] return model @torch.no_grad() def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = torch.load(a , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = checkpoint['Downstream'] SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaConfig.from_pretrained(a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( a , return_attention_mask=a , do_normalize=a ) SCREAMING_SNAKE_CASE_ : Tuple = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): SCREAMING_SNAKE_CASE_ : Tuple = convert_classification(a , a , a ) elif arch.endswith('ForAudioFrameClassification' ): SCREAMING_SNAKE_CASE_ : str = convert_diarization(a , a , a ) elif arch.endswith('ForXVector' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = convert_xvector(a , a , a ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE_ : Dict = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(a ) hf_model.save_pretrained(a ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCAmelCase : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
253
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowerCamelCase : List[Any] = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowerCamelCase : Optional[Any] = subprocess.check_output(f"git diff --name-only {fork_point_sha}".split()).decode('''utf-8''').split() _lowerCamelCase : Optional[int] = '''|'''.join(sys.argv[1:]) _lowerCamelCase : Optional[Any] = re.compile(rf"^({joined_dirs}).*?\.py$") _lowerCamelCase : Dict = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
191
_lowerCamelCase : dict[tuple[int, int, int], int] = {} def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Any = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , 0 ) SCREAMING_SNAKE_CASE__ : str = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _a ( SCREAMING_SNAKE_CASE__ : int = 30 ) -> int: '''simple docstring''' return _calculate(SCREAMING_SNAKE_CASE__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
191
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class a_ ( unittest.TestCase ): def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :List[Any] = inspect.getfile(accelerate.test_utils ) lowercase_ :Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) lowercase_ :Any = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase__ ( self : int ): """simple docstring""" lowercase_ :Tuple = F'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split() lowercase_ :List[Any] = [sys.executable] + distributed_args execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() )
223
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def snake_case_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : int = 9, 14 # noqa: F841 _lowerCamelCase : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCamelCase : Any = defaultdict(A_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _lowerCamelCase : List[str] = mst(A_ ) _lowerCamelCase : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _lowerCamelCase : int = tuple(answer[:2] ) _lowerCamelCase : int = tuple(edge[::-1] ) assert edge in result or reverse in result
72
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) SCREAMING_SNAKE_CASE :List[Any] = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) SCREAMING_SNAKE_CASE :Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) SCREAMING_SNAKE_CASE :Tuple = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) SCREAMING_SNAKE_CASE :List[Any] = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) SCREAMING_SNAKE_CASE :Tuple = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) SCREAMING_SNAKE_CASE :Any = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) SCREAMING_SNAKE_CASE :Tuple = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) SCREAMING_SNAKE_CASE :str = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) SCREAMING_SNAKE_CASE :List[str] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) SCREAMING_SNAKE_CASE :int = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) SCREAMING_SNAKE_CASE :List[Any] = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) SCREAMING_SNAKE_CASE :List[str] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) SCREAMING_SNAKE_CASE :Tuple = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) SCREAMING_SNAKE_CASE :List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE :List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE :Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE :Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE :Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE :int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE :Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[Any] = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE :List[Any] = auto_class_update(FlaxAutoModel) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE :str = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[int] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE :Any = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :int = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE :List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE :Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE :Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Union[str, Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[int] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE :Optional[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :List[str] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE :Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE :str = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __magic_name__ ( _BaseAutoModelClass ): UpperCamelCase_ :Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE :Tuple = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
362
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE :Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[int] = XGLMTokenizer UpperCamelCase_ :List[str] = XGLMTokenizerFast UpperCamelCase_ :int = True UpperCamelCase_ :Dict = True def UpperCAmelCase_ ( self )-> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = XGLMTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = "<pad>" UpperCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(_lowercase ) , 1_008 ) def UpperCAmelCase_ ( self )-> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = XGLMTokenizer(_lowercase , keep_accents=_lowercase ) UpperCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCAmelCase_ ( self )-> Optional[Any]: return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def UpperCAmelCase_ ( self )-> Union[str, Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_lowercase , f.name ) UpperCamelCase_ = XGLMTokenizer(f.name , keep_accents=_lowercase ) UpperCamelCase_ = pickle.dumps(_lowercase ) pickle.loads(_lowercase ) def UpperCAmelCase_ ( self )-> str: if not self.test_rust_tokenizer: return UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = "I was born in 92000, and this is falsé." UpperCamelCase_ = tokenizer.tokenize(_lowercase ) UpperCamelCase_ = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) UpperCamelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) UpperCamelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = tokenizer.encode(_lowercase ) UpperCamelCase_ = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = "Hello World!" UpperCamelCase_ = [2, 31_227, 4_447, 35] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off UpperCamelCase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: # fmt: off UpperCamelCase_ = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="facebook/xglm-564M" , padding=_lowercase , )
60
0
import re def UpperCamelCase( __UpperCamelCase : str ): if len(re.findall('''[ATCG]''' ,__UpperCamelCase ) ) != len(__UpperCamelCase ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' ,'''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
103
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Tuple = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __snake_case ( UpperCamelCase_ ): _a = '''xlm-roberta-xl''' def __init__( self : int , A_ : List[str]=2_5_0_8_8_0 , A_ : List[str]=2_5_6_0 , A_ : Optional[int]=3_6 , A_ : List[Any]=3_2 , A_ : Optional[int]=1_0_2_4_0 , A_ : Dict="gelu" , A_ : int=0.1 , A_ : Optional[Any]=0.1 , A_ : int=5_1_4 , A_ : Any=1 , A_ : Optional[Any]=0.02 , A_ : str=1e-05 , A_ : Dict=1 , A_ : Any=0 , A_ : Tuple=2 , A_ : str="absolute" , A_ : str=True , A_ : List[str]=None , **A_ : Dict , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Dict = type_vocab_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : List[str] = classifier_dropout class __snake_case ( UpperCamelCase_ ): @property def UpperCAmelCase__ ( self : List[str]): if self.task == "multiple-choice": lowerCAmelCase_ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
103
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED snake_case_ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } snake_case_ = { 'allenai/led-base-16384': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase__ ( ) -> List[Any]: __snake_case = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __snake_case = bs[:] __snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 __snake_case = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def lowerCamelCase__ ( snake_case_ : str ) -> List[Any]: __snake_case = set() __snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case = char return pairs class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = ['input_ids', 'attention_mask'] def __init__(self : int , a__ : List[Any] , a__ : Dict , a__ : Optional[Any]="replace" , a__ : Dict="<s>" , a__ : Optional[int]="</s>" , a__ : int="</s>" , a__ : Optional[int]="<s>" , a__ : str="<unk>" , a__ : List[str]="<pad>" , a__ : Any="<mask>" , a__ : Union[str, Any]=False , **a__ : Optional[int] , ): """simple docstring""" __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( errors=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , **a__ , ) with open(a__ , encoding='''utf-8''' ) as vocab_handle: __snake_case = json.load(a__ ) __snake_case = {v: k for k, v in self.encoder.items()} __snake_case = errors # how to handle errors in decoding __snake_case = bytes_to_unicode() __snake_case = {v: k for k, v in self.byte_encoder.items()} with open(a__ , encoding='''utf-8''' ) as merges_handle: __snake_case = merges_handle.read().split('''\n''' )[1:-1] __snake_case = [tuple(merge.split() ) for merge in bpe_merges] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {} __snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __snake_case = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a (self : Optional[int] ): """simple docstring""" return len(self.encoder ) def a (self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a (self : Dict , a__ : str ): """simple docstring""" if token in self.cache: return self.cache[token] __snake_case = tuple(a__ ) __snake_case = get_pairs(a__ ) if not pairs: return token while True: __snake_case = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case = bigram __snake_case = [] __snake_case = 0 while i < len(a__ ): try: __snake_case = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case = tuple(a__ ) __snake_case = new_word if len(a__ ) == 1: break else: __snake_case = get_pairs(a__ ) __snake_case = ''' '''.join(a__ ) __snake_case = word return word def a (self : str , a__ : Optional[int] ): """simple docstring""" __snake_case = [] for token in re.findall(self.pat , a__ ): __snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a__ ).split(''' ''' ) ) return bpe_tokens def a (self : str , a__ : List[Any] ): """simple docstring""" return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def a (self : Dict , a__ : Tuple ): """simple docstring""" return self.decoder.get(a__ ) def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = ''''''.join(a__ ) __snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def a (self : List[Any] , a__ : str , a__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + '''\n''' ) __snake_case = 0 with open(a__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __snake_case = token_index writer.write(''' '''.join(a__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def a (self : Optional[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a (self : Optional[int] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def a (self : Optional[int] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a (self : Any , a__ : Any , a__ : str=False , **a__ : Any ): """simple docstring""" __snake_case = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a__ ) > 0 and not text[0].isspace()): __snake_case = ''' ''' + text return (text, kwargs) def a (self : List[str] , a__ : Union[Dict[str, EncodedInput], BatchEncoding] , a__ : Optional[int] = None , a__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , a__ : Optional[int] = None , a__ : Optional[bool] = None , ): """simple docstring""" __snake_case = super()._pad( encoded_inputs=a__ , max_length=a__ , padding_strategy=a__ , pad_to_multiple_of=a__ , return_attention_mask=a__ , ) # Load from model defaults if return_attention_mask is None: __snake_case = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __snake_case = len(encoded_inputs['''global_attention_mask'''] ) != len(a__ ) if needs_to_be_padded: __snake_case = len(a__ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __snake_case = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __snake_case = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
238
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } snake_case_ = {'allegro/herbert-base-cased': 514} snake_case_ = {} class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Any = HerbertTokenizer def __init__(self : Dict , a__ : Tuple=None , a__ : Optional[int]=None , a__ : List[str]=None , a__ : Optional[int]="<s>" , a__ : Optional[Any]="<unk>" , a__ : Any="<pad>" , a__ : List[Any]="<mask>" , a__ : Any="</s>" , **a__ : Tuple , ): """simple docstring""" super().__init__( a__ , a__ , tokenizer_file=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , sep_token=a__ , **a__ , ) def a (self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a (self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def a (self : Optional[int] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a (self : int , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
238
1
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict=None ): '''simple docstring''' require_version(deps[pkg] , a_ )
346
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : List[str] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModel.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =AutoModel.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =AutoModelForPreTraining.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Tuple =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Tuple =TFAutoModelForCausalLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =AutoModelForCausalLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =AutoModelForCausalLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : int =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Tuple =TFAutoModelForMaskedLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =AutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Optional[Any] =AutoModelForMaskedLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[str] =TFAutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[Any] =AutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : str =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =AutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) __UpperCamelCase : str =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) __UpperCamelCase : int =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 )
71
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" if "img_encoder.pos_embed" in name: A_ : List[str] = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: A_ : Any = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: A_ : List[Any] = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: A_ : List[Any] = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: A_ : Optional[int] = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: A_ : int = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: A_ : Union[str, Any] = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: A_ : str = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: A_ : List[str] = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: A_ : Union[str, Any] = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: A_ : Any = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: A_ : Tuple = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: A_ : Optional[int] = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: A_ : Union[str, Any] = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: A_ : Optional[Any] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: A_ : Optional[int] = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: A_ : List[Any] = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: A_ : Optional[int] = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: A_ : List[Any] = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: A_ : Any = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: A_ : List[Any] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: A_ : Tuple = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: A_ : str = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: A_ : int = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): A_ : List[str] = orig_state_dict.pop(__A ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ : int = key.split(""".""" ) A_ , A_ : Dict = int(key_split[2] ), int(key_split[4] ) A_ : Tuple = config.vision_config.hidden_size if "weight" in key: A_ : int = val[:dim, :] A_ : str = val[dim : dim * 2, :] A_ : Optional[int] = val[-dim:, :] else: A_ : Union[str, Any] = val[:dim] A_ : Union[str, Any] = val[dim : dim * 2] A_ : Dict = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ : Tuple = key.split(""".""" ) A_ : Union[str, Any] = int(key_split[3] ) A_ : int = config.text_config.hidden_size if "weight" in key: A_ : str = val[:dim, :] A_ : int = val[ dim : dim * 2, : ] A_ : List[Any] = val[-dim:, :] else: A_ : Optional[int] = val[:dim] A_ : Union[str, Any] = val[dim : dim * 2] A_ : int = val[-dim:] else: A_ : List[str] = rename_key(__A ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): A_ : List[str] = val.squeeze_() else: A_ : List[str] = val return orig_state_dict def UpperCAmelCase ( ) -> Any: """simple docstring""" A_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : int = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_="groupvit-gcc-yfcc" , a_=False ) -> Optional[Any]: """simple docstring""" A_ : Union[str, Any] = GroupViTConfig() A_ : Dict = GroupViTModel(__A ).eval() A_ : Tuple = torch.load(__A , map_location="""cpu""" )["""model"""] A_ : str = convert_state_dict(__A , __A ) A_ , A_ : Union[str, Any] = model.load_state_dict(__A , strict=__A ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__A ) == 0) # verify result A_ : Optional[int] = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) A_ : Dict = prepare_img() A_ : Dict = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=__A , padding=__A , return_tensors="""pt""" ) with torch.no_grad(): A_ : Dict = model(**__A ) if model_name == "groupvit-gcc-yfcc": A_ : Optional[int] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": A_ : List[Any] = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , __A , atol=1E-3 ) processor.save_pretrained(__A ) model.save_pretrained(__A ) print("""Successfully saved processor and model to""" , __A ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(__A , organization="""nielsr""" ) model.push_to_hub(__A , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> float: """simple docstring""" A_ : Optional[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a_ )] ) A_ : Optional[Any] = np.array(a_ ) A_ : Optional[int] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a_ ) ) , x.transpose() ) , a_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : List[str] = (1, 2, 1) A_ : Tuple = (1, 1, 0, 7) A_ : List[Any] = SARIMAX( a_ , exog=a_ , order=a_ , seasonal_order=a_ ) A_ : Tuple = model.fit(disp=a_ , maxiter=6_0_0 , method="""nm""" ) A_ : List[Any] = model_fit.predict(1 , len(a_ ) , exog=[test_match] ) return result[0] def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : int = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(a_ , a_ ) A_ : Tuple = regressor.predict(a_ ) return y_pred[0] def UpperCAmelCase ( a_ ) -> float: """simple docstring""" train_user.sort() A_ : Any = np.percentile(a_ , 2_5 ) A_ : Union[str, Any] = np.percentile(a_ , 7_5 ) A_ : str = qa - qa A_ : List[Any] = qa - (iqr * 0.1) return low_lim def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" A_ : Dict = 0 A_ : Optional[Any] = 0 for i in list_vote: if i > actual_result: A_ : Optional[Any] = not_safe + 1 else: if abs(abs(a_ ) - abs(a_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCamelCase__ : List[str] = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCamelCase__ : Optional[Any] = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) UpperCamelCase__ : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data UpperCamelCase__ : List[Any] = normalize_df[:, 2].tolist() UpperCamelCase__ : Tuple = normalize_df[:, 0].tolist() UpperCamelCase__ : Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCamelCase__ : Any = normalize_df[:, [1, 2]].tolist() UpperCamelCase__ : Optional[int] = x[: len(x) - 1] UpperCamelCase__ : Optional[Any] = x[len(x) - 1 :] # for linear regression & sarimax UpperCamelCase__ : Optional[int] = total_date[: len(total_date) - 1] UpperCamelCase__ : str = total_user[: len(total_user) - 1] UpperCamelCase__ : Tuple = total_match[: len(total_match) - 1] UpperCamelCase__ : List[str] = total_date[len(total_date) - 1 :] UpperCamelCase__ : List[Any] = total_user[len(total_user) - 1 :] UpperCamelCase__ : Dict = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCamelCase__ : List[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCamelCase__ : Tuple = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
164
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Tuple = '''dpt''' def __init__( self ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-12 ,SCREAMING_SNAKE_CASE__=3_84 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=[2, 5, 8, 11] ,SCREAMING_SNAKE_CASE__="project" ,SCREAMING_SNAKE_CASE__=[4, 2, 1, 0.5] ,SCREAMING_SNAKE_CASE__=[96, 1_92, 3_84, 7_68] ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__=-1 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0.4 ,SCREAMING_SNAKE_CASE__=2_55 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=[1, 10_24, 24, 24] ,SCREAMING_SNAKE_CASE__=[0, 1] ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> int: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = hidden_size __SCREAMING_SNAKE_CASE :List[str] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) __SCREAMING_SNAKE_CASE :Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } __SCREAMING_SNAKE_CASE :Any = BitConfig(**SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): logger.info('''Initializing the config with a `BiT` backbone.''' ) __SCREAMING_SNAKE_CASE :int = BitConfig(**SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Dict = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) __SCREAMING_SNAKE_CASE :List[str] = backbone_featmap_shape __SCREAMING_SNAKE_CASE :List[str] = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :Optional[Any] = [] __SCREAMING_SNAKE_CASE :int = num_hidden_layers __SCREAMING_SNAKE_CASE :Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE :Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE :Dict = hidden_act __SCREAMING_SNAKE_CASE :Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE :int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[int] = initializer_range __SCREAMING_SNAKE_CASE :Any = layer_norm_eps __SCREAMING_SNAKE_CASE :List[Any] = image_size __SCREAMING_SNAKE_CASE :Optional[Any] = patch_size __SCREAMING_SNAKE_CASE :Tuple = num_channels __SCREAMING_SNAKE_CASE :Optional[Any] = qkv_bias __SCREAMING_SNAKE_CASE :Union[str, Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) __SCREAMING_SNAKE_CASE :int = readout_type __SCREAMING_SNAKE_CASE :str = reassemble_factors __SCREAMING_SNAKE_CASE :List[Any] = neck_hidden_sizes __SCREAMING_SNAKE_CASE :Dict = fusion_hidden_size __SCREAMING_SNAKE_CASE :Optional[Any] = head_in_index __SCREAMING_SNAKE_CASE :Any = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE :int = use_auxiliary_head __SCREAMING_SNAKE_CASE :int = auxiliary_loss_weight __SCREAMING_SNAKE_CASE :str = semantic_loss_ignore_index __SCREAMING_SNAKE_CASE :Any = semantic_classifier_dropout def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __SCREAMING_SNAKE_CASE :Optional[int] = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE :Optional[Any] = self.__class__.model_type return output
191
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
1
import sys __UpperCAmelCase : Optional[int] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A__ ( SCREAMING_SNAKE_CASE__) -> int: __snake_case: Dict = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE__) return product def A__ ( SCREAMING_SNAKE_CASE__ = N) -> int: __snake_case: Optional[int] = -sys.maxsize - 1 __snake_case: Optional[Any] = n[:13] __snake_case: str = 13 while cur_index < len(SCREAMING_SNAKE_CASE__) - 13: if int(n[cur_index]) >= int(substr[0]): __snake_case: Optional[Any] = substr[1:] + n[cur_index] cur_index += 1 else: __snake_case: int = max(SCREAMING_SNAKE_CASE__ , str_eval(SCREAMING_SNAKE_CASE__)) __snake_case: Dict = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
293
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = 42 class __snake_case ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = True @register_to_config def __init__( self : Union[str, Any] , A : int = 3 , A : int = 3 , A : Tuple[str] = ("DownEncoderBlock2D",) , A : Tuple[str] = ("UpDecoderBlock2D",) , A : Tuple[int] = (64,) , A : int = 1 , A : str = "silu" , A : int = 4 , A : int = 32 , A : int = 32 , A : float = 0.1_8215 , ): super().__init__() # pass init params to Encoder __snake_case: Any = Encoder( in_channels=A , out_channels=A , down_block_types=A , block_out_channels=A , layers_per_block=A , act_fn=A , norm_num_groups=A , double_z=A , ) # pass init params to Decoder __snake_case: int = Decoder( in_channels=A , out_channels=A , up_block_types=A , block_out_channels=A , layers_per_block=A , norm_num_groups=A , act_fn=A , ) __snake_case: Dict = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __snake_case: int = nn.Convad(A , A , 1 ) __snake_case: List[str] = False __snake_case: Optional[int] = False # only relevant if vae tiling is enabled __snake_case: Any = self.config.sample_size __snake_case: int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __snake_case: Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __snake_case: Optional[int] = 0.25 def UpperCAmelCase__ ( self : int , A : List[str] , A : Optional[Any]=False ): if isinstance(A , (Encoder, Decoder) ): __snake_case: str = value def UpperCAmelCase__ ( self : str , A : bool = True ): __snake_case: Union[str, Any] = use_tiling def UpperCAmelCase__ ( self : Optional[int] ): self.enable_tiling(A ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[str] = True def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[str] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self : Tuple ): __snake_case: Any = {} def fn_recursive_add_processors(A : str , A : torch.nn.Module , A : Dict[str, AttentionProcessor] ): if hasattr(A , """set_processor""" ): __snake_case: List[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , A , A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A , A , A ) return processors def UpperCAmelCase__ ( self : Optional[int] , A : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): __snake_case: Any = len(self.attn_processors.keys() ) if isinstance(A , A ) and len(A ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(A )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(A : str , A : torch.nn.Module , A : Optional[Any] ): if hasattr(A , """set_processor""" ): if not isinstance(A , A ): module.set_processor(A ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , A , A ) for name, module in self.named_children(): fn_recursive_attn_processor(A , A , A ) def UpperCAmelCase__ ( self : List[str] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , A : torch.FloatTensor , A : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(A , return_dict=A ) if self.use_slicing and x.shape[0] > 1: __snake_case: List[Any] = [self.encoder(A ) for x_slice in x.split(1 )] __snake_case: Optional[Any] = torch.cat(A ) else: __snake_case: str = self.encoder(A ) __snake_case: Any = self.quant_conv(A ) __snake_case: Tuple = DiagonalGaussianDistribution(A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=A ) def UpperCAmelCase__ ( self : Tuple , A : torch.FloatTensor , A : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(A , return_dict=A ) __snake_case: Optional[int] = self.post_quant_conv(A ) __snake_case: Union[str, Any] = self.decoder(A ) if not return_dict: return (dec,) return DecoderOutput(sample=A ) @apply_forward_hook def UpperCAmelCase__ ( self : Tuple , A : torch.FloatTensor , A : bool = True ): if self.use_slicing and z.shape[0] > 1: __snake_case: Union[str, Any] = [self._decode(A ).sample for z_slice in z.split(1 )] __snake_case: List[str] = torch.cat(A ) else: __snake_case: int = self._decode(A ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=A ) def UpperCAmelCase__ ( self : Any , A : Tuple , A : int , A : List[Any] ): __snake_case: int = min(a.shape[2] , b.shape[2] , A ) for y in range(A ): __snake_case: Dict = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCAmelCase__ ( self : Union[str, Any] , A : Optional[Any] , A : List[str] , A : List[str] ): __snake_case: Dict = min(a.shape[3] , b.shape[3] , A ) for x in range(A ): __snake_case: Tuple = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCAmelCase__ ( self : int , A : torch.FloatTensor , A : bool = True ): __snake_case: List[str] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __snake_case: Dict = int(self.tile_latent_min_size * self.tile_overlap_factor ) __snake_case: Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __snake_case: Optional[int] = [] for i in range(0 , x.shape[2] , A ): __snake_case: Optional[int] = [] for j in range(0 , x.shape[3] , A ): __snake_case: int = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __snake_case: Tuple = self.encoder(A ) __snake_case: Dict = self.quant_conv(A ) row.append(A ) rows.append(A ) __snake_case: Tuple = [] for i, row in enumerate(A ): __snake_case: str = [] for j, tile in enumerate(A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __snake_case: Optional[Any] = self.blend_v(rows[i - 1][j] , A , A ) if j > 0: __snake_case: Tuple = self.blend_h(row[j - 1] , A , A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(A , dim=3 ) ) __snake_case: Tuple = torch.cat(A , dim=2 ) __snake_case: Optional[int] = DiagonalGaussianDistribution(A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=A ) def UpperCAmelCase__ ( self : Union[str, Any] , A : torch.FloatTensor , A : bool = True ): __snake_case: Optional[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __snake_case: str = int(self.tile_sample_min_size * self.tile_overlap_factor ) __snake_case: int = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __snake_case: List[Any] = [] for i in range(0 , z.shape[2] , A ): __snake_case: Optional[Any] = [] for j in range(0 , z.shape[3] , A ): __snake_case: Dict = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __snake_case: Any = self.post_quant_conv(A ) __snake_case: Optional[Any] = self.decoder(A ) row.append(A ) rows.append(A ) __snake_case: Optional[Any] = [] for i, row in enumerate(A ): __snake_case: Optional[Any] = [] for j, tile in enumerate(A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __snake_case: Tuple = self.blend_v(rows[i - 1][j] , A , A ) if j > 0: __snake_case: List[str] = self.blend_h(row[j - 1] , A , A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(A , dim=3 ) ) __snake_case: Dict = torch.cat(A , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=A ) def UpperCAmelCase__ ( self : List[Any] , A : torch.FloatTensor , A : bool = False , A : bool = True , A : Optional[torch.Generator] = None , ): __snake_case: Optional[Any] = sample __snake_case: Union[str, Any] = self.encode(A ).latent_dist if sample_posterior: __snake_case: Optional[Any] = posterior.sample(generator=A ) else: __snake_case: Dict = posterior.mode() __snake_case: Any = self.decode(A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A )
293
1
import os import sys import unittest UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) UpperCAmelCase = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') UpperCAmelCase = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = get_test_to_tester_mapping(UpperCamelCase_ ) lowercase = get_test_to_tester_mapping(UpperCamelCase_ ) lowercase = {'''BertModelTest''': '''BertModelTester'''} lowercase = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = get_model_to_test_mapping(UpperCamelCase_ ) lowercase = get_model_to_test_mapping(UpperCamelCase_ ) lowercase = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } lowercase = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = get_model_to_tester_mapping(UpperCamelCase_ ) lowercase = get_model_to_tester_mapping(UpperCamelCase_ ) lowercase = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } lowercase = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ )
195
"""simple docstring""" import numpy as np def _snake_case ( _snake_case : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
60
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" return EnvironmentCommand() class _lowerCAmelCase ( a ): """simple docstring""" @staticmethod def snake_case ( __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = parser.add_parser('env' ) download_parser.set_defaults(func=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = huggingface_hub.__version__ lowerCAmelCase__ :str = 'not installed' lowerCAmelCase__ :Any = 'NA' if is_torch_available(): import torch lowerCAmelCase__ :Dict = torch.__version__ lowerCAmelCase__ :Dict = torch.cuda.is_available() lowerCAmelCase__ :Any = 'not installed' if is_transformers_available(): import transformers lowerCAmelCase__ :List[Any] = transformers.__version__ lowerCAmelCase__ :Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate lowerCAmelCase__ :Tuple = accelerate.__version__ lowerCAmelCase__ :Optional[int] = 'not installed' if is_xformers_available(): import xformers lowerCAmelCase__ :Union[str, Any] = xformers.__version__ lowerCAmelCase__ :Optional[int] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"{pt_version} ({pt_cuda_available})", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def snake_case ( __UpperCAmelCase ): '''simple docstring''' return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
254
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :Optional[Any] = ["""onnx"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['onnx'] )
254
1
"""simple docstring""" from __future__ import annotations def snake_case__ ( __lowerCamelCase : tuple[int, int] , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =position lowerCamelCase__ : List[str] =[ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : List[str] =[] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Tuple =position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__lowerCamelCase ) return permissible_positions def snake_case__ ( __lowerCamelCase : list[list[int]] ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def snake_case__ ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : int ): """simple docstring""" if is_complete(__lowerCamelCase ): return True for position in get_valid_pos(__lowerCamelCase , len(__lowerCamelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =position if board[y][x] == 0: lowerCamelCase__ : str =curr + 1 if open_knight_tour_helper(__lowerCamelCase , __lowerCamelCase , curr + 1 ): return True lowerCamelCase__ : Any =0 return False def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =[[0 for i in range(__lowerCamelCase )] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =1 if open_knight_tour_helper(__lowerCamelCase , (i, j) , 1 ): return board lowerCamelCase__ : str =0 lowerCamelCase__ : List[str] =f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
238
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : List[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
1
from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ = 100 UpperCAmelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def A ( _UpperCAmelCase : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( _UpperCAmelCase : int = 5_000 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , _UpperCAmelCase ): if len(partition(_UpperCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
290
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Any=3_0 , UpperCAmelCase__ : str=4_0_0 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[int]=1 / 2_5_5 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Optional[int]=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std lowerCAmelCase = do_pad def __UpperCAmelCase ( self : int ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=False ) -> str: if not batched: lowerCAmelCase = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): lowerCAmelCase , lowerCAmelCase = image.size else: lowerCAmelCase , lowerCAmelCase = image.shape[1], image.shape[2] if w < h: lowerCAmelCase = int(self.size['shortest_edge'] * h / w ) lowerCAmelCase = self.size['shortest_edge'] elif w > h: lowerCAmelCase = self.size['shortest_edge'] lowerCAmelCase = int(self.size['shortest_edge'] * w / h ) else: lowerCAmelCase = self.size['shortest_edge'] lowerCAmelCase = self.size['shortest_edge'] else: lowerCAmelCase = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[0] )[0] lowerCAmelCase = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = DetrImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : Tuple ) -> List[Any]: lowerCAmelCase = DetrImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Optional[int] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : str ) -> str: lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_rescale' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'rescale_factor' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_pad' ) ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=UpperCAmelCase__ ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: pass def __UpperCAmelCase ( self : Dict ) -> str: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self : int ) -> Tuple: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self : List[Any] ) -> Any: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Any: # prepare image and target lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCAmelCase = json.loads(f.read() ) lowerCAmelCase = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowerCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) lowerCAmelCase = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='pt' ) # verify pixel values lowerCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area lowerCAmelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCAmelCase__ ) ) # verify boxes lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id lowerCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCAmelCase__ ) ) # verify is_crowd lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCAmelCase__ ) ) # verify class_labels lowerCAmelCase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCAmelCase__ ) ) # verify orig_size lowerCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCAmelCase__ ) ) # verify size lowerCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCAmelCase__ ) ) @slow def __UpperCAmelCase ( self : str ) -> str: # prepare image, target and masks_path lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCAmelCase = json.loads(f.read() ) lowerCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowerCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) lowerCAmelCase = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='pt' ) # verify pixel values lowerCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area lowerCAmelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCAmelCase__ ) ) # verify boxes lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id lowerCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCAmelCase__ ) ) # verify is_crowd lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCAmelCase__ ) ) # verify class_labels lowerCAmelCase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCAmelCase__ ) ) # verify masks lowerCAmelCase = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , UpperCAmelCase__ ) # verify orig_size lowerCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCAmelCase__ ) ) # verify size lowerCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCAmelCase__ ) )
4
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = AudioLDMPipeline lowerCamelCase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS lowerCamelCase : Tuple = TEXT_TO_AUDIO_BATCH_PARAMS lowerCamelCase : Optional[int] = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCamelCase__ , ) lowercase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) lowercase__ = ClapTextModelWithProjection(lowerCamelCase__ ) lowercase__ = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) lowercase__ = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCamelCase__ , ) lowercase__ = SpeechTaHifiGan(lowerCamelCase__ ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def A__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Tuple: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 256 lowercase__ = audio[:10] lowercase__ = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * [inputs["""prompt"""]] # forward lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * [inputs.pop("""prompt""" )] lowercase__ = audioldm_pipe.tokenizer( lowerCamelCase__ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="""pt""" , ) lowercase__ = text_inputs["""input_ids"""].to(lowerCamelCase__ ) lowercase__ = audioldm_pipe.text_encoder( lowerCamelCase__ , ) lowercase__ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ = F.normalize(lowerCamelCase__ , dim=-1 ) lowercase__ = prompt_embeds # forward lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * ["""this is a negative prompt"""] lowercase__ = negative_prompt lowercase__ = 3 * [inputs["""prompt"""]] # forward lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * [inputs.pop("""prompt""" )] lowercase__ = [] for p in [prompt, negative_prompt]: lowercase__ = audioldm_pipe.tokenizer( lowerCamelCase__ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="""pt""" , ) lowercase__ = text_inputs["""input_ids"""].to(lowerCamelCase__ ) lowercase__ = audioldm_pipe.text_encoder( lowerCamelCase__ , ) lowercase__ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ = F.normalize(lowerCamelCase__ , dim=-1 ) embeds.append(lowerCamelCase__ ) lowercase__ , lowercase__ = embeds # forward lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = """egg cracking""" lowercase__ = audioldm_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 256 lowercase__ = audio[:10] lowercase__ = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def A__ ( self ) -> int: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) lowercase__ = audioldm_pipe(lowerCamelCase__ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase__ = 2 lowercase__ = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase__ = 2 lowercase__ = audioldm_pipe(lowerCamelCase__ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase__ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase__ = 2 lowercase__ = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = audioldm_pipe.vocoder.config.sampling_rate lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = audioldm_pipe(audio_length_in_s=0.0_16 , **lowerCamelCase__ ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) / vocoder_sampling_rate == 0.0_16 lowercase__ = audioldm_pipe(audio_length_in_s=0.0_32 , **lowerCamelCase__ ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) / vocoder_sampling_rate == 0.0_32 def A__ ( self ) -> str: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = ["""hey"""] lowercase__ = audioldm_pipe(lowerCamelCase__ , num_inference_steps=1 ) lowercase__ = output.audios.shape assert audio_shape == (1, 256) lowercase__ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase__ = SpeechTaHifiGan(lowerCamelCase__ ).to(lowerCamelCase__ ) lowercase__ = audioldm_pipe(lowerCamelCase__ , num_inference_steps=1 ) lowercase__ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def A__ ( self ) -> Optional[int]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase__ ) def A__ ( self ) -> int: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ ( self ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ ) @slow class A ( unittest.TestCase ): def A__ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , lowerCamelCase__ , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=0 ) -> int: '''simple docstring''' lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = np.random.RandomState(lowerCamelCase__ ).standard_normal((1, 8, 128, 16) ) lowercase__ = torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) lowercase__ = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_inputs(lowerCamelCase__ ) lowercase__ = 25 lowercase__ = audioldm_pipe(**lowerCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 81_920 lowercase__ = audio[77_230:77_240] lowercase__ = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) lowercase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) lowercase__ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_inputs(lowerCamelCase__ ) lowercase__ = audioldm_pipe(**lowerCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 81_920 lowercase__ = audio[27_780:27_790] lowercase__ = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) lowercase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
164
0
"""simple docstring""" from __future__ import annotations import math def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ): if len(_UpperCAmelCase ) != 2 or len(a[0] ) != 2 or len(_UpperCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_UpperCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_UpperCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): if len(_UpperCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = matrix_length // 2 lowerCAmelCase = [[a[i][j] for j in range(_UpperCAmelCase , _UpperCAmelCase )] for i in range(_UpperCAmelCase )] lowerCAmelCase = [ [a[i][j] for j in range(_UpperCAmelCase , _UpperCAmelCase )] for i in range(_UpperCAmelCase , _UpperCAmelCase ) ] lowerCAmelCase = [[a[i][j] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase )] lowerCAmelCase = [[a[i][j] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase , _UpperCAmelCase )] return top_left, top_right, bot_left, bot_right def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): return len(_UpperCAmelCase ), len(matrix[0] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): print('\n'.join(str(_UpperCAmelCase ) for line in matrix ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ): if matrix_dimensions(_UpperCAmelCase ) == (2, 2): return default_matrix_multiplication(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = split_matrix(_UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = split_matrix(_UpperCAmelCase ) lowerCAmelCase = actual_strassen(_UpperCAmelCase , matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCAmelCase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) lowerCAmelCase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) lowerCAmelCase = actual_strassen(_UpperCAmelCase , matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCAmelCase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCAmelCase = actual_strassen(matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCAmelCase = actual_strassen(matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) , _UpperCAmelCase ) lowerCAmelCase = matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) , _UpperCAmelCase ) # construct the new matrix from our 4 quadrants lowerCAmelCase = [] for i in range(len(_UpperCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_UpperCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ): if matrix_dimensions(_UpperCAmelCase )[1] != matrix_dimensions(_UpperCAmelCase )[0]: lowerCAmelCase = ( 'Unable to multiply these matrices, please check the dimensions.\n' F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(_UpperCAmelCase ) lowerCAmelCase = matrix_dimensions(_UpperCAmelCase ) lowerCAmelCase = matrix_dimensions(_UpperCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowerCAmelCase = max(*_UpperCAmelCase , *_UpperCAmelCase ) lowerCAmelCase = int(math.pow(2 , math.ceil(math.loga(_UpperCAmelCase ) ) ) ) lowerCAmelCase = matrixa lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _UpperCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowerCAmelCase = actual_strassen(_UpperCAmelCase , _UpperCAmelCase ) # Removing the additional zeros for i in range(0 , _UpperCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __UpperCamelCase : Optional[int] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __UpperCamelCase : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
309
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :UNetaDModel __magic_name__ :KarrasVeScheduler def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 5_0 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = self.unet.config.sample_size lowerCAmelCase__ :Union[str, Any] = (batch_size, 3, img_size, img_size) lowerCAmelCase__ :Tuple = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCAmelCase__ :Optional[int] = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCAmelCase__ :List[str] = self.scheduler.schedule[t] lowerCAmelCase__ :int = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCAmelCase__ , lowerCAmelCase__ :int = self.scheduler.add_noise_to_input(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase__ :Union[str, Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCAmelCase__ :List[Any] = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase__ :List[str] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowerCAmelCase__ :int = self.scheduler.step_correct( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) lowerCAmelCase__ :Any = step_output.prev_sample lowerCAmelCase__ :List[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ :Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ :Optional[Any] = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
293
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ :List[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = tokenizer('This is me' , return_tensors='pt' ) lowerCAmelCase__ :Dict = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase__ :Optional[Any] = model.generate(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase__ :Union[str, Any] = model_reloaded.generate(**__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ :Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__UpperCAmelCase ): model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model.reverse_bettertransformer() model.save_pretrained(__UpperCAmelCase )
293
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( snake_case , snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = AltDiffusionPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self ): torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) UpperCAmelCase = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=A ,set_alpha_to_one=A ,) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5_002 ,) UpperCAmelCase = CLIPTextModel(A ) UpperCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) UpperCAmelCase = 77 UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCamelCase ( self ,A ,A=0 ): if str(A ).startswith("""mps""" ): UpperCAmelCase = torch.manual_seed(A ) else: UpperCAmelCase = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _UpperCamelCase ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _UpperCamelCase ( self ): UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5_002 ,) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase = RobertaSeriesModelWithTransformation(A ) UpperCAmelCase = text_encoder UpperCAmelCase = AltDiffusionPipeline(**A ) UpperCAmelCase = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = self.get_dummy_inputs(A ) UpperCAmelCase = """A photo of an astronaut""" UpperCAmelCase = alt_pipe(**A ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self ): UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = PNDMScheduler(skip_prk_steps=A ) torch.manual_seed(0 ) UpperCAmelCase = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5_002 ,) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase = RobertaSeriesModelWithTransformation(A ) UpperCAmelCase = text_encoder UpperCAmelCase = AltDiffusionPipeline(**A ) UpperCAmelCase = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = self.get_dummy_inputs(A ) UpperCAmelCase = alt_pipe(**A ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ): # make sure here that pndm scheduler skips prk UpperCAmelCase = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" ,safety_checker=A ) UpperCAmelCase = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = alt_pipe([prompt] ,generator=A ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type="""np""" ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self ): UpperCAmelCase = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" ,subfolder="""scheduler""" ) UpperCAmelCase = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" ,scheduler=A ,safety_checker=A ) UpperCAmelCase = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = alt_pipe([prompt] ,generator=A ,num_inference_steps=2 ,output_type="""numpy""" ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
234
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _UpperCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: _UpperCamelCase = json.load(f) @require_torch class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ,A ): return FSMTTokenizer.from_pretrained(A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = FSMTForConditionalGeneration.from_pretrained(A ).to(A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _UpperCamelCase ( self ,A ,A ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase = F'''facebook/wmt19-{pair}''' UpperCAmelCase = self.get_tokenizer(A ) UpperCAmelCase = self.get_model(A ) UpperCAmelCase = bleu_data[pair]["""src"""] UpperCAmelCase = bleu_data[pair]["""tgt"""] UpperCAmelCase = tokenizer(A ,return_tensors="""pt""" ,truncation=A ,padding="""longest""" ).to(A ) UpperCAmelCase = model.generate( input_ids=batch.input_ids ,num_beams=8 ,) UpperCAmelCase = tokenizer.batch_decode( A ,skip_special_tokens=A ,clean_up_tokenization_spaces=A ) UpperCAmelCase = calculate_bleu(A ,A ) print(A ) self.assertGreaterEqual(scores["""bleu"""] ,A )
234
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': 512, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = LxmertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Any = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Optional[Any] = do_lower_case __UpperCAmelCase : Optional[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : str = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
254
'''simple docstring''' from sklearn.metrics import fa_score import datasets _UpperCamelCase = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' _UpperCamelCase = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' _UpperCamelCase = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase="binary" , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = fa_score( __UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase , pos_label=__UpperCAmelCase , average=__UpperCAmelCase , sample_weight=__UpperCAmelCase ) return {"f1": float(__UpperCAmelCase ) if score.size == 1 else score}
254
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Optional[Any]: '''simple docstring''' a__ : Any =parent a__ : Tuple =batch_size a__ : List[Any] =seq_length a__ : List[str] =is_training a__ : Tuple =use_token_type_ids a__ : int =use_labels a__ : Dict =vocab_size a__ : List[Any] =hidden_size a__ : str =num_hidden_layers a__ : str =num_attention_heads a__ : Optional[int] =intermediate_size a__ : Tuple =hidden_act a__ : Union[str, Any] =hidden_dropout_prob a__ : Union[str, Any] =attention_probs_dropout_prob a__ : str =max_position_embeddings a__ : str =type_vocab_size a__ : Optional[Any] =type_sequence_label_size a__ : Dict =initializer_range a__ : List[str] =num_labels a__ : List[Any] =num_choices a__ : Union[str, Any] =scope a__ : Dict =self.vocab_size - 1 def _lowercase ( self ) -> int: '''simple docstring''' a__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Any =None if self.use_token_type_ids: a__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ : str =None a__ : List[Any] =None a__ : str =None if self.use_labels: a__ : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) a__ : int =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a__ : Optional[Any] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : List[Any] =OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Dict =model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) a__ : int =model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) a__ : Optional[int] =model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Any =OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : str =model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : List[Any] =OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : List[str] =model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Tuple =self.num_labels a__ : Optional[int] =OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Optional[Any] =model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Optional[Any] =self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : str =config_and_inputs a__ : Union[str, Any] ={ "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _lowercase : Optional[int] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _lowercase : Union[str, Any] = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Dict: '''simple docstring''' a__ : Dict =super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a__ : Dict =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) a__ : str =inputs_dict["labels"] a__ : List[Any] =inputs_dict["labels"] a__ : List[Any] =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) a__ : int =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Union[str, Any] =OpenAIGPTModelTester(self ) a__ : Tuple =ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowercase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Any =OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class __lowerCAmelCase ( unittest.TestCase): @slow def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[Any] =OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(lowerCAmelCase__ ) a__ : Tuple =torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is a__ : int =[ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the a__ : Optional[Any] =model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
148
import os def _A ( ): """simple docstring""" a__ : Optional[int] =os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , "num.txt" ) with open(SCREAMING_SNAKE_CASE ) as file_hand: return str(sum(int(SCREAMING_SNAKE_CASE ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
148
1
"""simple docstring""" import unittest from knapsack import knapsack as k class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[Any] = 0 a__: Optional[int] = [0] a__: Any = [0] a__: int = len(lowercase) self.assertEqual(k.knapsack(lowercase , lowercase , lowercase , lowercase) , 0) a__: Tuple = [60] a__: Union[str, Any] = [10] a__: Tuple = len(lowercase) self.assertEqual(k.knapsack(lowercase , lowercase , lowercase , lowercase) , 0) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Tuple = 3 a__: List[Any] = [1, 2, 3] a__: Any = [3, 2, 1] a__: List[Any] = len(lowercase) self.assertEqual(k.knapsack(lowercase , lowercase , lowercase , lowercase) , 5) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: str = 50 a__: List[str] = [60, 1_00, 1_20] a__: Union[str, Any] = [10, 20, 30] a__: str = len(lowercase) self.assertEqual(k.knapsack(lowercase , lowercase , lowercase , lowercase) , 2_20) if __name__ == "__main__": unittest.main()
290
"""simple docstring""" import math def __a ( _SCREAMING_SNAKE_CASE ) ->bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( _SCREAMING_SNAKE_CASE = 0.1 ) ->int: a__: str = 3 a__: Optional[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_SCREAMING_SNAKE_CASE ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
290
1
'''simple docstring''' from __future__ import annotations from typing import Any def __magic_name__( lowerCamelCase): if not postfix_notation: return 0 __lowerCAmelCase = {'''+''', '''-''', '''*''', '''/'''} __lowerCAmelCase = [] for token in postfix_notation: if token in operations: __lowerCAmelCase , __lowerCAmelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b) elif token == "-": stack.append(a - b) elif token == "*": stack.append(a * b) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1) else: stack.append(a // b) else: stack.append(int(lowerCamelCase)) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
1
"""simple docstring""" _UpperCamelCase: Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _UpperCamelCase: List[str] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> list[int]: '''simple docstring''' lowercase : Tuple = True lowercase : List[Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> list[int]: '''simple docstring''' lowercase : List[Any] = True lowercase : List[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def lowercase__ ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' lowercase : Dict = len(_UpperCAmelCase ) * [False] lowercase : dict[int, list[int]] = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowercase : Any = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase : Union[str, Any] = [] lowercase : Dict = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowercase : Optional[int] = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowercase : List[Any] = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
53
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a__ ( SCREAMING_SNAKE_CASE__ ): def lowercase ( self : Any ) -> Optional[int]: lowercase : Any = tempfile.mkdtemp() lowercase : Optional[Any] = 8 # DPR tok lowercase : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase : List[Any] = os.path.join(self.tmpdirname, 'dpr_tokenizer' ) os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase ) lowercase : Union[str, Any] = os.path.join(lowerCAmelCase, DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowercase : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowercase : Optional[Any] = dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowercase : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase : int = {'unk_token': '<unk>'} lowercase : Union[str, Any] = os.path.join(self.tmpdirname, 'bart_tokenizer' ) os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase ) lowercase : int = os.path.join(lowerCAmelCase, BART_VOCAB_FILES_NAMES['vocab_file'] ) lowercase : str = os.path.join(lowerCAmelCase, BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def lowercase ( self : int ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'dpr_tokenizer' ) ) def lowercase ( self : Optional[Any] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'dpr_tokenizer' ) ) def lowercase ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'bart_tokenizer' ) ) def lowercase ( self : int ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings', string_factory='Flat', metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowercase ( self : Tuple ) -> Tuple: lowercase : str = self.get_dummy_dataset() lowercase : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowercase : Optional[Any] = dataset lowercase : Dict = RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) return retriever def lowercase ( self : List[Any], lowerCAmelCase : bool ) -> List[str]: lowercase : List[Any] = self.get_dummy_dataset() lowercase : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name='custom', ) if from_disk: lowercase : Optional[Any] = os.path.join(self.tmpdirname, 'dataset' ) lowercase : str = os.path.join(self.tmpdirname, 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname, 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname, 'dataset' ) ) del dataset lowercase : Optional[Any] = RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) else: lowercase : Tuple = RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), index=CustomHFIndex(config.retrieval_vector_size, lowerCAmelCase ), ) return retriever def lowercase ( self : Dict ) -> str: lowercase : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings', string_factory='Flat', metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase : Dict = os.path.join(self.tmpdirname, 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings', index_file_name + '.index.dpr' ) pickle.dump(dataset['id'], open(index_file_name + '.index_meta.dpr', 'wb' ) ) lowercase : List[str] = os.path.join(self.tmpdirname, 'psgs_w100.tsv.pkl' ) lowercase : List[Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(lowerCAmelCase, open(lowerCAmelCase, 'wb' ) ) lowercase : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name='legacy', index_path=self.tmpdirname, ) lowercase : List[Any] = RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase : str = 1 lowercase : List[Any] = self.get_dummy_canonical_hf_index_retriever() lowercase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase , lowercase , lowercase : Tuple = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase ( self : List[Any] ) -> int: lowercase : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowercase : str = self.get_dummy_dataset() retriever.save_pretrained(lowerCAmelCase ) lowercase : Optional[Any] = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self : List[Any] ) -> int: lowercase : Tuple = 1 lowercase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) lowercase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase , lowercase , lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase ( self : Optional[int] ) -> List[Any]: lowercase : Any = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowercase : Tuple = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : List[Any] = retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Dict = 1 lowercase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) lowercase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase , lowercase , lowercase : Tuple = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase ( self : Tuple ) -> Dict: lowercase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowercase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self : List[Any] ) -> Dict: lowercase : str = 1 lowercase : str = self.get_dummy_legacy_index_retriever() lowercase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase , lowercase , lowercase : Dict = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['text'][0], 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0], 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase ( self : int ) -> Dict: lowercase : Optional[Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowercase : List[str] = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : List[str] = retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowercase ( self : List[str] ) -> int: import torch lowercase : int = 1 lowercase : List[str] = self.get_dummy_canonical_hf_index_retriever() lowercase : Union[str, Any] = [[5, 7], [10, 11]] lowercase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : Optional[Any] = retriever(lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase ) lowercase , lowercase , lowercase : Dict = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, np.ndarray ) lowercase : Optional[Any] = retriever( lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase, return_tensors='pt', ) lowercase , lowercase , lowercase , lowercase : Optional[Any] = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowercase ( self : int ) -> Optional[Any]: lowercase : Any = self.get_dpr_ctx_encoder_tokenizer() lowercase : int = 1 lowercase : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) retriever.set_ctx_encoder_tokenizer(lowerCAmelCase ) lowercase : List[Any] = [[5, 7], [10, 11]] lowercase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : List[Any] = retriever(lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase ) self.assertEqual( len(lowerCAmelCase ), 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ), lowerCAmelCase ) # check for doc token related keys in dictionary.
53
1
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {'UserAgent': UserAgent().random} def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = script.contents[0] _UpperCAmelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase__ : def __init__( self : str , lowerCamelCase__ : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = F"""https://www.instagram.com/{username}/""" _UpperCAmelCase : Dict = self.get_json() def lowerCAmelCase__ ( self : Any ) ->dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = requests.get(self.url , headers=lowerCamelCase__ ).text _UpperCAmelCase : Any = BeautifulSoup(lowerCamelCase__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Optional[Any] ) ->str: '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self : List[Any] ) ->str: '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self.user_data["username"] @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self.user_data["full_name"] @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self.user_data["biography"] @property def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' return self.user_data["business_email"] @property def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' return self.user_data["external_url"] @property def lowerCAmelCase__ ( self : Tuple ) ->int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowerCAmelCase__ ( self : str ) ->int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowerCAmelCase__ ( self : Any ) ->int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowerCAmelCase__ ( self : Optional[Any] ) ->bool: '''simple docstring''' return self.user_data["is_verified"] @property def lowerCAmelCase__ ( self : int ) ->bool: '''simple docstring''' return self.user_data["is_private"] def __lowerCAmelCase (__lowerCAmelCase = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCAmelCase : Dict = InstagramUser(__lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser('github') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
234
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = DPTConfig() if "large" in checkpoint_url: _UpperCAmelCase : List[str] = 1_024 _UpperCAmelCase : Optional[int] = 4_096 _UpperCAmelCase : Union[str, Any] = 24 _UpperCAmelCase : List[Any] = 16 _UpperCAmelCase : List[Any] = [5, 11, 17, 23] _UpperCAmelCase : int = [256, 512, 1_024, 1_024] _UpperCAmelCase : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : List[Any] = 150 _UpperCAmelCase : Optional[Any] = "huggingface/label-files" _UpperCAmelCase : Optional[int] = "ade20k-id2label.json" _UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) ) , "r" ) ) _UpperCAmelCase : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : int = idalabel _UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : int = [1, 150, 480, 480] return config, expected_shape def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCAmelCase : str = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: _UpperCAmelCase : List[str] = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: _UpperCAmelCase : Dict = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: _UpperCAmelCase : int = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: _UpperCAmelCase : int = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: _UpperCAmelCase : int = name.replace("proj" , "projection" ) if "blocks" in name: _UpperCAmelCase : Tuple = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: _UpperCAmelCase : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : int = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: _UpperCAmelCase : List[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: _UpperCAmelCase : List[str] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: _UpperCAmelCase : Union[str, Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: _UpperCAmelCase : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: _UpperCAmelCase : int = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: _UpperCAmelCase : Tuple = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: _UpperCAmelCase : Optional[Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCAmelCase : List[str] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _UpperCAmelCase : Tuple = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCAmelCase : Optional[Any] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _UpperCAmelCase : Tuple = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _UpperCAmelCase : Optional[int] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _UpperCAmelCase : List[str] = name.replace("pretrained" , "dpt" ) if "bn" in name: _UpperCAmelCase : Dict = name.replace("bn" , "batch_norm" ) if "head" in name: _UpperCAmelCase : Tuple = name.replace("head" , "head.head" ) if "encoder.norm" in name: _UpperCAmelCase : Optional[Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: _UpperCAmelCase : Dict = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : int = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : str = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL _UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : Tuple = state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model _UpperCAmelCase : Any = DPTForSemanticSegmentation(__lowerCAmelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image _UpperCAmelCase : Any = 480 if "ade" in checkpoint_url else 384 _UpperCAmelCase : List[str] = DPTImageProcessor(size=__lowerCAmelCase ) _UpperCAmelCase : Any = prepare_img() _UpperCAmelCase : Dict = image_processor(__lowerCAmelCase , return_tensors="pt" ) # forward pass _UpperCAmelCase : Tuple = model(**__lowerCAmelCase ).logits if "ade" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth # Assert logits _UpperCAmelCase : Dict = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _UpperCAmelCase : str = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __lowerCAmelCase ) ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
234
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : str = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): lowerCAmelCase__ : str = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image _lowerCAmelCase = imread('''image_data/lena.jpg''', 1) # convert to its negative _lowerCAmelCase = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
184
'''simple docstring''' class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Union[str, Any] = n lowerCAmelCase__ : int = [None] * self.n lowerCAmelCase__ : Union[str, Any] = 0 # index of the first element lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 def __len__( self ) -> int: return self.size def UpperCAmelCase_ ( self ) -> bool: return self.size == 0 def UpperCAmelCase_ ( self ) -> Optional[Any]: return False if self.is_empty() else self.array[self.front] def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) lowerCAmelCase__ : str = data lowerCAmelCase__ : List[str] = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase_ ( self ) -> int: if self.size == 0: raise Exception("""UNDERFLOW""" ) lowerCAmelCase__ : int = self.array[self.front] lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : int = (self.front + 1) % self.n self.size -= 1 return temp
184
1
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): def __init__( self , SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() snake_case : Union[str, Any] = torchvision.models.resnetaaa(pretrained=SCREAMING_SNAKE_CASE ) snake_case : int = list(model.children() )[:-2] snake_case : Any = nn.Sequential(*SCREAMING_SNAKE_CASE ) snake_case : List[str] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = self.pool(self.model(SCREAMING_SNAKE_CASE ) ) snake_case : Tuple = torch.flatten(SCREAMING_SNAKE_CASE , start_dim=2 ) snake_case : Tuple = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = [json.loads(SCREAMING_SNAKE_CASE ) for l in open(SCREAMING_SNAKE_CASE )] snake_case : List[str] = os.path.dirname(SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = tokenizer snake_case : str = labels snake_case : List[Any] = len(SCREAMING_SNAKE_CASE ) snake_case : str = max_seq_length snake_case : Dict = transforms def __len__( self ): """simple docstring""" return len(self.data ) def __getitem__( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=SCREAMING_SNAKE_CASE ) ) snake_case , snake_case , snake_case : Tuple = sentence[0], sentence[1:-1], sentence[-1] snake_case : Any = sentence[: self.max_seq_length] snake_case : Dict = torch.zeros(self.n_classes ) snake_case : Union[str, Any] = 1 snake_case : Optional[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) snake_case : Optional[int] = self.transforms(SCREAMING_SNAKE_CASE ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def UpperCamelCase__ ( lowercase__ : Any ): snake_case : str = [len(row["sentence"] ) for row in batch] snake_case , snake_case : Optional[Any] = len(lowercase__ ), max(lowercase__ ) snake_case : Optional[int] = torch.zeros(lowercase__ , lowercase__ , dtype=torch.long ) snake_case : Any = torch.zeros(lowercase__ , lowercase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowercase__ , lowercase__ ) ): snake_case : Any = input_row["sentence"] snake_case : int = 1 snake_case : str = torch.stack([row["image"] for row in batch] ) snake_case : Dict = torch.stack([row["label"] for row in batch] ) snake_case : Tuple = torch.stack([row["image_start_token"] for row in batch] ) snake_case : int = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def UpperCamelCase__ ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def UpperCamelCase__ ( ): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
148
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
148
1
'''simple docstring''' from math import factorial class __A : def __init__(self : Optional[int] , __a : List[Any] , __a : str ): UpperCAmelCase_ = real if isinstance(A_ , A_ ): UpperCAmelCase_ = [1] * rank else: UpperCAmelCase_ = rank def __repr__(self : Union[str, Any] ): return ( f"""{self.real}+""" f"""{"+".join(str(A_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , A_ ) def __add__(self : Optional[Any] , __a : Optional[Any] ): if not isinstance(A_ , A_ ): return Dual(self.real + other , self.duals ) UpperCAmelCase_ = self.duals.copy() UpperCAmelCase_ = other.duals.copy() if len(A_ ) > len(A_ ): o_dual.extend([1] * (len(A_ ) - len(A_ )) ) elif len(A_ ) < len(A_ ): s_dual.extend([1] * (len(A_ ) - len(A_ )) ) UpperCAmelCase_ = [] for i in range(len(A_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , A_ ) a__ : List[str] = __add__ def __sub__(self : Union[str, Any] , __a : Any ): return self + other * -1 def __mul__(self : Dict , __a : List[Any] ): if not isinstance(A_ , A_ ): UpperCAmelCase_ = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , A_ ) UpperCAmelCase_ = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , A_ ) a__ : Tuple = __mul__ def __truediv__(self : Optional[int] , __a : Union[str, Any] ): if not isinstance(A_ , A_ ): UpperCAmelCase_ = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , A_ ) raise ValueError def __floordiv__(self : List[Any] , __a : Dict ): if not isinstance(A_ , A_ ): UpperCAmelCase_ = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , A_ ) raise ValueError def __pow__(self : Tuple , __a : Any ): if n < 0 or isinstance(A_ , A_ ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self UpperCAmelCase_ = self for _ in range(n - 1 ): x *= self return x def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if not callable(snake_case_ ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(snake_case_ , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(snake_case_ , snake_case_ ): raise ValueError("differentiate() requires an int as input for order" ) UpperCAmelCase_ = Dual(snake_case_ , 1 ) UpperCAmelCase_ = func(snake_case_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
371
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE_: Tuple =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: Any ={'facebook/bart-base': BartForConditionalGeneration} SCREAMING_SNAKE_CASE_: int ={'facebook/bart-base': BartTokenizer} def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case_ , default=snake_case_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case_ , default=snake_case_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , ) parser.add_argument( "--config_name" , type=snake_case_ , default=snake_case_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case_ , default=snake_case_ , help="Where to store the final ONNX file." ) UpperCAmelCase_ = parser.parse_args() return args def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : int="cpu" ) -> Dict: '''simple docstring''' UpperCAmelCase_ = model_dict[model_name].from_pretrained(snake_case_ ).to(snake_case_ ) UpperCAmelCase_ = tokenizer_dict[model_name].from_pretrained(snake_case_ ) if model_name in ["facebook/bart-base"]: UpperCAmelCase_ = 0 UpperCAmelCase_ = None UpperCAmelCase_ = 0 return huggingface_model, tokenizer def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Dict ) -> Dict: '''simple docstring''' model.eval() UpperCAmelCase_ = None UpperCAmelCase_ = torch.jit.script(BARTBeamSearchGenerator(snake_case_ ) ) with torch.no_grad(): UpperCAmelCase_ = "My friends are cool but they eat too many carbs." UpperCAmelCase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="pt" ).to(model.device ) UpperCAmelCase_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case_ , max_length=snake_case_ , early_stopping=snake_case_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case_ , ) logger.info("Model exported to {}".format(snake_case_ ) ) UpperCAmelCase_ = remove_dup_initializers(os.path.abspath(snake_case_ ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case_ ) ) UpperCAmelCase_ = onnxruntime.InferenceSession(snake_case_ ) UpperCAmelCase_ = ort_sess.run( snake_case_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case_ ), "max_length": np.array(snake_case_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ = parse_args() UpperCAmelCase_ = 5 UpperCAmelCase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ = torch.device(args.device ) UpperCAmelCase_ , UpperCAmelCase_ = load_model_tokenizer(args.model_name_or_path , snake_case_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case_ ) if args.max_length: UpperCAmelCase_ = args.max_length if args.num_beams: UpperCAmelCase_ = args.num_beams if args.output_file_path: UpperCAmelCase_ = args.output_file_path else: UpperCAmelCase_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": main()
106
0
from __future__ import annotations from typing import Any def _UpperCamelCase ( lowercase__ ): if not postfix_notation: return 0 __SCREAMING_SNAKE_CASE : Dict = {'''+''', '''-''', '''*''', '''/'''} __SCREAMING_SNAKE_CASE : list[Any] = [] for token in postfix_notation: if token in operations: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : Optional[int] ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Optional[Any] ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Dict ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = en_sentvecs.shape[0] # mean centering __SCREAMING_SNAKE_CASE : Tuple = en_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = in_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : str = cdist(lowercase__ , lowercase__ , '''cosine''' ) __SCREAMING_SNAKE_CASE : int = np.array(range(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sim.argsort(axis=1 )[:, :10] __SCREAMING_SNAKE_CASE : str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
9
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : bytes ) -> str: '''simple docstring''' return "".join([hex(_UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(_UpperCamelCase )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if (len(_UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_UpperCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : """simple docstring""" def __init__( self : Union[str, Any] , __A : str , __A : Tuple=1_3 , __A : Optional[int]=[3_0, 3_0] , __A : str=2 , __A : List[Any]=3 , __A : Dict=True , __A : Union[str, Any]=True , __A : Tuple=3_2 , __A : str=5 , __A : Dict=4 , __A : Optional[int]=3_7 , __A : Tuple="gelu" , __A : Tuple=0.1 , __A : List[str]=0.1 , __A : List[str]=1_0 , __A : Optional[int]=0.02 , __A : str=3 , __A : Dict=None , __A : List[str]=8 , __A : Any=1_0 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = scope __UpperCamelCase = n_targets __UpperCamelCase = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __UpperCamelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size) __UpperCamelCase = num_patches + 1 + self.num_detection_tokens def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __UpperCamelCase = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __UpperCamelCase = [] for i in range(self.batch_size ): __UpperCamelCase = {} __UpperCamelCase = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__A ) __UpperCamelCase = torch.rand(self.n_targets , 4 , device=__A ) labels.append(__A ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Tuple ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _lowerCamelCase ( self : Optional[Any] , __A : str , __A : Dict , __A : Dict ): __UpperCamelCase = YolosModel(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _lowerCamelCase ( self : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Optional[Any] ): __UpperCamelCase = YolosForObjectDetection(__A ) model.to(__A ) model.eval() __UpperCamelCase = model(pixel_values=__A ) __UpperCamelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __UpperCamelCase = model(pixel_values=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =(YolosModel, YolosForObjectDetection) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : str =( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict =False SCREAMING_SNAKE_CASE_ : Tuple =False SCREAMING_SNAKE_CASE_ : Optional[int] =False SCREAMING_SNAKE_CASE_ : Tuple =False def _lowerCamelCase ( self : Optional[Any] , __A : Optional[int] , __A : Dict , __A : str=False ): __UpperCamelCase = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __UpperCamelCase = [] for i in range(self.model_tester.batch_size ): __UpperCamelCase = {} __UpperCamelCase = torch.ones( size=(self.model_tester.n_targets,) , device=__A , dtype=torch.long ) __UpperCamelCase = torch.ones( self.model_tester.n_targets , 4 , device=__A , dtype=torch.float ) labels.append(__A ) __UpperCamelCase = labels return inputs_dict def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = YolosModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowerCamelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Union[str, Any] ): # YOLOS does not use inputs_embeds pass def _lowerCamelCase ( self : Any ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _lowerCamelCase ( self : Any ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __A ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True # in YOLOS, the seq_len is different __UpperCamelCase = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__A , __A ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCamelCase = True __UpperCamelCase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__A , __A ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __UpperCamelCase = len(__A ) # Check attention is always last and order is fine __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__A , __A ) ) __UpperCamelCase = 1 self.assertEqual(out_len + added_hidden_states , len(__A ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self : str ): def check_hidden_states_output(__A : List[str] , __A : int , __A : Tuple ): __UpperCamelCase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__A , __A ) ) __UpperCamelCase = outputs.hidden_states __UpperCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) # YOLOS has a different seq_length __UpperCamelCase = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True check_hidden_states_output(__A , __A , __A ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__A ) @slow def _lowerCamelCase ( self : List[str] ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = YolosModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase ( self : Any ): return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(__A ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__A , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): __UpperCamelCase = model(inputs.pixel_values ) # verify outputs __UpperCamelCase = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , __A ) __UpperCamelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__A , ) __UpperCamelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1e-4 ) ) # verify postprocessing __UpperCamelCase = image_processor.post_process_object_detection( __A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __UpperCamelCase = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__A ) __UpperCamelCase = [7_5, 7_5, 1_7, 6_3, 1_7] __UpperCamelCase = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(__A ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , __A , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , __A ) self.assertTrue(torch.allclose(results['boxes'][0, :] , __A ) )
53
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : List[Any] ="BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Optional[int] =("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , __A : Optional[int] , __A : List[Any] ): __UpperCamelCase = False super().__init__(__A , __A ) __UpperCamelCase = self.image_processor def __call__( self : List[Any] , __A : ImageInput = None , __A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A : bool = True , __A : Union[bool, str, PaddingStrategy] = False , __A : Union[bool, str, TruncationStrategy] = None , __A : Optional[int] = None , __A : int = 0 , __A : Optional[int] = None , __A : Optional[bool] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : Optional[Union[str, TensorType]] = None , **__A : List[Any] , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __UpperCamelCase = self.tokenizer __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) return text_encoding # add pixel_values __UpperCamelCase = self.image_processor(__A , return_tensors=__A ) if text is not None: __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) else: __UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(__A ) return encoding_image_processor def _lowerCamelCase ( self : List[Any] , *__A : Dict , **__A : Optional[int] ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowerCamelCase ( self : List[Any] , *__A : List[str] , **__A : Dict ): return self.tokenizer.decode(*__A , **__A ) @property def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
53
1
def lowerCamelCase__ ( snake_case_ : int ) -> Optional[Any]: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
363
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ = logging.get_logger(__name__) snake_case_ = {'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : str = ['input_ids', 'attention_mask'] A_ : Optional[Any] = None def __init__(self : Optional[int] , a__ : int=None , a__ : str=None , a__ : Any=None , a__ : List[Any]="<unk>" , a__ : List[Any]="<s>" , a__ : Optional[int]="</s>" , a__ : List[str]="<pad>" , a__ : Union[str, Any]=False , a__ : str=False , **a__ : Optional[Any] , ): """simple docstring""" super().__init__( a__ , a__ , tokenizer_file=a__ , unk_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , add_prefix_space=a__ , clean_up_tokenization_spaces=a__ , **a__ , ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a__ ) != add_prefix_space: __snake_case = getattr(a__ , pre_tok_state.pop('''type''' ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**a__ ) __snake_case = add_prefix_space def a (self : int , *a__ : Tuple , **a__ : Optional[Any] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*a__ , **a__ ) def a (self : List[str] , *a__ : List[str] , **a__ : List[str] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*a__ , **a__ ) def a (self : List[Any] , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def a (self : Tuple , a__ : "Conversation" ): """simple docstring""" __snake_case = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ , add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: __snake_case = input_ids[-self.model_max_length :] return input_ids
238
0
import doctest from collections import deque import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [2, 1, 2, -1] lowerCamelCase__ : Tuple = [1, 2, 3, 4] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = len(self.first_signal ) lowerCamelCase__ : Any = len(self.second_signal ) lowerCamelCase__ : List[Any] = max(__lowerCamelCase , __lowerCamelCase ) # create a zero matrix of max_length x max_length lowerCamelCase__ : str = [[0] * max_length for i in range(__lowerCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCamelCase ): lowerCamelCase__ : int = deque(self.second_signal ) rotated_signal.rotate(__lowerCamelCase ) for j, item in enumerate(__lowerCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal lowerCamelCase__ : Union[str, Any] = np.matmul(np.transpose(__lowerCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
184
class _lowercase : """simple docstring""" def __init__( self : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : List[str] = n lowerCamelCase__ : Union[str, Any] = [None] * self.n lowerCamelCase__ : List[str] = 0 # index of the first element lowerCamelCase__ : Any = 0 lowerCamelCase__ : Any = 0 def __len__( self : Tuple ): '''simple docstring''' return self.size def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.size == 0 def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowerCAmelCase ( self : str , __lowerCamelCase : List[str] ): '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) lowerCamelCase__ : Optional[Any] = data lowerCamelCase__ : Tuple = (self.rear + 1) % self.n self.size += 1 return self def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) lowerCamelCase__ : Any = self.array[self.front] lowerCamelCase__ : List[Any] = None lowerCamelCase__ : str = (self.front + 1) % self.n self.size -= 1 return temp
184
1
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a : Dict = logging.get_logger(__name__) @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , "vision" ) self.check_model_type(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , **lowerCAmelCase__ ) -> Any: return {}, {}, {} def __a ( self , lowerCAmelCase__ ) -> Tuple: a : Union[str, Any] = load_image(lowerCAmelCase__ ) a : List[Any] = image.size a : Any = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) return model_inputs def __a ( self , lowerCAmelCase__ ) -> Dict: a : List[str] = self.model(**lowerCAmelCase__ ) return model_outputs def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: a : Optional[int] = model_outputs.predicted_depth a : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=lowerCAmelCase__ ) a : str = prediction.squeeze().cpu().numpy() a : Any = (output * 255 / np.max(lowerCAmelCase__ )).astype("uint8" ) a : str = Image.fromarray(lowerCAmelCase__ ) a : Dict = {} a : str = predicted_depth a : Optional[Any] = depth return output_dict
362
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int = 50 ) ->int: '''simple docstring''' a : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
79
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowerCAmelCase : Any = None __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } __lowerCAmelCase : str = { 'camembert-base': 512, } __lowerCAmelCase : Dict = '▁' class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = CamembertTokenizer def __init__( self : Any , __lowerCamelCase : Any=None , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : int="<s>" , __lowerCamelCase : Union[str, Any]="<unk>" , __lowerCamelCase : Dict="<pad>" , __lowerCamelCase : List[str]="<mask>" , __lowerCamelCase : Dict=["<s>NOTUSED", "</s>NOTUSED"] , **__lowerCamelCase : int , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) a = vocab_file a = False if not self.vocab_file else True def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a = [self.cls_token_id] a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
107
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
106
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowercase_ = logging.get_logger(__name__) lowercase_ = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @add_start_docstrings(_lowerCAmelCase ) def __call__( self : Optional[Any] , _lowerCAmelCase : torch.LongTensor , _lowerCAmelCase : torch.FloatTensor , **_lowerCAmelCase : str ): raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] = None ): __snake_case : str = max_length __snake_case : Any = max_position_embeddings @add_start_docstrings(_lowerCAmelCase ) def __call__( self : Tuple , _lowerCAmelCase : torch.LongTensor , _lowerCAmelCase : torch.FloatTensor , **_lowerCAmelCase : Union[str, Any] ): __snake_case : int = input_ids.shape[-1] __snake_case : Tuple = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ f'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' """exceptions, performance degradation, or nothing at all.""" ) return is_done class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int ): warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ f'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' """with `max_length = start_length + max_new_tokens` instead.""" , _lowerCAmelCase , ) __snake_case : Tuple = start_length __snake_case : Dict = max_new_tokens __snake_case : Any = start_length + max_new_tokens @add_start_docstrings(_lowerCAmelCase ) def __call__( self : Tuple , _lowerCAmelCase : torch.LongTensor , _lowerCAmelCase : torch.FloatTensor , **_lowerCAmelCase : List[Any] ): return input_ids.shape[-1] >= self.max_length class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : List[str] , _lowerCAmelCase : float , _lowerCAmelCase : Optional[float] = None ): __snake_case : Union[str, Any] = max_time __snake_case : List[Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_lowerCAmelCase ) def __call__( self : int , _lowerCAmelCase : torch.LongTensor , _lowerCAmelCase : torch.FloatTensor , **_lowerCAmelCase : str ): return time.time() - self.initial_timestamp > self.max_time class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @add_start_docstrings(_lowerCAmelCase ) def __call__( self : str , _lowerCAmelCase : torch.LongTensor , _lowerCAmelCase : torch.FloatTensor , **_lowerCAmelCase : List[str] ): return any(criteria(_lowerCAmelCase , _lowerCAmelCase ) for criteria in self ) @property def snake_case__ ( self : Union[str, Any] ): for stopping_criterium in self: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return stopping_criterium.max_length elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return stopping_criterium.max_length return None def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : StoppingCriteriaList , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[Any] = stopping_criteria.max_length __snake_case : Optional[Any] = deepcopy(__SCREAMING_SNAKE_CASE ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , __SCREAMING_SNAKE_CASE ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__SCREAMING_SNAKE_CASE ) ) return new_stopping_criteria
354
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = {"""vocab_file""": """spm_char.model"""} __SCREAMING_SNAKE_CASE : List[str] = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } __SCREAMING_SNAKE_CASE : Any = { """microsoft/speecht5_asr""": 1_024, """microsoft/speecht5_tts""": 1_024, """microsoft/speecht5_vc""": 1_024, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = VOCAB_FILES_NAMES __UpperCamelCase: List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase: List[Any] = ["input_ids", "attention_mask"] def __init__( self : Tuple , A : Dict , A : Optional[int]="<s>" , A : Any="</s>" , A : int="<unk>" , A : int="<pad>" , A : Optional[Dict[str, Any]] = None , **A : List[Any] , ): _UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _UpperCAmelCase : int = vocab_file _UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def _A ( self : Optional[int] ): return self.sp_model.get_piece_size() def _A ( self : Optional[int] ): _UpperCAmelCase : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): _UpperCAmelCase : List[Any] = self.__dict__.copy() _UpperCAmelCase : Any = None return state def __setstate__( self : int , A : List[Any] ): _UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : List[Any] , A : str ): return self.sp_model.encode(A , out_type=A ) def _A ( self : Any , A : Tuple ): return self.sp_model.piece_to_id(A ) def _A ( self : int , A : Optional[Any] ): _UpperCAmelCase : int = self.sp_model.IdToPiece(A ) return token def _A ( self : Dict , A : List[str] ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token _UpperCAmelCase : Any = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def _A ( self : Dict , A : Any , A : int=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : Tuple , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) _UpperCAmelCase : int = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def _A ( self : Any , A : str , A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : List[str] = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , "wb" ) as fi: _UpperCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
31
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE : Dict = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE : Optional[Any] = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } __SCREAMING_SNAKE_CASE : List[Any] = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase: str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase: Any = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase: str = ["input_ids", "attention_mask"] __UpperCamelCase: List[str] = DistilBertTokenizer def __init__( self : str , A : int=None , A : Tuple=None , A : Tuple=True , A : Dict="[UNK]" , A : List[Any]="[SEP]" , A : Optional[Any]="[PAD]" , A : Dict="[CLS]" , A : Tuple="[MASK]" , A : str=True , A : Dict=None , **A : List[Any] , ): super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , A ) != do_lower_case or normalizer_state.get("strip_accents" , A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , A ) != tokenize_chinese_chars ): _UpperCAmelCase : Dict = getattr(A , normalizer_state.pop("type" ) ) _UpperCAmelCase : int = do_lower_case _UpperCAmelCase : Optional[int] = strip_accents _UpperCAmelCase : str = tokenize_chinese_chars _UpperCAmelCase : List[Any] = normalizer_class(**A ) _UpperCAmelCase : Dict = do_lower_case def _A ( self : List[Any] , A : Tuple , A : Any=None ): _UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A ( self : int , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : Dict , A : str , A : Optional[str] = None ): _UpperCAmelCase : Any = self._tokenizer.model.save(A , name=A ) return tuple(A )
31
1
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __a ( ) ->Dict: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=UpperCAmelCase , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=UpperCAmelCase , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=UpperCAmelCase , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=UpperCAmelCase , default=0 , help="""cuda_id.""" , ) A = parser.parse_args() return args def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" if not len(UpperCAmelCase ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) A , A = imgs[0].size A = Image.new("""RGB""" , size=(cols * w, rows * h) ) A , A = grid.size for i, img in enumerate(UpperCAmelCase ): grid.paste(UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __a ( UpperCAmelCase , UpperCAmelCase="robotic cat with wings" , UpperCAmelCase=7.5 , UpperCAmelCase=50 , UpperCAmelCase=1 , UpperCAmelCase=42 , ) ->Optional[int]: """simple docstring""" A = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase ) A = pipeline( UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=UpperCAmelCase , generator=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , ).images A = int(math.sqrt(UpperCAmelCase ) ) A = image_grid(UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCamelCase : str = parse_args() # Load models and create wrapper for stable diffusion _lowerCamelCase : Any = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _lowerCamelCase : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _lowerCamelCase : Union[str, Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _lowerCamelCase : Union[str, Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _lowerCamelCase : int = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCamelCase : Any = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _lowerCamelCase : Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _lowerCamelCase : str = unet.to(torch.device('cuda', args.cuda_id)) _lowerCamelCase : Union[str, Any] = pipeline.to(unet.device) _lowerCamelCase : Tuple = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _lowerCamelCase : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
366
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Any = '''sew''' def __init__( self , _UpperCamelCase=3_2 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase=2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-5 , _UpperCamelCase="group" , _UpperCamelCase="gelu" , _UpperCamelCase=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _UpperCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _UpperCamelCase=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _UpperCamelCase=False , _UpperCamelCase=1_2_8 , _UpperCamelCase=1_6 , _UpperCamelCase=True , _UpperCamelCase=0.05 , _UpperCamelCase=1_0 , _UpperCamelCase=2 , _UpperCamelCase=0.0 , _UpperCamelCase=1_0 , _UpperCamelCase=0 , _UpperCamelCase="mean" , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=2_5_6 , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=2 , **_UpperCamelCase , ) -> Optional[Any]: super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : str = feat_extract_norm UpperCAmelCase_ : Union[str, Any] = feat_extract_activation UpperCAmelCase_ : str = list(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = list(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = list(_UpperCamelCase ) UpperCAmelCase_ : Tuple = conv_bias UpperCAmelCase_ : Dict = num_conv_pos_embeddings UpperCAmelCase_ : Optional[int] = num_conv_pos_embedding_groups UpperCAmelCase_ : Tuple = len(self.conv_dim ) UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Tuple = squeeze_factor UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Tuple = hidden_dropout UpperCAmelCase_ : Dict = attention_dropout UpperCAmelCase_ : str = activation_dropout UpperCAmelCase_ : Optional[Any] = feat_proj_dropout UpperCAmelCase_ : Any = final_dropout UpperCAmelCase_ : Optional[int] = layerdrop UpperCAmelCase_ : List[Any] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Union[str, Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[Any] = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : Any = mask_time_length UpperCAmelCase_ : Union[str, Any] = mask_time_min_masks UpperCAmelCase_ : List[str] = mask_feature_prob UpperCAmelCase_ : Dict = mask_feature_length UpperCAmelCase_ : List[str] = mask_feature_min_masks # ctc loss UpperCAmelCase_ : str = ctc_loss_reduction UpperCAmelCase_ : int = ctc_zero_infinity # sequence classification UpperCAmelCase_ : List[Any] = use_weighted_layer_sum UpperCAmelCase_ : Optional[Any] = classifier_proj_size @property def __UpperCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
29
"""simple docstring""" from __future__ import annotations def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if b == 0: return (1, 0) ((lowerCamelCase__) , (lowerCamelCase__)) : Any =extended_euclid(__lowerCamelCase , a % b ) lowerCamelCase__ : Optional[Any] =a // b return (y, x - k * y) def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" ((lowerCamelCase__) , (lowerCamelCase__)) : Any =extended_euclid(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[Any] =na * na lowerCamelCase__ : Union[str, Any] =ra * x * na + ra * y * na return (n % m + m) % m def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" ((lowerCamelCase__) , (lowerCamelCase__)) : int =extended_euclid(__lowerCamelCase , __lowerCamelCase ) if b < 0: lowerCamelCase__ : Any =(b % n + n) % n return b def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Any =invert_modulo(__lowerCamelCase , __lowerCamelCase ), invert_modulo(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple =na * na lowerCamelCase__ : Optional[Any] =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
238
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( lowerCAmelCase ): snake_case__ : Optional[int] = ['image_processor', 'tokenizer'] snake_case__ : Optional[Any] = 'CLIPImageProcessor' snake_case__ : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" lowercase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowerCAmelCase , ) lowercase = kwargs.pop("""feature_extractor""" ) lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowercase = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if images is not None: lowercase = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and images is not None: lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" lowercase = self.tokenizer.model_input_names lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __lowerCAmelCase , ) return self.image_processor_class @property def A__ ( self ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __lowerCAmelCase , ) return self.image_processor
32
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
1
import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE :Tuple = get_logger() SCREAMING_SNAKE_CASE :int = None class __lowerCAmelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self : int , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" super().__init__(features=__UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( F'''Expected {device} to be a `str` not {type(__UpperCAmelCase )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case_ = device if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) snake_case_ = str(jax.devices()[0] ) snake_case_ = jnp_array_kwargs @staticmethod def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" import jax return {str(__UpperCAmelCase ): device for device in jax.devices()} def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and column: if all( isinstance(__UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCAmelCase , axis=0 ) return column def lowerCAmelCase__ ( self : int , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , (str, bytes, type(__UpperCAmelCase )) ): return value elif isinstance(__UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case_ = {} if isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case_ = {"dtype": jnp.intaa} else: snake_case_ = {"dtype": jnp.intaa} elif isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCAmelCase , PIL.Image.Image ): snake_case_ = np.asarray(__UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : int ) -> Tuple: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCAmelCase , "__array__" ) and not isinstance(__UpperCAmelCase , jax.Array ): snake_case_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCAmelCase ) def lowerCAmelCase__ ( self : List[Any] , _lowerCAmelCase : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , __UpperCAmelCase , map_list=__UpperCAmelCase ) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : pa.Table ) -> Dict: """simple docstring""" snake_case_ = self.numpy_arrow_extractor().extract_row(__UpperCAmelCase ) snake_case_ = self.python_features_decoder.decode_row(__UpperCAmelCase ) return self.recursive_tensorize(__UpperCAmelCase ) def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : pa.Table ) -> Dict: """simple docstring""" snake_case_ = self.numpy_arrow_extractor().extract_column(__UpperCAmelCase ) snake_case_ = self.python_features_decoder.decode_column(__UpperCAmelCase , pa_table.column_names[0] ) snake_case_ = self.recursive_tensorize(__UpperCAmelCase ) snake_case_ = self._consolidate(__UpperCAmelCase ) return column def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : pa.Table ) -> List[Any]: """simple docstring""" snake_case_ = self.numpy_arrow_extractor().extract_batch(__UpperCAmelCase ) snake_case_ = self.python_features_decoder.decode_batch(__UpperCAmelCase ) snake_case_ = self.recursive_tensorize(__UpperCAmelCase ) for column_name in batch: snake_case_ = self._consolidate(batch[column_name] ) return batch
159
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : int , lowerCamelCase : str=False ): UpperCamelCase_ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCamelCase_ : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : str=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase_ : Any = """""" else: UpperCamelCase_ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase_ : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCamelCase_ : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase_ : Optional[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase_ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase_ : str = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase_ : Optional[int] = in_proj_bias[-config.hidden_size :] def __lowercase ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): UpperCamelCase_ : List[Any] = dct.pop(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ : Optional[Any] = val def __lowercase ( ): UpperCamelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_ : str = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : int ): UpperCamelCase_ : Tuple = DeiTConfig() # all deit models have fine-tuned heads UpperCamelCase_ : int = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase_ : Optional[Any] = 1000 UpperCamelCase_ : Any = """huggingface/label-files""" UpperCamelCase_ : List[str] = """imagenet-1k-id2label.json""" UpperCamelCase_ : Optional[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase_ : Tuple = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCamelCase_ : Any = idalabel UpperCamelCase_ : str = {v: k for k, v in idalabel.items()} UpperCamelCase_ : List[Any] = int(deit_name[-6:-4] ) UpperCamelCase_ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): UpperCamelCase_ : Union[str, Any] = 192 UpperCamelCase_ : List[Any] = 768 UpperCamelCase_ : List[Any] = 12 UpperCamelCase_ : Union[str, Any] = 3 elif deit_name[9:].startswith('small' ): UpperCamelCase_ : Optional[int] = 384 UpperCamelCase_ : str = 1536 UpperCamelCase_ : Optional[int] = 12 UpperCamelCase_ : Tuple = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): UpperCamelCase_ : List[str] = 1024 UpperCamelCase_ : List[str] = 4096 UpperCamelCase_ : List[str] = 24 UpperCamelCase_ : List[str] = 16 # load original model from timm UpperCamelCase_ : List[str] = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase_ : Optional[int] = timm_model.state_dict() UpperCamelCase_ : List[Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load HuggingFace model UpperCamelCase_ : Tuple = DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCamelCase_ : Optional[int] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCamelCase_ : Optional[Any] = DeiTImageProcessor(size=SCREAMING_SNAKE_CASE__ , crop_size=config.image_size ) UpperCamelCase_ : List[str] = image_processor(images=prepare_img() , return_tensors='pt' ) UpperCamelCase_ : int = encoding["""pixel_values"""] UpperCamelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ : Optional[Any] = timm_model(SCREAMING_SNAKE_CASE__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.logits , atol=1e-3 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) a_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
175
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
0
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> np.ndarray: '''simple docstring''' _UpperCAmelCase : Optional[int] = cva.getAffineTransform(__UpperCAmelCase , __UpperCAmelCase ) return cva.warpAffine(__UpperCAmelCase , __UpperCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image A_ : List[str] = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value A_ : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A_ , A_ : int = gray_img.shape # set different points to rotate image A_ : List[Any] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) A_ : Optional[Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) A_ : Dict = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) A_ : Union[str, Any] = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list A_ : Any = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A_ : Any = plt.figure(1) A_ : Optional[int] = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0