code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case :Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(f'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') __snake_case :Tuple = [file for file in filepaths if ''' ''' in file] if space_files: print(f'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') __snake_case :Optional[int] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(f'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') __snake_case :Optional[int] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') __snake_case :int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
49
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : str = CpmAntTokenizer __lowercase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' super().setUp() lowercase__: Any = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] lowercase__: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Optional[int] = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) lowercase__: Optional[Any] = '今天天气真好!' lowercase__: str = ['今天', '天气', '真', '好', '!'] lowercase__: Optional[Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[str] = '今天天气真好!' lowercase__: List[str] = [tokenizer.bos_token] + tokens lowercase__: Tuple = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) lowercase__: Any = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
196
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _snake_case : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=None , _a=2 , ): __magic_name__ : Tuple = parent __magic_name__ : Any = batch_size __magic_name__ : List[str] = image_size __magic_name__ : List[Any] = patch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = is_training __magic_name__ : int = use_labels __magic_name__ : Optional[Any] = hidden_size __magic_name__ : Union[str, Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : Any = attention_probs_dropout_prob __magic_name__ : Tuple = type_sequence_label_size __magic_name__ : List[Any] = initializer_range __magic_name__ : Union[str, Any] = scope __magic_name__ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __magic_name__ : Union[str, Any] = (image_size // patch_size) ** 2 __magic_name__ : Optional[Any] = num_patches + 2 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : int = None if self.use_labels: __magic_name__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : List[Any] = DeiTModel(config=_a ) model.to(_a ) model.eval() __magic_name__ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : List[Any] = DeiTForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() __magic_name__ : Any = model(_a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Union[str, Any] = 1 __magic_name__ : Optional[Any] = DeiTForMaskedImageModeling(_a ) model.to(_a ) model.eval() __magic_name__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Any = model(_a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Any = self.type_sequence_label_size __magic_name__ : List[Any] = DeiTForImageClassification(_a ) model.to(_a ) model.eval() __magic_name__ : Optional[int] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Tuple = 1 __magic_name__ : Optional[Any] = DeiTForImageClassification(_a ) model.to(_a ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : str = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Optional[Any] = config_and_inputs __magic_name__ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase__ = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = DeiTModelTester(self ) __magic_name__ : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : int = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(_a ) __magic_name__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : List[str] = [*signature.parameters.keys()] __magic_name__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=False ): __magic_name__ : Dict = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self ): if not self.model_tester.is_training: return __magic_name__ , __magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_a ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __magic_name__ : str = model_class(_a ) model.to(_a ) model.train() __magic_name__ : int = self._prepare_for_class(_a , _a , return_labels=_a ) __magic_name__ : Tuple = model(**_a ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __magic_name__ : Tuple = False __magic_name__ : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(_a ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __magic_name__ : str = model_class(_a ) model.gradient_checkpointing_enable() model.to(_a ) model.train() __magic_name__ : Union[str, Any] = self._prepare_for_class(_a , _a , return_labels=_a ) __magic_name__ : Optional[int] = model(**_a ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : int = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_a ), *get_values(_a ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): __magic_name__ : List[Any] = problem_type["title"] __magic_name__ : List[Any] = problem_type["num_labels"] __magic_name__ : Any = model_class(_a ) model.to(_a ) model.train() __magic_name__ : Optional[Any] = self._prepare_for_class(_a , _a , return_labels=_a ) if problem_type["num_labels"] > 1: __magic_name__ : Optional[int] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __magic_name__ : List[Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_a ) as warning_list: __magic_name__ : Optional[int] = model(**_a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Union[str, Any] = DeiTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' __magic_name__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( _a ) __magic_name__ : Any = self.default_image_processor __magic_name__ : str = prepare_img() __magic_name__ : Union[str, Any] = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : Optional[int] = model(**_a ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __magic_name__ : Any = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __magic_name__ : Optional[int] = self.default_image_processor __magic_name__ : Dict = prepare_img() __magic_name__ : Union[str, Any] = image_processor(images=_a , return_tensors="pt" ) __magic_name__ : Optional[Any] = inputs.pixel_values.to(_a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __magic_name__ : Tuple = model(_a )
41
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) class _snake_case : UpperCamelCase__ = 42 UpperCamelCase__ = None @staticmethod def SCREAMING_SNAKE_CASE ( ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _a ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self ): if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def SCREAMING_SNAKE_CASE ( cls ): return f'''`pip install {cls.pip_package or cls.name}`''' class _snake_case ( snake_case ): UpperCamelCase__ = 'optuna' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_optuna_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_optuna(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_optuna(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'ray' UpperCamelCase__ = '\'ray[tune]\'' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_ray_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_ray(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_ray(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'sigopt' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_sigopt_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_sigopt(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_sigopt(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'wandb' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_wandb_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_wandb(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_wandb(_a ) snake_case : int = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_snake_case ) > 0: __magic_name__ : Dict = available_backends[0].name if len(_snake_case ) > 1: logger.info( F'''{len(_snake_case )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
41
1
"""simple docstring""" from collections import defaultdict from math import gcd def a_ ( _lowerCAmelCase : int = 150_0000 ): '''simple docstring''' lowercase__ : defaultdict = defaultdict(_lowerCAmelCase ) lowercase__ : int = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _lowerCAmelCase , 2 ): if gcd(_lowerCAmelCase , _lowerCAmelCase ) > 1: continue lowercase__ : Tuple = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_lowerCAmelCase , limit + 1 , _lowerCAmelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
77
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowercase ( A__ ): """simple docstring""" _a = ComputeEnvironment.AMAZON_SAGEMAKER _a = True _a = 'ml.p3.2xlarge' _a = 'accelerate_sagemaker_execution_role' _a = 'hf-sm' _a = 'us-east-1' _a = 1 _a = 'accelerate-sagemaker-1' _a = '1.6' _a = '4.4' _a = 'train.py' _a = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] _a = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , UpperCamelCase_ ) assert isinstance(converted_args['''do_train'''] , UpperCamelCase_ ) assert isinstance(converted_args['''epochs'''] , UpperCamelCase_ ) assert isinstance(converted_args['''learning_rate'''] , UpperCamelCase_ ) assert isinstance(converted_args['''max_steps'''] , UpperCamelCase_ ) with pytest.raises(UpperCamelCase_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
97
0
"""simple docstring""" import random def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> dict: snake_case_ = {i: [] for i in range(_SCREAMING_SNAKE_CASE )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_SCREAMING_SNAKE_CASE ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if random.random() < probability: graph[i].append(_SCREAMING_SNAKE_CASE ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_SCREAMING_SNAKE_CASE ) return graph def _a ( _SCREAMING_SNAKE_CASE ) -> dict: return { i: [j for j in range(_SCREAMING_SNAKE_CASE ) if i != j] for i in range(_SCREAMING_SNAKE_CASE ) } if __name__ == "__main__": import doctest doctest.testmod()
233
"""simple docstring""" import math class __A : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Tuple=0 ) ->Optional[int]: # a graph with Node 0,1,...,N-1 """simple docstring""" snake_case_ = n snake_case_ = [ [math.inf for j in range(0 , UpperCAmelCase_ )] for i in range(0 , UpperCAmelCase_ ) ] # adjacency matrix for weight snake_case_ = [ [math.inf for j in range(0 , UpperCAmelCase_ )] for i in range(0 , UpperCAmelCase_ ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]: """simple docstring""" snake_case_ = w def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): snake_case_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
233
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_:Tuple = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:List[Any] = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
from __future__ import annotations from math import ceil, floor, sqrt def __UpperCamelCase ( _lowerCAmelCase = 200_0000 ) -> int: """simple docstring""" A : list[int] = [0] A : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target A : int = 0 # the area corresponding to the grid that gives the product closest to target A : int = 0 # an estimate of b, using the quadratic formula A : float # the largest integer less than b_estimate A : int # the largest integer less than b_estimate A : int # the triangle number corresponding to b_floor A : int # the triangle number corresponding to b_ceil A : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): A : Union[str, Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 A : List[Any] = floor(_lowerCAmelCase ) A : Tuple = ceil(_lowerCAmelCase ) A : int = triangle_numbers[b_floor] A : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): A : Optional[int] = triangle_b_first_guess * triangle_a A : Optional[int] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): A : Tuple = triangle_b_second_guess * triangle_a A : Tuple = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
116
1
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __lowerCamelCase = n - k # Calculate C(n,k) for i in range(UpperCamelCase__ ): result *= n - i result //= i + 1 return result def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , UpperCamelCase__ ) // (node_count + 1) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) __lowerCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" return catalan_number(UpperCamelCase__ ) * factorial(UpperCamelCase__ ) if __name__ == "__main__": __A = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
348
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : '''simple docstring''' def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=16 , snake_case__=36 , snake_case__=6 , snake_case__=6 , snake_case__=6 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): '''simple docstring''' UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = embedding_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_hidden_groups UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCamelCase_ = model(snake_case__ , token_type_ids=snake_case__ ) UpperCamelCase_ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = self.num_labels UpperCamelCase_ = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = self.num_labels UpperCamelCase_ = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = self.num_choices UpperCamelCase_ = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase (a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' UpperCamelCase_ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AlbertModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_ = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def _lowerCamelCase ( self ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AlbertModel.from_pretrained("albert-base-v2" ) UpperCamelCase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCamelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCamelCase_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
128
UpperCAmelCase : dict[tuple[int, int, int], int] ={} def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase_ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase_ = _calculate(days - 1 , _lowerCAmelCase , late + 1) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase_ = _calculate(days - 1 , absent + 1 , 0) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase_ = _calculate(days - 1 , _lowerCAmelCase , 0) UpperCamelCase_ = state_late + state_absent + state_ontime UpperCamelCase_ = prizestrings return prizestrings def _lowerCAmelCase (_lowerCAmelCase = 30): return _calculate(_lowerCAmelCase , absent=0 , late=0) if __name__ == "__main__": print(solution())
128
1
'''simple docstring''' class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = "" , _lowercase = False ): """simple docstring""" _lowerCAmelCase = {} # A node will be a leaf if the tree contains its word _lowerCAmelCase = is_leaf _lowerCAmelCase = prefix def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = 0 for q, w in zip(self.prefix , _lowercase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowercase ( self , _lowercase ): """simple docstring""" for word in words: self.insert(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if self.prefix == word: _lowerCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _lowerCAmelCase = RadixNode(prefix=_lowercase , is_leaf=_lowercase ) else: _lowerCAmelCase = self.nodes[word[0]] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = incoming_node.match( _lowercase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_lowercase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _lowerCAmelCase = remaining_prefix _lowerCAmelCase = self.nodes[matching_string[0]] _lowerCAmelCase = RadixNode(_lowercase , _lowercase ) _lowerCAmelCase = aux_node if remaining_word == "": _lowerCAmelCase = True else: self.nodes[matching_string[0]].insert(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.nodes.get(word[0] , _lowercase ) if not incoming_node: return False else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = incoming_node.match( _lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.nodes.get(word[0] , _lowercase ) if not incoming_node: return False else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = incoming_node.match( _lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_lowercase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _lowerCAmelCase = list(self.nodes.values() )[0] _lowerCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _lowerCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _lowerCAmelCase = False # If there is 1 edge, we merge it with its child else: _lowerCAmelCase = list(incoming_node.nodes.values() )[0] _lowerCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _lowerCAmelCase = merging_node.nodes return True def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def A (): _lowerCAmelCase = """banana bananas bandana band apple all beast""".split() _lowerCAmelCase = RadixNode() root.insert_many(__lowerCamelCase ) assert all(root.find(__lowerCamelCase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def A (): assert test_trie() def A (): _lowerCAmelCase = RadixNode() _lowerCAmelCase = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__lowerCamelCase ) print("""Words:""" , __lowerCamelCase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
229
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : jnp.ndarray @flax_register_to_config class UpperCAmelCase_ ( nn.Module , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : int = 3_2 _lowercase : int = 4 _lowercase : int = 4 _lowercase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowercase : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _lowercase : Union[bool, Tuple[bool]] = False _lowercase : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _lowercase : int = 2 _lowercase : Union[int, Tuple[int]] = 8 _lowercase : Optional[Union[int, Tuple[int]]] = None _lowercase : int = 1_2_8_0 _lowercase : float = 0.0 _lowercase : bool = False _lowercase : jnp.dtype = jnp.floataa _lowercase : bool = True _lowercase : int = 0 _lowercase : bool = False def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCAmelCase = jnp.zeros(_lowercase , dtype=jnp.floataa ) _lowerCAmelCase = jnp.ones((1,) , dtype=jnp.intaa ) _lowerCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _lowerCAmelCase , _lowerCAmelCase = jax.random.split(_lowercase ) _lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(_lowercase , _lowercase , _lowercase , _lowercase )["params"] def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.block_out_channels _lowerCAmelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCAmelCase = self.num_attention_heads or self.attention_head_dim # input _lowerCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _lowerCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _lowerCAmelCase = FlaxTimestepEmbedding(_lowercase , dtype=self.dtype ) _lowerCAmelCase = self.only_cross_attention if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = (num_attention_heads,) * len(self.down_block_types ) # down _lowerCAmelCase = [] _lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _lowerCAmelCase = output_channel _lowerCAmelCase = block_out_channels[i] _lowerCAmelCase = i == len(_lowercase ) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowerCAmelCase = FlaxDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowercase ) _lowerCAmelCase = down_blocks # mid _lowerCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _lowerCAmelCase = [] _lowerCAmelCase = list(reversed(_lowercase ) ) _lowerCAmelCase = list(reversed(_lowercase ) ) _lowerCAmelCase = list(reversed(_lowercase ) ) _lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _lowerCAmelCase = output_channel _lowerCAmelCase = reversed_block_out_channels[i] _lowerCAmelCase = reversed_block_out_channels[min(i + 1 , len(_lowercase ) - 1 )] _lowerCAmelCase = i == len(_lowercase ) - 1 if up_block_type == "CrossAttnUpBlock2D": _lowerCAmelCase = FlaxCrossAttnUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowerCAmelCase = FlaxUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowercase ) _lowerCAmelCase = output_channel _lowerCAmelCase = up_blocks # out _lowerCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowerCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase = True , _lowercase = False , ): """simple docstring""" if not isinstance(_lowercase , jnp.ndarray ): _lowerCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowercase , jnp.ndarray ) and len(timesteps.shape ) == 0: _lowerCAmelCase = timesteps.astype(dtype=jnp.floataa ) _lowerCAmelCase = jnp.expand_dims(_lowercase , 0 ) _lowerCAmelCase = self.time_proj(_lowercase ) _lowerCAmelCase = self.time_embedding(_lowercase ) # 2. pre-process _lowerCAmelCase = jnp.transpose(_lowercase , (0, 2, 3, 1) ) _lowerCAmelCase = self.conv_in(_lowercase ) # 3. down _lowerCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(_lowercase , _lowercase ): _lowerCAmelCase , _lowerCAmelCase = down_block(_lowercase , _lowercase , _lowercase , deterministic=not train ) else: _lowerCAmelCase , _lowerCAmelCase = down_block(_lowercase , _lowercase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _lowerCAmelCase = () for down_block_res_sample, down_block_additional_residual in zip( _lowercase , _lowercase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _lowerCAmelCase = new_down_block_res_samples # 4. mid _lowerCAmelCase = self.mid_block(_lowercase , _lowercase , _lowercase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _lowerCAmelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _lowerCAmelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = up_block( _lowercase , temb=_lowercase , encoder_hidden_states=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train , ) else: _lowerCAmelCase = up_block(_lowercase , temb=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train ) # 6. post-process _lowerCAmelCase = self.conv_norm_out(_lowercase ) _lowerCAmelCase = nn.silu(_lowercase ) _lowerCAmelCase = self.conv_out(_lowercase ) _lowerCAmelCase = jnp.transpose(_lowercase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowercase )
229
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): a = StableDiffusionControlNetImgaImgPipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) a = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self: Any ): torch.manual_seed(0 ) lowerCamelCase__ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) lowerCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCamelCase__ : str = CLIPTextModel(UpperCamelCase__ ) lowerCamelCase__ : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__ : Dict = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase_ ( self: str , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple=0 ): if str(UpperCamelCase__ ).startswith("""mps""" ): lowerCamelCase__ : Any = torch.manual_seed(UpperCamelCase__ ) else: lowerCamelCase__ : int = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : Optional[Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase__ , device=torch.device(UpperCamelCase__ ) , ) lowerCamelCase__ : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ : List[str] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) lowerCamelCase__ : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowerCamelCase_ ( self: Union[str, Any] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase_ ( self: Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowerCamelCase_ ( self: Any ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = StableDiffusionControlNetImgaImgPipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCamelCase_ ( self: str ): torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCamelCase__: Tuple ): if isinstance(UpperCamelCase__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCamelCase__ : Optional[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase__ ) torch.manual_seed(0 ) lowerCamelCase__ : Tuple = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase__ ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCamelCase__ : Optional[int] = CLIPTextModel(UpperCamelCase__ ) lowerCamelCase__ : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__ : Any = MultiControlNetModel([controlneta, controlneta] ) lowerCamelCase__ : List[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any]=0 ): if str(UpperCamelCase__ ).startswith("""mps""" ): lowerCamelCase__ : int = torch.manual_seed(UpperCamelCase__ ) else: lowerCamelCase__ : Optional[Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCamelCase__ : Any = 2 lowerCamelCase__ : List[str] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase__ , device=torch.device(UpperCamelCase__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase__ , device=torch.device(UpperCamelCase__ ) , ), ] lowerCamelCase__ : Tuple = floats_tensor(control_image[0].shape , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ : Any = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) lowerCamelCase__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = self.get_dummy_components() lowerCamelCase__ : List[str] = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = 10.0 lowerCamelCase__ : Any = 4 lowerCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase__ ) lowerCamelCase__ : List[str] = steps lowerCamelCase__ : Optional[int] = scale lowerCamelCase__ : Union[str, Any] = pipe(**UpperCamelCase__ )[0] lowerCamelCase__ : Any = self.get_dummy_inputs(UpperCamelCase__ ) lowerCamelCase__ : Any = steps lowerCamelCase__ : Union[str, Any] = scale lowerCamelCase__ : Tuple = pipe(**UpperCamelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCamelCase__ : str = self.get_dummy_inputs(UpperCamelCase__ ) lowerCamelCase__ : Tuple = steps lowerCamelCase__ : int = scale lowerCamelCase__ : List[str] = pipe(**UpperCamelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCamelCase__ : Optional[Any] = self.get_dummy_inputs(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = steps lowerCamelCase__ : Optional[Any] = scale lowerCamelCase__ : Optional[Any] = pipe(**UpperCamelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def lowerCamelCase_ ( self: str ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase_ ( self: int ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowerCamelCase_ ( self: int ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[Any] = self.get_dummy_components() lowerCamelCase__ : str = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCamelCase__ ) except NotImplementedError: pass @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[int] = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) lowerCamelCase__ : Tuple = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=UpperCamelCase__ , controlnet=UpperCamelCase__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase__ : List[Any] = """evil space-punk bird""" lowerCamelCase__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) lowerCamelCase__ : Union[str, Any] = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) lowerCamelCase__ : Optional[int] = pipe( UpperCamelCase__ , UpperCamelCase__ , control_image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) lowerCamelCase__ : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) lowerCamelCase__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9e-2
41
'''simple docstring''' from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: return sum(c * (x**i) for i, c in enumerate(UpperCamelCase ) ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: lowerCamelCase__ : str = 0.0 for coeff in reversed(UpperCamelCase ): lowerCamelCase__ : Optional[int] = result * x + coeff return result if __name__ == "__main__": _A : Any =(0.0, 0.0, 5.0, 9.3, 7.0) _A : Optional[Any] =10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
41
1
import argparse import os import re import packaging.version _lowerCamelCase = '''examples/''' _lowerCamelCase = { '''examples''': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), '''release = "VERSION"\n'''), } _lowerCamelCase = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } _lowerCamelCase = '''README.md''' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Any ) -> List[str]: with open(a__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ = f.read() UpperCAmelCase_ = REPLACE_PATTERNS[pattern] UpperCAmelCase_ = replace.replace('''VERSION''' , a__ ) UpperCAmelCase_ = re_pattern.sub(a__ , a__ ) with open(a__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(a__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Any: for folder, directories, fnames in os.walk(a__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern='''examples''' ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : str=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a__ , a__ , a__ ) if not patch: update_version_in_examples(a__ ) def SCREAMING_SNAKE_CASE ( ) -> int: UpperCAmelCase_ = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase_ = '''1. Want to contribute a new model?''' with open(a__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ = f.readlines() # Find the start of the list. UpperCAmelCase_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase_ = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(a__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a__ ) def SCREAMING_SNAKE_CASE ( ) -> Any: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase_ = f.read() UpperCAmelCase_ = REPLACE_PATTERNS['''init'''][0].search(a__ ).groups()[0] return packaging.version.parse(a__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int=False ) -> Dict: UpperCAmelCase_ = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase_ = default_version.base_version elif patch: UpperCAmelCase_ = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCAmelCase_ = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCAmelCase_ = input(f'Which version are you releasing? [{default_version}]' ) if len(a__ ) == 0: UpperCAmelCase_ = default_version print(f'Updating version to {version}.' ) global_version_update(a__ , patch=a__ ) def SCREAMING_SNAKE_CASE ( ) -> Any: UpperCAmelCase_ = get_version() UpperCAmelCase_ = f'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCAmelCase_ = current_version.base_version # Check with the user we got that right. UpperCAmelCase_ = input(f'Which version are we developing now? [{dev_version}]' ) if len(a__ ) == 0: UpperCAmelCase_ = dev_version print(f'Updating version to {version}.' ) global_version_update(a__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _lowerCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
369
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
177
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
233
lowerCamelCase : Dict = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
233
1
from PIL import Image def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Image: """simple docstring""" lowercase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_UpperCamelCase ) -> int: return int(128 + factor * (c - 128) ) return img.point(_A ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 __a = change_contrast(img, 1_70) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
355
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowercase ( _UpperCamelCase ) ->Tuple: """simple docstring""" lowercase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase, _UpperCamelCase ) def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase , lowercase : str = emb.weight.shape lowercase : Optional[int] = nn.Linear(_UpperCamelCase, _UpperCamelCase, bias=_UpperCamelCase ) lowercase : Any = emb.weight.data return lin_layer def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : Optional[int] = torch.load(_UpperCamelCase, map_location='''cpu''' ) lowercase : List[str] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] lowercase : int = mam_aaa['''model'''] remove_ignore_keys_(_UpperCamelCase ) lowercase : Any = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase : Dict = MaMaaaConfig( vocab_size=_UpperCamelCase, max_position_embeddings=1024, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) lowercase : Union[str, Any] = state_dict['''decoder.embed_tokens.weight'''] lowercase : Dict = MaMaaaForConditionalGeneration(_UpperCamelCase ) model.model.load_state_dict(_UpperCamelCase, strict=_UpperCamelCase ) lowercase : Dict = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __a = parser.parse_args() __a = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
173
0
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Optional[int] =1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCAmelCase : Any =n - k # Calculate C(n,k) for i in range(__lowerCAmelCase ): result *= n - i result //= i + 1 return result def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' return binomial_coefficient(2 * node_count , __lowerCAmelCase ) // (node_count + 1) def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' if n < 0: raise ValueError('''factorial() not defined for negative values''' ) UpperCAmelCase : List[Any] =1 for i in range(1 , n + 1 ): result *= i return result def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' return catalan_number(__lowerCAmelCase ) * factorial(__lowerCAmelCase ) if __name__ == "__main__": __snake_case = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( f'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' f'binary trees and {catalan_number(node_count)} binary search trees.' )
348
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case = TypeVar('''T''') __snake_case = Union[List[T], Tuple[T, ...]] __snake_case = Union[T, List[T], Dict[str, T]] __snake_case = Union[str, bytes, os.PathLike]
348
1
'''simple docstring''' import math def __a ( _UpperCamelCase: list , _UpperCamelCase: int = 0 , _UpperCamelCase: int = 0 ) -> list: """simple docstring""" _snake_case = end or len(_UpperCamelCase ) for i in range(_UpperCamelCase , _UpperCamelCase ): _snake_case = i _snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _snake_case = array[temp_index - 1] temp_index -= 1 _snake_case = temp_index_value return array def __a ( _UpperCamelCase: list , _UpperCamelCase: int , _UpperCamelCase: int ) -> None: # Max Heap """simple docstring""" _snake_case = index _snake_case = 2 * index + 1 # Left Node _snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: _snake_case = right_index if largest != index: _snake_case , _snake_case = array[largest], array[index] heapify(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __a ( _UpperCamelCase: list ) -> list: """simple docstring""" _snake_case = len(_UpperCamelCase ) for i in range(n // 2 , -1 , -1 ): heapify(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(n - 1 , 0 , -1 ): _snake_case , _snake_case = array[0], array[i] heapify(_UpperCamelCase , 0 , _UpperCamelCase ) return array def __a ( _UpperCamelCase: list , _UpperCamelCase: int , _UpperCamelCase: int , _UpperCamelCase: int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __a ( _UpperCamelCase: list , _UpperCamelCase: int , _UpperCamelCase: int , _UpperCamelCase: int ) -> int: """simple docstring""" _snake_case = low _snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _snake_case , _snake_case = array[j], array[i] i += 1 def __a ( _UpperCamelCase: list ) -> list: """simple docstring""" if len(_UpperCamelCase ) == 0: return array _snake_case = 2 * math.ceil(math.loga(len(_UpperCamelCase ) ) ) _snake_case = 16 return intro_sort(_UpperCamelCase , 0 , len(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) def __a ( _UpperCamelCase: list , _UpperCamelCase: int , _UpperCamelCase: int , _UpperCamelCase: int , _UpperCamelCase: int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(_UpperCamelCase ) max_depth -= 1 _snake_case = median_of_a(_UpperCamelCase , _UpperCamelCase , start + ((end - start) // 2) + 1 , end - 1 ) _snake_case = partition(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) intro_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _snake_case = p return insertion_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ : Optional[int] = input('''Enter numbers separated by a comma : ''').strip() UpperCamelCase_ : List[str] = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
142
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : List[Any] = """BridgeTowerImageProcessor""" SCREAMING_SNAKE_CASE_ : List[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: _snake_case = self.tokenizer( text=_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ,pad_to_multiple_of=_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,return_overflowing_tokens=_SCREAMING_SNAKE_CASE ,return_special_tokens_mask=_SCREAMING_SNAKE_CASE ,return_offsets_mapping=_SCREAMING_SNAKE_CASE ,return_length=_SCREAMING_SNAKE_CASE ,verbose=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) # add pixel_values + pixel_mask _snake_case = self.image_processor( _SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,do_center_crop=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> Any: _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
142
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _A : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _A : Union[str, Any] = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : List[Any] ) -> str: __lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) __lowerCAmelCase = self.diffusers_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def a ( self : Union[str, Any] ) -> str: __lowerCAmelCase = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> Dict: __lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) __lowerCAmelCase = black.format_str(SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(SCREAMING_SNAKE_CASE__ , """w""" , newline="""\n""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """r""" ) as f: self.assertTrue(f.read() , SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , SCREAMING_SNAKE_CASE__ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with a really long name __lowerCAmelCase = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("""Bert""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , SCREAMING_SNAKE_CASE__ , overwrite_result=re.sub("""DDPM""" , """Test""" , SCREAMING_SNAKE_CASE__ ) , )
229
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : list[int] , snake_case_ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(snake_case_ ) == len(snake_case_ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = equationa __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = equationa # Calculate the determinants of the matrices __lowerCAmelCase = aa * ba - aa * ba __lowerCAmelCase = ca * ba - ca * ba __lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __lowerCAmelCase = determinant_x / determinant __lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
229
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed SCREAMING_SNAKE_CASE__ = "true" def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=8_2 , _UpperCamelCase : int=1_6 ) -> str: """simple docstring""" set_seed(4_2 ) snake_case = RegressionModel() snake_case = deepcopy(_UpperCamelCase ) snake_case = RegressionDataset(length=_UpperCamelCase ) snake_case = DataLoader(_UpperCamelCase , batch_size=_UpperCamelCase ) model.to(accelerator.device ) snake_case ,snake_case = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) return model, ddp_model, dataloader def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : Optional[Any]=False ) -> List[str]: """simple docstring""" snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) snake_case = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs with accelerator.main_process_first(): snake_case = dataset.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCamelCase : Optional[Any] ): if use_longest: return tokenizer.pad(_UpperCamelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_UpperCamelCase , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1_6 ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" snake_case = Accelerator(dispatch_batches=_UpperCamelCase , split_batches=_UpperCamelCase ) snake_case = get_dataloader(_UpperCamelCase , not dispatch_batches ) snake_case = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCamelCase ) snake_case ,snake_case = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" snake_case = [] for batch in dataloader: snake_case ,snake_case = batch.values() with torch.no_grad(): snake_case = model(_UpperCamelCase ) snake_case ,snake_case = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case ,snake_case = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCamelCase ) targs.append(_UpperCamelCase ) snake_case ,snake_case = torch.cat(_UpperCamelCase ), torch.cat(_UpperCamelCase ) return logits, targs def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : Tuple=8_2 , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : int=False , _UpperCamelCase : List[str]=1_6 ) -> Optional[Any]: """simple docstring""" snake_case ,snake_case ,snake_case = get_basic_setup(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case ,snake_case = generate_predictions(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert ( len(_UpperCamelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCamelCase )}""" def lowerCAmelCase__ ( _UpperCamelCase : bool = False , _UpperCamelCase : bool = False ) -> Tuple: """simple docstring""" snake_case = evaluate.load('glue' , 'mrpc' ) snake_case ,snake_case = get_mrpc_setup(_UpperCamelCase , _UpperCamelCase ) # First do baseline snake_case ,snake_case ,snake_case = setup['no'] model.to(_UpperCamelCase ) model.eval() for batch in dataloader: batch.to(_UpperCamelCase ) with torch.inference_mode(): snake_case = model(**_UpperCamelCase ) snake_case = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCamelCase , references=batch['labels'] ) snake_case = metric.compute() # Then do distributed snake_case ,snake_case ,snake_case = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case = model(**_UpperCamelCase ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case = batch['labels'] snake_case ,snake_case = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCamelCase , references=_UpperCamelCase ) snake_case = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = Accelerator(split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_UpperCamelCase , _UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case = Accelerator(split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_UpperCamelCase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) snake_case = Accelerator() test_torch_metrics(_UpperCamelCase , 5_1_2 ) accelerator.state._reset_state() def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
149
0
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = inspect.getfile(accelerate.test_utils ) lowerCAmelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) lowerCAmelCase : Tuple = ["accelerate", "launch"] lowerCAmelCase : Union[str, Any] = Path.home() / ".cache/huggingface/accelerate" lowerCAmelCase : Optional[int] = "default_config.yaml" lowerCAmelCase : Union[str, Any] = config_folder / config_file lowerCAmelCase : Union[str, Any] = config_folder / "_default_config.yaml" lowerCAmelCase : Optional[Any] = Path("tests/test_configs" ) @classmethod def UpperCAmelCase ( cls : Optional[Any] ) -> Optional[int]: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase ( cls : str ) -> Dict: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] ,env=os.environ.copy() ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_snake_case ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_snake_case ), self.test_file_path] ,env=os.environ.copy() ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" execute_subprocess_async(['''accelerate''', '''test'''] ,env=os.environ.copy() ) class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = "test-tpu" lowerCAmelCase : Dict = "us-central1-a" lowerCAmelCase : List[str] = "ls" lowerCAmelCase : Any = ["accelerate", "tpu-config"] lowerCAmelCase : Any = "cd /usr/share" lowerCAmelCase : Union[str, Any] = "tests/test_samples/test_command_file.sh" lowerCAmelCase : List[str] = "Running gcloud compute tpus tpu-vm ssh" def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : List[str] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] ,return_stdout=_snake_case ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : int = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : Dict = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,)
16
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: List[Any] = {} lowercase__: List[Any] = {} lowercase__: Dict = {} # preprocess args if "points_per_batch" in kwargs: lowercase__: Dict = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: lowercase__: Any = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: lowercase__: Union[str, Any] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: lowercase__: Optional[Any] = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: lowercase__: Union[str, Any] = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: lowercase__: Any = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: lowercase__: Tuple = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: lowercase__: List[str] = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: lowercase__: str = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: lowercase__: List[str] = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: lowercase__: Dict = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: lowercase__: int = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): return super().__call__(_UpperCAmelCase , *_UpperCAmelCase , num_workers=_UpperCAmelCase , batch_size=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase = 0 , _UpperCAmelCase = 512 / 1500 , _UpperCAmelCase = 32 , _UpperCAmelCase = 1 , ): lowercase__: Union[str, Any] = load_image(_UpperCAmelCase ) lowercase__: Dict = self.image_processor.size['''longest_edge'''] lowercase__, lowercase__, lowercase__, lowercase__: Optional[Any] = self.image_processor.generate_crop_boxes( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = self.image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": lowercase__: Tuple = self.get_inference_context() with inference_context(): lowercase__: Optional[Any] = self._ensure_tensor_on_device(_UpperCAmelCase , device=self.device ) lowercase__: Any = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) lowercase__: Tuple = image_embeddings lowercase__: Optional[Any] = grid_points.shape[1] lowercase__: Tuple = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = grid_points[:, i : i + points_per_batch, :, :] lowercase__: int = input_labels[:, i : i + points_per_batch] lowercase__: Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0.88 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , ): lowercase__: List[Any] = model_inputs.pop('''input_boxes''' ) lowercase__: List[Any] = model_inputs.pop('''is_last''' ) lowercase__: Any = model_inputs.pop('''original_sizes''' ).tolist() lowercase__: Union[str, Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() lowercase__: List[Any] = self.model(**_UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase__: int = model_outputs['''pred_masks'''] lowercase__: str = self.image_processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , binarize=_UpperCAmelCase ) lowercase__: str = model_outputs['''iou_scores'''] lowercase__, lowercase__, lowercase__: Optional[int] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.7 , ): lowercase__: int = [] lowercase__: str = [] lowercase__: List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) lowercase__: Any = torch.cat(_UpperCAmelCase ) lowercase__: Dict = torch.cat(_UpperCAmelCase ) lowercase__, lowercase__, lowercase__, lowercase__: Any = self.image_processor.post_process_for_mask_generation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = defaultdict(_UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_UpperCAmelCase ) lowercase__: Any = {} if output_rle_mask: lowercase__: Optional[Any] = rle_mask if output_bboxes_mask: lowercase__: Optional[int] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
177
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : str = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : Union[str, Any] = { "unc-nlp/lxmert-base-uncased": 5_12, } UpperCAmelCase : Tuple = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[str] = VOCAB_FILES_NAMES UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : str = LxmertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> int: '''simple docstring''' super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , A ) != do_lower_case or normalizer_state.get("""strip_accents""" , A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A ) != tokenize_chinese_chars ): lowerCamelCase = getattr(A , normalizer_state.pop("""type""" ) ) lowerCamelCase = do_lower_case lowerCamelCase = strip_accents lowerCamelCase = tokenize_chinese_chars lowerCamelCase = normalizer_class(**A ) lowerCamelCase = do_lower_case def __A ( self , A , A=None ) -> List[Any]: '''simple docstring''' lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase = self._tokenizer.model.save(A , name=A ) return tuple(A )
364
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) enable_full_determinism() class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Union[str, Any] = UNetaDModel UpperCamelCase : Union[str, Any] = "sample" @property def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } lowerCamelCase = self.dummy_input return init_dict, inputs_dict class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = UNetaDModel UpperCamelCase : Dict = "sample" @property def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 4 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Tuple: '''simple docstring''' return (4, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (4, 32, 32) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } lowerCamelCase = self.dummy_input return init_dict, inputs_dict def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) model.to(A ) lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) model_accelerate.to(A ) model_accelerate.eval() lowerCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase = noise.to(A ) lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A ) lowerCamelCase = model_accelerate(A , A )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=A , low_cpu_mem_usage=A ) model_normal_load.to(A ) model_normal_load.eval() lowerCamelCase = model_normal_load(A , A )["""sample"""] assert torch_all_close(A , A , rtol=1e-3 ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(A ) lowerCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase = noise.to(A ) lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-3 ) ) class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = UNetaDModel UpperCamelCase : Optional[int] = "sample" @property def __A ( self , A=(32, 32) ) -> List[Any]: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } lowerCamelCase = self.dummy_input return init_dict, inputs_dict @slow def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) lowerCamelCase = self.dummy_input lowerCamelCase = floats_tensor((4, 3) + (2_56, 2_56) ).to(A ) lowerCamelCase = noise lowerCamelCase = model(**A ) assert image is not None, "Make sure output is not None" @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(A ) lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (2_56, 2_56) lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(A ) lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __A ( self ) -> List[str]: '''simple docstring''' pass
66
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE = 'FlavaImageProcessor' _SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , lowercase=None , lowercase=None , **lowercase ) -> str: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase , ) lowerCAmelCase = kwargs.pop("""feature_extractor""" ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase , lowercase ) lowerCAmelCase = self.image_processor def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = False , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ) -> Dict: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) if images is not None: lowerCAmelCase = self.image_processor( lowercase , return_image_mask=lowercase , return_codebook_pixels=lowercase , return_tensors=lowercase , **lowercase , ) if text is not None and images is not None: encoding.update(lowercase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def _snake_case ( self , *lowercase , **lowercase ) -> Dict: return self.tokenizer.batch_decode(*lowercase , **lowercase ) def _snake_case ( self , *lowercase , **lowercase ) -> List[Any]: return self.tokenizer.decode(*lowercase , **lowercase ) @property def _snake_case ( self ) -> Any: lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self ) -> List[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase , ) return self.image_processor_class @property def _snake_case ( self ) -> int: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowercase , ) return self.image_processor
46
"""simple docstring""" # Lint as: python3 import itertools import os import re _UpperCAmelCase = re.compile(r"""([A-Z]+)([A-Z][a-z])""") _UpperCAmelCase = re.compile(r"""([a-z\d])([A-Z])""") _UpperCAmelCase = re.compile(r"""(?<!_)_(?!_)""") _UpperCAmelCase = re.compile(r"""(_{2,})""") _UpperCAmelCase = r"""^\w+(\.\w+)*$""" _UpperCAmelCase = r"""<>:/\|?*""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =_uppercase_uppercase_re.sub(R"""\1_\2""" , lowercase ) SCREAMING_SNAKE_CASE_: str =_lowercase_uppercase_re.sub(R"""\1_\2""" , lowercase ) return name.lower() def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =_single_underscore_re.split(lowercase ) SCREAMING_SNAKE_CASE_: Any =[_multiple_underscores_re.split(lowercase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowercase ) if n != """""" ) def __magic_name__ ( lowercase ): if os.path.basename(lowercase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(lowercase ) def __magic_name__ ( lowercase , lowercase ): if os.path.basename(lowercase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , lowercase ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(lowercase )}-{split}''' def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None ): SCREAMING_SNAKE_CASE_: List[Any] =filename_prefix_for_split(lowercase , lowercase ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE_: Dict =os.path.join(lowercase , lowercase ) return f'''{filepath}*''' def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None ): SCREAMING_SNAKE_CASE_: List[Any] =filename_prefix_for_split(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: int =os.path.join(lowercase , lowercase ) if shard_lengths: SCREAMING_SNAKE_CASE_: Any =len(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =[f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowercase )] if filetype_suffix: SCREAMING_SNAKE_CASE_: Optional[int] =[filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_: List[Any] =prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
173
0
"""simple docstring""" __snake_case = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
112
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
112
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Any = logging.get_logger(__name__) _A : Dict = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Tuple = "sew" def __init__( self : int , A : Tuple=3_2 , A : List[str]=7_6_8 , A : List[str]=1_2 , A : Optional[Any]=1_2 , A : Any=3_0_7_2 , A : Tuple=2 , A : Any="gelu" , A : str=0.1 , A : Dict=0.1 , A : str=0.1 , A : List[str]=0.0 , A : List[Any]=0.1 , A : Tuple=0.1 , A : List[str]=0.02 , A : Optional[int]=1e-5 , A : Tuple="group" , A : List[Any]="gelu" , A : Tuple=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , A : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A : Optional[Any]=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A : Optional[Any]=False , A : List[str]=1_2_8 , A : Optional[Any]=1_6 , A : str=True , A : Optional[Any]=0.05 , A : Optional[int]=1_0 , A : Any=2 , A : str=0.0 , A : int=1_0 , A : int=0 , A : int="mean" , A : Any=False , A : Dict=False , A : List[str]=2_5_6 , A : List[str]=0 , A : Tuple=1 , A : Tuple=2 , **A : str , ) ->List[str]: super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Union[str, Any] = feat_extract_norm lowerCamelCase__ : List[Any] = feat_extract_activation lowerCamelCase__ : Optional[Any] = list(A ) lowerCamelCase__ : str = list(A ) lowerCamelCase__ : Optional[int] = list(A ) lowerCamelCase__ : Union[str, Any] = conv_bias lowerCamelCase__ : Any = num_conv_pos_embeddings lowerCamelCase__ : Dict = num_conv_pos_embedding_groups lowerCamelCase__ : List[str] = len(self.conv_dim ) lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : int = squeeze_factor lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : int = hidden_dropout lowerCamelCase__ : Dict = attention_dropout lowerCamelCase__ : Union[str, Any] = activation_dropout lowerCamelCase__ : Optional[Any] = feat_proj_dropout lowerCamelCase__ : Union[str, Any] = final_dropout lowerCamelCase__ : Tuple = layerdrop lowerCamelCase__ : Optional[Any] = layer_norm_eps lowerCamelCase__ : int = initializer_range lowerCamelCase__ : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ : Optional[Any] = apply_spec_augment lowerCamelCase__ : Dict = mask_time_prob lowerCamelCase__ : List[Any] = mask_time_length lowerCamelCase__ : List[Any] = mask_time_min_masks lowerCamelCase__ : Union[str, Any] = mask_feature_prob lowerCamelCase__ : Any = mask_feature_length lowerCamelCase__ : str = mask_feature_min_masks # ctc loss lowerCamelCase__ : Dict = ctc_loss_reduction lowerCamelCase__ : Any = ctc_zero_infinity # sequence classification lowerCamelCase__ : List[str] = use_weighted_layer_sum lowerCamelCase__ : Optional[Any] = classifier_proj_size @property def __lowerCamelCase ( self : List[str] ) ->Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
142
import datasets from .evaluate import evaluate _A : Optional[int] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _A : int = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowerCamelCase ( self : Dict , A : Tuple , A : Tuple ) ->int: lowerCamelCase__ : Optional[Any] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase__ : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase__ : Tuple = evaluate(dataset=A , predictions=A ) return score
142
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase_ ( __A ): def __init__( self : str , *A : Optional[Any] , **A : Dict ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
359
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : def __init__( self : Tuple , A : str , A : Dict=2 , A : List[Any]=3_2 , A : Optional[Any]=1_6 , A : Tuple=3 , A : Optional[Any]=True , A : List[Any]=True , A : Optional[int]=3_2 , A : Optional[int]=4 , A : Tuple=[0, 1, 2, 3] , A : Optional[int]=4 , A : Tuple=3_7 , A : List[Any]="gelu" , A : List[Any]=0.1 , A : List[str]=0.1 , A : Union[str, Any]=0.02 , A : Optional[int]=3 , A : Optional[Any]=[1, 3_8_4, 2_4, 2_4] , A : Union[str, Any]=True , A : Any=None , ): _UpperCAmelCase : str = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = backbone_out_indices _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : str = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : Tuple = backbone_featmap_shape _UpperCAmelCase : Optional[Any] = scope _UpperCAmelCase : Union[str, Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCAmelCase : int = num_patches + 1 def snake_case_ ( self : List[str] ): _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def snake_case_ ( self : str ): _UpperCAmelCase : Tuple = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [9_6, 1_9_2, 3_8_4, 7_6_8], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A , backbone_featmap_shape=self.backbone_featmap_shape , ) def snake_case_ ( self : Any , A : Optional[Any] , A : str , A : Dict ): _UpperCAmelCase : List[str] = DPTModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : List[str] , A : str , A : Any , A : List[Any] ): _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Any = DPTForDepthEstimation(A ) model.to(A ) model.eval() _UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def snake_case_ ( self : List[Any] , A : Any , A : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : List[Any] = self.num_labels _UpperCAmelCase : Union[str, Any] = DPTForSemanticSegmentation(A ) model.to(A ) model.eval() _UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = config_and_inputs _UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Any = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def snake_case_ ( self : int ): _UpperCAmelCase : List[str] = DPTModelTester(self ) _UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def snake_case_ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def snake_case_ ( self : Union[str, Any] ): pass def snake_case_ ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(A ) _UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def snake_case_ ( self : Dict ): _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A ) def snake_case_ ( self : Dict ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) def snake_case_ ( self : Optional[int] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[int] = True if model_class in get_values(A ): continue _UpperCAmelCase : int = model_class(A ) model.to(A ) model.train() _UpperCAmelCase : Optional[Any] = self._prepare_for_class(A , A , return_labels=A ) _UpperCAmelCase : Optional[Any] = model(**A ).loss loss.backward() def snake_case_ ( self : Dict ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Tuple = False _UpperCAmelCase : Tuple = True if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue _UpperCAmelCase : int = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase : str = self._prepare_for_class(A , A , return_labels=A ) _UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : int = _config_zero_init(A ) for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(config=A ) # Skip the check for the backbone _UpperCAmelCase : Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCAmelCase : List[str] = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case_ ( self : int ): pass @slow def snake_case_ ( self : Dict ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCAmelCase : Any = DPTModel.from_pretrained(A ) self.assertIsNotNone(A ) def snake_case_ ( self : Tuple ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[Any] = "add" with self.assertRaises(A ): _UpperCAmelCase : List[Any] = DPTForDepthEstimation(A ) def __snake_case ( ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[int] = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) _UpperCAmelCase : Any = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(A ) _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=A , return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): _UpperCAmelCase : int = model(**A ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify the predicted depth _UpperCAmelCase : int = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , A ) _UpperCAmelCase : int = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , A , atol=1e-4 ) )
202
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=64 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Optional[Any]: a : Dict = parent a : List[str] = batch_size a : Any = seq_length a : Dict = is_training a : List[str] = use_input_mask a : Any = use_token_type_ids a : List[Any] = use_labels a : Tuple = vocab_size a : List[Any] = hidden_size a : Optional[int] = num_hidden_layers a : Union[str, Any] = num_attention_heads a : str = intermediate_size a : Dict = hidden_act a : int = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : int = max_position_embeddings a : Optional[Any] = type_vocab_size a : Any = type_sequence_label_size a : List[str] = initializer_range a : List[Any] = num_labels a : Optional[int] = num_choices a : Optional[Any] = scope a : List[str] = vocab_size - 1 def __a ( self ) -> List[Any]: a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Tuple = None if self.use_input_mask: a : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) a : List[str] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : Any = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self ) -> Any: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __a ( self ) -> List[Any]: a, a, a, a : List[Any] = self.prepare_config_and_inputs() a : int = True return config, input_ids, input_mask, token_labels def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: a : Dict = GPTNeoXModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : str = True a : Dict = GPTNeoXModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Optional[int] = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: a : Union[str, Any] = self.num_labels a : Optional[int] = GPTNeoXForQuestionAnswering(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : Union[str, Any] = self.num_labels a : Union[str, Any] = GPTNeoXForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : List[str] = self.num_labels a : Tuple = GPTNeoXForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : Any = True a : Union[str, Any] = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) a : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) a : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) a : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) a : Union[str, Any] = output_from_no_past["hidden_states"][0] a : int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice a : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() a : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() a : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def __a ( self ) -> Any: a : Any = self.prepare_config_and_inputs() a, a, a, a : int = config_and_inputs a : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): lowerCamelCase : List[Any] =( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : str =(GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase : List[Any] =( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : List[str] =False lowerCamelCase : Optional[Any] =False lowerCamelCase : int =False lowerCamelCase : List[Any] =False def __a ( self ) -> Optional[int]: a : Optional[int] = GPTNeoXModelTester(self ) a : Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=64 , num_attention_heads=8 ) def __a ( self ) -> List[str]: self.config_tester.run_common_tests() def __a ( self ) -> List[str]: a, a, a, a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: a, a, a, a : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: # This regression test was failing with PyTorch < 1.3 a, a, a, a : str = self.model_tester.prepare_config_and_inputs_for_decoder() a : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> List[Any]: a, a, a, a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ ) def __a ( self ) -> str: a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def __a ( self ) -> int: a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def __a ( self ) -> int: pass @parameterized.expand([("linear",), ("dynamic",)] ) def __a ( self , lowerCAmelCase__ ) -> List[Any]: a, a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a : List[str] = ids_tensor([1, 10] , config.vocab_size ) a : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a : str = GPTNeoXModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() a : str = original_model(lowerCAmelCase__ ).last_hidden_state a : Dict = original_model(lowerCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a : int = {"type": scaling_type, "factor": 10.0} a : Optional[int] = GPTNeoXModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() a : Optional[Any] = scaled_model(lowerCAmelCase__ ).last_hidden_state a : Optional[int] = scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> List[Any]: a : Optional[Any] = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: a : int = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase__ ) a : Any = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 a : int = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" a : Optional[Any] = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=20 ) a : str = tokenizer.batch_decode(lowerCAmelCase__ )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
105
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract A__: str = logging.get_logger(__name__) def lowerCAmelCase_ ( A_ ,A_ ,A_): return [ int(10_00 * (box[0] / width)), int(10_00 * (box[1] / height)), int(10_00 * (box[2] / width)), int(10_00 * (box[3] / height)), ] def lowerCAmelCase_ ( A_ ,A_ ,A_ = None): UpperCamelCase__: List[str] = tesseract_config if tesseract_config is not None else "" # apply OCR UpperCamelCase__: Optional[int] = to_pil_image(A_) UpperCamelCase__ , UpperCamelCase__: Tuple = pil_image.size UpperCamelCase__: List[Any] = pytesseract.image_to_data(A_ ,lang=A_ ,output_type="dict" ,config=A_) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__: Dict = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates UpperCamelCase__: List[Any] = [idx for idx, word in enumerate(A_) if not word.strip()] UpperCamelCase__: Union[str, Any] = [word for idx, word in enumerate(A_) if idx not in irrelevant_indices] UpperCamelCase__: Dict = [coord for idx, coord in enumerate(A_) if idx not in irrelevant_indices] UpperCamelCase__: List[Any] = [coord for idx, coord in enumerate(A_) if idx not in irrelevant_indices] UpperCamelCase__: Optional[int] = [coord for idx, coord in enumerate(A_) if idx not in irrelevant_indices] UpperCamelCase__: Optional[Any] = [coord for idx, coord in enumerate(A_) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase__: List[str] = [] for x, y, w, h in zip(A_ ,A_ ,A_ ,A_): UpperCamelCase__: str = [x, y, x + w, y + h] actual_boxes.append(A_) # finally, normalize the bounding boxes UpperCamelCase__: Union[str, Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A_ ,A_ ,A_)) assert len(A_) == len(A_), "Not as many words as there are bounding boxes" return words, normalized_boxes class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self: int , __lowerCamelCase: bool = True , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = "" , **__lowerCamelCase: str , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) UpperCamelCase__: Optional[Any] = size if size is not None else {"height": 224, "width": 224} UpperCamelCase__: Dict = get_size_dict(__lowerCamelCase ) UpperCamelCase__: Optional[Any] = do_resize UpperCamelCase__: Optional[int] = size UpperCamelCase__: int = resample UpperCamelCase__: str = apply_ocr UpperCamelCase__: List[Any] = ocr_lang UpperCamelCase__: List[Any] = tesseract_config def UpperCAmelCase_ ( self: int , __lowerCamelCase: np.ndarray , __lowerCamelCase: Dict[str, int] , __lowerCamelCase: PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: str , ): '''simple docstring''' UpperCamelCase__: int = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) UpperCamelCase__: int = (size["height"], size["width"]) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: ImageInput , __lowerCamelCase: bool = None , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: PILImageResampling = None , __lowerCamelCase: bool = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase: str , ): '''simple docstring''' UpperCamelCase__: str = do_resize if do_resize is not None else self.do_resize UpperCamelCase__: Any = size if size is not None else self.size UpperCamelCase__: Union[str, Any] = get_size_dict(__lowerCamelCase ) UpperCamelCase__: Tuple = resample if resample is not None else self.resample UpperCamelCase__: int = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase__: Any = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase__: Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase__: Any = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. UpperCamelCase__: Union[str, Any] = [to_numpy_array(__lowerCamelCase ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) UpperCamelCase__: str = [] UpperCamelCase__: Optional[Any] = [] for image in images: UpperCamelCase__ , UpperCamelCase__: Any = apply_tesseract(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) words_batch.append(__lowerCamelCase ) boxes_batch.append(__lowerCamelCase ) if do_resize: UpperCamelCase__: List[Any] = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCamelCase__: List[str] = [flip_channel_order(__lowerCamelCase ) for image in images] UpperCamelCase__: Optional[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCamelCase__: int = BatchFeature(data={"pixel_values": images} , tensor_type=__lowerCamelCase ) if apply_ocr: UpperCamelCase__: Dict = words_batch UpperCamelCase__: Tuple = boxes_batch return data
149
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _snake_case ( unittest.TestCase): def A__ ( self : List[Any] ): lowercase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(_a ), torch_builtin(_a ) ) ) self.assertFalse(torch.allclose(gelu_python(_a ), gelu_new(_a ) ) ) def A__ ( self : Tuple ): lowercase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ = get_activation("gelu" ) lowercase__ = get_activation("gelu_10" ) lowercase__ = torch_builtin(_a ) lowercase__ = geluaa(_a ) lowercase__ = torch.where(y_gelu_aa < 10.0, 1, 0 ) self.assertTrue(torch.max(_a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask, y_gelu_aa * clipped_mask ) ) def A__ ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(_a ): get_activation("bogus" ) with self.assertRaises(_a ): get_activation(_a ) def A__ ( self : List[Any] ): lowercase__ = get_activation("gelu" ) lowercase__ = 1 lowercase__ = get_activation("gelu" ) self.assertEqual(acta.a, 1 ) with self.assertRaises(_a ): lowercase__ = acta.a
363
import argparse import json import subprocess def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = [] lowercase__ = ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) lowercase__ = subprocess.run(SCREAMING_SNAKE_CASE_ , shell=SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode("utf-8" ) lowercase__ = json.loads(SCREAMING_SNAKE_CASE_ ) lowercase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE_ ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return values.split("," ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
224
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE : int = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = logging.get_verbosity() SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : List[Any] = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(_lowerCamelCase ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def __lowerCAmelCase ( self ) ->Any: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE : Any = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : List[Any] = os.getenv('''TRANSFORMERS_VERBOSITY''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE : List[Any] = logging.get_verbosity() self.assertEqual( _lowerCamelCase , _lowerCamelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level SCREAMING_SNAKE_CASE : Optional[int] = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def __lowerCAmelCase ( self ) ->Optional[int]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE : Dict = logging.logging.getLogger() with CaptureLogger(_lowerCamelCase ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def __lowerCAmelCase ( self ) ->Tuple: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : Tuple = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCamelCase ) as cl: logger.warning_advice(_lowerCamelCase ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCamelCase ) as cl: logger.warning_advice(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) def UpperCAmelCase_( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
313
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : str = StableDiffusionSAGPipeline _A : Optional[Any] = TEXT_TO_IMAGE_PARAMS _A : Any = TEXT_TO_IMAGE_BATCH_PARAMS _A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _A : List[str] = False def lowerCAmelCase_ ( self: Optional[Any] ) -> str: torch.manual_seed(0 ) snake_case_ :Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ :Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) snake_case_ :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case_ :Tuple = CLIPTextModel(snake_case ) snake_case_ :str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ :Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple , snake_case: List[str]=0 ) -> str: if str(snake_case ).startswith("""mps""" ): snake_case_ :Tuple = torch.manual_seed(snake_case ) else: snake_case_ :Optional[int] = torch.Generator(device=snake_case ).manual_seed(snake_case ) snake_case_ :Any = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self: Optional[int] ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: int ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: int ) -> List[str]: snake_case_ :Any = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) snake_case_ :int = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Union[str, Any] = """.""" snake_case_ :str = torch.manual_seed(0 ) snake_case_ :str = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ :List[Any] = output.images snake_case_ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ :List[Any] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ ( self: Dict ) -> str: snake_case_ :Tuple = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ :Optional[int] = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Tuple = """.""" snake_case_ :Union[str, Any] = torch.manual_seed(0 ) snake_case_ :Tuple = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ :Optional[int] = output.images snake_case_ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ :Tuple = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ ( self: List[str] ) -> List[str]: snake_case_ :Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ :int = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Tuple = """.""" snake_case_ :Optional[int] = torch.manual_seed(0 ) snake_case_ :List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) snake_case_ :Optional[Any] = output.images assert image.shape == (1, 512, 768, 3)
66
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = XGLMConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=1_4 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : List[str]=9_9 , UpperCamelCase__ : str=3_2 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : str=3_7 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Union[str, Any]=5_1_2 , UpperCamelCase__ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = ffn_dim UpperCamelCase = activation_function UpperCamelCase = activation_dropout UpperCamelCase = attention_dropout UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = 2 UpperCamelCase = 1 def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = self.get_config() UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase__ , ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _SCREAMING_SNAKE_CASE = (TFXGLMForCausalLM,) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Dict ): """simple docstring""" UpperCamelCase = TFXGLMModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=3_7 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @slow def A ( self : List[str] ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFXGLMModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def A ( self : Dict ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] , UpperCamelCase__ : Tuple=True ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on UpperCamelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) UpperCamelCase = tokenizer('Today is a nice day and' , return_tensors='tf' ) UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): UpperCamelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , seed=[7, 0] ) UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def A ( self : Dict ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = 'left' # use different length sentences to test batching UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCamelCase = tokenizer(UpperCamelCase__ , return_tensors='tf' , padding=UpperCamelCase__ ) UpperCamelCase = inputs['input_ids'] UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=1_2 ) UpperCamelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=1_2 ) UpperCamelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=1_2 ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] )
249
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @staticmethod @abstractmethod def A ( UpperCamelCase__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def A ( self : str ): """simple docstring""" raise NotImplementedError()
249
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Tuple = '''altclip_text_model''' def __init__( self : List[Any] , lowerCAmelCase__ : Any=2_5_0_0_0_2 , lowerCAmelCase__ : int=1_0_2_4 , lowerCAmelCase__ : str=2_4 , lowerCAmelCase__ : Union[str, Any]=1_6 , lowerCAmelCase__ : List[str]=4_0_9_6 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : List[str]=5_1_4 , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Optional[Any]=1E-05 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Optional[int]="absolute" , lowerCAmelCase__ : int=True , lowerCAmelCase__ : int=7_6_8 , **lowerCAmelCase__ : int , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Dict = initializer_factor __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type __SCREAMING_SNAKE_CASE : int = use_cache __SCREAMING_SNAKE_CASE : List[str] = project_dim class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Dict = '''altclip_vision_model''' def __init__( self : Union[str, Any] , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : Dict=3_0_7_2 , lowerCAmelCase__ : str=5_1_2 , lowerCAmelCase__ : str=1_2 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : int=2_2_4 , lowerCAmelCase__ : Union[str, Any]=3_2 , lowerCAmelCase__ : Any="quick_gelu" , lowerCAmelCase__ : Tuple=1E-5 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : List[Any]=1.0 , **lowerCAmelCase__ : List[str] , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Any = projection_dim __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = num_channels __SCREAMING_SNAKE_CASE : int = patch_size __SCREAMING_SNAKE_CASE : int = image_size __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = initializer_factor __SCREAMING_SNAKE_CASE : Dict = attention_dropout __SCREAMING_SNAKE_CASE : Any = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = hidden_act @classmethod def UpperCamelCase__ ( cls : str , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": __SCREAMING_SNAKE_CASE : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Any = '''altclip''' _A : Union[str, Any] = True def __init__( self : Any , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : List[Any]=2.65_92 , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("""text_config_dict""" , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop("""vision_config_dict""" , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __SCREAMING_SNAKE_CASE : Optional[int] = {} # This is the complete result when using `text_config_dict`. __SCREAMING_SNAKE_CASE : Dict = AltCLIPTextConfig(**lowerCAmelCase__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __SCREAMING_SNAKE_CASE : Optional[Any] = ( F"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " F"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __SCREAMING_SNAKE_CASE : Any = ( F"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " F"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(lowerCAmelCase__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __SCREAMING_SNAKE_CASE : Dict = {} # This is the complete result when using `vision_config_dict`. __SCREAMING_SNAKE_CASE : List[str] = AltCLIPVisionConfig(**lowerCAmelCase__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __SCREAMING_SNAKE_CASE : Any = { str(lowerCAmelCase__ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __SCREAMING_SNAKE_CASE : Optional[Any] = ( F"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " F"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __SCREAMING_SNAKE_CASE : Tuple = ( F"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " F"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(lowerCAmelCase__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __SCREAMING_SNAKE_CASE : Dict = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: __SCREAMING_SNAKE_CASE : List[Any] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) __SCREAMING_SNAKE_CASE : List[Any] = AltCLIPTextConfig(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = AltCLIPVisionConfig(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = projection_dim __SCREAMING_SNAKE_CASE : Tuple = logit_scale_init_value __SCREAMING_SNAKE_CASE : Union[str, Any] = 1.0 @classmethod def UpperCamelCase__ ( cls : int , lowerCAmelCase__ : AltCLIPTextConfig , lowerCAmelCase__ : AltCLIPVisionConfig , **lowerCAmelCase__ : Dict ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : int = self.text_config.to_dict() __SCREAMING_SNAKE_CASE : List[Any] = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.__class__.model_type return output
112
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list ): if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(_lowerCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowerCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
112
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = '▁' A_ : int = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} A_ : Dict = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } A_ : Optional[int] = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } A_ : int = { 'ernie-m-base': 514, 'ernie-m-large': 514, } A_ : int = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[str] = ["input_ids"] UpperCAmelCase__: str = VOCAB_FILES_NAMES UpperCAmelCase__: List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: Optional[Any] = RESOURCE_FILES_NAMES def __init__( self , A__ , A__=None , A__=False , A__="utf8" , A__="[UNK]" , A__="[SEP]" , A__="[PAD]" , A__="[CLS]" , A__="[MASK]" , A__ = None , **A__ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , vocab_file=A__ , encoding=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) A__ : Optional[Any] = do_lower_case A__ : str = sentencepiece_model_ckpt A__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: A__ : Tuple = self.load_vocab(filepath=A__ ) else: A__ : str = {self.sp_model.id_to_piece(A__ ): id for id in range(self.sp_model.get_piece_size() )} A__ : Dict = {v: k for k, v in self.vocab.items()} def __A ( self , A__ ): if text is None: return None A__ : List[Any] = self.tokenize(A__ ) A__ : List[Any] = """""", [] for i, ch in enumerate(A__ ): if ch in self.SP_CHAR_MAPPING: A__ : List[Any] = self.SP_CHAR_MAPPING.get(A__ ) else: A__ : List[str] = unicodedata.normalize("""NFKC""" , A__ ) if self.is_whitespace(A__ ): continue normalized_text += ch char_mapping.extend([i] * len(A__ ) ) A__ : Any = normalized_text, [], 0 if self.do_lower_case: A__ : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": A__ : List[str] = token[1:] A__ : int = text[offset:].index(A__ ) + offset A__ : Dict = start + len(A__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) A__ : Optional[Any] = end return token_mapping @property def __A ( self ): return len(self.vocab ) def __A ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): A__ : Optional[Any] = self.__dict__.copy() A__ : List[str] = None return state def __setstate__( self , A__ ): A__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Optional[int] = {} A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __A ( self , A__ ): return "".join((self.SP_CHAR_MAPPING.get(A__ , A__ ) for c in text) ) def __A ( self , A__ , A__=False , A__=64 , A__=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: A__ : str = True if self.sp_model_kwargs.get("""alpha""" ) is not None: A__ : str = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: A__ : Optional[int] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: A__ : Union[str, Any] = self.sp_model.EncodeAsPieces(A__ ) else: A__ : Dict = self.sp_model.SampleEncodeAsPieces(A__ , A__ , A__ ) A__ : str = [] for pi, piece in enumerate(A__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A__ ) and pi != 0: new_pieces.append(A__ ) continue else: continue A__ : List[str] = 0 for i, chunk in enumerate(A__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A__ ) or self.is_punct(A__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A__ ) A__ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A__ : Any = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A__ : Any = i if len(A__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __A ( self , A__ ): A__ : Any = """""".join(A__ ).replace(A__ , """ """ ).strip() return out_string def __A ( self , A__ ): A__ : Any = self.convert_ids_to_tokens(A__ ) A__ : Optional[int] = """""".join(A__ ).replace(A__ , """ """ ).strip() return out_string def __A ( self , A__ ): return self.vocab.get(A__ , self.vocab.get(self.unk_token ) ) def __A ( self , A__ ): return self.reverse_vocab.get(A__ , self.unk_token ) def __A ( self , A__ , A__=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict = [self.cls_token_id] A__ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __A ( self , A__ , A__=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __A ( self , A__ , A__=None , A__=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A__ )) + [1, 1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] def __A ( self , A__ , A__ = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(A__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A__ ) + 1) + [1] * (len(A__ ) + 3) def __A ( self , A__ ): if "\u4e00" <= char <= "\u9fff": return True return False def __A ( self , A__ ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __A ( self , A__ ): if char in ",;:.?!~,;:。?!《》【】": return True return False def __A ( self , A__ ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A__ ) == 1: A__ : Optional[int] = unicodedata.category(A__ ) if cat == "Zs": return True return False def __A ( self , A__ ): A__ : Optional[int] = {} with io.open(A__ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(A__ ): A__ : Tuple = line.rstrip("""\n""" ) A__ : int = int(A__ ) return token_to_idx def __A ( self , A__ , A__ = None ): A__ : List[str] = 0 if os.path.isdir(A__ ): A__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: A__ : str = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(A__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) A__ : int = token_index writer.write(token + """\n""" ) index += 1 A__ : str = os.path.join(A__ , """sentencepiece.bpe.model""" ) with open(A__ , """wb""" ) as fi: A__ : Dict = self.sp_model.serialized_model_proto() fi.write(A__ ) return (vocab_file,)
371
import requests A_ : List[Any] = 'YOUR API KEY' def UpperCamelCase (lowercase_: str , lowercase_: str = giphy_api_key ) -> list: A__ : Dict = """+""".join(query.split() ) A__ : Optional[int] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" A__ : Any = requests.get(lowercase_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
141
0
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=6_4 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=6_4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Union[str, Any]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =scope def __A (self ) -> Tuple: return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def __A (self ) -> Dict: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self ) -> str: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =MPNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =MPNetForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =self.num_labels _lowercase =MPNetForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =self.num_choices _lowercase =MPNetForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =self.num_labels _lowercase =MPNetForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A (self ) -> Tuple: _lowercase =self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def __A (self ) -> Optional[Any]: _lowercase =MPNetModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> Optional[Any]: self.config_tester.run_common_tests() def __A (self ) -> Dict: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase ) def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase ) def __A (self ) -> Optional[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> str: _lowercase =MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) _lowercase =torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowercase =model(UpperCAmelCase )[0] _lowercase =torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase ) _lowercase =torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
5
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Optional[int] = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _A : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCAmelCase : List[str] = data_utils.TransfoXLTokenizer lowerCAmelCase : Any = data_utils.TransfoXLCorpus lowerCAmelCase : Tuple = data_utils lowerCAmelCase : Optional[Any] = data_utils def A_( A : Any , A : Dict , A : List[Any] , A : Optional[Any]): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A , 'rb') as fp: UpperCamelCase = pickle.load(A , encoding='latin1') # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(f'''Save vocabulary to {pytorch_vocab_dump_path}''') UpperCamelCase = corpus.vocab.__dict__ torch.save(A , A) UpperCamelCase = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A) UpperCamelCase = pytorch_dump_folder_path + '/' + CORPUS_NAME print(f'''Save dataset to {pytorch_dataset_dump_path}''') torch.save(A , A) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase = os.path.abspath(A) UpperCamelCase = os.path.abspath(A) print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''') # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase = TransfoXLConfig() else: UpperCamelCase = TransfoXLConfig.from_json_file(A) print(f'''Building PyTorch model from configuration: {config}''') UpperCamelCase = TransfoXLLMHeadModel(A) UpperCamelCase = load_tf_weights_in_transfo_xl(A , A , A) # Save pytorch-model UpperCamelCase = os.path.join(A , A) UpperCamelCase = os.path.join(A , A) print(f'''Save PyTorch model to {os.path.abspath(A)}''') torch.save(model.state_dict() , A) print(f'''Save configuration file to {os.path.abspath(A)}''') with open(A , 'w' , encoding='utf-8') as f: f.write(config.to_json_string()) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
356
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , )-> int: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = patch_size UpperCamelCase = max_length UpperCamelCase = num_mel_bins UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = frequency_stride UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase = frequency_out_dimension * time_out_dimension UpperCamelCase = num_patches + 2 def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, input_values, labels def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = ASTModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ASTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset') UpperCamelCase , UpperCamelCase = torchaudio.load(A) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.default_feature_extractor UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A_ ) UpperCamelCase = self.default_feature_extractor UpperCamelCase , UpperCamelCase = prepare_audio() UpperCamelCase = audio.squeeze().numpy() UpperCamelCase = feature_extractor(A_ , sampling_rate=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
251
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __a = '\nHuman: <<task>>\n\nAssistant: ' __a = 'huggingface-tools/default-prompts' __a = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def a ( snake_case__: Union[str, Any] , snake_case__: str , snake_case__: Tuple="run" ): '''simple docstring''' if prompt_or_repo_id is None: lowercase_ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , snake_case__ ) is not None: return prompt_or_repo_id lowercase_ = cached_file( snake_case__ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f: return f.read()
30
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , delta=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : int = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = None ops.enable_eager_execution_internal() lowerCAmelCase_ : str = tf.config.list_physical_devices('CPU' ) if len(SCREAMING_SNAKE_CASE_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCAmelCase_ : Dict = tf.config.list_logical_devices(device_type='CPU' ) lowerCAmelCase_ : Optional[int] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCAmelCase_ : Union[str, Any] = GradientAccumulator() lowerCAmelCase_ : int = tf.Variable([4.0, 3.0] ) lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = create_optimizer(5E-5 , 1_0 , 5 ) lowerCAmelCase_ : Union[str, Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE_ ) def accumulate_on_replica(SCREAMING_SNAKE_CASE_ : Optional[int] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): with strategy.scope(): lowerCAmelCase_ : Tuple = strategy.experimental_local_results(SCREAMING_SNAKE_CASE_ ) local_variables[0].assign(SCREAMING_SNAKE_CASE_ ) local_variables[1].assign(SCREAMING_SNAKE_CASE_ ) strategy.run(SCREAMING_SNAKE_CASE_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(SCREAMING_SNAKE_CASE_ ) def _check_local_values(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase_ : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
224
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _a = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __a ( __lowerCamelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return max(metric_fn(__lowerCamelCase, __lowerCamelCase ) for gt in ground_truths ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : int = [] if args.gold_data_mode == "qa": UpperCAmelCase_ : str = pd.read_csv(__lowerCamelCase, sep="\t", header=__lowerCamelCase ) for answer_list in data[1]: UpperCAmelCase_ : int = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: UpperCAmelCase_ : Tuple = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Optional[int] = [[reference] for reference in references] UpperCAmelCase_ : List[str] = 0 for prediction, ground_truths in zip(__lowerCamelCase, __lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = 100.0 * em / total UpperCAmelCase_ : Dict = 100.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = args.k UpperCAmelCase_ : str = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : int = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Union[str, Any] = 0 for hypo, reference in zip(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = set(hypo.split("\t" )[:k] ) UpperCAmelCase_ : Optional[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase_ : Optional[Any] = 100.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): def strip_title(__lowerCamelCase ): if title.startswith("\"" ): UpperCAmelCase_ : Union[str, Any] = title[1:] if title.endswith("\"" ): UpperCAmelCase_ : List[str] = title[:-1] return title UpperCAmelCase_ : Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase, )["input_ids"].to(args.device ) UpperCAmelCase_ : Optional[int] = rag_model.rag.question_encoder(__lowerCamelCase ) UpperCAmelCase_ : Dict = question_enc_outputs[0] UpperCAmelCase_ : str = rag_model.retriever( __lowerCamelCase, question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) UpperCAmelCase_ : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase_ : Tuple = [] for docs in all_docs: UpperCAmelCase_ : Optional[int] = [strip_title(__lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__lowerCamelCase ) ) return provenance_strings def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with torch.no_grad(): UpperCAmelCase_ : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase ) UpperCAmelCase_ : Tuple = inputs_dict.input_ids.to(args.device ) UpperCAmelCase_ : Any = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase_ : Any = rag_model.generate( # rag_model overwrites generate __lowerCamelCase, attention_mask=__lowerCamelCase, num_beams=args.num_beams, min_length=args.min_length, max_length=args.max_length, early_stopping=__lowerCamelCase, num_return_sequences=1, bad_words_ids=[[0, 0]], ) UpperCAmelCase_ : Tuple = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase, skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase, __lowerCamelCase ): logger.info("Q: {} - A: {}".format(__lowerCamelCase, __lowerCamelCase ) ) return answers def __a ( ): UpperCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart"], type=__lowerCamelCase, help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--index_name", default=__lowerCamelCase, choices=["exact", "compressed", "legacy"], type=__lowerCamelCase, help="RAG model retriever type", ) parser.add_argument( "--index_path", default=__lowerCamelCase, type=__lowerCamelCase, help="Path to the retrieval index", ) parser.add_argument("--n_docs", default=5, type=__lowerCamelCase, help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to pretrained checkpoints or model identifier from huggingface.co/models", ) parser.add_argument( "--eval_mode", choices=["e2e", "retrieval"], default="e2e", type=__lowerCamelCase, help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ), ) parser.add_argument("--k", default=1, type=__lowerCamelCase, help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a file containing evaluation samples", ) parser.add_argument( "--gold_data_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a tab-separated file with gold samples", ) parser.add_argument( "--gold_data_mode", default="qa", type=__lowerCamelCase, choices=["qa", "ans"], help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ), ) parser.add_argument( "--predictions_path", type=__lowerCamelCase, default="predictions.txt", help="Name of the predictions file, to be stored in the checkpoints directory", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--eval_batch_size", default=8, type=__lowerCamelCase, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--recalculate", help="Recalculate predictions even if the prediction file exists", action="store_true", ) parser.add_argument( "--num_beams", default=4, type=__lowerCamelCase, help="Number of beams to be used when generating answers", ) parser.add_argument("--min_length", default=1, type=__lowerCamelCase, help="Min length of the generated answers" ) parser.add_argument("--max_length", default=50, type=__lowerCamelCase, help="Max length of the generated answers" ) parser.add_argument( "--print_predictions", action="store_true", help="If True, prints predictions while evaluating.", ) parser.add_argument( "--print_docs", action="store_true", help="If True, prints docs retried while generating.", ) UpperCAmelCase_ : List[str] = parser.parse_args() UpperCAmelCase_ : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = {} if args.model_type is None: UpperCAmelCase_ : Union[str, Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCAmelCase_ : List[Any] = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCAmelCase_ : str = args.n_docs if args.index_name is not None: UpperCAmelCase_ : Optional[Any] = args.index_name if args.index_path is not None: UpperCAmelCase_ : Dict = args.index_path else: UpperCAmelCase_ : Tuple = BartForConditionalGeneration UpperCAmelCase_ : List[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s", __lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCAmelCase_ : Tuple = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__lowerCamelCase ) ) logger.info(" Batch size = %d", args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCAmelCase_ : Union[str, Any] = RagRetriever.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) UpperCAmelCase_ : Any = model_class.from_pretrained(__lowerCamelCase, retriever=__lowerCamelCase, **__lowerCamelCase ) model.retriever.init_retrieval() else: UpperCAmelCase_ : int = model_class.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set, "r" ) as eval_file, open(args.predictions_path, "w" ) as preds_file: UpperCAmelCase_ : List[Any] = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: UpperCAmelCase_ : Optional[int] = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) + "\n" ) preds_file.flush() UpperCAmelCase_ : List[str] = [] if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : List[Any] = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) if __name__ == "__main__": _a = get_args() main(args)
23
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
1
"""simple docstring""" import sys a_ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Union[str, Any] = 1 for digit in s: product *= int(__UpperCamelCase ) return product def __UpperCAmelCase ( __UpperCamelCase = N ): __lowercase : Any = -sys.maxsize - 1 __lowercase : Union[str, Any] = n[:13] __lowercase : Tuple = 13 while cur_index < len(__UpperCamelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __lowercase : Union[str, Any] = substr[1:] + n[cur_index] cur_index += 1 else: __lowercase : List[Any] = max(__UpperCamelCase , str_eval(__UpperCamelCase ) ) __lowercase : List[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"{solution() = }")
249
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase =StableDiffusionDiffEditPipeline UpperCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} UpperCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} UpperCamelCase =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase =frozenset([] ) def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) __lowercase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowercase : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) __lowercase : Optional[int] = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_zero=UpperCamelCase_ , ) torch.manual_seed(0 ) __lowercase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowercase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) __lowercase : Optional[int] = CLIPTextModel(UpperCamelCase_ ) __lowercase : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase : str = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Any: __lowercase : Any = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : List[Any] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : Any = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> int: __lowercase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : List[Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : List[str] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : int = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Union[str, Any]: __lowercase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : Any = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return __lowercase : Optional[int] = self.get_dummy_components() __lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __lowercase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ ) __lowercase : Any = pipe(**UpperCamelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase_ ) __lowercase : Tuple = self.pipeline_class.from_pretrained(UpperCamelCase_ ) pipe_loaded.to(UpperCamelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase_ , UpperCamelCase_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase : List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) __lowercase : Any = pipe_loaded(**UpperCamelCase_ )[0] __lowercase : Any = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase_ , 1E-4 ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : int = '''cpu''' __lowercase : Optional[int] = self.get_dummy_components() __lowercase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : str = self.get_dummy_mask_inputs(UpperCamelCase_ ) __lowercase : int = pipe.generate_mask(**UpperCamelCase_ ) __lowercase : Any = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __lowercase : List[Any] = np.array([0] * 9 ) __lowercase : str = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowerCamelCase ( self ) -> str: __lowercase : Optional[int] = '''cpu''' __lowercase : Dict = self.get_dummy_components() __lowercase : str = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : int = self.get_dummy_inversion_inputs(UpperCamelCase_ ) __lowercase : List[str] = pipe.invert(**UpperCamelCase_ ).images __lowercase : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowercase : Any = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __lowercase : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _lowerCamelCase ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _lowerCamelCase ( self ) -> str: __lowercase : Union[str, Any] = '''cpu''' __lowercase : str = self.get_dummy_components() __lowercase : Any = {'''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''beta_schedule''': '''scaled_linear'''} __lowercase : str = DPMSolverMultistepScheduler(**UpperCamelCase_ ) __lowercase : List[str] = DPMSolverMultistepInverseScheduler(**UpperCamelCase_ ) __lowercase : int = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : str = self.get_dummy_inversion_inputs(UpperCamelCase_ ) __lowercase : str = pipe.invert(**UpperCamelCase_ ).images __lowercase : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowercase : Union[str, Any] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __lowercase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowerCamelCase ( cls ) -> Optional[Any]: __lowercase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) __lowercase : Optional[int] = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) __lowercase : Any = raw_image def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : str = torch.manual_seed(0 ) __lowercase : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) __lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) __lowercase : Dict = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : Tuple = '''a bowl of fruit''' __lowercase : int = '''a bowl of pears''' __lowercase : str = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) __lowercase : Dict = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ ).latents __lowercase : Optional[int] = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] __lowercase : int = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _lowerCamelCase ( self ) -> Tuple: __lowercase : Union[str, Any] = torch.manual_seed(0 ) __lowercase : Dict = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) __lowercase : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : List[str] = '''a bowl of fruit''' __lowercase : Union[str, Any] = '''a bowl of pears''' __lowercase : int = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) __lowercase : List[Any] = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ , num_inference_steps=25 , ).latents __lowercase : Optional[int] = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] __lowercase : Union[str, Any] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
249
1
"""simple docstring""" def _snake_case ( UpperCamelCase : list ): UpperCAmelCase : Any = len(UpperCamelCase ) for i in range(1 , UpperCamelCase ): UpperCAmelCase : Dict = collection[i] UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : List[Any] = i - 1 while low <= high: UpperCAmelCase : List[Any] = (low + high) // 2 if val < collection[mid]: UpperCAmelCase : Union[str, Any] = mid - 1 else: UpperCAmelCase : Union[str, Any] = mid + 1 for j in range(UpperCamelCase , UpperCamelCase , -1 ): UpperCAmelCase : Any = collection[j - 1] UpperCAmelCase : Any = val return collection if __name__ == "__main__": A: Optional[int] = input("Enter numbers separated by a comma:\n").strip() A: List[str] = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
357
"""simple docstring""" def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Tuple=False ): if isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : List[str] = len(set_a.intersection(UpperCamelCase ) ) if alternative_union: UpperCAmelCase : int = len(UpperCamelCase ) + len(UpperCamelCase ) else: UpperCAmelCase : Any = len(set_a.union(UpperCamelCase ) ) return intersection / union if isinstance(UpperCamelCase , (list, tuple) ) and isinstance(UpperCamelCase , (list, tuple) ): UpperCAmelCase : Any = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase : Optional[int] = len(UpperCamelCase ) + len(UpperCamelCase ) return len(UpperCamelCase ) / union else: UpperCAmelCase : Tuple = set_a + [element for element in set_b if element not in set_a] return len(UpperCamelCase ) / len(UpperCamelCase ) return len(UpperCamelCase ) / len(UpperCamelCase ) return None if __name__ == "__main__": A: List[Any] = {"a", "b", "c", "d", "e"} A: List[Any] = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
76
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowercase ): _lowercase : Tuple = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) _lowercase : Tuple = FlaxAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowercase ): _lowercase : Optional[Any] = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) _lowercase : List[str] = FlaxAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: _lowercase : Dict = AutoTokenizer.from_pretrained(__lowercase ) _lowercase : List[Any] = FlaxBertModel.from_pretrained(__lowercase ) _lowercase : str = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCamelCase ): return model(**__lowercase ) eval(**__lowercase ).block_until_ready() @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(__lowercase ) _lowercase : Any = FlaxRobertaModel.from_pretrained(__lowercase ) _lowercase : str = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCamelCase ): return model(**__lowercase ) eval(**__lowercase ).block_until_ready() def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __lowercase , "bert-base is not a local folder and is not a valid model identifier" ): _lowercase : Union[str, Any] = FlaxAutoModel.from_pretrained("bert-base" ) def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __lowercase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowercase : Any = FlaxAutoModel.from_pretrained(__lowercase , revision="aaaaaa" ) def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __lowercase , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): _lowercase : List[Any] = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaisesRegex(__lowercase , "Use `from_pt=True` to load this model" ): _lowercase : List[str] = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
250
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase ( A ): lowerCAmelCase_ = "data2vec-audio" def __init__( self : Tuple , __lowercase : Optional[int]=32 , __lowercase : List[str]=768 , __lowercase : List[str]=12 , __lowercase : str=12 , __lowercase : Tuple=3072 , __lowercase : Any="gelu" , __lowercase : Dict=0.1 , __lowercase : Any=0.1 , __lowercase : Tuple=0.1 , __lowercase : List[str]=0.0 , __lowercase : List[Any]=0.1 , __lowercase : str=0.1 , __lowercase : Optional[int]=0.0_2 , __lowercase : Dict=1E-5 , __lowercase : Any="gelu" , __lowercase : Dict=(512, 512, 512, 512, 512, 512, 512) , __lowercase : str=(5, 2, 2, 2, 2, 2, 2) , __lowercase : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __lowercase : Dict=False , __lowercase : int=16 , __lowercase : Any=19 , __lowercase : Tuple=5 , __lowercase : Optional[Any]=0.0_5 , __lowercase : Optional[int]=10 , __lowercase : int=2 , __lowercase : Optional[Any]=0.0 , __lowercase : Tuple=10 , __lowercase : Union[str, Any]=0 , __lowercase : Optional[int]="sum" , __lowercase : str=False , __lowercase : Union[str, Any]=False , __lowercase : Any=256 , __lowercase : str=(512, 512, 512, 512, 1500) , __lowercase : Union[str, Any]=(5, 3, 3, 1, 1) , __lowercase : List[Any]=(1, 2, 3, 1, 1) , __lowercase : Any=512 , __lowercase : int=0 , __lowercase : Union[str, Any]=1 , __lowercase : Optional[int]=2 , __lowercase : Any=False , __lowercase : Optional[int]=3 , __lowercase : Optional[Any]=2 , __lowercase : Any=3 , __lowercase : Tuple=None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) __lowercase =hidden_size __lowercase =feat_extract_activation __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =conv_bias __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =conv_pos_kernel_size __lowercase =len(self.conv_dim ) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =vocab_size __lowercase =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length __lowercase =mask_feature_min_masks # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =xvector_output_dim @property def snake_case ( self : Optional[Any] ): """simple docstring""" return math.prod(self.conv_stride )
141
0
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__(self : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any=1_3 , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=9_9 , __SCREAMING_SNAKE_CASE : int=3_2 , __SCREAMING_SNAKE_CASE : Optional[int]=5 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : Any=3_7 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=5_1_2 , __SCREAMING_SNAKE_CASE : Optional[Any]=1_6 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : Tuple=4 , ): A = parent A = batch_size A = seq_length A = is_training A = use_attention_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_choices def SCREAMING_SNAKE_CASE__ (self : int): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A = None if self.use_attention_mask: A = random_attention_mask([self.batch_size, self.seq_length]) A = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__SCREAMING_SNAKE_CASE , ) return config, input_ids, attention_mask def SCREAMING_SNAKE_CASE__ (self : str): A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __UpperCamelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = FlaxDistilBertModelTester(self) @slow def SCREAMING_SNAKE_CASE__ (self : Any): for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained("distilbert-base-uncased") A = model(np.ones((1, 1))) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @require_flax class __UpperCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ (self : Dict): A = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased") A = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) A = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] A = (1, 1_1, 7_6_8) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE) A = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4))
369
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Union[str, Any] = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "speech_to_text_2" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__(self : Any , __SCREAMING_SNAKE_CASE : List[str]=1_0_0_0_0 , __SCREAMING_SNAKE_CASE : Dict=6 , __SCREAMING_SNAKE_CASE : Dict=2_0_4_8 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=2_5_6 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : int=1_0_2_4 , **__SCREAMING_SNAKE_CASE : str , ): A = vocab_size A = d_model A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = decoder_layerdrop A = use_cache A = decoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
57
0
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : List[Any] = 0.00 lowerCAmelCase_ : Tuple = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase_ : Optional[Any] = f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__UpperCamelCase ) first_sum += 1 / float(__UpperCamelCase ) index += 1 return 1 / first_sum def __lowerCamelCase ( __UpperCamelCase ) -> str: """simple docstring""" lowerCAmelCase_ : Dict = 0.00 lowerCAmelCase_ : Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase_ : Optional[int] = f'''Resistor at index {index} has a negative value!''' raise ValueError(__UpperCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
241
'''simple docstring''' from itertools import product def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sides_number SCREAMING_SNAKE_CASE : str = max_face_number * dice_number SCREAMING_SNAKE_CASE : Tuple = [0] * (max_total + 1) SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : int = range(__UpperCamelCase ,max_face_number + 1 ) for dice_numbers in product(__UpperCamelCase ,repeat=__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = sum(__UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = total_frequency_distribution( sides_number=4 ,dice_number=9 ) SCREAMING_SNAKE_CASE : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = 9 SCREAMING_SNAKE_CASE : Dict = 4 * 9 SCREAMING_SNAKE_CASE : str = 6 for peter_total in range(__UpperCamelCase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) SCREAMING_SNAKE_CASE : Optional[Any] = (4**9) * (6**6) SCREAMING_SNAKE_CASE : int = peter_wins_count / total_games_number SCREAMING_SNAKE_CASE : Optional[Any] = round(__UpperCamelCase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
251
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def __UpperCamelCase ( UpperCAmelCase ): def decorator(UpperCAmelCase ): lowercase__ : Dict = getattr(UpperCAmelCase , '''handle_key''' , [] ) handle += [key] setattr(UpperCAmelCase , '''handle_key''' , UpperCAmelCase ) return func return decorator def __UpperCamelCase ( *UpperCAmelCase ): def decorator(UpperCAmelCase ): lowercase__ : Union[str, Any] = getattr(UpperCAmelCase , '''handle_key''' , [] ) handle += keys setattr(UpperCAmelCase , '''handle_key''' , UpperCAmelCase ) return func return decorator class UpperCAmelCase ( a__ ): '''simple docstring''' def __new__( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : List[Any] = super().__new__(cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , '''key_handler''' ): setattr(__lowerCAmelCase , '''key_handler''' , {} ) setattr(__lowerCAmelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): lowercase__ : Optional[Any] = getattr(__lowerCAmelCase , '''handle_key''' , [] ) for key in handled_keys: lowercase__ : Tuple = value return new_cls @staticmethod def _lowerCAmelCase( cls ) -> Tuple: lowercase__ : Dict = get_character() if char != KEYMAP["undefined"]: lowercase__ : Tuple = ord(__lowerCAmelCase ) lowercase__ : str = cls.key_handler.get(__lowerCAmelCase ) if handler: lowercase__ : str = char return handler(cls ) else: return None def __UpperCamelCase ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
214
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = DDIMPipeline SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) lowercase__ : Any = DDIMScheduler() lowercase__ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> int: if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : int = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : int = '''cpu''' lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : str = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : str = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : str = pipe(**__lowerCAmelCase ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__ : Optional[int] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _lowerCAmelCase( self ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[str]: super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : List[str] = '''google/ddpm-cifar10-32''' lowercase__ : List[Any] = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : str = DDIMScheduler() lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddim.to(__lowerCAmelCase ) ddim.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Optional[int] = ddim(generator=__lowerCAmelCase , eta=0.0 , output_type='''numpy''' ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[int] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = '''google/ddpm-ema-bedroom-256''' lowercase__ : Tuple = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : Union[str, Any] = DDIMScheduler.from_pretrained(__lowerCAmelCase ) lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddpm.to(__lowerCAmelCase ) ddpm.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : Optional[Any] = ddpm(generator=__lowerCAmelCase , output_type='''numpy''' ).images lowercase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Union[str, Any] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
214
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCamelCase__: Any = logging.get_logger(__name__) UpperCamelCase__: int = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCamelCase__: Any = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCamelCase__: Dict = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCamelCase__: int = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCamelCase__: int = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCamelCase__: Tuple = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCamelCase__: Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCamelCase__: Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCamelCase__: Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCamelCase__: List[Any] = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCamelCase__: Tuple = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCamelCase__: Dict = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCamelCase__: str = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCamelCase__: Any = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCamelCase__: Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCamelCase__: Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCamelCase__: List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCamelCase__: List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCamelCase__: Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__: str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCamelCase__: List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCamelCase__: Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__: str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCamelCase__: Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__: Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCamelCase__: List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCamelCase__: Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCamelCase__: Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_MAPPING UpperCamelCase__: List[str] = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCamelCase__: str = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase__: Dict = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCamelCase__: List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase__: Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__: str = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCamelCase__: Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase__: Union[str, Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCamelCase__: List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCamelCase__: Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase__: Tuple = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCamelCase__: int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class SCREAMING_SNAKE_CASE( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCamelCase__: Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' _a = BlenderbotConfig _a = {} _a = 'gelu' def __init__( self : str, lowerCamelCase : str, lowerCamelCase : str=13, lowerCamelCase : Union[str, Any]=7, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : str=99, lowerCamelCase : Tuple=32, lowerCamelCase : Dict=2, lowerCamelCase : Any=4, lowerCamelCase : Union[str, Any]=37, lowerCamelCase : int=0.1, lowerCamelCase : str=0.1, lowerCamelCase : List[Any]=20, lowerCamelCase : str=2, lowerCamelCase : List[Any]=1, lowerCamelCase : str=0, )-> List[str]: lowerCamelCase__ : int =parent lowerCamelCase__ : Optional[Any] =batch_size lowerCamelCase__ : List[Any] =seq_length lowerCamelCase__ : Optional[Any] =is_training lowerCamelCase__ : Union[str, Any] =use_labels lowerCamelCase__ : Optional[Any] =vocab_size lowerCamelCase__ : Any =hidden_size lowerCamelCase__ : Union[str, Any] =num_hidden_layers lowerCamelCase__ : List[Any] =num_attention_heads lowerCamelCase__ : Tuple =intermediate_size lowerCamelCase__ : Optional[Any] =hidden_dropout_prob lowerCamelCase__ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__ : str =max_position_embeddings lowerCamelCase__ : str =eos_token_id lowerCamelCase__ : Union[str, Any] =pad_token_id lowerCamelCase__ : Optional[int] =bos_token_id def snake_case ( self : str )-> Optional[int]: lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowerCamelCase__ : Union[str, Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowerCamelCase__ : Tuple =tf.concat([input_ids, eos_tensor], axis=1 ) lowerCamelCase__ : List[str] =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Tuple =self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowerCamelCase__ : Optional[int] =prepare_blenderbot_inputs_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return config, inputs_dict def snake_case ( self : List[str], lowerCamelCase : Any, lowerCamelCase : Tuple )-> Union[str, Any]: lowerCamelCase__ : str =TFBlenderbotModel(config=lowerCamelCase ).get_decoder() lowerCamelCase__ : Dict =inputs_dict['''input_ids'''] lowerCamelCase__ : Tuple =input_ids[:1, :] lowerCamelCase__ : Optional[int] =inputs_dict['''attention_mask'''][:1, :] lowerCamelCase__ : Dict =inputs_dict['''head_mask'''] lowerCamelCase__ : Tuple =1 # first forward pass lowerCamelCase__ : Optional[Any] =model(lowerCamelCase, attention_mask=lowerCamelCase, head_mask=lowerCamelCase, use_cache=lowerCamelCase ) lowerCamelCase__ : List[Any] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : List[str] =ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : int =tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and lowerCamelCase__ : List[Any] =tf.concat([input_ids, next_tokens], axis=-1 ) lowerCamelCase__ : Optional[int] =tf.concat([attention_mask, next_attn_mask], axis=-1 ) lowerCamelCase__ : Dict =model(lowerCamelCase, attention_mask=lowerCamelCase )[0] lowerCamelCase__ : Optional[Any] =model(lowerCamelCase, attention_mask=lowerCamelCase, past_key_values=lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice lowerCamelCase__ : Tuple =int(ids_tensor((1,), output_from_past.shape[-1] ) ) lowerCamelCase__ : Optional[Any] =output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : int =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase, lowerCamelCase, rtol=1E-3 ) def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str=None , __lowerCamelCase : str=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Dict=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : Union[str, Any] =tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Dict =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Any =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : str =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _a = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _a = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _a = True _a = False _a = False def snake_case ( self : Optional[Any] )-> Tuple: lowerCamelCase__ : Tuple =TFBlenderbotModelTester(self ) lowerCamelCase__ : Optional[int] =ConfigTester(self, config_class=lowerCamelCase ) def snake_case ( self : str )-> List[str]: self.config_tester.run_common_tests() def snake_case ( self : str )-> Union[str, Any]: lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) @require_tokenizers @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' _a = ['My friends are cool but they eat too many carbs.'] _a = 'facebook/blenderbot-400M-distill' @cached_property def snake_case ( self : List[str] )-> List[Any]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case ( self : Any )-> Dict: lowerCamelCase__ : List[str] =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def snake_case ( self : Optional[int] )-> Union[str, Any]: lowerCamelCase__ : Any =self.tokenizer(self.src_text, return_tensors='''tf''' ) lowerCamelCase__ : int =self.model.generate( model_inputs.input_ids, ) lowerCamelCase__ : List[Any] =self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=lowerCamelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
371
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" if "model" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowerCamelCase__ : List[Any] =orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowerCamelCase__ : List[str] =orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowerCamelCase__ : str =orig_key.split('''.''' )[0].split('''_''' )[-1] lowerCamelCase__ : Dict =orig_key.replace(f'''transformer_{layer_num}''' , f'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowerCamelCase__ : str =orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowerCamelCase__ : List[str] =orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowerCamelCase__ : Dict =orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowerCamelCase__ : str =orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowerCamelCase__ : Tuple =orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowerCamelCase__ : Optional[int] ='''yoso.''' + orig_key return orig_key def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Any ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Optional[Any] =orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase__ : List[str] =val lowerCamelCase__ : Optional[int] =orig_state_dict['''cls.predictions.decoder.bias'''] lowerCamelCase__ : str =torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowerCamelCase__ : List[Any] =YosoConfig.from_json_file(__lowerCamelCase ) lowerCamelCase__ : List[str] =YosoForMaskedLM(__lowerCamelCase ) lowerCamelCase__ : Tuple =convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
272
0
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowercase_ = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 4_2 __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = None def __UpperCAmelCase ( self ): __a = _str_to_version_tuple(self.version_str ) def __repr__( self ): return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def __UpperCAmelCase ( self ): return self.major, self.minor, self.patch def __UpperCAmelCase ( self , _a ): if isinstance(_a , _a ): return Version(_a ) elif isinstance(_a , _a ): return other raise TypeError(f'''{other} (type {type(_a )}) cannot be compared to version.''' ) def __eq__( self , _a ): try: __a = self._validate_operand(_a ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , _a ): __a = self._validate_operand(_a ) return self.tuple < other.tuple def __hash__( self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCAmelCase ( cls , _a ): __a = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCAmelCase ( self ): return self.version_str def lowercase ( lowerCAmelCase__ : Dict ) -> str: __a = _VERSION_REG.match(_a ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_a ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def lowercase ( lowerCAmelCase__ : List[str] ) -> List[Any]: return ".".join(str(_a ) for v in version_tuple )
45
a_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : int = set() # keep track of all the paths to be checked SCREAMING_SNAKE_CASE : int = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue SCREAMING_SNAKE_CASE : Optional[int] = queue.pop(0) # get the last node from the path SCREAMING_SNAKE_CASE : Union[str, Any] = path[-1] if node not in explored: SCREAMING_SNAKE_CASE : List[str] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: SCREAMING_SNAKE_CASE : List[Any] = list(_a) new_path.append(_a) queue.append(_a) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_a) # in case there's no path between the 2 nodes return [] def lowerCamelCase__ ( _a , _a , _a): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 SCREAMING_SNAKE_CASE : str = [start] SCREAMING_SNAKE_CASE : Optional[Any] = set(_a) # Keep tab on distances from `start` node. SCREAMING_SNAKE_CASE : Union[str, Any] = {start: 0, target: -1} while queue: SCREAMING_SNAKE_CASE : Optional[int] = queue.pop(0) if node == target: SCREAMING_SNAKE_CASE : Union[str, Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_a) queue.append(_a) SCREAMING_SNAKE_CASE : Optional[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
76
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCamelCase_ : List[Any] = datasets.utils.logging.get_logger(__name__) class _a ( folder_based_builder.FolderBasedBuilderConfig ): SCREAMING_SNAKE_CASE_ : bool = None SCREAMING_SNAKE_CASE_ : bool = None class _a ( folder_based_builder.FolderBasedBuilder ): SCREAMING_SNAKE_CASE_ : List[str] = datasets.Audio() SCREAMING_SNAKE_CASE_ : Any = """audio""" SCREAMING_SNAKE_CASE_ : List[Any] = AudioFolderConfig SCREAMING_SNAKE_CASE_ : List[str] # definition at the bottom of the script SCREAMING_SNAKE_CASE_ : str = AudioClassification(audio_column="""audio""" , label_column="""label""" ) UpperCamelCase_ : Union[str, Any] = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] UpperCamelCase_ : str = AUDIO_EXTENSIONS
142
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __a ( _UpperCamelCase: Tuple ) -> Union[str, Any]: """simple docstring""" _snake_case = os.path.join(args.tf_model_dir , "parameters.json" ) _snake_case = json.loads(open(_UpperCamelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): _snake_case = args.output + ".pt" _snake_case = OrderedDict() with tf.device("/CPU:0" ): _snake_case = tf.train.load_checkpoint(args.tf_model_dir ) _snake_case = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _snake_case = reader.get_tensor(_UpperCamelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _snake_case = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _snake_case = 8 _snake_case = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/moe" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/softmlp/kernel" ): _snake_case = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _snake_case = key_name[-9:-7] for i in range(16 ): _snake_case = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _snake_case = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/mlp" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p1/bias" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/bias" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/ln" ): _snake_case = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _snake_case = "model.blocks.%d.feed_forward.norm.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): _snake_case = "model.blocks.%d.feed_forward.norm.weight" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/att" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _snake_case = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _snake_case = state[:, 0, :, :] _snake_case = state[:, 1, :, :] _snake_case = state[:, 2, :, :] _snake_case = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) _snake_case = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) _snake_case = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/o/kernel" ): _snake_case = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _snake_case = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/an" ): _snake_case = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _snake_case = "model.blocks.%d.self_attn.norm.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): _snake_case = "model.blocks.%d.self_attn.norm.weight" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _snake_case = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _snake_case = "model.%s.weight" % nlayer _snake_case = vnp.copy() # same in embedded _snake_case = torch.tensor(_UpperCamelCase ) if key_name.startswith("model/wte" ): _snake_case = "lm_head.weight" _snake_case = vnp.copy() # same in embedded _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/wob" ): _snake_case = "final_logits_bias" _snake_case = vnp.copy() # same in embedded _snake_case = state.reshape((1, -1) ) _snake_case = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense/kernel": _snake_case = "model.last_project.weight" _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense_1/bias": _snake_case = "model.last_project.bias" _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) torch.save(_UpperCamelCase , args.output ) if __name__ == "__main__": UpperCamelCase_ : Tuple = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') UpperCamelCase_ : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
142
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class lowercase ( lowerCAmelCase__ ): def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*__a , **__a ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def a__ ( self , _a=None , _a=None , _a=None ) -> List[str]: _A : int = {} _A : Optional[Any] = {} if prompt is not None: _A : Tuple = prompt if generate_kwargs is not None: _A : int = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) _A : Tuple = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _a , **_a ) -> Dict: return super().__call__(__a , **__a ) def a__ ( self , _a , _a=None ) -> Tuple: _A : List[str] = load_image(__a ) if prompt is not None: if not isinstance(__a , __a ): raise ValueError( F'''Received an invalid text input, got - {type(__a )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) _A : List[str] = self.model.config.model_type if model_type == "git": _A : List[Any] = self.image_processor(images=__a , return_tensors=self.framework ) _A : List[Any] = self.tokenizer(text=__a , add_special_tokens=__a ).input_ids _A : str = [self.tokenizer.cls_token_id] + input_ids _A : Optional[Any] = torch.tensor(__a ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": _A : int = self.image_processor(images=__a , header_text=__a , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A : Optional[Any] = self.image_processor(images=__a , return_tensors=self.framework ) _A : Union[str, Any] = self.tokenizer(__a , return_tensors=self.framework ) model_inputs.update(__a ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: _A : int = self.image_processor(images=__a , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A : Any = None return model_inputs def a__ ( self , _a , _a=None ) -> int: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , __a ) and all(x is None for x in model_inputs["""input_ids"""] ) ): _A : Any = None if generate_kwargs is None: _A : Union[str, Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A : Any = model_inputs.pop(self.model.main_input_name ) _A : int = self.model.generate(__a , **__a , **__a ) return model_outputs def a__ ( self , _a ) -> List[Any]: _A : Optional[int] = [] for output_ids in model_outputs: _A : Dict = { """generated_text""": self.tokenizer.decode( __a , skip_special_tokens=__a , ) } records.append(__a ) return records
26
"""simple docstring""" import numpy # List of input, output pairs A : Any = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) A : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) A : Union[str, Any] = [2, 4, 1, 5] A : int = len(train_data) A : Dict = 0.009 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase="train" ): '''simple docstring''' return calculate_hypothesis_value(_UpperCamelCase , _UpperCamelCase ) - output( _UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=m ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = summation_of_cost_derivative(_UpperCamelCase , _UpperCamelCase ) / m return cost_derivative_value def _lowerCamelCase ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCAmelCase = 0.00_00_02 __lowerCAmelCase = 0 __lowerCAmelCase = 0 while True: j += 1 __lowerCAmelCase = [0, 0, 0, 0] for i in range(0 , len(_UpperCamelCase ) ): __lowerCAmelCase = get_cost_derivative(i - 1 ) __lowerCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase , _UpperCamelCase , atol=_UpperCamelCase , rtol=_UpperCamelCase , ): break __lowerCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCamelCase ( ): '''simple docstring''' for i in range(len(_UpperCamelCase ) ): print(("Actual output value:", output(_UpperCamelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(_UpperCamelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
57
0
"""simple docstring""" import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE__ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" SCREAMING_SNAKE_CASE__ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" SCREAMING_SNAKE_CASE__ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): """simple docstring""" def snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case = np.array([re.sub(lowerCAmelCase , '' , lowerCAmelCase ) for x in predictions] ) snake_case = np.array([re.sub(lowerCAmelCase , '' , lowerCAmelCase ) for x in references] ) else: snake_case = np.asarray(lowerCAmelCase ) snake_case = np.asarray(lowerCAmelCase ) if ignore_case: snake_case = np.char.lower(lowerCAmelCase ) snake_case = np.char.lower(lowerCAmelCase ) if ignore_punctuation: snake_case = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case = np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) snake_case = np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) if ignore_numbers: snake_case = string.digits.maketrans('' , '' , string.digits ) snake_case = np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) snake_case = np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) snake_case = predictions == references return {"exact_match": np.mean(lowerCAmelCase ) * 1_00}
149
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
149
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''ConvNextFeatureExtractor'''] snake_case_ = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
214
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case_ = logging.getLogger(__name__) snake_case_ = 50 # max width of layer names snake_case_ = 70 # max width of quantizer names def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : str = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=SCREAMING_SNAKE_CASE_ , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=SCREAMING_SNAKE_CASE_ , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=SCREAMING_SNAKE_CASE_ , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=SCREAMING_SNAKE_CASE_ , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=SCREAMING_SNAKE_CASE_ , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=SCREAMING_SNAKE_CASE_ , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' if args.calibrator == "max": lowercase__ : Optional[int] = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) lowercase__ : Optional[Any] = 'histogram' elif args.calibrator == "mse": lowercase__ : int = 'histogram' else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) lowercase__ : Any = QuantDescriptor(num_bits=args.aprec , calib_method=SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(SCREAMING_SNAKE_CASE_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Any=False ): '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , ['embeddings'] , which='weight' , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [''] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable_keyword: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , args.quant_disable_keyword , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable_layer_module: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_enable_layer_module: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.recalibrate_weights: recalibrate_weights(SCREAMING_SNAKE_CASE_ ) if args.fuse_qkv: fuse_qkv(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if args.clip_gelu: clip_gelu(SCREAMING_SNAKE_CASE_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' def fusea(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): for mod in [qq, qk, qv]: if not hasattr(SCREAMING_SNAKE_CASE_ , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return lowercase__ : List[Any] = qq._amax.detach().item() lowercase__ : Optional[int] = qk._amax.detach().item() lowercase__ : List[str] = qv._amax.detach().item() lowercase__ : Tuple = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) qq._amax.fill_(SCREAMING_SNAKE_CASE_ ) qk._amax.fill_(SCREAMING_SNAKE_CASE_ ) qv._amax.fill_(SCREAMING_SNAKE_CASE_ ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): lowercase__ : Any = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: lowercase__ : Union[str, Any] = mod.weight.shape[0] lowercase__ : str = mod._weight_quantizer._amax.detach() lowercase__ : Any = torch.ones(SCREAMING_SNAKE_CASE_ , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowercase__ : Dict = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowercase__ : Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set lowercase__ : str = pytorch_quantization.utils.reduce_amax(mod.weight , axis=SCREAMING_SNAKE_CASE_ , keepdims=SCREAMING_SNAKE_CASE_ ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) lowercase__ : Union[str, Any] = amax def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any]=25 , SCREAMING_SNAKE_CASE_ : Any=180 , SCREAMING_SNAKE_CASE_ : Optional[int]=None ): '''simple docstring''' if ignore is None: lowercase__ : Tuple = [] elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : str = [ignore] lowercase__ : Optional[Any] = 0 for name, mod in model.named_modules(): if not hasattr(SCREAMING_SNAKE_CASE_ , 'weight' ): continue lowercase__ : Optional[Any] = max(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) for name, mod in model.named_modules(): lowercase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , '_input_quantizer' , SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' , SCREAMING_SNAKE_CASE_ ) if not hasattr(SCREAMING_SNAKE_CASE_ , 'weight' ): continue if type(SCREAMING_SNAKE_CASE_ ) in ignore: continue if [True for s in ignore if type(SCREAMING_SNAKE_CASE_ ) is str and s in name]: continue lowercase__ : Optional[int] = f"""Act:{input_q.extra_repr()}""" lowercase__ : Dict = f"""Wgt:{weight_q.extra_repr()}""" lowercase__ : Tuple = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(SCREAMING_SNAKE_CASE_ ) <= line_width: logger.info(SCREAMING_SNAKE_CASE_ ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : List[str] = 0 for name, mod in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' lowercase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if quantizer_mod is not None: assert hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: logger.warning(f"""{name} has no {quantizer}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]="both" , **SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : Optional[int] = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '_input_quantizer' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if which in ["weight", "both"]: set_quantizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '_weight_quantizer' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_input_quantizer' ) or hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ): for n in names: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): set_quantizers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif name.endswith('_quantizer' ): for n in names: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : Any = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(SCREAMING_SNAKE_CASE_ )
214
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCamelCase__ = logging.get_logger(__name__) @dataclass class A__ : lowercase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) lowercase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowercase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.task_name.lower() class A__ ( __magic_name__ ): lowercase = 'train' lowercase = 'dev' lowercase = 'test' class A__ ( __magic_name__ ): lowercase = 42 lowercase = 42 lowercase = 42 def __init__( self : Optional[Any] , a : GlueDataTrainingArguments , a : PreTrainedTokenizerBase , a : Optional[int] = None , a : Union[str, Split] = Split.train , a : Optional[str] = None , ): '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , a , ) lowerCAmelCase__ : int = args lowerCAmelCase__ : int = glue_processors[args.task_name]() lowerCAmelCase__ : List[Any] = glue_output_modes[args.task_name] if isinstance(a , a ): try: lowerCAmelCase__ : Optional[Any] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase__ : str = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) lowerCAmelCase__ : List[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = label_list[2], label_list[1] lowerCAmelCase__ : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase__ : Any = cached_features_file + '.lock' with FileLock(a ): if os.path.exists(a ) and not args.overwrite_cache: lowerCAmelCase__ : Dict = time.time() lowerCAmelCase__ : str = torch.load(a ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: lowerCAmelCase__ : Union[str, Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase__ : Tuple = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase__ : str = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase__ : Union[str, Any] = examples[:limit_length] lowerCAmelCase__ : List[Any] = glue_convert_examples_to_features( a , a , max_length=args.max_seq_length , label_list=a , output_mode=self.output_mode , ) lowerCAmelCase__ : int = time.time() torch.save(self.features , a ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : List[str] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , a : int ): '''simple docstring''' return self.features[i] def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.label_list
307
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
1
"""simple docstring""" import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( __SCREAMING_SNAKE_CASE=None ) -> Any: if subparsers is not None: __lowerCAmelCase: Union[str, Any] = subparsers.add_parser("tpu-config" , description=_description ) else: __lowerCAmelCase: List[str] = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments __lowerCAmelCase: Dict = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=_A , default=_A , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_A , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_A , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) __lowerCAmelCase: Optional[Any] = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_A , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: List[str] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): __lowerCAmelCase: Optional[int] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowerCAmelCase: int = defaults.command_file if not args.command and defaults.commands is not None: __lowerCAmelCase: Tuple = defaults.commands if not args.tpu_name: __lowerCAmelCase: List[str] = defaults.tpu_name if not args.tpu_zone: __lowerCAmelCase: List[str] = defaults.tpu_zone if args.accelerate_version == "dev": __lowerCAmelCase: int = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": __lowerCAmelCase: Any = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , _A ): __lowerCAmelCase: Optional[int] = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: __lowerCAmelCase: Any = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): __lowerCAmelCase: Dict = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowerCAmelCase: List[Any] = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowerCAmelCase: Optional[Any] = "; ".join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowerCAmelCase: List[str] = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_A )}" ) return subprocess.run(_A ) print("Successfully setup pod." ) def a__ ( ) -> Dict: __lowerCAmelCase: str = tpu_command_parser() __lowerCAmelCase: Optional[int] = parser.parse_args() tpu_command_launcher(_A )
217
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case__ ( _A: Union[str, Any] , _A: Tuple , _A: Any=1e-12 ) -> str: '''simple docstring''' lowerCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_A , axis=1 ) , a_min=_A ) ).T lowerCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_A , axis=1 ) , a_min=_A ) ).T return jnp.matmul(_A , norm_emb_a.T ) class a__( nn.Module ): '''simple docstring''' UpperCAmelCase_ : CLIPConfig UpperCAmelCase_ : jnp.dtype = jnp.floataa def a_ ( self): """simple docstring""" lowerCAmelCase = FlaxCLIPVisionModule(self.config.vision_config) lowerCAmelCase = nn.Dense(self.config.projection_dim , use_bias=__lowerCAmelCase , dtype=self.dtype) lowerCAmelCase = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim)) lowerCAmelCase = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim)) lowerCAmelCase = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,)) lowerCAmelCase = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,)) def __call__( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.vision_model(__lowerCAmelCase)[1] lowerCAmelCase = self.visual_projection(__lowerCAmelCase) lowerCAmelCase = jax_cosine_distance(__lowerCAmelCase , self.special_care_embeds) lowerCAmelCase = jax_cosine_distance(__lowerCAmelCase , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCAmelCase = 0.0 lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCAmelCase = jnp.round(__lowerCAmelCase , 3) lowerCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCAmelCase) # Use a lower threshold if an image has any special care concept lowerCAmelCase = is_special_care * 0.01 lowerCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCAmelCase = jnp.round(__lowerCAmelCase , 3) lowerCAmelCase = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : int = CLIPConfig UpperCAmelCase_ : Any = '''clip_input''' UpperCAmelCase_ : List[str] = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = jnp.floataa , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" if input_shape is None: lowerCAmelCase = (1, 224, 224, 3) lowerCAmelCase = self.module_class(config=__lowerCAmelCase , dtype=__lowerCAmelCase , **__lowerCAmelCase) super().__init__(__lowerCAmelCase , __lowerCAmelCase , input_shape=__lowerCAmelCase , seed=__lowerCAmelCase , dtype=__lowerCAmelCase , _do_init=_do_init) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" lowerCAmelCase = jax.random.normal(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase , lowerCAmelCase = jax.random.split(__lowerCAmelCase) lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} lowerCAmelCase = self.module.init(__lowerCAmelCase , __lowerCAmelCase)["""params"""] return random_params def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1)) return self.module.apply( {"""params""": params or self.params} , jnp.array(__lowerCAmelCase , dtype=jnp.floataa) , rngs={} , )
272
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'mra' def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-5 , __lowerCamelCase="absolute" , __lowerCamelCase=4 , __lowerCamelCase="full" , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , **__lowerCamelCase , ) -> int: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : Dict = max_position_embeddings _SCREAMING_SNAKE_CASE : str = hidden_size _SCREAMING_SNAKE_CASE : str = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads _SCREAMING_SNAKE_CASE : Dict = intermediate_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act _SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range _SCREAMING_SNAKE_CASE : int = type_vocab_size _SCREAMING_SNAKE_CASE : Any = layer_norm_eps _SCREAMING_SNAKE_CASE : int = position_embedding_type _SCREAMING_SNAKE_CASE : str = block_per_row _SCREAMING_SNAKE_CASE : str = approx_mode _SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_first_n_blocks _SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
325
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _A : Optional[Any] = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Tuple = to_pil_image(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Any = pil_image.size lowerCamelCase__ : int = pytesseract.image_to_data(UpperCAmelCase , lang=UpperCAmelCase , output_type='''dict''' , config=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCamelCase__ : int = [idx for idx, word in enumerate(UpperCAmelCase ) if not word.strip()] lowerCamelCase__ : Optional[Any] = [word for idx, word in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] lowerCamelCase__ : List[Any] = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] lowerCamelCase__ : Any = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] lowerCamelCase__ : List[str] = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] lowerCamelCase__ : List[Any] = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCamelCase__ : str = [] for x, y, w, h in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : Tuple = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase ) # finally, normalize the bounding boxes lowerCamelCase__ : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : int = ["pixel_values"] def __init__( self : int , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : float = 1 / 2_5_5 , A : bool = True , A : Union[float, Iterable[float]] = None , A : Union[float, Iterable[float]] = None , A : bool = True , A : Optional[str] = None , A : Optional[str] = "" , **A : Tuple , ) ->None: super().__init__(**A ) lowerCamelCase__ : Optional[int] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCamelCase__ : List[str] = get_size_dict(A ) lowerCamelCase__ : Any = do_resize lowerCamelCase__ : List[str] = size lowerCamelCase__ : int = resample lowerCamelCase__ : int = do_rescale lowerCamelCase__ : Union[str, Any] = rescale_value lowerCamelCase__ : str = do_normalize lowerCamelCase__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCamelCase__ : Optional[int] = apply_ocr lowerCamelCase__ : List[Any] = ocr_lang lowerCamelCase__ : Any = tesseract_config def __lowerCamelCase ( self : Dict , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : int , ) ->np.ndarray: lowerCamelCase__ : str = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowerCamelCase__ : Tuple = (size['''height'''], size['''width''']) return resize(A , size=A , resample=A , data_format=A , **A ) def __lowerCamelCase ( self : Any , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ) ->np.ndarray: return rescale(A , scale=A , data_format=A , **A ) def __lowerCamelCase ( self : List[Any] , A : np.ndarray , A : Union[float, Iterable[float]] , A : Union[float, Iterable[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Any , ) ->np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def __lowerCamelCase ( self : List[str] , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : Optional[Any]=None , A : bool = None , A : float = None , A : bool = None , A : Union[float, Iterable[float]] = None , A : Union[float, Iterable[float]] = None , A : bool = None , A : Optional[str] = None , A : Optional[str] = None , A : Optional[Union[str, TensorType]] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Tuple , ) ->PIL.Image.Image: lowerCamelCase__ : Any = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Optional[int] = size if size is not None else self.size lowerCamelCase__ : Dict = get_size_dict(A ) lowerCamelCase__ : Dict = resample if resample is not None else self.resample lowerCamelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : str = image_std if image_std is not None else self.image_std lowerCamelCase__ : List[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCamelCase__ : Dict = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCamelCase__ : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCamelCase__ : Tuple = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCamelCase__ : Union[str, Any] = [to_numpy_array(A ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[Any] = [] for image in images: lowerCamelCase__ , lowerCamelCase__ : List[str] = apply_tesseract(A , A , A ) words_batch.append(A ) boxes_batch.append(A ) if do_resize: lowerCamelCase__ : Any = [self.resize(image=A , size=A , resample=A ) for image in images] if do_rescale: lowerCamelCase__ : Optional[int] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: lowerCamelCase__ : Union[str, Any] = [self.normalize(image=A , mean=A , std=A ) for image in images] lowerCamelCase__ : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] lowerCamelCase__ : Dict = BatchFeature(data={'''pixel_values''': images} , tensor_type=A ) if apply_ocr: lowerCamelCase__ : Union[str, Any] = words_batch lowerCamelCase__ : int = boxes_batch return data
142
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = emb.weight.shape lowerCamelCase__ : str = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = emb.weight.data return lin_layer def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = torch.load(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : List[Any] = mam_aaa['''args'''] lowerCamelCase__ : Dict = mam_aaa['''model'''] lowerCamelCase__ : Optional[Any] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) lowerCamelCase__ : Tuple = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowerCamelCase__ : Tuple = args.share_decoder_input_output_embed lowerCamelCase__ : Dict = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] lowerCamelCase__ : str = SpeechaTextConfig( vocab_size=UpperCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCAmelCase , num_beams=5 , max_length=200 , use_cache=UpperCAmelCase , decoder_start_token_id=2 , early_stopping=UpperCAmelCase , ) lowerCamelCase__ : Optional[int] = SpeechaTextForConditionalGeneration(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : Tuple = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _A : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
142
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
234
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _UpperCamelCase = logging.get_logger("""transformers.models.speecht5""") _UpperCamelCase = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } _UpperCamelCase = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } _UpperCamelCase = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } _UpperCamelCase = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } _UpperCamelCase = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } _UpperCamelCase = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } _UpperCamelCase = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } _UpperCamelCase = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = [] _UpperCamelCase = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: UpperCAmelCase = getattr(_snake_case , _snake_case ).shape else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "running_mean": UpperCAmelCase = value elif weight_type == "running_var": UpperCAmelCase = value elif weight_type == "num_batches_tracked": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] if task == "s2t": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2T UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase = None UpperCAmelCase = MAPPING_T2S UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2S UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_snake_case , _snake_case ): logger.info(F'''{name} was ignored''' ) continue UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(_snake_case )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , _snake_case ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "bias" in name: UpperCAmelCase = """bias""" elif "weight" in name: UpperCAmelCase = """weight""" elif "running_mean" in name: UpperCAmelCase = """running_mean""" elif "running_var" in name: UpperCAmelCase = """running_var""" elif "num_batches_tracked" in name: UpperCAmelCase = """num_batches_tracked""" else: UpperCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" if config_path is not None: UpperCAmelCase = SpeechTaConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = SpeechTaConfig() if task == "s2t": UpperCAmelCase = config.max_text_positions UpperCAmelCase = SpeechTaForSpeechToText(_snake_case ) elif task == "t2s": UpperCAmelCase = 1876 UpperCAmelCase = 600 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForTextToSpeech(_snake_case ) elif task == "s2s": UpperCAmelCase = 1876 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForSpeechToSpeech(_snake_case ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: UpperCAmelCase = SpeechTaTokenizer(_snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken("""<mask>""" , lstrip=_snake_case , rstrip=_snake_case ) UpperCAmelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = SpeechTaProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) processor.save_pretrained(_snake_case ) UpperCAmelCase = torch.load(_snake_case ) recursively_load_weights(fairseq_checkpoint["""model"""] , _snake_case , _snake_case ) model.save_pretrained(_snake_case ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
234
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCAmelCase_ ( A_): UpperCamelCase__: str = [] for line in lines: UpperCamelCase__: Dict = re.sub(R"#.*" ,"" ,A_) # remove comments if line: filtered_lines.append(A_) UpperCamelCase__: int = "\n".join(A_) # Make a hash from all this code UpperCamelCase__: List[Any] = full_str.encode("utf-8") return shaaaa(A_).hexdigest() # get importable module names and hash for caching A__: List[Any] = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions A__: Optional[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) A__: Tuple = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name A__: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
149
from torch import nn def lowerCAmelCase_ ( A_): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}")
149
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a : Tuple = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 a : List[str] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase_ ( cls ): '''simple docstring''' lowercase__ : Union[str, Any]= TOKEN HfFolder.save_token(snake_case__ ) @classmethod def UpperCAmelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowercase__ : List[Any]= BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase__ : int= BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowercase__ : Optional[Any]= BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase__ : Any= BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__ : Union[str, Any]= CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowercase__ : List[str]= AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : str= c.n_embd + 1 # int lowercase__ : Tuple= c.resid_pdrop + 1.0 # float lowercase__ : Union[str, Any]= not c.scale_attn_weights # bool lowercase__ : Optional[Any]= c.summary_type + "foo" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= PretrainedConfig() lowercase__ : List[str]= [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowercase__ : Tuple= [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F''' {', '.join(snake_case__ )}.''' ) def UpperCAmelCase_ ( self ): '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Optional[int]= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowercase__ : Optional[Any]= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__ : str= mock.Mock() lowercase__ : Optional[Any]= 500 lowercase__ : Any= {} lowercase__ : Tuple= HTTPError lowercase__ : List[Any]= {} # Download this model to make sure it's in the cache. lowercase__ : Any= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: lowercase__ : Any= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__ : Optional[Any]= BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= AutoConfig.from_pretrained("bert-base-cased" ) lowercase__ : Optional[int]= ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) lowercase__ : List[Any]= 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : int= AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Optional[int]= ["config.42.0.0.json"] lowercase__ : int= 768 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) lowercase__ : Optional[Any]= AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCAmelCase_ ( self ): '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__ : Optional[Any]= "hf-internal-testing/test-two-configs" import transformers as new_transformers lowercase__ : Optional[Any]= "v4.0.0" lowercase__, lowercase__ : str= new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : Dict= "v3.0.0" lowercase__ : Tuple= old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 768 )
150
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: __lowercase = [0] * len(SCREAMING_SNAKE_CASE ) __lowercase = [] __lowercase = [1] * len(SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE ) while queue: __lowercase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __lowercase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE ) print(max(SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE__ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
325
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
1
import string from math import logaa def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: __UpperCAmelCase : Optional[Any] = document.translate( str.maketrans("", "", string.punctuation ) ).replace("\n", "" ) __UpperCAmelCase : Any = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> tuple[int, int]: __UpperCAmelCase : int = corpus.lower().translate( str.maketrans("", "", string.punctuation ) ) # strip all punctuation and replace it with '' __UpperCAmelCase : List[str] = corpus_without_punctuation.split("\n" ) __UpperCAmelCase : Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(a__ )) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ), 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ), 3 ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: return round(tf * idf, 3 )
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : @staticmethod def lowerCAmelCase__ ( *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : List[Any] ) ->Dict: '''simple docstring''' pass def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[int] = np.array(__lowerCAmelCase ) _UpperCAmelCase : Tuple = npimg.shape return {"hash": hashimage(__lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase : List[str] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase : int = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = MaskGenerationPipeline(model=lowerCamelCase__ , image_processor=lowerCamelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' pass @slow @require_torch def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) _UpperCAmelCase : List[str] = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_56 ) # Shortening by hashing _UpperCAmelCase : List[str] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_80, 6_40)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (4_80, 6_40)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (4_80, 6_40)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (4_80, 6_40)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (4_80, 6_40)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (4_80, 6_40)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (4_80, 6_40)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (4_80, 6_40)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_80, 6_40)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (4_80, 6_40)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (4_80, 6_40)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (4_80, 6_40)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (4_80, 6_40)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (4_80, 6_40)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (4_80, 6_40)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (4_80, 6_40)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (4_80, 6_40)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (4_80, 6_40)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (4_80, 6_40)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "facebook/sam-vit-huge" _UpperCAmelCase : int = pipeline("mask-generation" , model=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing _UpperCAmelCase : Tuple = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, ] , )
234
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
234
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _snake_case ( A , A , A , A , A ) -> Tuple: for attribute in key.split('''.''' ): lowerCAmelCase__ = getattr(A , A ) if weight_type is not None: lowerCAmelCase__ = getattr(A , A ).shape else: lowerCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( A , A ) -> List[str]: lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.feature_extractor lowerCAmelCase__ = hf_model.adapter for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase__ = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(A , A , A , A ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(A )[0].split('''.''' )[-2] lowerCAmelCase__ = mapped_key.replace('''*''' , A ) if "weight_g" in name: lowerCAmelCase__ = '''weight_g''' elif "weight_v" in name: lowerCAmelCase__ = '''weight_v''' elif "bias" in name: lowerCAmelCase__ = '''bias''' elif "weight" in name: lowerCAmelCase__ = '''weight''' else: lowerCAmelCase__ = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( A , A , A , A , A ) -> int: lowerCAmelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCAmelCase__ = name.split('''.''' ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) def _snake_case ( A , A , A , A ) -> Tuple: lowerCAmelCase__ = full_name.split('''adaptor.''' )[-1] lowerCAmelCase__ = name.split('''.''' ) if items[1].isdigit(): lowerCAmelCase__ = int(items[1] ) else: lowerCAmelCase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowerCAmelCase__ = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowerCAmelCase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowerCAmelCase__ = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowerCAmelCase__ = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(A , A ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowerCAmelCase__ = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowerCAmelCase__ = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(A ) def _snake_case ( A ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ = emb.weight.shape lowerCAmelCase__ = nn.Linear(A , A , bias=A ) lowerCAmelCase__ = emb.weight.data return lin_layer @torch.no_grad() def _snake_case ( A , A , A , A , A , A , A , A , A , A , A , ) -> str: lowerCAmelCase__ = WavaVecaConfig.from_pretrained( A , add_adapter=A , adapter_stride=A , adapter_kernel_size=A , use_auth_token=A , output_hidden_size=A , ) lowerCAmelCase__ = MBartConfig.from_pretrained(A ) # load model lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowerCAmelCase__ = model[0].eval() # load feature extractor lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(A , use_auth_token=A ) # set weights for wav2vec2 encoder lowerCAmelCase__ = WavaVecaModel(A ) recursively_load_weights_wavaveca(model.encoder , A ) # load decoder weights lowerCAmelCase__ = MBartForCausalLM(A ) lowerCAmelCase__ , lowerCAmelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCAmelCase__ = SpeechEncoderDecoderModel(encoder=A , decoder=A ) lowerCAmelCase__ = False lowerCAmelCase__ = MBartaaTokenizer(A ) tokenizer.save_pretrained(A ) lowerCAmelCase__ = hf_wavavec.config.to_dict() lowerCAmelCase__ = tokenizer.pad_token_id lowerCAmelCase__ = tokenizer.bos_token_id lowerCAmelCase__ = tokenizer.eos_token_id lowerCAmelCase__ = '''mbart50''' lowerCAmelCase__ = '''wav2vec2''' lowerCAmelCase__ = tokenizer.eos_token_id lowerCAmelCase__ = 250004 lowerCAmelCase__ = tokenizer.eos_token_id lowerCAmelCase__ = SpeechEncoderDecoderConfig.from_dict(A ) hf_wavavec.save_pretrained(A ) feature_extractor.save_pretrained(A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1_024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250_004, type=int, help='''`decoder_start_token_id` of model config''') __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
228
'''simple docstring''' def _snake_case ( A = 10 ) -> str: if not isinstance(A , A ) or n < 0: raise ValueError('''Invalid input''' ) lowerCAmelCase__ = 10**n lowerCAmelCase__ = 28433 * (pow(2 , 7830457 , A )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
228
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int ): if not isinstance(__lowercase , __lowercase ): lowercase_ : Any = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowercase ) if number < 0: return False lowercase_ : Optional[Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
213
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __SCREAMING_SNAKE_CASE :List[str] = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Tuple ) -> int: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) return (preds == labels).mean() def UpperCAmelCase_ ( __lowercase : int , __lowercase : str ) -> Optional[Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) _UpperCAmelCase = simple_accuracy(__lowercase , __lowercase ) _UpperCAmelCase = fa_score(y_true=__lowercase , y_pred=__lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : List[str] ) -> List[Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) _UpperCAmelCase = pearsonr(__lowercase , __lowercase )[0] _UpperCAmelCase = spearmanr(__lowercase , __lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : str ) -> Tuple: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) assert len(__lowercase ) == len(__lowercase ), f'Predictions and labels have mismatched lengths {len(__lowercase )} and {len(__lowercase )}' if task_name == "cola": return {"mcc": matthews_corrcoef(__lowercase , __lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "mrpc": return acc_and_fa(__lowercase , __lowercase ) elif task_name == "sts-b": return pearson_and_spearman(__lowercase , __lowercase ) elif task_name == "qqp": return acc_and_fa(__lowercase , __lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : str ) -> Union[str, Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) if len(__lowercase ) != len(__lowercase ): raise ValueError(f'Predictions and labels have mismatched lengths {len(__lowercase )} and {len(__lowercase )}' ) if task_name == "xnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError(__lowercase )
22
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( _a ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="""hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def snake_case ( self , __a=0 ): __lowerCAmelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(snake_case_ ) ) __lowerCAmelCase = np.random.RandomState(snake_case_ ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.7_5, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def snake_case ( self ): __lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def snake_case ( self ): __lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self ): __lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations __lowerCAmelCase = pipe(**self.get_dummy_inputs() ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self ): __lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self ): __lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self ): __lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def snake_case ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self ): __lowerCAmelCase = ort.SessionOptions() __lowerCAmelCase = False return options def snake_case ( self ): __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowerCAmelCase = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default __lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = """A fantasy landscape, trending on artstation""" __lowerCAmelCase = np.random.RandomState(0 ) __lowerCAmelCase = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="np" , ) __lowerCAmelCase = output.images __lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __lowerCAmelCase = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case ( self ): __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowerCAmelCase = init_image.resize((7_68, 5_12) ) __lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) __lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = """A fantasy landscape, trending on artstation""" __lowerCAmelCase = np.random.RandomState(0 ) __lowerCAmelCase = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="np" , ) __lowerCAmelCase = output.images __lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __lowerCAmelCase = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
371
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A : Optional[int] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=16 , __a=13 , __a=7 , __a=14 , __a=10 , __a=19 , __a=5 , __a=4 , __a=True , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=[1, 2, 3, 4, 5] , __a=25 , __a=5 , ): __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def snake_case ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def snake_case ( self , __a ): __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def snake_case ( self ): __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __a , __a ): __lowerCAmelCase = AutoformerModel(config=__a ).to(__a ).eval() __lowerCAmelCase = model(**__a ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**__a ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCAmelCase : List[Any] =(AutoformerForPrediction,) if is_torch_available() else () __UpperCAmelCase : Tuple ={"""feature-extraction""": AutoformerModel} if is_torch_available() else {} __UpperCAmelCase : Tuple =False __UpperCAmelCase : Any =False __UpperCAmelCase : Dict =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Optional[Any] =False def snake_case ( self ): __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="Model has no tokens embeddings" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase = inspect.signature(getattr(__a , "forward" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , "seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "decoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "encoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "d_model" , __a ) __lowerCAmelCase = getattr(self.model_tester , "num_attention_heads" , __a ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(__a ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def snake_case ( self ): super().test_retain_grad_hidden_states_attentions() def _lowerCamelCase ( _UpperCamelCase="train-batch.pt" ): '''simple docstring''' __lowerCAmelCase = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_UpperCamelCase , repo_type="dataset" ) __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) return batch @require_torch @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowerCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__a ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1 ) )
259
0
"""simple docstring""" import math def lowerCAmelCase__ ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
150
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : list[int] ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(_UpperCamelCase , (list, tuple) ) or not all( isinstance(_UpperCamelCase , _UpperCamelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) snake_case = snake_case = snake_case = numbers[0] for i in range(1 , len(_UpperCamelCase ) ): # update the maximum and minimum subarray products snake_case = numbers[i] if number < 0: snake_case ,snake_case = min_till_now, max_till_now snake_case = max(_UpperCamelCase , max_till_now * number ) snake_case = min(_UpperCamelCase , min_till_now * number ) # update the maximum product found till now snake_case = max(_UpperCamelCase , _UpperCamelCase ) return max_prod
150
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : Optional[Any] = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Union[str, Any] = "vit" def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict=7_6_8 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : Dict=3_0_7_2 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : List[str]=2_2_4 , UpperCAmelCase__ : List[str]=1_6 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1_6 , **UpperCAmelCase__ : Optional[Any] , ) -> List[Any]: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = encoder_stride class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[Any] = version.parse("1.11") @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self : Any ) -> float: return 1E-4
54
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
def snake_case () -> int: return 1 def snake_case (UpperCAmelCase__ ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def snake_case (UpperCAmelCase__ ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ = 2_0_0 ) -> int: return two_pound(UpperCAmelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
292
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def snake_case (UpperCAmelCase__ ) -> tuple: return (data["data"], data["target"]) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> np.ndarray: UpperCamelCase_: Dict = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(UpperCAmelCase__ , UpperCAmelCase__ ) # Predict target for test data UpperCamelCase_: int = xgb.predict(UpperCAmelCase__ ) UpperCamelCase_: Any = predictions.reshape(len(UpperCAmelCase__ ) , 1 ) return predictions def snake_case () -> None: UpperCamelCase_: Union[str, Any] = fetch_california_housing() UpperCamelCase_ ,UpperCamelCase_: Tuple = data_handling(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = train_test_split( UpperCAmelCase__ , UpperCAmelCase__ , test_size=0.25 , random_state=1 ) UpperCamelCase_: Union[str, Any] = xgboost(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
292
1
def __A ( __lowerCamelCase = 100 ) -> int: a = n * (n + 1) * (2 * n + 1) / 6 a = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
228
def __A ( __lowerCamelCase ) -> int: a = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) a = hex_num[0] == """-""" if is_negative: a = hex_num[1:] try: a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) a = """""" while int_num > 0: a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
228
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = """pegasus""" _lowerCAmelCase : List[str] = ["""past_key_values"""] _lowerCAmelCase : int = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase=5_02_65 , lowerCAmelCase=10_24 , lowerCAmelCase=12 , lowerCAmelCase=40_96 , lowerCAmelCase=16 , lowerCAmelCase=12 , lowerCAmelCase=40_96 , lowerCAmelCase=16 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=10_24 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=0 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=1 , **lowerCAmelCase , ): """simple docstring""" snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) @property def snake_case ( self ): """simple docstring""" return self.encoder_attention_heads @property def snake_case ( self ): """simple docstring""" return self.d_model
356
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase="None" , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = relative_attention snake_case = position_biased_input snake_case = pos_att_type snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaModel(config=lowerCAmelCase ) snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case = [input_ids, input_mask] snake_case = model(lowerCAmelCase ) snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaForMaskedLM(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFDebertaVaForSequenceClassification(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFDebertaVaForTokenClassification(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaForQuestionAnswering(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase : Any = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[Any] = False def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): """simple docstring""" pass @slow def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) snake_case = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) snake_case = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] snake_case = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 )
149
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def A ( _lowerCamelCase="" ): '''simple docstring''' _lowerCAmelCase : Tuple = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.rand(12, dtype=torch.floataa) - 0.5 _lowerCAmelCase : List[str] = AgentAudio(__a) _lowerCAmelCase : int = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__a, agent_type.to_raw(), atol=1E-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__a)) # Ensure that the file contains the same value as the original tensor _lowerCAmelCase , _lowerCAmelCase : List[str] = sf.read(__a) self.assertTrue(torch.allclose(__a, torch.tensor(__a), atol=1E-4)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = torch.rand(12, dtype=torch.floataa) - 0.5 _lowerCAmelCase : Optional[int] = get_new_path(suffix=".wav") sf.write(__a, __a, 1_6000) _lowerCAmelCase : Any = AgentAudio(__a) self.assertTrue(torch.allclose(__a, agent_type.to_raw(), atol=1E-4)) self.assertEqual(agent_type.to_string(), __a) @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.randint(0, 256, (64, 64, 3)) _lowerCAmelCase : str = AgentImage(__a) _lowerCAmelCase : Optional[Any] = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__a, agent_type._tensor, atol=1E-4)) self.assertIsInstance(agent_type.to_raw(), Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" _lowerCAmelCase : Tuple = Image.open(__a) _lowerCAmelCase : Optional[Any] = AgentImage(__a) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" _lowerCAmelCase : Optional[Any] = Image.open(__a) _lowerCAmelCase : Any = AgentImage(__a) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = "Hey!" _lowerCAmelCase : Any = AgentText(__a) self.assertEqual(__a, agent_type.to_string()) self.assertEqual(__a, agent_type.to_raw()) self.assertEqual(__a, __a)
36
def _A ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ): UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCamelCase :Dict = 0 print(SCREAMING_SNAKE_CASE__ , end=''',''' ) # Consider rest of the activities for j in range(SCREAMING_SNAKE_CASE__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(SCREAMING_SNAKE_CASE__ , end=''',''' ) UpperCamelCase :List[str] = j if __name__ == "__main__": import doctest doctest.testmod() __snake_case = [1, 3, 0, 5, 8, 5] __snake_case = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
259
0
def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def count_of_possible_combinations(_A ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_A ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _A , _A ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] SCREAMING_SNAKE_CASE__ = sum( count_of_possible_combinations_with_dp_array(target - item , _A ) for item in array ) SCREAMING_SNAKE_CASE__ = answer return answer SCREAMING_SNAKE_CASE__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_A , _A ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * (target + 1) SCREAMING_SNAKE_CASE__ = 1 for i in range(1 , target + 1 ): for j in range(_A ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Union[str, Any] = 3 _SCREAMING_SNAKE_CASE : Any = 5 _SCREAMING_SNAKE_CASE : Optional[Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
353
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _SCREAMING_SNAKE_CASE : str = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : Dict = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : int = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : int = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } _SCREAMING_SNAKE_CASE : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } _SCREAMING_SNAKE_CASE : Tuple = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } def UpperCAmelCase_ ( _A ): '''simple docstring''' if isinstance(_A , _A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.skip_connection.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def UpperCAmelCase_ ( _A , _A , _A , _A , _A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.norm.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.norm.bias'''] SCREAMING_SNAKE_CASE__ = weight_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = weight_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = weight_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: SCREAMING_SNAKE_CASE__ = checkpoint['''label_emb.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_blocks.0.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_blocks.0.0.bias'''] SCREAMING_SNAKE_CASE__ = unet_config['''down_block_types'''] SCREAMING_SNAKE_CASE__ = unet_config['''layers_per_block'''] SCREAMING_SNAKE_CASE__ = unet_config['''attention_head_dim'''] SCREAMING_SNAKE_CASE__ = unet_config['''block_out_channels'''] SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = channels_list[0] for i, layer_type in enumerate(_A ): SCREAMING_SNAKE_CASE__ = channels_list[i] SCREAMING_SNAKE_CASE__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_A ): SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_A ): SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.attentions.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.1''' SCREAMING_SNAKE_CASE__ = convert_attention( _A , _A , _A , _A , _A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.downsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) current_layer += 1 SCREAMING_SNAKE_CASE__ = current_channels # hardcoded the mid-block for now SCREAMING_SNAKE_CASE__ = '''mid_block.resnets.0''' SCREAMING_SNAKE_CASE__ = '''middle_block.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = '''mid_block.attentions.0''' SCREAMING_SNAKE_CASE__ = '''middle_block.1''' SCREAMING_SNAKE_CASE__ = convert_attention(_A , _A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = '''mid_block.resnets.1''' SCREAMING_SNAKE_CASE__ = '''middle_block.2''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = unet_config['''up_block_types'''] for i, layer_type in enumerate(_A ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.upsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer-1}.1''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.attentions.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.1''' SCREAMING_SNAKE_CASE__ = convert_attention( _A , _A , _A , _A , _A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.upsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer-1}.2''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = checkpoint['''out.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() _SCREAMING_SNAKE_CASE : List[str] = strabool(args.class_cond) _SCREAMING_SNAKE_CASE : int = os.path.basename(args.unet_path) print(F"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: _SCREAMING_SNAKE_CASE : Optional[Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _SCREAMING_SNAKE_CASE : int = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = TEST_UNET_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : int = con_pt_to_diffuser(args.unet_path, unet_config) _SCREAMING_SNAKE_CASE : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _SCREAMING_SNAKE_CASE : Optional[Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _SCREAMING_SNAKE_CASE : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _SCREAMING_SNAKE_CASE : int = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") _SCREAMING_SNAKE_CASE : int = CMStochasticIterativeScheduler(**scheduler_config) _SCREAMING_SNAKE_CASE : str = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
218
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE : Any = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: SCREAMING_SNAKE_CASE : Any = 4 SCREAMING_SNAKE_CASE : Dict = 48 SCREAMING_SNAKE_CASE : Tuple = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = [6, 6, 6, 6] SCREAMING_SNAKE_CASE : Any = 60 SCREAMING_SNAKE_CASE : Tuple = [6, 6, 6, 6] SCREAMING_SNAKE_CASE : int = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 4 SCREAMING_SNAKE_CASE : Dict = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = 1_26 SCREAMING_SNAKE_CASE : Dict = 7 SCREAMING_SNAKE_CASE : int = 255.0 SCREAMING_SNAKE_CASE : Optional[Any] = """""" return config def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: SCREAMING_SNAKE_CASE : Any = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE : int = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: SCREAMING_SNAKE_CASE : Any = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE : Optional[int] = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE : Optional[int] = """layernorm.bias""" if "conv_first" in name: SCREAMING_SNAKE_CASE : int = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: SCREAMING_SNAKE_CASE : Any = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("""upsample.2""" , """upsample.convolution_1""" ) SCREAMING_SNAKE_CASE : List[Any] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: SCREAMING_SNAKE_CASE : int = """swin2sr.""" + name return name def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : List[str] = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: SCREAMING_SNAKE_CASE : Any = key.split(""".""" ) SCREAMING_SNAKE_CASE : Optional[int] = int(key_split[1] ) SCREAMING_SNAKE_CASE : Any = int(key_split[4] ) SCREAMING_SNAKE_CASE : Dict = config.embed_dim if "weight" in key: SCREAMING_SNAKE_CASE : List[Any] = val[:dim, :] SCREAMING_SNAKE_CASE : int = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Tuple = val[-dim:, :] else: SCREAMING_SNAKE_CASE : List[Any] = val[:dim] SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Any = val[-dim:] pass else: SCREAMING_SNAKE_CASE : Optional[int] = val return orig_state_dict def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = get_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = SwinaSRForImageSuperResolution(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Any = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE : Tuple = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowerCamelCase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values SCREAMING_SNAKE_CASE : Optional[Any] = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE : Dict = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE : str = 1_26 if """Jpeg""" in checkpoint_url else 2_56 SCREAMING_SNAKE_CASE : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) SCREAMING_SNAKE_CASE : List[str] = transforms(lowerCamelCase_ ).unsqueeze(0 ) if config.num_channels == 1: SCREAMING_SNAKE_CASE : List[str] = pixel_values[:, 0, :, :].unsqueeze(1 ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 3, 5_12, 5_12] ) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 5_12, 5_12] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE : Dict = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-3 ) print("""Looks ok!""" ) SCREAMING_SNAKE_CASE : Any = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } SCREAMING_SNAKE_CASE : Tuple = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") __UpperCAmelCase = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
323
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''efficientnet''' def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : int , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : int = width_coefficient SCREAMING_SNAKE_CASE : List[str] = depth_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = depth_divisor SCREAMING_SNAKE_CASE : List[str] = kernel_sizes SCREAMING_SNAKE_CASE : Dict = in_channels SCREAMING_SNAKE_CASE : List[str] = out_channels SCREAMING_SNAKE_CASE : Any = depthwise_padding SCREAMING_SNAKE_CASE : Dict = strides SCREAMING_SNAKE_CASE : Optional[Any] = num_block_repeats SCREAMING_SNAKE_CASE : Any = expand_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dim SCREAMING_SNAKE_CASE : List[str] = pooling_type SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = batch_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum SCREAMING_SNAKE_CASE : Dict = dropout_rate SCREAMING_SNAKE_CASE : int = drop_connect_rate SCREAMING_SNAKE_CASE : Optional[Any] = sum(lowerCamelCase_ ) * 4 class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return 1e-5
323
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A_ : str = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = R'\w+[.]\d+' _UpperCAmelCase = re.findall(snake_case__ , snake_case__ ) for pat in pats: _UpperCAmelCase = key.replace(snake_case__ , '_'.join(pat.split('.' ) ) ) return key def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _UpperCAmelCase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": _UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=42 ) -> Union[str, Any]: '''simple docstring''' # Step 1: Convert pytorch tensor to numpy _UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _UpperCAmelCase = flax_model.init_weights(PRNGKey(snake_case__ ) ) _UpperCAmelCase = flatten_dict(snake_case__ ) _UpperCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase = rename_key(snake_case__ ) _UpperCAmelCase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase = rename_key_and_reshape_tensor(snake_case__ , snake_case__ , snake_case__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ )
339
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention" ) -> List[Any]: lowerCamelCase = lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ) -> List[str]: if split_mlp_wi: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowerCamelCase = (wi_a, wi_a) else: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def a__ ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False ) -> Dict: lowerCamelCase = traverse_util.flatten_dict(variables["""target"""] ) lowerCamelCase = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , snake_case__ ) lowerCamelCase = collections.OrderedDict() # Shared embeddings. lowerCamelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """encoder""" , """attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """encoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , snake_case__ , """encoder""" ).T lowerCamelCase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """encoder""" ).T lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """self_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """encoder_decoder_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 2 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """decoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup(snake_case__ , snake_case__ , """decoder""" ).T lowerCamelCase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase = old["""decoder/logits_dense/kernel"""].T return new def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCamelCase = state_dict["""shared.weight"""] return state_dict def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = checkpoints.load_tax_checkpoint(snake_case__ ) lowerCamelCase = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ ) lowerCamelCase = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ) -> str: lowerCamelCase = MTaConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase = UMTaEncoderModel(snake_case__ ) else: lowerCamelCase = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
291
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __UpperCAmelCase : int = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 48000, "sample_size": 65536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 48000, "sample_size": 65536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 48000, "sample_size": 131072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 16000, "sample_size": 65536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 16000, "sample_size": 65536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 16000, "sample_size": 65536, }, } def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" return torch.atana(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / math.pi * 2 def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = torch.sin(t * math.pi / 2 ) ** 2 UpperCamelCase : List[str] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ ( _a): '''simple docstring''' pass class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : Optional[int] = DiffusionAttnUnetaD(__SCREAMING_SNAKE_CASE , n_attn_layers=4 ) UpperCamelCase : Union[str, Any] = deepcopy(self.diffusion ) UpperCamelCase : Union[str, Any] = torch.quasirandom.SobolEngine(1 , scramble=__SCREAMING_SNAKE_CASE ) def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = MODELS_MAP[model_name]['''url'''] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" __UpperCAmelCase : Optional[int] = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __UpperCAmelCase : int = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __UpperCAmelCase : Tuple = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __UpperCAmelCase : List[str] = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __UpperCAmelCase : str = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __UpperCAmelCase : Tuple = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif name.startswith(SCREAMING_SNAKE_CASE_ ): return [name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str]=1_3 ): """simple docstring""" UpperCamelCase : Optional[int] = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) UpperCamelCase : Any = 0 if string.startswith('''net.3.''' ): depth += 1 UpperCamelCase : int = string[6:] elif string.startswith('''net.''' ): UpperCamelCase : str = string[4:] while string.startswith('''main.7.''' ): depth += 1 UpperCamelCase : str = string[7:] if string.startswith('''main.''' ): UpperCamelCase : str = string[5:] # mid block if string[:2].isdigit(): UpperCamelCase : Optional[int] = string[:2] UpperCamelCase : List[str] = string[2:] else: UpperCamelCase : List[str] = string[0] UpperCamelCase : List[str] = string[1:] if depth == max_depth: UpperCamelCase : Optional[Any] = MID_NUM_TO_LAYER[layer_num] UpperCamelCase : str = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) < 7: UpperCamelCase : List[Any] = DOWN_NUM_TO_LAYER[layer_num] UpperCamelCase : List[str] = F"""down_blocks.{depth}""" elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) > 7: UpperCamelCase : Dict = UP_NUM_TO_LAYER[layer_num] UpperCamelCase : List[str] = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: UpperCamelCase : str = DEPTH_0_TO_LAYER[layer_num] UpperCamelCase : Any = F"""up_blocks.{max_depth - 1}""" if int(SCREAMING_SNAKE_CASE_ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) UpperCamelCase : Optional[Any] = string_left[1:] if "resnets" in new_layer: UpperCamelCase : Tuple = convert_resconv_naming(SCREAMING_SNAKE_CASE_ ) elif "attentions" in new_layer: UpperCamelCase : Tuple = convert_attn_naming(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = new_string_left if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = prefix + '''.''' + new_layer + '''.''' + string_left else: UpperCamelCase : Tuple = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Dict = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue UpperCamelCase : Tuple = rename(SCREAMING_SNAKE_CASE_ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = transform_conv_attns(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : int = v return new_state_dict def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 1: if len(v.shape ) == 3: # weight UpperCamelCase : Optional[Any] = v[:, :, 0] else: # bias UpperCamelCase : Tuple = v else: # qkv matrices UpperCamelCase : List[str] = v.shape[0] UpperCamelCase : Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCamelCase : Tuple = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCamelCase : Tuple = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def a ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) UpperCamelCase : Any = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" UpperCamelCase : Optional[int] = download(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = MODELS_MAP[model_name]['''sample_rate'''] UpperCamelCase : List[str] = MODELS_MAP[model_name]['''sample_size'''] UpperCamelCase : List[Any] = Object() UpperCamelCase : Optional[int] = sample_size UpperCamelCase : Optional[Any] = sample_rate UpperCamelCase : Optional[int] = 0 UpperCamelCase : List[Any] = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE_ , sample_rate=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = diffusers_model.state_dict() UpperCamelCase : Union[str, Any] = DiffusionUncond(SCREAMING_SNAKE_CASE_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE_ )['''state_dict'''] ) UpperCamelCase : Optional[int] = orig_model.diffusion_ema.eval() UpperCamelCase : Any = orig_model.state_dict() UpperCamelCase : Any = rename_orig_weights(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCamelCase : Tuple = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE_ ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE_ ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": UpperCamelCase : Union[str, Any] = value.squeeze() UpperCamelCase : Optional[Any] = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 1_0_0 UpperCamelCase : Dict = 3_3 UpperCamelCase : Optional[int] = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE_ )[:-1] UpperCamelCase : str = get_crash_schedule(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = torch.manual_seed(3_3 ) UpperCamelCase : Optional[Any] = pipe(num_inference_steps=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).audios UpperCamelCase : Optional[Any] = sampling.iplms_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {} ) UpperCamelCase : str = generated.clamp(-1 , 1 ) UpperCamelCase : str = (generated - audio).abs().sum() UpperCamelCase : int = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE_ ) print('''Diff max''' , SCREAMING_SNAKE_CASE_ ) assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") __UpperCAmelCase : int = parser.parse_args() main(args)
315
import collections import os import re from pathlib import Path __UpperCAmelCase : List[str] = "src/transformers" # Matches is_xxx_available() __UpperCAmelCase : int = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __UpperCAmelCase : Optional[int] = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __UpperCAmelCase : List[Any] = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __UpperCAmelCase : List[Any] = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __UpperCAmelCase : str = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __UpperCAmelCase : Union[str, Any] = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __UpperCAmelCase : Dict = re.compile(r"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __UpperCAmelCase : str = re.compile(r"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __UpperCAmelCase : str = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __UpperCAmelCase : Any = re.compile(r"^\s*try:") # Catches a line with else: __UpperCAmelCase : List[Any] = re.compile(r"^\s*else:") def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" if _re_test_backend.search(SCREAMING_SNAKE_CASE_ ) is None: return None UpperCamelCase : Union[str, Any] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE_ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCamelCase : Tuple = f.readlines() UpperCamelCase : Tuple = 0 while line_index < len(SCREAMING_SNAKE_CASE_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE_ ): return None # First grab the objects without a specific backend in _import_structure UpperCamelCase : List[Any] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: UpperCamelCase : Optional[int] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ).groups()[0] UpperCamelCase : str = re.findall(R'''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue UpperCamelCase : List[Any] = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: UpperCamelCase : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 UpperCamelCase : Dict = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCamelCase : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): UpperCamelCase : str = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ) is not None: UpperCamelCase : Union[str, Any] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(''', ''' ) UpperCamelCase : List[Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ) is not None: UpperCamelCase : str = _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(''', ''' ) UpperCamelCase : Dict = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''"''' ): objects.append(line[1_3:-3] ) line_index += 1 UpperCamelCase : Tuple = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCamelCase : int = [] while ( line_index < len(SCREAMING_SNAKE_CASE_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): UpperCamelCase : Tuple = lines[line_index] UpperCamelCase : Any = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCamelCase : Any = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE_ ): # If the line is an if is_backend_available, we grab all objects associated. UpperCamelCase : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): UpperCamelCase : Optional[Any] = lines[line_index] UpperCamelCase : str = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 UpperCamelCase : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" def find_duplicates(SCREAMING_SNAKE_CASE_ : Any ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCamelCase : Dict = [] for key in import_dict_objects.keys(): UpperCamelCase : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) UpperCamelCase : Dict = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCamelCase : List[str] = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def a ( ): """simple docstring""" UpperCamelCase : Any = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ): if "__init__.py" in files: UpperCamelCase : int = os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' ) UpperCamelCase : Optional[int] = parse_init(SCREAMING_SNAKE_CASE_ ) if objects is not None: UpperCamelCase : str = analyze_results(*SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCamelCase : List[Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def a ( ): """simple docstring""" UpperCamelCase : Dict = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(SCREAMING_SNAKE_CASE_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE_ ) / folder).glob('''*.py''' ) ) ) == 0: continue UpperCamelCase : List[str] = str((Path(SCREAMING_SNAKE_CASE_ ) / folder).relative_to(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : str = short_path.replace(os.path.sep , '''.''' ) submodules.append(SCREAMING_SNAKE_CASE_ ) for fname in files: if fname == "__init__.py": continue UpperCamelCase : Tuple = str((Path(SCREAMING_SNAKE_CASE_ ) / fname).relative_to(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : int = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE_ ) return submodules __UpperCAmelCase : Optional[int] = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def a ( ): """simple docstring""" from transformers.utils import direct_transformers_import UpperCamelCase : Tuple = direct_transformers_import(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' ) , '''r''' ) as f: UpperCamelCase : List[Any] = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , SCREAMING_SNAKE_CASE_ ) ) ) UpperCamelCase : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCamelCase : str = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
315
1
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: # Initialise PyTorch model snake_case_ = MobileBertConfig.from_json_file(A_ ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ = MobileBertForPreTraining(A_ ) # Load weights from tf checkpoint snake_case_ = load_tf_weights_in_mobilebert(A_ , A_ , A_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , A_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
69
from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """pegasus""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: List[str] , __lowerCamelCase: Dict=5_0265 , __lowerCamelCase: int=1024 , __lowerCamelCase: Dict=12 , __lowerCamelCase: Dict=4096 , __lowerCamelCase: str=16 , __lowerCamelCase: List[Any]=12 , __lowerCamelCase: int=4096 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.0 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: List[Any]=1024 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: str=False , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Optional[int]=1 , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = vocab_size UpperCamelCase__: List[Any] = max_position_embeddings UpperCamelCase__: Tuple = d_model UpperCamelCase__: str = encoder_ffn_dim UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: int = decoder_layers UpperCamelCase__: List[str] = decoder_attention_heads UpperCamelCase__: int = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: Tuple = activation_dropout UpperCamelCase__: Optional[int] = activation_function UpperCamelCase__: Dict = init_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: Any = decoder_layerdrop UpperCamelCase__: Optional[int] = use_cache UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.d_model
149
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __magic_name__ ( __UpperCAmelCase ): def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(snake_case__ , '''depth_multiplier''' ) ) class __magic_name__ : def __init__( self : Any , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=1_3 , snake_case__ : List[Any]=3 , snake_case__ : List[Any]=3_2 , snake_case__ : Union[str, Any]=0.25 , snake_case__ : Optional[int]=8 , snake_case__ : Tuple=True , snake_case__ : Dict=1_0_2_4 , snake_case__ : Optional[Any]=3_2 , snake_case__ : Tuple="relu6" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=0.02 , snake_case__ : Optional[int]=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=1_0 , snake_case__ : Optional[int]=None , ): '''simple docstring''' lowercase :int = parent lowercase :Dict = batch_size lowercase :int = num_channels lowercase :Any = image_size lowercase :int = depth_multiplier lowercase :List[str] = min_depth lowercase :Union[str, Any] = tf_padding lowercase :Tuple = int(last_hidden_size * depth_multiplier ) lowercase :Optional[Any] = output_stride lowercase :Optional[Any] = hidden_act lowercase :Any = classifier_dropout_prob lowercase :Union[str, Any] = use_labels lowercase :List[Any] = is_training lowercase :int = num_labels lowercase :Optional[Any] = initializer_range lowercase :Tuple = scope def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase :List[Any] = None lowercase :Dict = None if self.use_labels: lowercase :Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase :Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase :Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case ( self : int ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __snake_case ( self : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Tuple ): '''simple docstring''' lowercase :Tuple = MobileNetVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Optional[int] = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' lowercase :List[str] = self.num_labels lowercase :Union[str, Any] = MobileNetVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :List[str] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Optional[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase :Optional[Any] = config_and_inputs lowercase :int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __A : Dict = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) __A : Tuple = False __A : Optional[int] = False __A : List[Any] = False __A : Tuple = False def __snake_case ( self : int ): '''simple docstring''' lowercase :List[str] = MobileNetVaModelTester(self ) lowercase :Optional[int] = MobileNetVaConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __snake_case ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __snake_case ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __snake_case ( self : int ): '''simple docstring''' pass def __snake_case ( self : Tuple ): '''simple docstring''' lowercase , lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :str = model_class(snake_case__ ) lowercase :str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Tuple = [*signature.parameters.keys()] lowercase :int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __snake_case ( self : str ): '''simple docstring''' def check_hidden_states_output(snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int ): lowercase :Tuple = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase :Union[str, Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase :List[Any] = outputs.hidden_states lowercase :Tuple = 2_6 self.assertEqual(len(snake_case__ ) , snake_case__ ) lowercase , lowercase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :Any = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def __snake_case ( self : Tuple ): '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :Optional[Any] = MobileNetVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase () -> Tuple: lowercase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def __snake_case ( self : int ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Union[str, Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(snake_case__ ) lowercase :int = self.default_image_processor lowercase :Optional[Any] = prepare_img() lowercase :Optional[int] = image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowercase :Optional[int] = model(**snake_case__ ) # verify the logits lowercase :List[str] = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowercase :List[Any] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
172
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''▁''' UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCAmelCase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCAmelCase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCAmelCase = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } UpperCAmelCase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __magic_name__ ( __UpperCAmelCase ): __A : List[str] = ["input_ids"] __A : Optional[Any] = VOCAB_FILES_NAMES __A : str = PRETRAINED_INIT_CONFIGURATION __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = RESOURCE_FILES_NAMES def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : List[Any]=None , snake_case__ : int=False , snake_case__ : Optional[int]="utf8" , snake_case__ : List[str]="[UNK]" , snake_case__ : Tuple="[SEP]" , snake_case__ : List[Any]="[PAD]" , snake_case__ : Dict="[CLS]" , snake_case__ : Dict="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : str , ): '''simple docstring''' lowercase :Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , vocab_file=snake_case__ , encoding=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowercase :Dict = do_lower_case lowercase :str = sentencepiece_model_ckpt lowercase :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase :Tuple = self.load_vocab(filepath=snake_case__ ) else: lowercase :str = {self.sp_model.id_to_piece(snake_case__ ): id for id in range(self.sp_model.get_piece_size() )} lowercase :Any = {v: k for k, v in self.vocab.items()} def __snake_case ( self : List[str] , snake_case__ : str ): '''simple docstring''' if text is None: return None lowercase :List[Any] = self.tokenize(snake_case__ ) lowercase , lowercase :List[str] = '''''', [] for i, ch in enumerate(snake_case__ ): if ch in self.SP_CHAR_MAPPING: lowercase :Optional[int] = self.SP_CHAR_MAPPING.get(snake_case__ ) else: lowercase :Optional[int] = unicodedata.normalize('''NFKC''' , snake_case__ ) if self.is_whitespace(snake_case__ ): continue normalized_text += ch char_mapping.extend([i] * len(snake_case__ ) ) lowercase , lowercase , lowercase :int = normalized_text, [], 0 if self.do_lower_case: lowercase :Any = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase :Tuple = token[1:] lowercase :List[str] = text[offset:].index(snake_case__ ) + offset lowercase :Tuple = start + len(snake_case__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase :int = end return token_mapping @property def __snake_case ( self : List[Any] ): '''simple docstring''' return len(self.vocab ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Optional[int] ): '''simple docstring''' lowercase :Any = self.__dict__.copy() lowercase :Optional[int] = None return state def __setstate__( self : Tuple , snake_case__ : Dict ): '''simple docstring''' lowercase :Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase :Dict = {} lowercase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __snake_case ( self : int , snake_case__ : List[Any] ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(snake_case__ , snake_case__ ) for c in text) ) def __snake_case ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : int=False , snake_case__ : Dict=6_4 , snake_case__ : Any=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowercase :Any = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowercase :Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowercase :Optional[Any] = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowercase :Any = self.sp_model.EncodeAsPieces(snake_case__ ) else: lowercase :List[Any] = self.sp_model.SampleEncodeAsPieces(snake_case__ , snake_case__ , snake_case__ ) lowercase :str = [] for pi, piece in enumerate(snake_case__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(snake_case__ ) and pi != 0: new_pieces.append(snake_case__ ) continue else: continue lowercase :int = 0 for i, chunk in enumerate(snake_case__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(snake_case__ ) or self.is_punct(snake_case__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(snake_case__ ) lowercase :Optional[int] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase :str = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase :Dict = i if len(snake_case__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __snake_case ( self : Dict , snake_case__ : str ): '''simple docstring''' lowercase :int = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def __snake_case ( self : int , snake_case__ : str ): '''simple docstring''' lowercase :Tuple = self.convert_ids_to_tokens(snake_case__ ) lowercase :Any = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def __snake_case ( self : int , snake_case__ : Union[str, Any] ): '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def __snake_case ( self : List[Any] , snake_case__ : List[str] ): '''simple docstring''' return self.reverse_vocab.get(snake_case__ , self.unk_token ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :int = [self.cls_token_id] lowercase :str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __snake_case ( self : Any , snake_case__ : Dict , snake_case__ : str=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __snake_case ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] def __snake_case ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(snake_case__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(snake_case__ ) + 1) + [1] * (len(snake_case__ ) + 3) def __snake_case ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __snake_case ( self : List[str] , snake_case__ : Any ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __snake_case ( self : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __snake_case ( self : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(snake_case__ ) == 1: lowercase :str = unicodedata.category(snake_case__ ) if cat == "Zs": return True return False def __snake_case ( self : str , snake_case__ : Any ): '''simple docstring''' lowercase :Dict = {} with io.open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(snake_case__ ): lowercase :Dict = line.rstrip('''\n''' ) lowercase :str = int(snake_case__ ) return token_to_idx def __snake_case ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' lowercase :Optional[int] = 0 if os.path.isdir(snake_case__ ): lowercase :str = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase :Any = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase :Optional[int] = token_index writer.write(token + '''\n''' ) index += 1 lowercase :int = os.path.join(snake_case__ , '''sentencepiece.bpe.model''' ) with open(snake_case__ , '''wb''' ) as fi: lowercase :Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (vocab_file,)
172
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCAmelCase__ = threading.Lock() lowerCAmelCase__ = None lowerCAmelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCAmelCase__ = logging.WARNING lowerCAmelCase__ = True def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = os.getenv("TRANSFORMERS_VERBOSITY" , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def a__ ( ): '''simple docstring''' return __name__.split("." )[0] def a__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def a__ ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowerCAmelCase : int = logging.StreamHandler() # Set sys.stderr as stream. lowerCAmelCase : Optional[int] = sys.stderr.flush # Apply our default configuration to the library root logger. lowerCAmelCase : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) lowerCAmelCase : List[Any] = False def a__ ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return lowerCAmelCase : Tuple = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) lowerCAmelCase : Optional[Any] = None def a__ ( ): '''simple docstring''' return log_levels def a__ ( SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if name is None: lowerCAmelCase : List[str] = _get_library_name() _configure_library_root_logger() return logging.getLogger(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def a__ ( SCREAMING_SNAKE_CASE : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() lowerCAmelCase : Optional[Any] = False def a__ ( ): '''simple docstring''' _configure_library_root_logger() lowerCAmelCase : List[Any] = True def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = _get_library_root_logger().handlers for handler in handlers: lowerCAmelCase : Optional[Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(SCREAMING_SNAKE_CASE ) def a__ ( self : int , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , SCREAMING_SNAKE_CASE ) if no_advisory_warnings: return self.warning(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = warning_advice @functools.lru_cache(SCREAMING_SNAKE_CASE ) def a__ ( self : str , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' self.warning(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = warning_once class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase : Dict = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self , snake_case__ ): """simple docstring""" def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase__ = _tqdm_cls() def a__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : Optional[Any] = True hf_hub_utils.enable_progress_bars() def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : Tuple = False hf_hub_utils.disable_progress_bars()
108
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
218
0
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( a ) -> Optional[int]: # getting number of pixels in the image _A: Any = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a ): for j in range(a ): _A: int = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase__ : Union[str, Any] = imread('image_data/lena.jpg', 1) # convert to its negative UpperCAmelCase__ : str = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
snake_case : List[Any] = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
94
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger a__ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self , lowercase = None ) -> List[str]: __UpperCamelCase = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __UpperCamelCase = Extractor def __lowerCamelCase ( self , lowercase ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __UpperCamelCase = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def __lowerCamelCase ( self , lowercase , lowercase ) -> bool: return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str: __UpperCamelCase = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path __UpperCamelCase = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod @abstractmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: ... @staticmethod @abstractmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: ... class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> int: with open(lowercase , """rb""" ) as f: return f.read(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if not magic_number: __UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: __UpperCamelCase = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: return tarfile.is_tarfile(lowercase ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link __UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) __UpperCamelCase = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x1F\x8B'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with gzip.open(lowercase , """rb""" ) as gzip_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , """rb""" ) as fp: __UpperCamelCase = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: __UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , """r""" ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with lzma.open(lowercase ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __UpperCamelCase = zstd.ZstdDecompressor() with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh: dctx.copy_stream(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with bza.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , """r""" ) as archive: archive.extractall(lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCamelCase ( cls ) -> Union[str, Any]: return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/> __UpperCamelCase = cls._get_magic_number_max_length() __UpperCamelCase = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions __UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format else: __UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
349
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowercase: Tuple = "\\n Text data.\n Second line of data." _lowercase: List[Any] = "file" @pytest.fixture(scope="session" ) def a( A : Optional[int] ) -> Optional[int]: """simple docstring""" a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") a = bytes(A , "utf-8" ) with zstd.open(A , "wb" ) as f: f.write(A ) return path @pytest.fixture def a( A : List[Any] ) -> Any: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , A ) , "w" ) as f: f.write(A ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def a( A : Tuple , A : Union[str, Any] , A : Tuple , A : int , A : str , A : Tuple ) -> Dict: """simple docstring""" a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} a = input_paths[compression_format] a = tmp_path / "cache" a = DownloadConfig(cache_dir=A , extract_compressed_file=A ) a = cached_path(A , download_config=A ) with open(A ) as f: a = f.read() with open(A ) as f: a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def a( A : Optional[Any] , A : int , A : Union[str, Any] , A : List[Any] , A : Tuple ) -> Optional[Any]: """simple docstring""" a = "custom_cache" a = "custom_extracted_dir" a = tmp_path / "custom_extracted_path" if default_extracted: a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , A ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(A ) ) a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) a = xz_file a = ( DownloadConfig(extract_compressed_file=A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=A ) ) a = cached_path(A , download_config=A ) assert Path(A ).parent.parts[-2:] == expected def a( A : int ) -> Optional[Any]: """simple docstring""" a = str(Path(A ).resolve() ) assert cached_path(A ) == text_file # relative path a = str(Path(A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(A ) == text_file def a( A : List[Any] ) -> Dict: """simple docstring""" a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(A ): cached_path(A ) # relative path a = "./__missing_file__.txt" with pytest.raises(A ): cached_path(A ) def a( A : List[Any] ) -> Union[str, Any]: """simple docstring""" a = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(A ) as f: a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , A ) def a( ) -> Optional[Any]: """simple docstring""" with pytest.raises(A ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , A ) def a( A : List[str] ) -> int: """simple docstring""" a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(A ): http_get("https://huggingface.co" , temp_file=A ) with pytest.raises(A ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , A ) def a( A : Tuple ) -> List[Any]: """simple docstring""" a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(A ): ftp_get("ftp://huggingface.co" , temp_file=A ) with pytest.raises(A ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , A ) def a( A : Any ) -> int: """simple docstring""" a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(A ): fsspec_get("s3://huggingface.co" , temp_file=A ) with pytest.raises(A ): fsspec_head("s3://huggingface.co" )
362
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _lowercase: Optional[Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" _lowercase: Union[str, Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" _lowercase: Union[str, Any] = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" _lowercase: List[Any] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" _lowercase: List[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=[1, 10, 100] , lowerCamelCase_=4 , lowerCamelCase_=3.0 ): """simple docstring""" if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=lowerCamelCase_ ) as executor: a = [] a = Counter() a = 0 a = defaultdict(lowerCamelCase_ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): for candidate in candidates: a = candidate + "\n" + test_case a = (test_program, timeout, task_id, completion_id[task_id]) a = executor.submit(lowerCamelCase_ , *lowerCamelCase_ ) futures.append(lowerCamelCase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase_ ): a = future.result() results[result["task_id"]].append((result["completion_id"], result) ) a , a = [], [] for result in results.values(): result.sort() a = [r[1]["passed"] for r in result] total.append(len(lowerCamelCase_ ) ) correct.append(sum(lowerCamelCase_ ) ) a = np.array(lowerCamelCase_ ) a = np.array(lowerCamelCase_ ) a = k a = {F'''pass@{k}''': estimate_pass_at_k(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def a( A : Optional[Any] , A : str , A : Dict ) -> Optional[int]: """simple docstring""" def estimator(A : int , A : int , A : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A , A ): a = itertools.repeat(A , len(A ) ) else: assert len(A ) == len(A ) a = iter(A ) return np.array([estimator(int(A ) , int(A ) , A ) for n, c in zip(A , A )] )
71
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
315
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
1
'''simple docstring''' def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def a ( ): '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
135
'''simple docstring''' def a ( ): '''simple docstring''' A_ : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A_ : Dict = 6 A_ : List[Any] = 1 A_ : Optional[Any] = 19_01 A_ : Tuple = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A_ : Optional[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A_ : str = day - 29 else: if day > days_per_month[month - 1]: month += 1 A_ : List[str] = day - days_per_month[month - 2] if month > 12: year += 1 A_ : Tuple = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
135
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class UpperCamelCase ( lowercase ): def __init__(self : Optional[int] , _A : pyspark.sql.DataFrame , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : bool = True , _A : str = None , _A : bool = False , _A : str = None , _A : bool = True , _A : str = "arrow" , **_A : Any , ) -> Optional[int]: super().__init__( split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , **_A , ) __snake_case : Optional[int] = load_from_cache_file __snake_case : str = file_format __snake_case : int = Spark( df=_A , features=_A , cache_dir=_A , working_dir=_A , **_A , ) def _lowercase (self : Any) -> Any: if self.streaming: return self.builder.as_streaming_dataset(split=self.split) __snake_case : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_A , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int= logging.get_logger(__name__) _a : Optional[Any]= { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[Any] = """lilt""" def __init__(self : Dict , _A : Any=3_05_22 , _A : Union[str, Any]=7_68 , _A : Any=12 , _A : Tuple=12 , _A : Optional[int]=30_72 , _A : Tuple="gelu" , _A : str=0.1 , _A : List[Any]=0.1 , _A : Union[str, Any]=5_12 , _A : Any=2 , _A : Tuple=0.02 , _A : List[str]=1E-12 , _A : Optional[int]=0 , _A : Optional[Any]="absolute" , _A : Any=None , _A : List[Any]=4 , _A : Optional[int]=10_24 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(pad_token_id=_A , **_A) __snake_case : Optional[int] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : List[str] = intermediate_size __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Any = classifier_dropout __snake_case : Optional[int] = channel_shrink_ratio __snake_case : Tuple = max_ad_position_embeddings
172
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Any ={ "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] =["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str =["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =[ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] =[ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict =[ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __snake_case : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __snake_case : Dict =HfArgumentParser(InitializationArguments) __snake_case : Tuple =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __snake_case : Optional[int] =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __snake_case : List[str] ={ 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) __snake_case : List[Any] =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __snake_case : int =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
94
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = """openai-gpt""" SCREAMING_SNAKE_CASE_ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , __lowerCamelCase : List[str]=4_04_78 , __lowerCamelCase : List[Any]=5_12 , __lowerCamelCase : List[str]=7_68 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="cls_index" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=0.1 , **__lowerCamelCase : Union[str, Any] , ) -> List[str]: a = vocab_size a = n_positions a = n_embd a = n_layer a = n_head a = afn a = resid_pdrop a = embd_pdrop a = attn_pdrop a = layer_norm_epsilon a = initializer_range a = summary_type a = summary_use_proj a = summary_activation a = summary_first_dropout a = summary_proj_to_labels super().__init__(**__lowerCamelCase )
107
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
'''simple docstring''' from collections.abc import Sequence def A_( A : Sequence[float] , A : float): return sum(c * (x**i) for i, c in enumerate(A)) def A_( A : Sequence[float] , A : float): UpperCamelCase = 0.0 for coeff in reversed(A): UpperCamelCase = result * x + coeff return result if __name__ == "__main__": lowerCAmelCase : Any = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCAmelCase : List[Any] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
359
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCAmelCase : int = 'bart' lowerCAmelCase : Union[str, Any] = True @st.cache(allow_output_mutation=A) def A_( ): if LOAD_DENSE_INDEX: UpperCamelCase = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased') UpperCamelCase = AutoModel.from_pretrained('yjernite/retribert-base-uncased').to('cuda:0') UpperCamelCase = qar_model.eval() else: UpperCamelCase , UpperCamelCase = (None, None) if MODEL_TYPE == "bart": UpperCamelCase = AutoTokenizer.from_pretrained('yjernite/bart_eli5') UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5').to('cuda:0') UpperCamelCase = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth') sas_model.load_state_dict(save_dict['model']) UpperCamelCase = sas_model.eval() else: UpperCamelCase , UpperCamelCase = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0') return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=A) def A_( ): if LOAD_DENSE_INDEX: UpperCamelCase = faiss.StandardGpuResources() UpperCamelCase = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0')['train'] UpperCamelCase = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) UpperCamelCase = faiss.IndexFlatIP(128) UpperCamelCase = faiss.index_cpu_to_gpu(A , 1 , A) wikiaab_gpu_index_flat.add(A) # TODO fix for larger GPU else: UpperCamelCase , UpperCamelCase = (None, None) UpperCamelCase = Elasticsearch([{'host': 'localhost', 'port': '9200'}]) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=A) def A_( ): UpperCamelCase = datasets.load_dataset('eli5' , name='LFQA_reddit') UpperCamelCase = elia['train_eli5'] UpperCamelCase = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128)) UpperCamelCase = faiss.IndexFlatIP(128) eli5_train_q_index.add(A) return (elia_train, eli5_train_q_index) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = load_indexes() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = load_models() lowerCAmelCase , lowerCAmelCase : Tuple = load_train_data() def A_( A : Dict , A : str=10): UpperCamelCase = embed_questions_for_retrieval([question] , A , A) UpperCamelCase , UpperCamelCase = eli5_train_q_index.search(A , A) UpperCamelCase = [elia_train[int(A)] for i in I[0]] return nn_examples def A_( A : str , A : Optional[int]="wiki40b" , A : List[Any]="dense" , A : Dict=10): if source == "none": UpperCamelCase , UpperCamelCase = (' <P> '.join(['' for _ in range(11)]).strip(), []) else: if method == "dense": UpperCamelCase , UpperCamelCase = query_qa_dense_index( A , A , A , A , A , A) else: UpperCamelCase , UpperCamelCase = query_es_index( A , A , index_name='english_wiki40b_snippets_100w' , n_results=A , ) UpperCamelCase = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] UpperCamelCase = 'question: {} context: {}'.format(A , A) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda A: None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda A: None), }) def A_( A : Optional[Any] , A : List[str] , A : str , A : List[Any]=64 , A : List[Any]=256 , A : int=False , A : List[str]=2 , A : Any=0.95 , A : int=0.8): with torch.no_grad(): UpperCamelCase = qa_sas_generate( A , A , A , num_answers=1 , num_beams=A , min_len=A , max_len=A , do_sample=A , temp=A , top_p=A , top_k=A , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar lowerCAmelCase : List[str] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' lowerCAmelCase : Dict = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCAmelCase : List[Any] = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) lowerCAmelCase : Optional[int] = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] lowerCAmelCase : List[str] = st.sidebar.checkbox('Demo options') if demo_options: lowerCAmelCase : Dict = st.sidebar.selectbox( '', action_list, index=3, ) lowerCAmelCase : int = action_list.index(action_st) lowerCAmelCase : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) lowerCAmelCase : Any = show_type == 'Show full text of passages' else: lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: lowerCAmelCase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) lowerCAmelCase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) lowerCAmelCase : List[str] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: lowerCAmelCase : str = 'wiki40b' lowerCAmelCase : Tuple = 'dense' lowerCAmelCase : Union[str, Any] = 'beam' lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : Any = 64 lowerCAmelCase : int = 2_56 lowerCAmelCase : Optional[Any] = None lowerCAmelCase : List[str] = None lowerCAmelCase : List[str] = st.sidebar.checkbox('Generation options') if generate_options: lowerCAmelCase : str = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) lowerCAmelCase : str = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) lowerCAmelCase : Any = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) lowerCAmelCase : Any = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": lowerCAmelCase : Union[str, Any] = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCAmelCase : Tuple = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowerCAmelCase : List[Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowerCAmelCase : Tuple = None # start main text lowerCAmelCase : Optional[Any] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] lowerCAmelCase : int = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCAmelCase : List[str] = st.text_input('Enter your question here:', '') else: lowerCAmelCase : Tuple = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": lowerCAmelCase , lowerCAmelCase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) lowerCAmelCase , lowerCAmelCase : Dict = make_support(question, source=wiki_source, method='sparse', n_results=10) lowerCAmelCase : List[str] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCAmelCase : Optional[Any] = support_list[:10] lowerCAmelCase : Dict = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): lowerCAmelCase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) lowerCAmelCase : Optional[int] = res[1].strip() if sec_titles == "": lowerCAmelCase : Dict = '[{}]({})'.format(res[0], wiki_url) else: lowerCAmelCase : Dict = sec_titles.split(' & ') lowerCAmelCase : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: lowerCAmelCase : Optional[Any] = find_nearest_training(question) lowerCAmelCase : Optional[int] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) lowerCAmelCase : List[str] = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) lowerCAmelCase : int = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
251
0
from torch import nn def UpperCAmelCase__ ( lowerCamelCase ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}" )
236
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ :List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A_ :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A_ :Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A_ :List[str] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A_ :Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[1, 10, 100] , lowerCamelCase__=4 , lowerCamelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =Counter() __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: __UpperCamelCase : str =candidate + '\n' + test_case __UpperCamelCase : Any =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : Optional[Any] =executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): __UpperCamelCase : str =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase : int =[], [] for result in results.values(): result.sort() __UpperCamelCase : str =[r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =np.array(lowerCamelCase__ ) __UpperCamelCase : List[str] =np.array(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =k __UpperCamelCase : List[Any] ={f'pass@{k}': estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A ( a_ ,a_ ,a_ ) -> Optional[int]: def estimator(a_ ,a_ ,a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =itertools.repeat(a_ ,len(a_ ) ) else: assert len(a_ ) == len(a_ ) __UpperCamelCase : List[Any] =iter(a_ ) return np.array([estimator(int(a_ ) ,int(a_ ) ,a_ ) for n, c in zip(a_ ,a_ )] )
71
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> tuple: '''simple docstring''' lowercase = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class _snake_case : def __init__( self : Dict ): __lowerCamelCase : List[Any] = {} def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=1 ): if self.graph.get(UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __lowerCamelCase : str = [[w, v]] if not self.graph.get(UpperCAmelCase ): __lowerCamelCase : Optional[int] = [] def lowerCamelCase__ ( self : Optional[Any] ): return list(self.graph ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] ): if self.graph.get(UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : Dict=-2 , UpperCAmelCase : Tuple=-1 ): if s == d: return [] __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Union[str, Any] = [] if s == -2: __lowerCamelCase : Optional[int] = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) __lowerCamelCase : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase : Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCAmelCase ) != 0: __lowerCamelCase : List[Any] = stack[len(UpperCAmelCase ) - 1] else: __lowerCamelCase : List[str] = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return visited def lowerCamelCase__ ( self : int , UpperCAmelCase : Any=-1 ): if c == -1: __lowerCamelCase : List[str] = floor(random() * 10000 ) + 10 for i in range(UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __lowerCamelCase : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCAmelCase , UpperCAmelCase , 1 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Dict=-2 ): __lowerCamelCase : List[Any] = deque() __lowerCamelCase : str = [] if s == -2: __lowerCamelCase : Dict = list(self.graph )[0] d.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) while d: __lowerCamelCase : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase__ ( self : str , UpperCAmelCase : Optional[int] ): __lowerCamelCase : List[Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[Any] ): return len(self.graph[u] ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Dict=-2 ): __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : str = [] if s == -2: __lowerCamelCase : str = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) __lowerCamelCase : Dict = s __lowerCamelCase : Optional[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCAmelCase ) != 0: __lowerCamelCase : Optional[Any] = stack[len(UpperCAmelCase ) - 1] else: __lowerCamelCase : int = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return sorted_nodes def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Optional[int] = [] __lowerCamelCase : int = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = -2 __lowerCamelCase : Dict = [] __lowerCamelCase : List[str] = s __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase : List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase : Optional[int] = len(UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase : str = True if len(UpperCAmelCase ) != 0: __lowerCamelCase : Tuple = stack[len(UpperCAmelCase ) - 1] else: __lowerCamelCase : Dict = False indirect_parents.append(UpperCAmelCase ) __lowerCamelCase : Optional[int] = s __lowerCamelCase : Any = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return list(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Optional[int] = [] __lowerCamelCase : int = [] __lowerCamelCase : str = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = -2 __lowerCamelCase : Any = [] __lowerCamelCase : int = s __lowerCamelCase : str = False __lowerCamelCase : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase : Optional[int] = len(UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase : Union[str, Any] = True if len(UpperCAmelCase ) != 0: __lowerCamelCase : Dict = stack[len(UpperCAmelCase ) - 1] else: __lowerCamelCase : Optional[Any] = False indirect_parents.append(UpperCAmelCase ) __lowerCamelCase : List[Any] = s __lowerCamelCase : Optional[int] = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return False def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : List[Any]=-2 , UpperCAmelCase : List[str]=-1 ): __lowerCamelCase : List[str] = time() self.dfs(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = time() return end - begin def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Dict=-2 ): __lowerCamelCase : int = time() self.bfs(UpperCAmelCase ) __lowerCamelCase : Tuple = time() return end - begin class _snake_case : def __init__( self : List[Any] ): __lowerCamelCase : List[str] = {} def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=1 ): # check if the u exists if self.graph.get(UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __lowerCamelCase : Optional[Any] = [[w, v]] # add the other way if self.graph.get(UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __lowerCamelCase : int = [[w, u]] def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ): if self.graph.get(UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCAmelCase ) # the other way round if self.graph.get(UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : int=-2 , UpperCAmelCase : List[Any]=-1 ): if s == d: return [] __lowerCamelCase : Any = [] __lowerCamelCase : Optional[int] = [] if s == -2: __lowerCamelCase : Optional[int] = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) __lowerCamelCase : List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCAmelCase ) != 0: __lowerCamelCase : Optional[Any] = stack[len(UpperCAmelCase ) - 1] else: __lowerCamelCase : Union[str, Any] = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return visited def lowerCamelCase__ ( self : str , UpperCAmelCase : str=-1 ): if c == -1: __lowerCamelCase : List[str] = floor(random() * 10000 ) + 10 for i in range(UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __lowerCamelCase : int = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCAmelCase , UpperCAmelCase , 1 ) def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[Any]=-2 ): __lowerCamelCase : Dict = deque() __lowerCamelCase : Optional[int] = [] if s == -2: __lowerCamelCase : Union[str, Any] = list(self.graph )[0] d.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) while d: __lowerCamelCase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Any ): return len(self.graph[u] ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Optional[int] = [] __lowerCamelCase : str = [] __lowerCamelCase : Optional[int] = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = -2 __lowerCamelCase : str = [] __lowerCamelCase : Dict = s __lowerCamelCase : List[str] = False __lowerCamelCase : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase : Any = len(UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase : int = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase : Union[str, Any] = True if len(UpperCAmelCase ) != 0: __lowerCamelCase : Tuple = stack[len(UpperCAmelCase ) - 1] else: __lowerCamelCase : List[str] = False indirect_parents.append(UpperCAmelCase ) __lowerCamelCase : str = s __lowerCamelCase : Dict = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return list(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Any = [] __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : Optional[Any] = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) __lowerCamelCase : Dict = -2 __lowerCamelCase : Dict = [] __lowerCamelCase : List[str] = s __lowerCamelCase : Dict = False __lowerCamelCase : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase : Tuple = len(UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase : int = True if len(UpperCAmelCase ) != 0: __lowerCamelCase : Any = stack[len(UpperCAmelCase ) - 1] else: __lowerCamelCase : Tuple = False indirect_parents.append(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = s __lowerCamelCase : Union[str, Any] = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return False def lowerCamelCase__ ( self : Any ): return list(self.graph ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any]=-2 , UpperCAmelCase : Optional[Any]=-1 ): __lowerCamelCase : int = time() self.dfs(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Any = time() return end - begin def lowerCamelCase__ ( self : int , UpperCAmelCase : List[Any]=-2 ): __lowerCamelCase : int = time() self.bfs(UpperCAmelCase ) __lowerCamelCase : Tuple = time() return end - begin
135
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :List[str] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Union[str, Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __snake_case :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
def __snake_case ( _UpperCAmelCase = 1000000 ): __a = limit + 1 __a = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __a = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
131
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case :int = logging.get_logger(__name__) __snake_case :Union[str, Any] = '''▁''' __snake_case :List[str] = {'''vocab_file''': '''prophetnet.tokenizer'''} __snake_case :List[str] = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } __snake_case :Dict = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } __snake_case :str = { '''microsoft/xprophetnet-large-wiki100-cased''': 512, } def __snake_case ( _UpperCAmelCase ): __a = collections.OrderedDict() with open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: __a = reader.readlines() for index, token in enumerate(_UpperCAmelCase ): __a = token.rstrip('''\n''' ) __a = index return vocab class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]="[SEP]" , __SCREAMING_SNAKE_CASE : List[str]="[SEP]" , __SCREAMING_SNAKE_CASE : str="[SEP]" , __SCREAMING_SNAKE_CASE : Optional[int]="[UNK]" , __SCREAMING_SNAKE_CASE : str="[PAD]" , __SCREAMING_SNAKE_CASE : Union[str, Any]="[CLS]" , __SCREAMING_SNAKE_CASE : Tuple="[MASK]" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''') raise __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE)) __a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __a = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10): __a = F'[unused{i}]' __a = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __a = 12 __a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__SCREAMING_SNAKE_CASE) def __getstate__( self : Dict): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''') raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE) if token_ids_a is None: return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def _lowerCamelCase ( self : int): '''simple docstring''' __a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __a = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = ''''''.join(__SCREAMING_SNAKE_CASE).replace(__SCREAMING_SNAKE_CASE , ''' ''').strip() return out_string def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE) return (out_vocab_file,) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] __a = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
49
import math class _snake_case : def __init__( self , _lowerCamelCase=0 ): # a graph with Node 0,1,...,N-1 a :Optional[int] = n a :Union[str, Any] = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # adjacency matrix for weight a :List[Any] = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Tuple = w def SCREAMING_SNAKE_CASE__ ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): a :Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return self.dp[u][v] if __name__ == "__main__": snake_case : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
94
0
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> bool: snake_case__ : List[str] = len(_lowerCAmelCase ) snake_case__ : Optional[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): snake_case__ : str = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): snake_case__ : Tuple = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: snake_case__ : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: snake_case__ : int = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : int ): snake_case__ : List[str] = """hf-internal-testing/tiny-random-t5""" snake_case__ : Any = AutoTokenizer.from_pretrained(snake_case_ ) snake_case__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer("""This is me""" , return_tensors="""pt""" ) snake_case__ : str = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case__ : Optional[int] = model.generate(**snake_case_ ) snake_case__ : Any = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) snake_case__ : int = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case__ : Optional[Any] = model_reloaded.generate(**snake_case_ ) self.assertTrue(torch.allclose(snake_case_ , snake_case_ ) ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[Any] = """hf-internal-testing/tiny-random-t5""" snake_case__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) snake_case__ : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(snake_case_ ): model.save_pretrained(snake_case_ ) snake_case__ : int = model.reverse_bettertransformer() model.save_pretrained(snake_case_ )
43
1
'''simple docstring''' from jiwer import compute_measures import datasets A__ : int ='''\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n''' A__ : str ='''\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n''' A__ : Dict ='''\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def lowercase__ ( self : Dict ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def lowercase__ ( self : Union[str, Any] , __snake_case : Optional[int]=None , __snake_case : Optional[Any]=None , __snake_case : int=False ) -> str: if concatenate_texts: return compute_measures(__snake_case , __snake_case )["wer"] else: _lowerCAmelCase = 0 _lowerCAmelCase = 0 for prediction, reference in zip(__snake_case , __snake_case ): _lowerCAmelCase = compute_measures(__snake_case , __snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
70
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Any = '''git_vision_model''' def __init__( self, A=768, A=3_072, A=12, A=12, A=3, A=224, A=16, A="quick_gelu", A=1E-5, A=0.0, A=0.02, **A, ): '''simple docstring''' super().__init__(**A ) SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' cls._set_token_in_kwargs(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = cls.get_config_dict(A, **A ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(A, **A ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[Any] = '''git''' def __init__( self, A=None, A=30_522, A=768, A=6, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=1_024, A=0.02, A=1E-12, A=0, A="absolute", A=True, A=False, A=101, A=102, A=None, **A, ): '''simple docstring''' super().__init__(bos_token_id=A, eos_token_id=A, pad_token_id=A, **A ) if vision_config is None: SCREAMING_SNAKE_CASE : List[str] = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) SCREAMING_SNAKE_CASE : List[str] = GitVisionConfig(**A ) SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : int = tie_word_embeddings SCREAMING_SNAKE_CASE : Optional[int] = num_image_with_embedding SCREAMING_SNAKE_CASE : List[str] = bos_token_id SCREAMING_SNAKE_CASE : int = eos_token_id def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : int = self.__class__.model_type return output
251
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __lowerCAmelCase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __lowerCAmelCase = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print('''\n'''.join(upper_files) + '''\n''') __lowerCAmelCase = [file for file in filepaths if ''' ''' in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print('''\n'''.join(space_files) + '''\n''') __lowerCAmelCase = [file for file in filepaths if '''-''' in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print('''\n'''.join(hyphen_files) + '''\n''') __lowerCAmelCase = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print('''\n'''.join(nodir_files) + '''\n''') __lowerCAmelCase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
367
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: for i in range(0 , lowerCAmelCase_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: for i in range(lowerCAmelCase_ , 0 , -1 ): for _ in range(lowerCAmelCase_ , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __lowerCAmelCase = 1 while K: __lowerCAmelCase = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __lowerCAmelCase = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
107
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __magic_name__ ( A : NDArray[floataa], A : NDArray[floataa], A : list[int], A : int, ): '''simple docstring''' a , a = coefficient_matrix.shape a , a = constant_matrix.shape if rowsa != colsa: a = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(A ) if colsa != 1: a = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(A ) if rowsa != rowsa: a = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(A ) if len(A ) != rowsa: a = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(A )} and {rowsa}""" ) raise ValueError(A ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) a = np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) a , a = table.shape strictly_diagonally_dominant(A ) # Iterates the whole matrix for given number of times for _ in range(A ): a = [] for row in range(A ): a = 0 for col in range(A ): if col == row: a = table[row][col] elif col == cols - 1: a = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a = (temp + val) / denom new_val.append(A ) a = new_val return [float(A ) for i in new_val] def __magic_name__ ( A : NDArray[floataa] ): '''simple docstring''' a , a = table.shape a = True for i in range(0, A ): a = 0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
107
from __future__ import annotations UpperCAmelCase_ : Tuple = [] def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int ) -> bool: """simple docstring""" if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): a_ : Any = 1 solve(__A , row + 1 ) a_ : Tuple = 0 return False def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCAmelCase_ : List[str] = 8 UpperCAmelCase_ : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
32
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = '''Hello, World!''' __snake_case = '''en_XX''' def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =Path('''data_bin''' ) UpperCAmelCase : Optional[int] =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(__SCREAMING_SNAKE_CASE ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(__SCREAMING_SNAKE_CASE ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(__SCREAMING_SNAKE_CASE ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(__SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple =xmod.model.encoder.sentence_encoder UpperCAmelCase : Dict =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : str =xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print('''Our X-MOD config:''' , __SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] =XmodForSequenceClassification(__SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(__SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : str =xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : Optional[Any] =xmod_sent_encoder.embed_positions.weight UpperCAmelCase : Tuple =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : List[str] =xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : int =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : int =model.roberta.encoder.layer[i] UpperCAmelCase : Dict =xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : int =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) UpperCAmelCase : int =xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Tuple =xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Dict =xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Any =xmod_layer.self_attn.k_proj.bias UpperCAmelCase : Tuple =xmod_layer.self_attn.v_proj.weight UpperCAmelCase : str =xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : List[str] =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) UpperCAmelCase : List[Any] =xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[Any] =xmod_layer.self_attn.out_proj.bias UpperCAmelCase : Optional[int] =xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : List[Any] =xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : str =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) UpperCAmelCase : Any =xmod_layer.fca.weight UpperCAmelCase : Tuple =xmod_layer.fca.bias # output UpperCAmelCase : Optional[Any] =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) UpperCAmelCase : Optional[Any] =xmod_layer.fca.weight UpperCAmelCase : Tuple =xmod_layer.fca.bias UpperCAmelCase : List[str] =xmod_layer.final_layer_norm.weight UpperCAmelCase : Optional[int] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : Optional[Any] =xmod_layer.adapter_layer_norm.weight UpperCAmelCase : str =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : Dict =bert_output.adapter_modules[lang_code] UpperCAmelCase : List[str] =xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any =from_adapter.fca.weight UpperCAmelCase : Any =from_adapter.fca.bias UpperCAmelCase : Tuple =from_adapter.fca.weight UpperCAmelCase : Optional[int] =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Dict =xmod_sent_encoder.layer_norm.weight UpperCAmelCase : Any =xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : int =xmod.model.classification_heads["mnli"].dense.weight UpperCAmelCase : int =xmod.model.classification_heads["mnli"].dense.bias UpperCAmelCase : Optional[Any] =xmod.model.classification_heads["mnli"].out_proj.weight UpperCAmelCase : Union[str, Any] =xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head UpperCAmelCase : Optional[int] =xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : Optional[Any] =xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Any =xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : Tuple =xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : Any =xmod.model.encoder.lm_head.weight UpperCAmelCase : Tuple =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : str =xmod.encode(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] =model(__SCREAMING_SNAKE_CASE )[0] if classification_head: UpperCAmelCase : Optional[int] =xmod.model.classification_heads["mnli"](xmod.extract_features(__SCREAMING_SNAKE_CASE ) ) else: UpperCAmelCase : int =xmod.model(__SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Optional[int] =torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Tuple =torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(__SCREAMING_SNAKE_CASE ).mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __snake_case = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
369
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""] __lowerCamelCase : Union[str, Any] = """CLIPImageProcessor""" __lowerCamelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , snake_case__ , ) UpperCAmelCase : int =kwargs.pop('''feature_extractor''' ) UpperCAmelCase : Tuple =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(snake_case__ , snake_case__ ) def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase : List[Any] =self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: UpperCAmelCase : Tuple =self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: UpperCAmelCase : List[Any] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.tokenizer.model_input_names UpperCAmelCase : Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case__ , ) return self.image_processor
78
0
from math import isclose, sqrt def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : Optional[int] = point_y / 4 / point_x lowerCAmelCase__ : int = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase__ : Tuple = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase__ : Dict = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase__ : int = outgoing_gradient**2 + 4 lowerCAmelCase__ : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase__ : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase__ : Union[str, Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase__ : Dict = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase__ : Optional[int] = x_minus if isclose(_a , _a ) else x_plus lowerCAmelCase__ : Optional[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCamelCase_ ( _a = 1.4 , _a = -9.6 ): """simple docstring""" lowerCAmelCase__ : int = 0 lowerCAmelCase__ : float = first_x_coord lowerCAmelCase__ : float = first_y_coord lowerCAmelCase__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = next_point(_a , _a , _a ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
131
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_a )[0] @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Any = _readaa(_a ) if magic != 2_051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Any = _readaa(_a ) lowerCAmelCase__ : Tuple = _readaa(_a ) lowerCAmelCase__ : List[Any] = _readaa(_a ) lowerCAmelCase__ : Union[str, Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase__ : List[Any] = numpy.frombuffer(_a , dtype=numpy.uinta ) lowerCAmelCase__ : int = data.reshape(_a , _a , _a , 1 ) return data @deprecated(_a , '''Please use tf.one_hot on tensors.''' ) def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = labels_dense.shape[0] lowerCAmelCase__ : Optional[Any] = numpy.arange(_a ) * num_classes lowerCAmelCase__ : str = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase__ : Optional[Any] = 1 return labels_one_hot @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a , _a=False , _a=10 ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Optional[int] = _readaa(_a ) if magic != 2_049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Union[str, Any] = _readaa(_a ) lowerCAmelCase__ : Tuple = bytestream.read(_a ) lowerCAmelCase__ : Dict = numpy.frombuffer(_a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_a , _a ) return labels class _a : @deprecated( _SCREAMING_SNAKE_CASE , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[Any]=dtypes.floataa , _SCREAMING_SNAKE_CASE : List[str]=True , _SCREAMING_SNAKE_CASE : List[str]=None , )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase__ : Optional[int] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowerCAmelCase__ : int = 1_0000 lowerCAmelCase__ : List[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' lowerCAmelCase__ : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase__ : Tuple = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase__ : Any = images.astype(numpy.floataa ) lowerCAmelCase__ : Any = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0 ) lowerCAmelCase__ : Tuple = images lowerCAmelCase__ : Tuple = labels lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = 0 @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._images @property def UpperCAmelCase__( self : Tuple )-> Optional[int]: return self._labels @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._num_examples @property def UpperCAmelCase__( self : Tuple )-> Any: return self._epochs_completed def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict=False , _SCREAMING_SNAKE_CASE : Optional[int]=True )-> List[str]: if fake_data: lowerCAmelCase__ : Dict = [1] * 784 lowerCAmelCase__ : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_SCREAMING_SNAKE_CASE )], [fake_label for _ in range(_SCREAMING_SNAKE_CASE )], ) lowerCAmelCase__ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.images[perma] lowerCAmelCase__ : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase__ : Any = self._num_examples - start lowerCAmelCase__ : List[str] = self._images[start : self._num_examples] lowerCAmelCase__ : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = self.images[perm] lowerCAmelCase__ : List[Any] = self.labels[perm] # Start next epoch lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Union[str, Any] = batch_size - rest_num_examples lowerCAmelCase__ : Any = self._index_in_epoch lowerCAmelCase__ : Optional[Any] = self._images[start:end] lowerCAmelCase__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase__ : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_a , '''Please write your own downloading logic.''' ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" if not gfile.Exists(_a ): gfile.MakeDirs(_a ) lowerCAmelCase__ : str = os.path.join(_a , _a ) if not gfile.Exists(_a ): urllib.request.urlretrieve(_a , _a ) # noqa: S310 with gfile.GFile(_a ) as f: lowerCAmelCase__ : Optional[Any] = f.size() print('''Successfully downloaded''' , _a , _a , '''bytes.''' ) return filepath @deprecated( _a , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def lowerCamelCase_ ( _a , _a=False , _a=False , _a=dtypes.floataa , _a=True , _a=5_000 , _a=None , _a=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_a , one_hot=_a , dtype=_a , seed=_a ) lowerCAmelCase__ : Tuple = fake() lowerCAmelCase__ : Union[str, Any] = fake() lowerCAmelCase__ : Tuple = fake() return _Datasets(train=_a , validation=_a , test=_a ) if not source_url: # empty string check lowerCAmelCase__ : Optional[Any] = DEFAULT_SOURCE_URL lowerCAmelCase__ : Tuple = '''train-images-idx3-ubyte.gz''' lowerCAmelCase__ : Dict = '''train-labels-idx1-ubyte.gz''' lowerCAmelCase__ : List[str] = '''t10k-images-idx3-ubyte.gz''' lowerCAmelCase__ : Optional[int] = '''t10k-labels-idx1-ubyte.gz''' lowerCAmelCase__ : Optional[Any] = _maybe_download( _a , _a , source_url + train_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Optional[Any] = _extract_images(_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + train_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Any = _extract_labels(_a , one_hot=_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + test_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : str = _extract_images(_a ) lowerCAmelCase__ : Dict = _maybe_download( _a , _a , source_url + test_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : int = _extract_labels(_a , one_hot=_a ) if not 0 <= validation_size <= len(_a ): lowerCAmelCase__ : Dict = ( '''Validation size should be between 0 and ''' f'{len(_a )}. Received: {validation_size}.' ) raise ValueError(_a ) lowerCAmelCase__ : List[str] = train_images[:validation_size] lowerCAmelCase__ : Any = train_labels[:validation_size] lowerCAmelCase__ : Optional[Any] = train_images[validation_size:] lowerCAmelCase__ : Optional[int] = train_labels[validation_size:] lowerCAmelCase__ : Optional[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowerCAmelCase__ : List[str] = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) return _Datasets(train=_a , validation=_a , test=_a )
131
1
"""simple docstring""" UpperCamelCase_ = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
362
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=__lowercase).to(__lowercase) __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''') __UpperCamelCase :int = tokenizer('''Hello there''' , return_tensors='''pt''').input_ids __UpperCamelCase :Tuple = tokenizer('''Hi I am''' , return_tensors='''pt''').input_ids __UpperCamelCase :int = model(input_ids.to(__lowercase) , labels=labels.to(__lowercase)).loss __UpperCamelCase :Optional[Any] = -(labels.shape[-1] * loss.item()) __UpperCamelCase :List[Any] = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
43
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = """facebook/bart-large-mnli""" a__ : int = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) a__ : Optional[Any] = """text_classifier""" a__ : Any = AutoTokenizer a__ : str = AutoModelForSequenceClassification a__ : str = ["""text""", ["""text"""]] a__ : Optional[int] = ["""text"""] def UpperCamelCase__ ( self) -> Union[str, Any]: super().setup() __UpperCamelCase :int = self.model.config __UpperCamelCase :Optional[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail'''): __UpperCamelCase :List[Any] = int(__lowercase) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''') def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Union[str, Any]: __UpperCamelCase :Any = labels return self.pre_processor( [text] * len(__lowercase) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: __UpperCamelCase :List[Any] = outputs.logits __UpperCamelCase :Any = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
43
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCAmelCase : List[Any] =logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( _lowerCAmelCase ): def __init__( self : Optional[Any] , lowercase : AutoencoderKL , lowercase : CLIPTextModel , lowercase : CLIPTokenizer , lowercase : UNetaDConditionModel , lowercase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase : StableDiffusionSafetyChecker , lowercase : CLIPImageProcessor , ): """simple docstring""" super().__init__() self.register_modules( vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def lowercase__ ( self : Tuple , lowercase : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase_ :Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def lowercase__ ( self : int ): """simple docstring""" self.enable_attention_slicing(lowercase ) @torch.no_grad() def __call__( self : Union[str, Any] , lowercase : Union[str, List[str]] , lowercase : int = 512 , lowercase : int = 512 , lowercase : int = 50 , lowercase : float = 7.5 , lowercase : Optional[Union[str, List[str]]] = None , lowercase : Optional[int] = 1 , lowercase : float = 0.0 , lowercase : Optional[torch.Generator] = None , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[str] = "pil" , lowercase : bool = True , lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase : int = 1 , lowercase : Optional[torch.FloatTensor] = None , **lowercase : int , ): """simple docstring""" if isinstance(lowercase , lowercase ): lowercase_ :Tuple = 1 elif isinstance(lowercase , lowercase ): lowercase_ :str = len(lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowercase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase , lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowercase )}.' ) # get prompt text embeddings lowercase_ :int = self.tokenizer( lowercase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) lowercase_ :Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase_ :Dict = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowercase_ :List[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase_ :Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase_ , lowercase_ , lowercase_ :Optional[int] = text_embeddings.shape lowercase_ :str = text_embeddings.repeat(1 , lowercase , 1 ) lowercase_ :Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase_ :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase_ :List[str] if negative_prompt is None: lowercase_ :Tuple = [""] elif type(lowercase ) is not type(lowercase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowercase )} !=' F' {type(lowercase )}.' ) elif isinstance(lowercase , lowercase ): lowercase_ :Optional[Any] = [negative_prompt] elif batch_size != len(lowercase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowercase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: lowercase_ :Union[str, Any] = negative_prompt lowercase_ :Optional[int] = text_input_ids.shape[-1] lowercase_ :Any = self.tokenizer( lowercase , padding="max_length" , max_length=lowercase , truncation=lowercase , return_tensors="pt" , ) lowercase_ :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ :List[Any] = uncond_embeddings.shape[1] lowercase_ :str = uncond_embeddings.repeat(lowercase , lowercase , 1 ) lowercase_ :Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ :Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase_ :Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase_ :Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase_ :int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase_ :Optional[Any] = torch.randn( lowercase , generator=lowercase , device="cpu" , dtype=lowercase ).to(self.device ) lowercase_ :Union[str, Any] = torch.randn(lowercase , generator=lowercase , device="cpu" , dtype=lowercase ).to( self.device ) else: lowercase_ :Any = torch.randn( lowercase , generator=lowercase , device=self.device , dtype=lowercase ) lowercase_ :int = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowercase_ :Optional[int] = latents_reference.to(self.device ) lowercase_ :int = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase_ :List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase_ :List[Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase_ :str = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase_ :str = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase_ :Dict = 0 if dx < 0 else dx lowercase_ :str = 0 if dy < 0 else dy lowercase_ :Optional[Any] = max(-dx , 0 ) lowercase_ :Tuple = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase_ :List[str] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase_ :List[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase_ :Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase_ :Tuple = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase_ :Optional[int] = {} if accepts_eta: lowercase_ :Tuple = eta for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ :int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ :Any = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual lowercase_ :Tuple = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample # perform guidance if do_classifier_free_guidance: lowercase_ , lowercase_ :Union[str, Any] = noise_pred.chunk(2 ) lowercase_ :List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase_ :Tuple = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase , lowercase , lowercase ) lowercase_ :str = 1 / 0.1_82_15 * latents lowercase_ :Dict = self.vae.decode(lowercase ).sample lowercase_ :Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase_ :Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase_ :int = self.feature_extractor(self.numpy_to_pil(lowercase ) , return_tensors="pt" ).to( self.device ) lowercase_ , lowercase_ :Union[str, Any] = self.safety_checker( images=lowercase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase_ :Tuple = None if output_type == "pil": lowercase_ :List[Any] = self.numpy_to_pil(lowercase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
147
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( _lowerCAmelCase ): __A = ["image_processor", "tokenizer"] __A = "LayoutLMv3ImageProcessor" __A = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : int , lowercase : Optional[Any]=None , lowercase : List[str]=None , **lowercase : Optional[int] ): """simple docstring""" lowercase_ :int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase , ) lowercase_ :Optional[int] = kwargs.pop("feature_extractor" ) lowercase_ :Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase , lowercase ) def __call__( self : Optional[Any] , lowercase : List[str] , lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase : Union[List[List[int]], List[List[List[int]]]] = None , lowercase : Optional[Union[List[int], List[List[int]]]] = None , lowercase : bool = True , lowercase : Union[bool, str, PaddingStrategy] = False , lowercase : Union[bool, str, TruncationStrategy] = None , lowercase : Optional[int] = None , lowercase : int = 0 , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = True , lowercase : Optional[Union[str, TensorType]] = None , **lowercase : List[Any] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor lowercase_ :Dict = self.image_processor(images=lowercase , return_tensors=lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase , lowercase ): lowercase_ :str = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase_ :Union[str, Any] = features["words"] lowercase_ :Optional[Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) # add pixel values lowercase_ :Any = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowercase_ :Any = self.get_overflowing_images(lowercase , encoded_inputs["overflow_to_sample_mapping"] ) lowercase_ :Any = images return encoded_inputs def lowercase__ ( self : List[Any] , lowercase : Any , lowercase : Optional[Any] ): """simple docstring""" lowercase_ :Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase ) != len(lowercase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F' {len(lowercase )} and {len(lowercase )}' ) return images_with_overflow def lowercase__ ( self : Union[str, Any] , *lowercase : List[Any] , **lowercase : Optional[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def lowercase__ ( self : List[Any] , *lowercase : Any , **lowercase : str ): """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @property def lowercase__ ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowercase__ ( self : str ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase , ) return self.image_processor_class @property def lowercase__ ( self : Tuple ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase , ) return self.image_processor
147
1
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE : Union[str, Any] = 300 # TEMPERATURE (unit = K) def lowercase ( _snake_case : float , _snake_case : float , _snake_case : float , ) ->float: """simple docstring""" if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
102
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = GPTSwaTokenizer SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Any = False def __UpperCAmelCase ( self : Tuple ) -> Any: super().setUp() # We have a SentencePiece fixture for testing a = GPTSwaTokenizer(__lowerCamelCase , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Any: a = "This is a test" a = "This is a test" return input_text, output_text def __UpperCAmelCase ( self : List[Any] ) -> List[str]: a = "<s>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> int: a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__lowerCamelCase ) , 20_00 ) def __UpperCAmelCase ( self : Optional[int] ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: a = GPTSwaTokenizer(__lowerCamelCase ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( __lowerCamelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) a = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) # fmt: off self.assertListEqual( __lowerCamelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def __UpperCAmelCase ( self : List[Any] ) -> str: a = GPTSwaTokenizer(__lowerCamelCase ) a = ["This is a test", "I was born in 92000, and this is falsé."] a = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__lowerCamelCase , __lowerCamelCase ): self.assertListEqual(tokenizer.encode_fast(__lowerCamelCase ) , __lowerCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.decode_fast(__lowerCamelCase ) , __lowerCamelCase ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: a = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off a = {"input_ids": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="AI-Sweden/gpt-sw3-126m" , sequences=__lowerCamelCase , )
107
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: _a : Tuple = [] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for v in tree.values(): shapes.extend(_fetch_dims(lowerCAmelCase_ ) ) elif isinstance(lowerCAmelCase_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowerCAmelCase_ ) ) elif isinstance(lowerCAmelCase_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : int = [] for d in reversed(lowerCAmelCase_ ): idx.append(flat_idx % d ) _a : Dict = flat_idx // d return tuple(reversed(lowerCAmelCase_ ) ) @torch.jit.ignore def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> List[str]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCAmelCase_ ) -> None: _a : Union[str, Any] = True for i in range(len(lowerCAmelCase_ ) ): _a : int = -1 * (i + 1) l[reversed_idx] &= tally _a : Tuple = l[reversed_idx] if start_edges is None: _a : Any = [s == 0 for s in start] reduce_edge_list(lowerCAmelCase_ ) if end_edges is None: _a : List[str] = [e == (d - 1) for e, d in zip(lowerCAmelCase_ , lowerCAmelCase_ )] reduce_edge_list(lowerCAmelCase_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCAmelCase_ ) == 0: return [()] elif len(lowerCAmelCase_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _a : List[Tuple[slice, ...]] = [] _a : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if s == e: path_list.append(slice(lowerCAmelCase_ , s + 1 ) ) else: break _a : Tuple[slice, ...] = tuple(lowerCAmelCase_ ) _a : Union[str, Any] = len(lowerCAmelCase_ ) # start == end, and we're done if divergence_idx == len(lowerCAmelCase_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _a : int = start[divergence_idx] return tuple( path + (slice(lowerCAmelCase_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _a : Optional[Any] = end[divergence_idx] return tuple( path + (slice(lowerCAmelCase_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _a : Optional[Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : List[Any] = t.shape[:no_batch_dims] _a : Optional[int] = list(_flat_idx_to_idx(lowerCAmelCase_ , lowerCAmelCase_ ) ) # _get_minimal_slice_set is inclusive _a : Optional[Any] = list(_flat_idx_to_idx(flat_end - 1 , lowerCAmelCase_ ) ) # Get an ordered list of slices to perform _a : Tuple = _get_minimal_slice_set( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) _a : int = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = False , ) -> Dict: if not (len(lowerCAmelCase_ ) > 0): raise ValueError('Must provide at least one input' ) _a : List[str] = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCAmelCase_ )] _a : List[Any] = tuple([max(lowerCAmelCase_ ) for s in zip(*lowerCAmelCase_ )] ) def _prep_inputs(lowerCAmelCase_ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _a : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _a : List[str] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _a : int = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _a : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCAmelCase_ ) _a : str = None if _out is not None: _a : Dict = tensor_tree_map(lambda lowerCAmelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _a : List[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d _a : Any = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCAmelCase_ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _a : Tuple = 0 _a : List[Any] = prepped_outputs for _ in range(lowerCAmelCase_ ): # Chunk the input if not low_mem: _a : int = _select_chunk else: _a : List[str] = partial( _chunk_slice , flat_start=lowerCAmelCase_ , flat_end=min(lowerCAmelCase_ , i + chunk_size ) , no_batch_dims=len(lowerCAmelCase_ ) , ) _a : Dict[str, Any] = tensor_tree_map(lowerCAmelCase_ , lowerCAmelCase_ ) # Run the layer on the chunk _a : Any = layer(**lowerCAmelCase_ ) # Allocate space for the output if out is None: _a : List[Any] = tensor_tree_map(lambda lowerCAmelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowerCAmelCase_ ) # Put the chunk in its pre-allocated space if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): def assign(lowerCAmelCase_ , lowerCAmelCase_ ) -> None: for k, v in da.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): assign(lowerCAmelCase_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _a : List[Any] = da[k] assign(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for xa, xa in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: _a : Union[str, Any] = xa elif isinstance(lowerCAmelCase_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _a : List[Any] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _a : Optional[int] = tensor_tree_map(lambda lowerCAmelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , lowerCAmelCase_ ) return out class __magic_name__ : def __init__( self : Optional[int] ,_UpperCAmelCase : int = 512 ,): _a : Tuple = max_chunk_size _a : Optional[int] = None _a : Optional[tuple] = None def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Callable ,_UpperCAmelCase : tuple ,_UpperCAmelCase : int ): logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _a : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size ,2 ) ) + 1 )] _a : str = [c for c in candidates if c > min_chunk_size] _a : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_UpperCAmelCase : int ) -> bool: try: with torch.no_grad(): fn(*_a ,chunk_size=_a ) return True except RuntimeError: return False _a : Optional[Any] = 0 _a : Any = len(_a ) - 1 while i > min_viable_chunk_size_index: _a : int = test_chunk_size(candidates[i] ) if not viable: _a : Optional[int] = (min_viable_chunk_size_index + i) // 2 else: _a : List[str] = i _a : Union[str, Any] = (i + len(_a ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __lowercase ( self : str ,_UpperCAmelCase : Iterable ,_UpperCAmelCase : Iterable ): _a : Optional[Any] = True for aa, aa in zip(_a ,_a ): assert type(_a ) == type(_a ) if isinstance(_a ,(list, tuple) ): consistent &= self._compare_arg_caches(_a ,_a ) elif isinstance(_a ,_a ): _a : List[str] = [v for _, v in sorted(aa.items() ,key=lambda _UpperCAmelCase : x[0] )] _a : int = [v for _, v in sorted(aa.items() ,key=lambda _UpperCAmelCase : x[0] )] consistent &= self._compare_arg_caches(_a ,_a ) else: consistent &= aa == aa return consistent def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Callable ,_UpperCAmelCase : tuple ,_UpperCAmelCase : int ,): _a : Tuple = True _a : tuple = tree_map(lambda _UpperCAmelCase : a.shape if isinstance(_a ,torch.Tensor ) else a ,_a ,_a ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_a ) _a : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data ,_a ) else: # Otherwise, we can reuse the precomputed value _a : Any = False if not consistent: _a : Dict = self._determine_favorable_chunk_size( _a ,_a ,_a ,) _a : Tuple = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
370
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class __magic_name__ : def __init__( self : Dict ,_UpperCAmelCase : Any ): _a : Any = data _a : Node | None = None class __magic_name__ : def __init__( self : Any ): _a : int = None _a : Optional[int] = None def __iter__( self : Optional[int] ): _a : List[Any] = self.head while self.head: yield node.data _a : str = node.next if node == self.head: break def __len__( self : Any ): return sum(1 for _ in self ) def __repr__( self : int ): return "->".join(str(_UpperCAmelCase ) for item in iter(self ) ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Any ): self.insert_nth(len(self ) ,_UpperCAmelCase ) def __lowercase ( self : str ,_UpperCAmelCase : Any ): self.insert_nth(0 ,_UpperCAmelCase ) def __lowercase ( self : List[str] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ): if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) _a : List[str] = Node(_UpperCAmelCase ) if self.head is None: _a : Tuple = new_node # first node points itself _a : int = new_node elif index == 0: # insert at head _a : Any = self.head _a : Tuple = new_node else: _a : Any = self.head for _ in range(index - 1 ): _a : int = temp.next _a : Optional[int] = temp.next _a : int = new_node if index == len(self ) - 1: # insert at tail _a : Optional[int] = new_node def __lowercase ( self : List[Any] ): return self.delete_nth(0 ) def __lowercase ( self : Dict ): return self.delete_nth(len(self ) - 1 ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : int = 0 ): if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) _a : Optional[int] = self.head if self.head == self.tail: # just one node _a : Optional[int] = None elif index == 0: # delete head node _a : Dict = self.tail.next.next _a : Dict = self.head.next else: _a : List[Any] = self.head for _ in range(index - 1 ): _a : Union[str, Any] = temp.next _a : Optional[int] = temp.next _a : List[str] = temp.next.next if index == len(self ) - 1: # delete at tail _a : int = temp return delete_node.data def __lowercase ( self : int ): return len(self ) == 0 def __lowerCamelCase ( ) -> None: _a : int = CircularLinkedList() assert len(lowerCAmelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCAmelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCAmelCase_ ) == i circular_linked_list.insert_nth(lowerCAmelCase_ , i + 1 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
107
0