code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Tuple = hf_hub_url(repo_id=A_ , path=A_ , revision=A_ ) assert url == f'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(A_ )}'
106
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""image_processor""", """tokenizer"""] __UpperCamelCase = """LayoutLMv2ImageProcessor""" __UpperCamelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self :Any , lowercase_ :int=None , lowercase_ :Union[str, Any]=None , **lowercase_ :Optional[Any] ) -> Dict: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) UpperCAmelCase = kwargs.pop('feature_extractor' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :str , lowercase_ :Optional[int] , lowercase_ :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ :Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ :Optional[Union[List[int], List[List[int]]]] = None , lowercase_ :bool = True , lowercase_ :Union[bool, str, PaddingStrategy] = False , lowercase_ :Union[bool, str, TruncationStrategy] = None , lowercase_ :Optional[int] = None , lowercase_ :int = 0 , lowercase_ :Optional[int] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[bool] = None , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = True , lowercase_ :Optional[Union[str, TensorType]] = None , **lowercase_ :Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor UpperCAmelCase = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase = features['words'] UpperCAmelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values UpperCAmelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: UpperCAmelCase = self.get_overflowing_images(lowercase_ , encoded_inputs['overflow_to_sample_mapping'] ) UpperCAmelCase = images return encoded_inputs def UpperCAmelCase__ ( self :Dict , lowercase_ :List[Any] , lowercase_ :Any ) -> Optional[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(lowercase_ )} and {len(lowercase_ )}""" ) return images_with_overflow def UpperCAmelCase__ ( self :Any , *lowercase_ :int , **lowercase_ :Tuple ) -> Tuple: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , *lowercase_ :List[Any] , **lowercase_ :Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCAmelCase__ ( self :int ) -> Optional[int]: return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ ( self :int ) -> Dict: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
78
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : int ): __snake_case : int = tempfile.mkdtemp() # fmt: off __snake_case : Any = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __snake_case : Any = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __snake_case : str = {"""unk_token""": """<unk>"""} __snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) __snake_case : Union[str, Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Tuple , **_lowerCAmelCase : Optional[int] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **_lowerCAmelCase ) def snake_case__ ( self : Optional[int] , **_lowerCAmelCase : Optional[Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **_lowerCAmelCase ) def snake_case__ ( self : Any , **_lowerCAmelCase : int ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Any ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : List[Any] ): __snake_case : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __snake_case : int = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self : str ): __snake_case : Any = self.get_tokenizer() __snake_case : Any = self.get_rust_tokenizer() __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : List[Any] = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __snake_case : Any = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) __snake_case : str = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __snake_case : int = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def snake_case__ ( self : List[str] ): __snake_case : Dict = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __snake_case : List[str] = self.get_image_processor(do_normalize=_lowerCAmelCase ) __snake_case : List[str] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Tuple = self.get_image_processor() __snake_case : List[Any] = self.get_tokenizer() __snake_case : Tuple = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Union[str, Any] = self.prepare_image_inputs() __snake_case : List[str] = image_processor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Dict = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[Any] ): __snake_case : Any = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[Any] = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Optional[Any] = """lower newer""" __snake_case : Dict = processor(text=_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def snake_case__ ( self : Any ): __snake_case : Optional[Any] = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : Tuple = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : List[str] = """lower newer""" __snake_case : int = self.prepare_image_inputs() __snake_case : List[str] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : Any ): __snake_case : str = """google/owlvit-base-patch32""" __snake_case : List[str] = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) __snake_case : Any = ["""cat""", """nasa badge"""] __snake_case : Optional[int] = processor(text=_lowerCAmelCase ) __snake_case : int = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : Dict ): __snake_case : List[str] = """google/owlvit-base-patch32""" __snake_case : List[Any] = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) __snake_case : Any = [["""cat""", """nasa badge"""], ["""person"""]] __snake_case : Optional[Any] = processor(text=_lowerCAmelCase ) __snake_case : Union[str, Any] = 16 __snake_case : Dict = len(_lowerCAmelCase ) __snake_case : Optional[Any] = max([len(_lowerCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : Optional[int] ): __snake_case : int = """google/owlvit-base-patch32""" __snake_case : Union[str, Any] = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) __snake_case : int = ["""cat""", """nasa badge"""] __snake_case : Any = processor(text=_lowerCAmelCase ) __snake_case : Optional[Any] = 16 __snake_case : Any = inputs["""input_ids"""] __snake_case : str = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def snake_case__ ( self : List[Any] ): __snake_case : str = self.get_image_processor() __snake_case : Dict = self.get_tokenizer() __snake_case : str = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : List[Any] = self.prepare_image_inputs() __snake_case : int = self.prepare_image_inputs() __snake_case : List[str] = processor(images=_lowerCAmelCase , query_images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def snake_case__ ( self : Any ): __snake_case : Optional[Any] = self.get_image_processor() __snake_case : Any = self.get_tokenizer() __snake_case : Dict = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Any = processor.batch_decode(_lowerCAmelCase ) __snake_case : str = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCamelCase__ : Union[str, Any] = logging.getLogger(__name__) lowerCamelCase__ : Dict = 'pytorch_model.bin' @dataclasses.dataclass class lowerCamelCase_ : '''simple docstring''' lowercase_ = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) lowercase_ = dataclasses.field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowerCamelCase_ : '''simple docstring''' lowercase_ = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) lowercase_ = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) lowercase_ = dataclasses.field( default=lowerCAmelCase__ , metadata={"help": "A csv or a json file containing the validation data."} ) lowercase_ = dataclasses.field( default=lowerCAmelCase__ , metadata={"help": "The name of the task to train on."} , ) lowercase_ = dataclasses.field( default=lowerCAmelCase__ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowerCamelCase_ : '''simple docstring''' lowercase_ = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) lowercase_ = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) lowercase_ = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) lowercase_ = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) lowercase_ = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) lowercase_ = dataclasses.field( default=lowerCAmelCase__ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) lowercase_ = dataclasses.field( default=lowerCAmelCase__ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) lowercase_ = dataclasses.field( default=lowerCAmelCase__ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) lowercase_ = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) lowercase_ = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) lowercase_ = dataclasses.field( default=lowerCAmelCase__ , metadata={"help": "Random seed for initialization."} , ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: SCREAMING_SNAKE_CASE_ = dataset.filter(lambda __UpperCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 SCREAMING_SNAKE_CASE_ = int(eval_result * len(__UpperCAmelCase ) ) print(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = dataset.sort('probability' , reverse=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = dataset.select(range(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ = dataset.remove_columns(['label', 'probability'] ) SCREAMING_SNAKE_CASE_ = dataset.rename_column('prediction' , 'label' ) SCREAMING_SNAKE_CASE_ = dataset.map(lambda __UpperCAmelCase : {"label": idalabel[example["label"]]} ) SCREAMING_SNAKE_CASE_ = dataset.shuffle(seed=args.seed ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , f"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(__UpperCAmelCase , index=__UpperCAmelCase ) else: dataset.to_json(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : int , **__UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE_ = STModelArguments(model_name_or_path=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = STDataArguments(train_file=__UpperCAmelCase , infer_file=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = STTrainingArguments(output_dir=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__UpperCAmelCase ).items(): setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for key, value in kwargs.items(): if hasattr(__UpperCAmelCase , __UpperCAmelCase ): setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Sanity checks SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None SCREAMING_SNAKE_CASE_ = args.train_file SCREAMING_SNAKE_CASE_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None SCREAMING_SNAKE_CASE_ = args.eval_file for key in data_files: SCREAMING_SNAKE_CASE_ = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], f"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: SCREAMING_SNAKE_CASE_ = extension else: assert extension == args.data_file_extension, f"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), f"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) SCREAMING_SNAKE_CASE_ = f"{args.output_dir}/self-train_iter-{{}}".format SCREAMING_SNAKE_CASE_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = False # Show the progress bar SCREAMING_SNAKE_CASE_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): SCREAMING_SNAKE_CASE_ = data_dir_format(__UpperCAmelCase ) assert os.path.exists(__UpperCAmelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'stage-1' ) SCREAMING_SNAKE_CASE_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__UpperCAmelCase , __UpperCAmelCase ): arguments_dict.update({key: value} ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'best-checkpoint' , __UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , __UpperCAmelCase , __UpperCAmelCase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , __UpperCAmelCase ) finetune(**__UpperCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(__UpperCAmelCase ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , __UpperCAmelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'best-checkpoint' ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'stage-2' ) # Update arguments_dict SCREAMING_SNAKE_CASE_ = model_path SCREAMING_SNAKE_CASE_ = data_files['''train'''] SCREAMING_SNAKE_CASE_ = current_output_dir SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'best-checkpoint' , __UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , __UpperCAmelCase , __UpperCAmelCase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , __UpperCAmelCase ) finetune(**__UpperCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(__UpperCAmelCase ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = iteration SCREAMING_SNAKE_CASE_ = data_dir_format(iteration + 1 ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(os.path.join(__UpperCAmelCase , 'best-checkpoint' ) ) SCREAMING_SNAKE_CASE_ = config.idalabel SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'eval_results_best-checkpoint.json' ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'test_results_best-checkpoint.json' ) assert os.path.exists(__UpperCAmelCase ) with open(__UpperCAmelCase , 'r' ) as f: SCREAMING_SNAKE_CASE_ = float(json.load(__UpperCAmelCase )[args.eval_metric] ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(__UpperCAmelCase ) # Loading the dataset from local csv or json files. SCREAMING_SNAKE_CASE_ = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['''data'''] SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files={'data': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) shutil.copy(__UpperCAmelCase , os.path.join(__UpperCAmelCase , f"eval_results_iter-{iteration}.json" ) ) if os.path.exists(__UpperCAmelCase ): shutil.copy(__UpperCAmelCase , os.path.join(__UpperCAmelCase , f"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , f"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: SCREAMING_SNAKE_CASE_ = eval_result if best_iteration is None: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result SCREAMING_SNAKE_CASE_ = 0 else: if new_eval_result == best_eval_result: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: SCREAMING_SNAKE_CASE_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , __UpperCAmelCase ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , __UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__UpperCAmelCase , f"eval_results_iter-{iteration}.json" ) , os.path.join(__UpperCAmelCase , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , __UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__UpperCAmelCase , f"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(__UpperCAmelCase , 'eval_results_best-iteration.json' ) , )
225
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( snake_case ): """simple docstring""" if "://" in dataset_path: __SCREAMING_SNAKE_CASE : Any = dataset_path.split('''://''' )[1] return dataset_path def a__ ( snake_case ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) ) else: fs.mv(snake_case , snake_case , recursive=snake_case ) def a__ ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
303
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys A__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
0
'''simple docstring''' def a_ ( _UpperCAmelCase : int = 1_00 ) -> int: __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
0
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( _lowerCAmelCase , unittest.TestCase ): A = ConsistencyModelPipeline A = UNCONDITIONAL_IMAGE_GENERATION_PARAMS A = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt A = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def __snake_case (self ) -> Tuple: UpperCAmelCase_: Tuple = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""", subfolder="""test_unet""", ) return unet @property def __snake_case (self ) -> List[str]: UpperCAmelCase_: Optional[int] = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""", subfolder="""test_unet_class_cond""", ) return unet def __snake_case (self, SCREAMING_SNAKE_CASE_=False ) -> str: if class_cond: UpperCAmelCase_: int = self.dummy_cond_unet else: UpperCAmelCase_: List[Any] = self.dummy_uncond_unet # Default to CM multistep sampler UpperCAmelCase_: str = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) UpperCAmelCase_: str = { """unet""": unet, """scheduler""": scheduler, } return components def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> int: if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCAmelCase_: int = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: int = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [22, 0], """generator""": generator, """output_type""": """np""", } return inputs def __snake_case (self ) -> Dict: UpperCAmelCase_: Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Dict = self.get_dummy_components() UpperCAmelCase_: Optional[int] = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = pipe(**SCREAMING_SNAKE_CASE_ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_: Optional[int] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case (self ) -> str: UpperCAmelCase_: Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: str = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = 0 UpperCAmelCase_: Dict = pipe(**SCREAMING_SNAKE_CASE_ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: Dict = image[0, -3:, -3:, -1] UpperCAmelCase_: Any = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case (self ) -> List[Any]: UpperCAmelCase_: str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[Any] = self.get_dummy_components() UpperCAmelCase_: Union[str, Any] = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = 1 UpperCAmelCase_: Tuple = None UpperCAmelCase_: Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE_ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: str = image[0, -3:, -3:, -1] UpperCAmelCase_: Tuple = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[int] = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = 1 UpperCAmelCase_: List[str] = None UpperCAmelCase_: Dict = 0 UpperCAmelCase_: Tuple = pipe(**SCREAMING_SNAKE_CASE_ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: Any = image[0, -3:, -3:, -1] UpperCAmelCase_: int = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _a ( unittest.TestCase ): def __snake_case (self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case (self, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_="cpu", SCREAMING_SNAKE_CASE_=torch.floataa, SCREAMING_SNAKE_CASE_=(1, 3, 64, 64) ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = { """num_inference_steps""": None, """timesteps""": [22, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: UpperCAmelCase_: List[str] = self.get_fixed_latents(seed=SCREAMING_SNAKE_CASE_, device=SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_, shape=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = latents return inputs def __snake_case (self, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_="cpu", SCREAMING_SNAKE_CASE_=torch.floataa, SCREAMING_SNAKE_CASE_=(1, 3, 64, 64) ) -> str: if type(SCREAMING_SNAKE_CASE_ ) == str: UpperCAmelCase_: int = torch.device(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = randn_tensor(SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, device=SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ ) return latents def __snake_case (self ) -> int: UpperCAmelCase_: Optional[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""", subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase_: Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) UpperCAmelCase_: Dict = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = self.get_inputs() UpperCAmelCase_: str = pipe(**SCREAMING_SNAKE_CASE_ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_: List[Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[str] = UNetaDModel.from_pretrained("""diffusers/consistency_models""", subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase_: Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) UpperCAmelCase_: Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = self.get_inputs() UpperCAmelCase_: Union[str, Any] = 1 UpperCAmelCase_: Optional[int] = None UpperCAmelCase_: Any = pipe(**SCREAMING_SNAKE_CASE_ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_: str = image[0, -3:, -3:, -1] UpperCAmelCase_: int = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def __snake_case (self ) -> int: UpperCAmelCase_: Optional[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""", subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase_: Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) UpperCAmelCase_: Dict = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE_, torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE_, device=SCREAMING_SNAKE_CASE_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE_, enable_math=SCREAMING_SNAKE_CASE_, enable_mem_efficient=SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[int] = pipe(**SCREAMING_SNAKE_CASE_ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_: Any = image[0, -3:, -3:, -1] UpperCAmelCase_: List[str] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""", subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase_: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) UpperCAmelCase_: List[str] = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE_, torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE_, device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = 1 UpperCAmelCase_: Optional[int] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE_, enable_math=SCREAMING_SNAKE_CASE_, enable_mem_efficient=SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: str = pipe(**SCREAMING_SNAKE_CASE_ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_: Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_: Optional[Any] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
147
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : Any = logging.get_logger(__name__) class _a ( _lowerCAmelCase ): A = ['''pixel_values'''] def __init__(self, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = PIL.Image.BICUBIC, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1 / 255, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = size if size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase_: str = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_: Any = get_size_dict(SCREAMING_SNAKE_CASE_, param_name="""crop_size""" ) UpperCAmelCase_: Dict = do_resize UpperCAmelCase_: Tuple = size UpperCAmelCase_: Dict = resample UpperCAmelCase_: Union[str, Any] = do_center_crop UpperCAmelCase_: List[str] = crop_size UpperCAmelCase_: Optional[int] = do_rescale UpperCAmelCase_: Dict = rescale_factor UpperCAmelCase_: Optional[Any] = do_normalize UpperCAmelCase_: Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_: Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = PIL.Image.BICUBIC, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCAmelCase_: int = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( SCREAMING_SNAKE_CASE_, size=(size["""height"""], size["""width"""]), resample=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCAmelCase_: int = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE_, size=(size["""height"""], size["""width"""]), data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> str: return rescale(SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST, **SCREAMING_SNAKE_CASE_, ) -> PIL.Image.Image: UpperCAmelCase_: str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_: str = resample if resample is not None else self.resample UpperCAmelCase_: Any = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_: str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_: List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_: str = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_: Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_: Optional[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_: List[str] = size if size is not None else self.size UpperCAmelCase_: Any = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_: Dict = get_size_dict(SCREAMING_SNAKE_CASE_, param_name="""crop_size""" ) UpperCAmelCase_: Any = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase_: List[str] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCAmelCase_: Any = [self.resize(image=SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCAmelCase_: Dict = [self.center_crop(image=SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCAmelCase_: str = [self.rescale(image=SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCAmelCase_: Optional[int] = [self.normalize(image=SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCAmelCase_: Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] UpperCAmelCase_: Any = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_, tensor_type=SCREAMING_SNAKE_CASE_ )
147
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowercase : Union[tf.Tensor, np.ndarray] ) ->List[int]: '''simple docstring''' if isinstance(_lowercase , np.ndarray ): return list(tensor.shape ) a : Any = tf.shape(_lowercase ) if tensor.shape == tf.TensorShape(_lowercase ): return dynamic a : Tuple = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_lowercase )] def _SCREAMING_SNAKE_CASE ( _lowercase : tf.Tensor , _lowercase : Optional[int] = None , _lowercase : Optional[str] = None ) ->tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=_lowercase , name=_lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Any=1E-5 , _lowercase : Union[str, Any]=-1 ) ->List[str]: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowercase , _lowercase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized a, a : Union[str, Any] = tf.nn.moments(_lowercase , axes=[axis] , keepdims=_lowercase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis a : str = [1] * inputs.shape.rank a : Tuple = shape_list(_lowercase )[axis] a : Optional[int] = tf.reshape(_lowercase , _lowercase ) a : Dict = tf.reshape(_lowercase , _lowercase ) # Compute layer normalization using the batch_normalization # function. a : Optional[int] = tf.nn.batch_normalization( _lowercase , _lowercase , _lowercase , offset=_lowercase , scale=_lowercase , variance_epsilon=_lowercase , ) return outputs def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : int=0 , _lowercase : Optional[Any]=-1 ) ->Optional[Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input a : int = tf.shape(_lowercase ) a : str = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) a : Optional[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_lowercase , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : tf.Tensor ) ->tf.Tensor: '''simple docstring''' if not isinstance(_lowercase , tf.Tensor ): a : Union[str, Any] = tf.convert_to_tensor(_lowercase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: a : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: a : List[str] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) a : Union[str, Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _SCREAMING_SNAKE_CASE ( _lowercase : tf.Tensor , _lowercase : int , _lowercase : str = "input_ids" ) ->None: '''simple docstring''' tf.debugging.assert_less( _lowercase , tf.cast(_lowercase , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(_lowercase )}) must be smaller than the embedding """ F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : Dict , _lowercase : str ) ->str: '''simple docstring''' a : int = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. a : Any = [x for x in data if len(_lowercase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) a : Any = np.asarray(_lowercase ) a : List[Any] = 1 a : Optional[int] = np.array_split(_lowercase , _lowercase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 a : int = np.array_split(_lowercase , _lowercase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_lowercase ): a : Dict = chunk_data else: a : Union[str, Any] = data def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : Optional[int] ) ->int: '''simple docstring''' if name in group.attrs: a : int = [n.decode("utf8" ) if hasattr(_lowercase , "decode" ) else n for n in group.attrs[name]] else: a : List[str] = [] a : Dict = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(_lowercase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->str: '''simple docstring''' def _expand_single_ad_tensor(_lowercase : Optional[Any] ): if isinstance(_lowercase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_lowercase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _lowercase )
79
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a : List[str] = logging.get_logger(__name__) a : Optional[int] = '''T5Config''' def _SCREAMING_SNAKE_CASE ( _lowercase : jnp.array , _lowercase : int , _lowercase : int ) ->jnp.ndarray: '''simple docstring''' a : Tuple = jnp.zeros_like(_lowercase ) a : Tuple = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) a : Dict = shifted_input_ids.at[:, 0].set(_lowercase ) a : Optional[Any] = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __UpperCamelCase ( a__ ): lowerCamelCase : Any ="""mt5""" lowerCamelCase : Dict =MTaConfig class __UpperCamelCase ( a__ ): lowerCamelCase : str ="""mt5""" lowerCamelCase : Tuple =MTaConfig class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] ="""mt5""" lowerCamelCase : Tuple =MTaConfig
79
1
import random from typing import Any def __A ( __lowerCAmelCase )-> list[Any]: """simple docstring""" for _ in range(len(__lowerCAmelCase ) ): _UpperCAmelCase = random.randint(0 , len(__lowerCAmelCase ) - 1 ) _UpperCAmelCase = random.randint(0 , len(__lowerCAmelCase ) - 1 ) _UpperCAmelCase , _UpperCAmelCase = data[b], data[a] return data if __name__ == "__main__": _a = [0, 1, 2, 3, 4, 5, 6, 7] _a = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
39
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowerCAmelCase : int = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = """albert""" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any]=3_00_00 , __lowerCamelCase : Union[str, Any]=1_28 , __lowerCamelCase : Any=40_96 , __lowerCamelCase : str=12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Union[str, Any]=64 , __lowerCamelCase : Dict=1_63_84 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]="gelu_new" , __lowerCamelCase : List[str]=0 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Tuple=5_12 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Any="absolute" , __lowerCamelCase : List[str]=0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=3 , **__lowerCamelCase : int , ) -> int: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) a = vocab_size a = embedding_size a = hidden_size a = num_hidden_layers a = num_hidden_groups a = num_attention_heads a = inner_group_num a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = classifier_dropout_prob a = position_embedding_type class snake_case__ (_UpperCamelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a = {0: "batch", 1: "choice", 2: "sequence"} else: a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
107
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version snake_case : Dict = get_logger(__name__) class _snake_case : SCREAMING_SNAKE_CASE__ = 'dummy_data' SCREAMING_SNAKE_CASE__ = 'datasets' SCREAMING_SNAKE_CASE__ = False def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , ): a :str = 0 a :List[str] = dataset_name a :str = cache_dir a :List[str] = use_local_dummy_data a :List[str] = config # download_callbacks take a single url as input a :List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a :Optional[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a :int = str(_lowerCamelCase ) # to be downloaded a :Union[str, Any] = None a :str = None @property def SCREAMING_SNAKE_CASE__ ( self ): if self._dummy_file is None: a :str = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a :Dict = cached_path( _lowerCamelCase , cache_dir=self.cache_dir , extract_compressed_file=_lowerCamelCase , force_extract=_lowerCamelCase ) return os.path.join(_lowerCamelCase , self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE__ ( self ): if self._bucket_url is None: a :Optional[int] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , *_lowerCamelCase ): if self.load_existing_dummy_data: # dummy data is downloaded and tested a :Optional[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a :Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_lowerCamelCase , _lowerCamelCase ): return self.create_dummy_data_dict(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , (list, tuple) ): return self.create_dummy_data_list(_lowerCamelCase , _lowerCamelCase ) else: return self.create_dummy_data_single(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , *_lowerCamelCase ): return self.download_and_extract(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return self.download_and_extract(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): return path def SCREAMING_SNAKE_CASE__ ( self ): return {} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_lowerCamelCase , _lowerCamelCase ): for single_url in single_urls: download_callback(_lowerCamelCase ) else: a :Optional[Any] = single_urls download_callback(_lowerCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_lowerCamelCase , _lowerCamelCase ): a :str = [os.path.join(_lowerCamelCase , urllib.parse.quote_plus(Path(_lowerCamelCase ).name ) ) for x in single_urls] else: a :List[Any] = single_urls a :List[Any] = os.path.join(_lowerCamelCase , urllib.parse.quote_plus(Path(_lowerCamelCase ).name ) ) a :str = value # make sure that values are unique if all(isinstance(_lowerCamelCase , _lowerCamelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a :Union[str, Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :Any = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a :Optional[int] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _lowerCamelCase ) ) for url in data_url ) a :int = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a :List[Any] = [data_url[0]] * len(_lowerCamelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_lowerCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a :Optional[int] = os.path.join(_lowerCamelCase , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_lowerCamelCase ) return dummy_data_list def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): for download_callback in self.download_callbacks: download_callback(_lowerCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a :int = os.path.join(_lowerCamelCase , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_lowerCamelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): def _iter_archive_members(_lowerCamelCase ): # this preserves the order of the members inside the ZIP archive a :Dict = Path(self.dummy_file ).parent a :Any = path.relative_to(_lowerCamelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a :Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_lowerCamelCase ) a :Dict = Path(_lowerCamelCase ) a :List[Any] = _iter_archive_members(_lowerCamelCase ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_lowerCamelCase ).as_posix(), file_path.open('''rb''' ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = [paths] for path in paths: if os.path.isfile(_lowerCamelCase ): if os.path.basename(_lowerCamelCase ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_lowerCamelCase ): if os.path.basename(_lowerCamelCase ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_lowerCamelCase ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_lowerCamelCase , _lowerCamelCase )
281
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'microsoft/speecht5_tts' SCREAMING_SNAKE_CASE__ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) SCREAMING_SNAKE_CASE__ = 'text_reader' SCREAMING_SNAKE_CASE__ = SpeechTaProcessor SCREAMING_SNAKE_CASE__ = SpeechTaForTextToSpeech SCREAMING_SNAKE_CASE__ = SpeechTaHifiGan SCREAMING_SNAKE_CASE__ = ['text'] SCREAMING_SNAKE_CASE__ = ['audio'] def SCREAMING_SNAKE_CASE__ ( self ): if self.post_processor is None: a :List[Any] = '''microsoft/speecht5_hifigan''' super().setup() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None ): a :Tuple = self.pre_processor(text=_lowerCamelCase , return_tensors='''pt''' , truncation=_lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) a :List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) a :int = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): with torch.no_grad(): return self.model.generate_speech(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): with torch.no_grad(): return self.post_processor(_lowerCamelCase ).cpu().detach()
281
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase : Tuple = logging.getLogger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__ = 10 , SCREAMING_SNAKE_CASE__ = 2 ) -> Union[str, Any]: def get_dataset(SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase : Dict = get_dataset(SCREAMING_SNAKE_CASE__ ) lowercase : str = get_dataset(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) lowercase : str = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> int: lowercase : Dict = [] for epoch in range(SCREAMING_SNAKE_CASE__ ): # Train quickly model.train() for batch in dataloader: lowercase , lowercase : Tuple = batch lowercase : str = model(SCREAMING_SNAKE_CASE__ ) lowercase : int = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __snake_case ( nn.Module ): def __init__( self ): '''simple docstring''' super().__init__() lowercase : Optional[int] = nn.Parameter(torch.randn(1 ) ) lowercase : List[str] = nn.Parameter(torch.randn(1 ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return x * self.a + self.b class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Any = DummyModel() lowercase : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : int = dummy_dataloaders() lowercase : List[str] = ProjectConfiguration(total_limit=1 ,project_dir=snake_case ,automatic_checkpoint_naming=snake_case ) # Train baseline lowercase : Tuple = Accelerator(project_config=snake_case ) lowercase , lowercase , lowercase , lowercase : List[Any] = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Optional[Any] = DummyModel() lowercase : Any = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : Optional[Any] = dummy_dataloaders() # Train baseline lowercase : Tuple = Accelerator() lowercase , lowercase , lowercase , lowercase : List[str] = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) # Save initial lowercase : List[str] = os.path.join(snake_case ,"""initial""" ) accelerator.save_state(snake_case ) ((lowercase) , (lowercase)) : Optional[Any] = model.a.item(), model.b.item() lowercase : Optional[int] = optimizer.state_dict() lowercase : Tuple = train(3 ,snake_case ,snake_case ,snake_case ,snake_case ) ((lowercase) , (lowercase)) : List[str] = model.a.item(), model.b.item() lowercase : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase : Tuple = DummyModel() lowercase : Dict = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : Union[str, Any] = dummy_dataloaders() lowercase : Union[str, Any] = Accelerator() lowercase , lowercase , lowercase , lowercase : int = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) accelerator.load_state(snake_case ) ((lowercase) , (lowercase)) : int = model.a.item(), model.b.item() lowercase : Optional[Any] = optimizer.state_dict() self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) lowercase : Any = train(2 ,snake_case ,snake_case ,snake_case ,snake_case ) # Save everything lowercase : List[Any] = os.path.join(snake_case ,"""checkpoint""" ) accelerator.save_state(snake_case ) # Load everything back in and make sure all states work accelerator.load_state(snake_case ) test_rands += train(1 ,snake_case ,snake_case ,snake_case ,snake_case ) ((lowercase) , (lowercase)) : int = model.a.item(), model.b.item() lowercase : List[str] = optimizer.state_dict() self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Dict = DummyModel() lowercase : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : Union[str, Any] = dummy_dataloaders() lowercase : Any = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline lowercase : int = Accelerator(project_dir=snake_case ,project_config=snake_case ) lowercase , lowercase , lowercase , lowercase : Tuple = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) # Save initial accelerator.save_state() ((lowercase) , (lowercase)) : Union[str, Any] = model.a.item(), model.b.item() lowercase : int = optimizer.state_dict() lowercase : Optional[Any] = train(3 ,snake_case ,snake_case ,snake_case ,snake_case ) ((lowercase) , (lowercase)) : Any = model.a.item(), model.b.item() lowercase : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase : Optional[int] = DummyModel() lowercase : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : Any = dummy_dataloaders() lowercase : Tuple = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=snake_case ) lowercase : Tuple = Accelerator(project_dir=snake_case ,project_config=snake_case ) lowercase , lowercase , lowercase , lowercase : List[Any] = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) accelerator.load_state(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_0""" ) ) ((lowercase) , (lowercase)) : Optional[int] = model.a.item(), model.b.item() lowercase : List[Any] = optimizer.state_dict() self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) lowercase : int = train(2 ,snake_case ,snake_case ,snake_case ,snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_1""" ) ) test_rands += train(1 ,snake_case ,snake_case ,snake_case ,snake_case ) ((lowercase) , (lowercase)) : Tuple = model.a.item(), model.b.item() lowercase : Optional[int] = optimizer.state_dict() self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = torch.tensor([1, 2, 3] ) lowercase : int = torch.tensor([2, 3, 4] ) lowercase : str = DummyModel() lowercase : Optional[Any] = torch.optim.Adam(net.parameters() ) lowercase : Any = Accelerator() with self.assertRaises(snake_case ) as ve: accelerator.register_for_checkpointing(snake_case ,snake_case ,snake_case ,snake_case ) lowercase : int = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Dict = DummyModel() lowercase : Optional[int] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase : Union[str, Any] = torch.optim.lr_scheduler.StepLR(snake_case ,step_size=1 ,gamma=0.99 ) lowercase , lowercase : List[Any] = dummy_dataloaders() lowercase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline lowercase : List[str] = Accelerator(project_dir=snake_case ,project_config=snake_case ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ,snake_case ) # Save initial accelerator.save_state() lowercase : Optional[int] = scheduler.state_dict() train(3 ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ) self.assertNotEqual(snake_case ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_0""" ) ) self.assertEqual(snake_case ,scheduler.state_dict() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Union[str, Any] = DummyModel() lowercase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case ,total_limit=2 ) # Train baseline lowercase : Dict = Accelerator(project_dir=snake_case ,project_config=snake_case ) lowercase : Any = accelerator.prepare(snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_10""" ) ) ) @require_cuda def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case ,env=os.environ.copy() ) if __name__ == "__main__": lowercase : int = """/tmp/accelerate/state_checkpointing""" lowercase : List[str] = DummyModel() lowercase : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase : List[str] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) lowercase , lowercase : str = dummy_dataloaders() lowercase : str = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase : Tuple = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase , lowercase : Union[str, Any] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase : Dict = group["""params"""][0].device break assert param_device.type == accelerator.device.type lowercase : int = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: lowercase : Tuple = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: lowercase : List[str] = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> str: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=lowercase , ) assert hasattr(self , 'env') def lowerCamelCase_ ( self , lowercase) -> Optional[Any]: '''simple docstring''' a__: Union[str, Any] = { 'enabled': True, 'processes_per_host': 8, } a__: Union[str, Any] = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } a__: List[Any] = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} a__: List[str] = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=lowercase , instance_type=self.instance_type , debugger_hook_config=lowercase , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=lowercase , py_version='py36' , ) def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' TrainingJobAnalytics(lowercase).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv') @parameterized.expand([(1,)]) def lowerCamelCase_ ( self , lowercase) -> str: '''simple docstring''' a__: str = self.create_estimator(lowercase) # run training estimator.fit() # result dataframe a__: List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis a__: Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) a__: int = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping a__: Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , lowercase)
203
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } lowercase__ = { 'unc-nlp/lxmert-base-uncased': 512, } lowercase__ = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_INIT_CONFIGURATION a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = LxmertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Dict: '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) a__: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , lowercase) != do_lower_case or normalizer_state.get('strip_accents' , lowercase) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase) != tokenize_chinese_chars ): a__: int = getattr(lowercase , normalizer_state.pop('type')) a__: Dict = do_lower_case a__: Dict = strip_accents a__: Optional[int] = tokenize_chinese_chars a__: List[Any] = normalizer_class(**lowercase) a__: Optional[int] = do_lower_case def lowerCamelCase_ ( self , lowercase , lowercase=None) -> Tuple: '''simple docstring''' a__: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: List[Any] = [self.sep_token_id] a__: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__: List[Any] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase)
203
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
def _a ( a :int = 100 ) -> int: a = n * (n + 1) * (2 * n + 1) / 6 a = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
0
1
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort _lowercase : Union[str, Any] = '1' _lowercase : str = '0' _lowercase : List[Any] = '1' _lowercase : Dict = ort.SessionOptions() _lowercase : int = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') _lowercase : Optional[Any] = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] _lowercase : Optional[int] = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) _lowercase : str = ort.RunOptions() _lowercase : Optional[Any] = 1_28 _lowercase : str = 1 _lowercase : Optional[int] = np.ones((batch, sequence), dtype=np.intaa) _lowercase : Dict = np.ones((batch, sequence), dtype=np.intaa) _lowercase : Dict = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') _lowercase : Any = time.time() _lowercase : List[str] = 20_00 _lowercase : List[Any] = {} for iter in range(max_iters): _lowercase : Any = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 10_00 / max_iters))
371
"""simple docstring""" from __future__ import annotations import bisect def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): if hi < 0: __UpperCAmelCase = len(snake_case_ ) while lo < hi: __UpperCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid return lo def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): if hi < 0: __UpperCAmelCase = len(snake_case_ ) while lo < hi: __UpperCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid return lo def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): sorted_collection.insert(bisect_left(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): sorted_collection.insert(bisect_right(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): __UpperCAmelCase = 0 __UpperCAmelCase = len(snake_case_ ) - 1 while left <= right: __UpperCAmelCase = left + (right - left) // 2 __UpperCAmelCase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCAmelCase = midpoint - 1 else: __UpperCAmelCase = midpoint + 1 return None def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): __UpperCAmelCase = bisect.bisect_left(snake_case_ , snake_case_ ) if index != len(snake_case_ ) and sorted_collection[index] == item: return index return None def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int , snake_case_ :int ): if right < left: return None __UpperCAmelCase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case_ , snake_case_ , snake_case_ , midpoint - 1 ) else: return binary_search_by_recursion(snake_case_ , snake_case_ , midpoint + 1 , snake_case_ ) if __name__ == "__main__": _lowercase : Optional[Any] = input('Enter numbers separated by comma:\n').strip() _lowercase : Optional[int] = sorted(int(item) for item in user_input.split(',')) _lowercase : Optional[Any] = int(input('Enter a single number to be found in the list:\n')) _lowercase : int = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
86
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings( snake_case_ , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def lowerCAmelCase ( self : Any , __UpperCAmelCase : GenericTensor ): '''simple docstring''' if self.framework == "tf": _A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _A = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__UpperCAmelCase ) else: raise ValueError("Unsupported framework" ) return masked_index def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : GenericTensor ): '''simple docstring''' _A = self.get_masked_index(__UpperCAmelCase ) _A = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : GenericTensor ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__UpperCAmelCase ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' if return_tensors is None: _A = self.framework _A = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.ensure_exactly_one_mask_token(__UpperCAmelCase ) return model_inputs def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = self.model(**__UpperCAmelCase ) _A = model_inputs["input_ids"] return model_outputs def lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any=5 , __UpperCAmelCase : str=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: _A = target_ids.shape[0] _A = model_outputs["input_ids"][0] _A = model_outputs["logits"] if self.framework == "tf": _A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _A = outputs.numpy() _A = outputs[0, masked_index, :] _A = stable_softmax(__UpperCAmelCase , axis=-1 ) if target_ids is not None: _A = tf.gather_nd(tf.squeeze(__UpperCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) _A = tf.expand_dims(__UpperCAmelCase , 0 ) _A = tf.math.top_k(__UpperCAmelCase , k=__UpperCAmelCase ) _A , _A = topk.values.numpy(), topk.indices.numpy() else: _A = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__UpperCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _A = outputs[0, masked_index, :] _A = logits.softmax(dim=-1 ) if target_ids is not None: _A = probs[..., target_ids] _A , _A = probs.topk(__UpperCAmelCase ) _A = [] _A = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _A = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _A = input_ids.numpy().copy() if target_ids is not None: _A = target_ids[p].tolist() _A = p # Filter padding out: _A = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _A = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _A = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__UpperCAmelCase ) result.append(__UpperCAmelCase ) if single_mask: return result[0] return result def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=None ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = [targets] try: _A = self.tokenizer.get_vocab() except Exception: _A = {} _A = [] for target in targets: _A = vocab.get(__UpperCAmelCase , __UpperCAmelCase ) if id_ is None: _A = self.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , max_length=1 , truncation=__UpperCAmelCase , )["input_ids"] if len(__UpperCAmelCase ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' "We cannot replace it with anything meaningful, ignoring it" ) continue _A = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) _A = list(set(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) == 0: raise ValueError("At least one target must be provided when passed." ) _A = np.array(__UpperCAmelCase ) return target_ids def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=None ): '''simple docstring''' _A = {} if targets is not None: _A = self.get_target_ids(__UpperCAmelCase , __UpperCAmelCase ) _A = target_ids if top_k is not None: _A = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : List[Any] , __UpperCAmelCase : List[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : List[str] ): '''simple docstring''' _A = super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs
79
'''simple docstring''' def __lowercase ( __lowercase = 100 ) -> int: '''simple docstring''' _A = n * (n + 1) * (2 * n + 1) / 6 _A = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
79
1
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = DistilBertTokenizer SCREAMING_SNAKE_CASE_ = DistilBertTokenizerFast SCREAMING_SNAKE_CASE_ = True @slow def a_ ( self) -> str: snake_case_ = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') snake_case_ = tokenizer.encode('sequence builders', add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.encode('multi-sequence build', add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
312
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' __magic_name__ : List[Any] = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __magic_name__ : Optional[int] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert("RGB" ) return image def lowerCAmelCase_ ( _snake_case : List[Any] ) -> List[str]: '''simple docstring''' __magic_name__ : str = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def lowerCAmelCase_ ( _snake_case : str , _snake_case : int , _snake_case : str ) -> Tuple: '''simple docstring''' __magic_name__ : str = dct.pop(_snake_case ) __magic_name__ : Any = val def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : int ) -> List[Any]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __magic_name__ : Union[str, Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __magic_name__ : Dict = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __magic_name__ : List[Any] = torch.cat((q_bias, torch.zeros_like(_snake_case , requires_grad=_snake_case ), v_bias) ) __magic_name__ : Any = qkv_bias def lowerCAmelCase_ ( _snake_case : str ) -> Tuple: '''simple docstring''' __magic_name__ : int = 364 if "coco" in model_name else 224 __magic_name__ : Dict = InstructBlipVisionConfig(image_size=_snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __magic_name__ : Any = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __magic_name__ : str = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __magic_name__ : Union[str, Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: __magic_name__ : List[Any] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __magic_name__ : List[Any] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() __magic_name__ : str = InstructBlipConfig(vision_config=_snake_case , text_config=_snake_case , qformer_config=_snake_case ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Dict=None , _snake_case : Tuple=False ) -> List[Any]: '''simple docstring''' __magic_name__ : Any = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: __magic_name__ : Optional[Any] = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __magic_name__ : List[Any] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) __magic_name__ , __magic_name__ : Dict = get_blipa_config(_snake_case ) __magic_name__ : int = InstructBlipForConditionalGeneration(_snake_case ).eval() __magic_name__ : Optional[int] = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __magic_name__ , __magic_name__ : List[Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) __magic_name__ : str = "cuda:1" if torch.cuda.is_available() else "cpu" __magic_name__ : Optional[int] = "cuda:2" if torch.cuda.is_available() else "cpu" __magic_name__ , __magic_name__ , __magic_name__ : List[str] = load_model_and_preprocess( name=_snake_case , model_type=_snake_case , is_eval=_snake_case , device=_snake_case ) original_model.eval() print("Done!" ) # update state dict keys __magic_name__ : str = original_model.state_dict() __magic_name__ : Optional[int] = create_rename_keys(_snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __magic_name__ : int = state_dict.pop(_snake_case ) if key.startswith("Qformer.bert" ): __magic_name__ : Dict = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __magic_name__ : str = key.replace("self" , "attention" ) if "llm_proj" in key: __magic_name__ : int = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: __magic_name__ : Dict = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): __magic_name__ : Optional[int] = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): __magic_name__ : Optional[int] = key.replace("t5" , "language" ) __magic_name__ : Union[str, Any] = val # read in qv biases read_in_q_v_bias(_snake_case , _snake_case ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_snake_case , strict=_snake_case ) __magic_name__ : Union[str, Any] = load_demo_image() __magic_name__ : Tuple = "What is unusual about this image?" # create processor __magic_name__ : str = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_snake_case , image_std=_snake_case ) __magic_name__ : Tuple = InstructBlipProcessor( image_processor=_snake_case , tokenizer=_snake_case , qformer_tokenizer=_snake_case , ) __magic_name__ : List[str] = processor(images=_snake_case , text=_snake_case , return_tensors="pt" ).to(_snake_case ) # make sure processor creates exact same pixel values __magic_name__ : List[Any] = vis_processors["eval"](_snake_case ).unsqueeze(0 ).to(_snake_case ) __magic_name__ : Optional[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _snake_case ) original_model.to(_snake_case ) hf_model.to(_snake_case ) with torch.no_grad(): if "vicuna" in model_name: __magic_name__ : Tuple = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits __magic_name__ : List[Any] = hf_model(**_snake_case ).logits else: __magic_name__ : int = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits __magic_name__ : Dict = tokenizer("\n" , return_tensors="pt" ).input_ids.to(_snake_case ) __magic_name__ : Optional[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) __magic_name__ : Optional[Any] = hf_model(**_snake_case , labels=_snake_case ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __magic_name__ : List[str] = 1E-4 if "vicuna" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , _snake_case , atol=_snake_case ) print("Looks ok!" ) print("Generating with original model..." ) __magic_name__ : Dict = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) __magic_name__ : Optional[int] = hf_model.generate( **_snake_case , do_sample=_snake_case , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __magic_name__ : Tuple = 2 print("Original generation:" , _snake_case ) __magic_name__ : Dict = processor.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __magic_name__ : List[str] = [text.strip() for text in output_text] print("HF generation:" , _snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() snake_case : Tuple = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) snake_case : Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
281
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _snake_case : UpperCamelCase__ = LEDConfig UpperCamelCase__ = {} UpperCamelCase__ = 'gelu' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=4 , ): __magic_name__ : int = parent __magic_name__ : Optional[int] = batch_size __magic_name__ : Tuple = seq_length __magic_name__ : List[Any] = is_training __magic_name__ : Dict = use_labels __magic_name__ : Optional[Any] = vocab_size __magic_name__ : int = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Any = eos_token_id __magic_name__ : str = pad_token_id __magic_name__ : int = bos_token_id __magic_name__ : Optional[int] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __magic_name__ : Tuple = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __magic_name__ : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __magic_name__ : List[str] = prepare_led_inputs_dict(_a , _a , _a ) __magic_name__ : Union[str, Any] = tf.concat( [tf.zeros_like(_a )[:, :-1], tf.ones_like(_a )[:, -1:]] , axis=-1 , ) __magic_name__ : List[Any] = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Dict = TFLEDModel(config=_a ).get_decoder() __magic_name__ : Optional[int] = inputs_dict["input_ids"] __magic_name__ : Union[str, Any] = input_ids[:1, :] __magic_name__ : str = inputs_dict["attention_mask"][:1, :] __magic_name__ : int = 1 # first forward pass __magic_name__ : Tuple = model(_a , attention_mask=_a , use_cache=_a ) __magic_name__ , __magic_name__ : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ : List[str] = model(_a , attention_mask=_a )[0] __magic_name__ : Dict = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def lowerCAmelCase_ ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Any , _snake_case : str=None , _snake_case : List[str]=None , _snake_case : int=None , _snake_case : Any=None , ) -> int: '''simple docstring''' if attention_mask is None: __magic_name__ : str = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = TFLEDModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[str] = tf.zeros_like(inputs_dict["attention_mask"] ) __magic_name__ : Optional[Any] = 2 __magic_name__ : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) __magic_name__ : Any = True __magic_name__ : str = self.model_tester.seq_length __magic_name__ : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_a ): __magic_name__ : str = outputs.decoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_a ): __magic_name__ : Any = [t.numpy() for t in outputs.encoder_attentions] __magic_name__ : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = False __magic_name__ : Tuple = False __magic_name__ : Optional[int] = model_class(_a ) __magic_name__ : str = model(self._prepare_for_class(_a , _a ) ) __magic_name__ : Any = len(_a ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: __magic_name__ : Tuple = model_class(_a ) __magic_name__ : Optional[Any] = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Dict = True __magic_name__ : str = model_class(_a ) __magic_name__ : Any = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine __magic_name__ : Union[str, Any] = True __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = model_class(_a ) __magic_name__ : Any = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_a ) ) self.assertEqual(model.config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( _snake_case : int ) -> Optional[int]: '''simple docstring''' return tf.constant(_snake_case , dtype=tf.intaa ) snake_case : Optional[int] = 1E-4 @slow @require_tf class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __magic_name__ : Optional[int] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : str = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Any = prepare_led_inputs_dict(model.config , _a , _a ) __magic_name__ : List[Any] = model(**_a )[0] __magic_name__ : List[str] = (1, 1_024, 768) self.assertEqual(output.shape , _a ) # change to expected output here __magic_name__ : int = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-3 ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __magic_name__ : int = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Optional[Any] = prepare_led_inputs_dict(model.config , _a , _a ) __magic_name__ : Union[str, Any] = model(**_a )[0] __magic_name__ : Optional[int] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _a ) # change to expected output here __magic_name__ : str = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-3 , rtol=1e-3 )
281
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __A : str = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) __A : Union[str, Any] = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = list(s_dict.keys() ) for key in keys: A = key for k, v in WHISPER_MAPPING.items(): if k in key: A = new_key.replace(lowercase__ , lowercase__ ) print(F"""{key} -> {new_key}""" ) A = s_dict.pop(lowercase__ ) return s_dict def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A , A = emb.weight.shape A = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) A = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" os.makedirs(lowercase__ , exist_ok=lowercase__ ) A = os.path.basename(lowercase__ ) A = url.split("/" )[-2] A = os.path.join(lowercase__ , lowercase__ ) if os.path.exists(lowercase__ ) and not os.path.isfile(lowercase__ ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(lowercase__ ): A = open(lowercase__ , "rb" ).read() if hashlib.shaaaa(lowercase__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(lowercase__ ) as source, open(lowercase__ , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=lowercase__ , unit_divisor=1_024 ) as loop: while True: A = source.read(8_192 ) if not buffer: break output.write(lowercase__ ) loop.update(len(lowercase__ ) ) A = open(lowercase__ , "rb" ).read() if hashlib.shaaaa(lowercase__ ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" if ".pt" not in checkpoint_path: A = _download(_MODELS[checkpoint_path] ) else: A = torch.load(lowercase__ , map_location="cpu" ) A = original_checkpoint["dims"] A = original_checkpoint["model_state_dict"] A = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(lowercase__ ) rename_keys(lowercase__ ) A = True A = state_dict["decoder.layers.0.fc1.weight"].shape[0] A = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=lowercase__ , decoder_ffn_dim=lowercase__ , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) A = WhisperForConditionalGeneration(lowercase__ ) A , A = model.model.load_state_dict(lowercase__ , strict=lowercase__ ) if len(lowercase__ ) > 0 and not set(lowercase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F""" but all the following weights are missing {missing}""" ) if tie_embeds: A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A = proj_out_weights model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __A : Tuple = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
57
"""simple docstring""" __A : Optional[Any] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
57
1
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __snake_case = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] __snake_case = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] __snake_case = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) __snake_case = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) __snake_case = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def __lowerCAmelCase ( lowercase : Any , lowercase : List[str] ) -> List[str]: """simple docstring""" for tf_name, hf_name in patterns: snake_case : Tuple = k.replace(lowercase , lowercase ) return k def __lowerCAmelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" snake_case : List[str] = BigBirdPegasusConfig(**lowercase ) snake_case : Dict = BigBirdPegasusForConditionalGeneration(lowercase ) snake_case : int = torch_model.state_dict() snake_case : Optional[Any] = {} # separating decoder weights snake_case : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} snake_case : Any = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): snake_case : Optional[Any] = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue snake_case : Any = DECODER_PATTERNS snake_case : Dict = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): snake_case : Dict = v.T snake_case : List[Any] = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): snake_case : List[str] = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue snake_case : Optional[int] = REMAINING_PATTERNS snake_case : Tuple = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): snake_case : List[str] = v.T snake_case : List[str] = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' snake_case : Optional[int] = mapping["model.embed_positions.weight"] snake_case : List[Any] = mapping.pop("model.embed_positions.weight" ) snake_case ,snake_case : List[str] = torch_model.load_state_dict(lowercase , strict=lowercase ) snake_case : List[Any] = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def __lowerCAmelCase ( lowercase : Tuple ) -> Dict: """simple docstring""" snake_case : List[str] = tf.train.list_variables(lowercase ) snake_case : Optional[int] = {} snake_case : Tuple = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): snake_case : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case : List[Any] = tf.train.load_variable(lowercase , lowercase ) snake_case : Tuple = array return tf_weights def __lowerCAmelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Optional[int]: """simple docstring""" snake_case : Optional[Any] = get_tf_weights_as_numpy(lowercase ) snake_case : str = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") __snake_case = parser.parse_args() __snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
203
"""simple docstring""" from typing import List import numpy as np def __lowerCAmelCase ( lowercase : dict ) -> int: """simple docstring""" snake_case : Union[str, Any] = {key: len(lowercase ) for key, value in gen_kwargs.items() if isinstance(lowercase , lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) snake_case : int = max(lists_lengths.values() , default=0 ) return max(1 , lowercase ) def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> List[range]: """simple docstring""" snake_case : Union[str, Any] = [] for group_idx in range(lowercase ): snake_case : Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break snake_case : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 snake_case : Dict = range(lowercase , start + num_shards_to_add ) shards_indices_per_group.append(lowercase ) return shards_indices_per_group def __lowerCAmelCase ( lowercase : dict , lowercase : int ) -> List[dict]: """simple docstring""" snake_case : int = _number_of_shards_in_gen_kwargs(lowercase ) if num_shards == 1: return [dict(lowercase )] else: snake_case : Optional[int] = _distribute_shards(num_shards=lowercase , max_num_jobs=lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowercase , lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowercase ) ) ] def __lowerCAmelCase ( lowercase : List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowerCAmelCase ( lowercase : np.random.Generator , lowercase : dict ) -> dict: """simple docstring""" snake_case : Tuple = {len(lowercase ) for value in gen_kwargs.values() if isinstance(lowercase , lowercase )} snake_case : str = {} for size in list_sizes: snake_case : Optional[int] = list(range(lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes snake_case : Dict = dict(lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(lowercase , lowercase ): snake_case : Dict = [value[i] for i in indices_per_size[len(lowercase )]] return shuffled_kwargs
203
1
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
354
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCAmelCase : int =logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : List[Any] ): return max(metric_fn(_UpperCamelCase ,_UpperCamelCase ) for gt in ground_truths ) def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ,__lowerCamelCase : str ,__lowerCamelCase : List[Any] ): lowercase_ :Union[str, Any] = [line.strip() for line in open(_UpperCamelCase ,"r" ).readlines()] lowercase_ :List[Any] = [] if args.gold_data_mode == "qa": lowercase_ :Optional[Any] = pd.read_csv(_UpperCamelCase ,sep="\t" ,header=_UpperCamelCase ) for answer_list in data[1]: lowercase_ :Union[str, Any] = ast.literal_eval(_UpperCamelCase ) answers.append(_UpperCamelCase ) else: lowercase_ :Optional[int] = [line.strip() for line in open(_UpperCamelCase ,"r" ).readlines()] lowercase_ :Optional[int] = [[reference] for reference in references] lowercase_ :int = 0 for prediction, ground_truths in zip(_UpperCamelCase ,_UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) fa += metric_max_over_ground_truths(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) lowercase_ :Union[str, Any] = 100.0 * em / total lowercase_ :str = 100.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : int ): lowercase_ :str = args.k lowercase_ :int = [line.strip() for line in open(_UpperCamelCase ,"r" ).readlines()] lowercase_ :str = [line.strip() for line in open(_UpperCamelCase ,"r" ).readlines()] lowercase_ :Tuple = 0 for hypo, reference in zip(_UpperCamelCase ,_UpperCamelCase ): lowercase_ :Optional[Any] = set(hypo.split("\t" )[:k] ) lowercase_ :Optional[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowercase_ :str = 100.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Dict ): def strip_title(__lowerCamelCase : str ): if title.startswith("\"" ): lowercase_ :Any = title[1:] if title.endswith("\"" ): lowercase_ :List[Any] = title[:-1] return title lowercase_ :Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _UpperCamelCase ,return_tensors="pt" ,padding=_UpperCamelCase ,truncation=_UpperCamelCase ,)['input_ids'].to(args.device ) lowercase_ :Optional[int] = rag_model.rag.question_encoder(_UpperCamelCase ) lowercase_ :Dict = question_enc_outputs[0] lowercase_ :Dict = rag_model.retriever( _UpperCamelCase ,question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() ,prefix=rag_model.rag.generator.config.prefix ,n_docs=rag_model.config.n_docs ,return_tensors="pt" ,) lowercase_ :Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowercase_ :Tuple = [] for docs in all_docs: lowercase_ :int = [strip_title(_UpperCamelCase ) for title in docs['title']] provenance_strings.append("\t".join(_UpperCamelCase ) ) return provenance_strings def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Dict ,__lowerCamelCase : List[str] ): with torch.no_grad(): lowercase_ :List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _UpperCamelCase ,return_tensors="pt" ,padding=_UpperCamelCase ,truncation=_UpperCamelCase ) lowercase_ :Tuple = inputs_dict.input_ids.to(args.device ) lowercase_ :Any = inputs_dict.attention_mask.to(args.device ) lowercase_ :Dict = rag_model.generate( # rag_model overwrites generate _UpperCamelCase ,attention_mask=_UpperCamelCase ,num_beams=args.num_beams ,min_length=args.min_length ,max_length=args.max_length ,early_stopping=_UpperCamelCase ,num_return_sequences=1 ,bad_words_ids=[[0, 0]] ,) lowercase_ :List[Any] = rag_model.retriever.generator_tokenizer.batch_decode(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ) if args.print_predictions: for q, a in zip(_UpperCamelCase ,_UpperCamelCase ): logger.info("Q: {} - A: {}".format(_UpperCamelCase ,_UpperCamelCase ) ) return answers def UpperCAmelCase_ ( ): lowercase_ :List[str] = argparse.ArgumentParser() parser.add_argument( "--model_type" ,choices=["rag_sequence", "rag_token", "bart"] ,type=_UpperCamelCase ,help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) ,) parser.add_argument( "--index_name" ,default=_UpperCamelCase ,choices=["exact", "compressed", "legacy"] ,type=_UpperCamelCase ,help="RAG model retriever type" ,) parser.add_argument( "--index_path" ,default=_UpperCamelCase ,type=_UpperCamelCase ,help="Path to the retrieval index" ,) parser.add_argument("--n_docs" ,default=5 ,type=_UpperCamelCase ,help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" ,default=_UpperCamelCase ,type=_UpperCamelCase ,required=_UpperCamelCase ,help="Path to pretrained checkpoints or model identifier from huggingface.co/models" ,) parser.add_argument( "--eval_mode" ,choices=["e2e", "retrieval"] ,default="e2e" ,type=_UpperCamelCase ,help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) ,) parser.add_argument("--k" ,default=1 ,type=_UpperCamelCase ,help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" ,default=_UpperCamelCase ,type=_UpperCamelCase ,required=_UpperCamelCase ,help="Path to a file containing evaluation samples" ,) parser.add_argument( "--gold_data_path" ,default=_UpperCamelCase ,type=_UpperCamelCase ,required=_UpperCamelCase ,help="Path to a tab-separated file with gold samples" ,) parser.add_argument( "--gold_data_mode" ,default="qa" ,type=_UpperCamelCase ,choices=["qa", "ans"] ,help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) ,) parser.add_argument( "--predictions_path" ,type=_UpperCamelCase ,default="predictions.txt" ,help="Name of the predictions file, to be stored in the checkpoints directory" ,) parser.add_argument( "--eval_all_checkpoints" ,action="store_true" ,help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" ,) parser.add_argument( "--eval_batch_size" ,default=8 ,type=_UpperCamelCase ,help="Batch size per GPU/CPU for evaluation." ,) parser.add_argument( "--recalculate" ,help="Recalculate predictions even if the prediction file exists" ,action="store_true" ,) parser.add_argument( "--num_beams" ,default=4 ,type=_UpperCamelCase ,help="Number of beams to be used when generating answers" ,) parser.add_argument("--min_length" ,default=1 ,type=_UpperCamelCase ,help="Min length of the generated answers" ) parser.add_argument("--max_length" ,default=50 ,type=_UpperCamelCase ,help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" ,action="store_true" ,help="If True, prints predictions while evaluating." ,) parser.add_argument( "--print_docs" ,action="store_true" ,help="If True, prints docs retried while generating." ,) lowercase_ :Tuple = parser.parse_args() lowercase_ :Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ): lowercase_ :List[str] = {} if args.model_type is None: lowercase_ :Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): lowercase_ :Union[str, Any] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration lowercase_ :Tuple = args.n_docs if args.index_name is not None: lowercase_ :List[Any] = args.index_name if args.index_path is not None: lowercase_ :Tuple = args.index_path else: lowercase_ :List[Any] = BartForConditionalGeneration lowercase_ :Any = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" ,_UpperCamelCase ) lowercase_ :str = get_scores if args.eval_mode == 'e2e' else get_precision_at_k lowercase_ :Optional[Any] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_UpperCamelCase ,args.predictions_path ,args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_UpperCamelCase ) ) logger.info(" Batch size = %d" ,args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): lowercase_ :str = RagRetriever.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) lowercase_ :Tuple = model_class.from_pretrained(_UpperCamelCase ,retriever=_UpperCamelCase ,**_UpperCamelCase ) model.retriever.init_retrieval() else: lowercase_ :Dict = model_class.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set ,"r" ) as eval_file, open(args.predictions_path ,"w" ) as preds_file: lowercase_ :Tuple = [] for line in tqdm(_UpperCamelCase ): questions.append(line.strip() ) if len(_UpperCamelCase ) == args.eval_batch_size: lowercase_ :Union[str, Any] = evaluate_batch_fn(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) preds_file.write("\n".join(_UpperCamelCase ) + "\n" ) preds_file.flush() lowercase_ :Optional[Any] = [] if len(_UpperCamelCase ) > 0: lowercase_ :List[str] = evaluate_batch_fn(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) preds_file.write("\n".join(_UpperCamelCase ) ) preds_file.flush() score_fn(_UpperCamelCase ,args.predictions_path ,args.gold_data_path ) if __name__ == "__main__": lowerCAmelCase : str =get_args() main(args)
223
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=14 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=0.02 , ): __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : Any = batch_size __lowerCAmelCase : Any = seq_length __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : Any = use_input_mask __lowerCAmelCase : Any = use_token_type_ids __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : str = rotary_dim __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = vocab_size - 1 __lowerCAmelCase : Dict = vocab_size - 1 __lowerCAmelCase : int = vocab_size - 1 def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : List[str] = None if self.use_input_mask: __lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : Dict = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = 20 __lowerCAmelCase : List[str] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCAmelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase : Any = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : int = model( input_ids[:, -1:] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 20 __lowerCAmelCase : List[str] = model_class_name(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCAmelCase : List[str] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase : Optional[Any] = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A_ : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __lowerCamelCase ( self ): __lowerCAmelCase : int = FlaxGPTJModelTester(self ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @tooslow def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCAmelCase : Optional[int] = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase : Any = False __lowerCAmelCase : Any = model.config.eos_token_id __lowerCAmelCase : Union[str, Any] = jax.jit(model.generate ) __lowerCAmelCase : Optional[Any] = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCAmelCase : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = pt_inputs['input_ids'].shape __lowerCAmelCase : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Any = 1 __lowerCAmelCase : Optional[Any] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __lowerCAmelCase : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = fx_state with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase : str = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = fx_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase : List[str] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : str = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __lowerCAmelCase : List[str] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params ) __lowerCAmelCase , __lowerCAmelCase : int = pt_inputs['input_ids'].shape __lowerCAmelCase : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Optional[Any] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCAmelCase : List[str] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase : Optional[int] = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = pt_model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase : Any = pt_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
86
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=16 , a=2 , a=0.02 , a=4 , ): lowercase__ : List[Any] = parent lowercase__ : Optional[int] = batch_size lowercase__ : Dict = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Optional[int] = use_attention_mask lowercase__ : int = use_token_type_ids lowercase__ : Any = use_labels lowercase__ : Optional[Any] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Union[str, Any] = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Optional[int] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : Optional[Any] = num_choices def snake_case_ ( self): lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : List[str] = None if self.use_attention_mask: lowercase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : int = None if self.use_token_type_ids: lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ : Optional[int] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case_ ( self): lowercase__ : Any = self.prepare_config_and_inputs() lowercase__ : Optional[int] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def snake_case_ ( self): lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ : Optional[Any] = config_and_inputs lowercase__ : str = True lowercase__ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE__ (__snake_case , unittest.TestCase ): __lowerCamelCase : int = True __lowerCamelCase : List[str] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self): lowercase__ : str = FlaxRobertaModelTester(self) @slow def snake_case_ ( self): for model_class_name in self.all_model_classes: lowercase__ : Optional[int] = model_class_name.from_pretrained('roberta-base' , from_pt=lowerCamelCase_) lowercase__ : Union[str, Any] = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_)
365
import math import sys def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowercase__ : Tuple = [-1] * (number + 1) lowercase__ : Tuple = 0 for i in range(1 , number + 1 ): lowercase__ : Tuple = sys.maxsize lowercase__ : str = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): lowercase__ : List[Any] = 1 + answers[i - (j**2)] lowercase__ : str = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
216
0
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" A_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case ( ): """simple docstring""" print(sum_of_series(1 ,1 ,10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
1
import functools from typing import Any def A(__a: str , __a: list[str] ): # Validation if not isinstance(__a , __a ) or len(__a ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__a , __a ) or not all( isinstance(__a , __a ) and len(__a ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie lowerCAmelCase_ = {} lowerCAmelCase_ = "WORD_KEEPER" for word in words: lowerCAmelCase_ = trie for c in word: if c not in trie_node: lowerCAmelCase_ = {} lowerCAmelCase_ = trie_node[c] lowerCAmelCase_ = True lowerCAmelCase_ = len(__a ) # Dynamic programming method @functools.cache def is_breakable(__a: int ) -> bool: if index == len_string: return True lowerCAmelCase_ = trie for i in range(__a , __a ): lowerCAmelCase_ = trie_node.get(string[i] , __a ) if trie_node is None: return False if trie_node.get(__a , __a ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) __lowerCAmelCase = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_UpperCamelCase ) DownloadCommand.register_subcommand(_UpperCamelCase ) EnvironmentCommand.register_subcommand(_UpperCamelCase ) RunCommand.register_subcommand(_UpperCamelCase ) ServeCommand.register_subcommand(_UpperCamelCase ) UserCommands.register_subcommand(_UpperCamelCase ) AddNewModelCommand.register_subcommand(_UpperCamelCase ) AddNewModelLikeCommand.register_subcommand(_UpperCamelCase ) LfsCommands.register_subcommand(_UpperCamelCase ) PTtoTFCommand.register_subcommand(_UpperCamelCase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(_UpperCamelCase , "func" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(_UpperCamelCase ) service.run() if __name__ == "__main__": main()
57
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a=None , __a=True , __a=None , **__a ): __lowerCAmelCase = parent __lowerCAmelCase = config_class __lowerCAmelCase = has_text_modality __lowerCAmelCase = kwargs __lowerCAmelCase = common_properties def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(__a , __a ) , msg=f"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(__a ): try: setattr(__a , __a , __a ) self.parent.assertEqual( getattr(__a , __a ) , __a , msg=f"`{name} value {idx} expected, but was {getattr(__a , __a )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(__a ): try: __lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(__a , __a ) , __a , msg=f"`{name} value {idx} expected, but was {getattr(__a , __a )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , __a ) def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(__a , "config.json" ) config_first.to_json_file(__a ) __lowerCAmelCase = self.config_class.from_json_file(__a ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(__a ) __lowerCAmelCase = self.config_class.from_pretrained(__a ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = "test" with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(__a , __a ) config_first.save_pretrained(__a ) __lowerCAmelCase = self.config_class.from_pretrained(__a , subfolder=__a ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def snake_case ( self ): if self.config_class.is_composition: return __lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(__a ) def snake_case ( self ): __lowerCAmelCase = copy.deepcopy(__a ) __lowerCAmelCase = self.config_class(**__a ) __lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(__a , __a ) != value: wrong_values.append((key, getattr(__a , __a ), value) ) if len(__a ) > 0: __lowerCAmelCase = "\n".join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(f"The following keys were not properly set in the config:\n{errors}" ) def snake_case ( self ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
57
1
from __future__ import annotations def lowercase__ ( __snake_case : list[int] , __snake_case : int ): '''simple docstring''' if len(__snake_case ) == 0: return False UpperCAmelCase_ : Optional[int] = len(__snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __snake_case ) else: return binary_search(a_list[midpoint + 1 :] , __snake_case ) if __name__ == "__main__": __UpperCAmelCase = input('Enter numbers separated by comma:\n').strip() __UpperCAmelCase = [int(item.strip()) for item in user_input.split(',')] __UpperCAmelCase = int(input('Enter the number to be found in the list:\n').strip()) __UpperCAmelCase = '' if binary_search(sequence, target) else 'not ' print(F'{target} was {not_str}found in {sequence}')
365
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = Dict[str, Any] __UpperCAmelCase = List[Prediction] @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> Tuple: UpperCAmelCase_ : str = {} if "threshold" in kwargs: UpperCAmelCase_ : Tuple = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Union[Predictions, List[Prediction]]: return super().__call__(*_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = load_image(_UpperCamelCase ) UpperCAmelCase_ : Any = torch.IntTensor([[image.height, image.width]] ) UpperCAmelCase_ : str = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: UpperCAmelCase_ : List[str] = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) UpperCAmelCase_ : Any = target_size return inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Any = model_inputs.pop('target_size' ) UpperCAmelCase_ : Optional[Any] = self.model(**_UpperCamelCase ) UpperCAmelCase_ : Dict = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: UpperCAmelCase_ : List[str] = model_inputs['bbox'] return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0.9 ) -> List[str]: UpperCAmelCase_ : List[Any] = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. UpperCAmelCase_ , UpperCAmelCase_ : str = target_size[0].tolist() def unnormalize(_UpperCamelCase ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_0_0_0), (height * bbox[1] / 1_0_0_0), (width * bbox[2] / 1_0_0_0), (height * bbox[3] / 1_0_0_0), ] ) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) UpperCAmelCase_ : Union[str, Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] UpperCAmelCase_ : Tuple = [unnormalize(_UpperCamelCase ) for bbox in model_outputs['bbox'].squeeze(0 )] UpperCAmelCase_ : List[str] = ['score', 'label', 'box'] UpperCAmelCase_ : Any = [dict(zip(_UpperCamelCase , _UpperCamelCase ) ) for vals in zip(scores.tolist() , _UpperCamelCase , _UpperCamelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel UpperCAmelCase_ : Union[str, Any] = self.image_processor.post_process_object_detection(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : str = raw_annotations[0] UpperCAmelCase_ : str = raw_annotation['scores'] UpperCAmelCase_ : Tuple = raw_annotation['labels'] UpperCAmelCase_ : List[Any] = raw_annotation['boxes'] UpperCAmelCase_ : Union[str, Any] = scores.tolist() UpperCAmelCase_ : int = [self.model.config.idalabel[label.item()] for label in labels] UpperCAmelCase_ : Any = [self._get_bounding_box(_UpperCamelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] UpperCAmelCase_ : int = ['score', 'label', 'box'] UpperCAmelCase_ : Dict = [ dict(zip(_UpperCamelCase , _UpperCamelCase ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = box.int().tolist() UpperCAmelCase_ : str = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
145
0
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = 'Hello world! cécé herlolip' def _snake_case ( lowercase__ : str , lowercase__ : str , lowercase__ : bool ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :str = FairseqRobertaModel.from_pretrained(lowercase__ ) roberta.eval() # disable dropout lowerCAmelCase_ :List[str] = roberta.model.encoder.sentence_encoder lowerCAmelCase_ :int = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCAmelCase_ :Dict = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , lowercase__ ) lowerCAmelCase_ :Optional[Any] = XLMRobertaXLForSequenceClassification(lowercase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowercase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase_ :Any = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase_ :Optional[int] = roberta_sent_encoder.embed_positions.weight lowerCAmelCase_ :Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase_ :Tuple = roberta_sent_encoder.layer_norm.weight lowerCAmelCase_ :List[str] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase_ :BertLayer = model.roberta.encoder.layer[i] lowerCAmelCase_ :TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCAmelCase_ :RobertaAttention = layer.attention lowerCAmelCase_ :Tuple = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase_ :Dict = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase_ :BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase_ :Union[str, Any] = roberta_layer.self_attn.q_proj.weight lowerCAmelCase_ :Union[str, Any] = roberta_layer.self_attn.q_proj.bias lowerCAmelCase_ :List[Any] = roberta_layer.self_attn.k_proj.weight lowerCAmelCase_ :Tuple = roberta_layer.self_attn.k_proj.bias lowerCAmelCase_ :Union[str, Any] = roberta_layer.self_attn.v_proj.weight lowerCAmelCase_ :Tuple = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase_ :BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase_ :Optional[Any] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase_ :Dict = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase_ :int = roberta_layer.final_layer_norm.weight lowerCAmelCase_ :str = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase_ :BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ :Optional[Any] = roberta_layer.fca.weight lowerCAmelCase_ :Tuple = roberta_layer.fca.bias # output lowerCAmelCase_ :BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ :int = roberta_layer.fca.weight lowerCAmelCase_ :Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase_ :str = roberta.model.classification_heads["""mnli"""].dense.weight lowerCAmelCase_ :Union[str, Any] = roberta.model.classification_heads["""mnli"""].dense.bias lowerCAmelCase_ :Tuple = roberta.model.classification_heads["""mnli"""].out_proj.weight lowerCAmelCase_ :int = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCAmelCase_ :List[Any] = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase_ :Optional[Any] = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase_ :Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase_ :List[Any] = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase_ :Tuple = roberta.model.encoder.lm_head.weight lowerCAmelCase_ :List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase_ :torch.Tensor = roberta.encode(lowercase__ ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase_ :Any = model(lowercase__ )[0] if classification_head: lowerCAmelCase_ :str = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowercase__ ) ) else: lowerCAmelCase_ :List[Any] = roberta.model(lowercase__ )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase_ :Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCAmelCase_ :Union[str, Any] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(lowercase__ ).mkdir(parents=lowercase__ , exist_ok=lowercase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCAmelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
84
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : UpperCamelCase__ : int UpperCamelCase__ : TreeNode | None = None UpperCamelCase__ : TreeNode | None = None __snake_case :Optional[Any] = namedtuple('''CoinsDistribResult''', '''moves excess''') def __snake_case ( _UpperCAmelCase ): if root is None: return 0 # Validation def count_nodes(_UpperCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_UpperCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_UpperCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __a , __a = get_distrib(node.left ) __a , __a = get_distrib(node.right ) __a = 1 - left_distrib_excess __a = 1 - right_distrib_excess __a = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) ) __a = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase , _UpperCAmelCase ) return get_distrib(_UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
131
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : str): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Any): '''simple docstring''' __a = 1 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__SCREAMING_SNAKE_CASE) return image @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' def extract(*__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Dict): class _A : def __init__( self : int): '''simple docstring''' __a = torch.ones([0]) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' self.pixel_values.to(__SCREAMING_SNAKE_CASE) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__SCREAMING_SNAKE_CASE) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) assert isinstance(pipe.scheduler , __SCREAMING_SNAKE_CASE) assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE) __a = StableDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE) # sanity check that the pipeline still works assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # put models in fp16 __a = unet.half() __a = vae.half() __a = bert.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __a = 4_003_660_346 __a = 7 # without safety guidance (sld_guidance_scale = 0) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''padme amidala taking a bath artwork, safe for work, no nudity''' __a = 2_734_971_755 __a = 7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : str): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''') __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __a = 1_044_355_234 __a = 12 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
131
1
"""simple docstring""" a__ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.35_58_18, } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __SCREAMING_SNAKE_CASE = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
54
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ ={ 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowercase__ ='ETAOINSHRDLCUMWFGYPBVKJXQZ' lowercase__ ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : List[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( lowerCAmelCase__ : tuple ): return x[0] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : Optional[Any] = get_letter_count(lowerCAmelCase__ ) __a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) __a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) __a : int = ''''''.join(freq_to_letter[freq] ) __a : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = get_frequency_order(lowerCAmelCase__ ) __a : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
216
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Dict = KandinskyImgaImgPipeline a_ : Optional[int] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] a_ : Union[str, Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] a_ : Optional[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ : Tuple = False @property def lowerCamelCase ( self : Optional[int] ): return 32 @property def lowerCamelCase ( self : Optional[int] ): return 32 @property def lowerCamelCase ( self : Union[str, Any] ): return self.time_input_dim @property def lowerCamelCase ( self : Tuple ): return self.time_input_dim * 4 @property def lowerCamelCase ( self : str ): return 1_00 @property def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : str = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowerCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase_ : Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) lowerCAmelCase_ : List[Any] = MultilingualCLIP(a_ ) lowerCAmelCase_ : int = text_encoder.eval() return text_encoder @property def lowerCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase_ : str = UNetaDConditionModel(**a_ ) return model @property def lowerCamelCase ( self : List[Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase_ : str = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Dict = self.dummy_text_encoder lowerCAmelCase_ : List[str] = self.dummy_tokenizer lowerCAmelCase_ : Optional[Any] = self.dummy_unet lowerCAmelCase_ : List[Any] = self.dummy_movq lowerCAmelCase_ : Optional[int] = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase_ : Optional[int] = DDIMScheduler(**a_ ) lowerCAmelCase_ : List[Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCamelCase ( self : str , a_ : Optional[int] , a_ : Optional[Any]=0 ): lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase_ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a_ ) # create init_image lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : Union[str, Any] = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ).resize((2_56, 2_56) ) if str(a_ ).startswith("mps" ): lowerCAmelCase_ : Tuple = torch.manual_seed(a_ ) else: lowerCAmelCase_ : Tuple = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCAmelCase_ : Optional[int] = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Any = "cpu" lowerCAmelCase_ : List[Any] = self.get_dummy_components() lowerCAmelCase_ : int = self.pipeline_class(**a_ ) lowerCAmelCase_ : List[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[Any] = pipe(**self.get_dummy_inputs(a_ ) ) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : int = pipe( **self.get_dummy_inputs(a_ ) , return_dict=a_ , )[0] lowerCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Dict = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : int ): lowerCAmelCase_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) lowerCAmelCase_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase_ : List[Any] = "A red cartoon frog, 4k" lowerCAmelCase_ : Dict = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(a_ ) lowerCAmelCase_ : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) lowerCAmelCase_ : Dict = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = pipe_prior( a_ , generator=a_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase_ : int = pipeline( a_ , image=a_ , image_embeds=a_ , negative_image_embeds=a_ , generator=a_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="np" , ) lowerCAmelCase_ : Optional[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(a_ , a_ )
161
"""simple docstring""" import argparse import os import re lowercase__ = """src/transformers""" # Pattern that looks at the indentation in a line. lowercase__ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(r"""\[([^\]]+)\]""") def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = _re_indent.search(__UpperCamelCase ) return "" if search is None else search.groups()[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase=None , __UpperCamelCase=None ) -> str: """simple docstring""" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Dict = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__UpperCamelCase ): index += 1 lowerCAmelCase_ : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase_ : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase_ : Optional[Any] = [lines[index]] index += 1 while index < len(__UpperCamelCase ) and (end_prompt is None or not lines[index].startswith(__UpperCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__UpperCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__UpperCamelCase ) ) if index < len(__UpperCamelCase ) - 1: lowerCAmelCase_ : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase_ : Any = [] else: blocks.append("\n".join(__UpperCamelCase ) ) lowerCAmelCase_ : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__UpperCamelCase ) > 0: blocks.append("\n".join(__UpperCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__UpperCamelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" def _inner(__UpperCamelCase ): return key(__UpperCamelCase ).lower().replace("_" , "" ) return _inner def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None ) -> List[str]: """simple docstring""" def noop(__UpperCamelCase ): return x if key is None: lowerCAmelCase_ : Optional[int] = noop # Constants are all uppercase, they go first. lowerCAmelCase_ : str = [obj for obj in objects if key(__UpperCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase_ : str = [obj for obj in objects if key(__UpperCamelCase )[0].isupper() and not key(__UpperCamelCase ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase_ : int = [obj for obj in objects if not key(__UpperCamelCase )[0].isupper()] lowerCAmelCase_ : Dict = ignore_underscore(__UpperCamelCase ) return sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase ) -> List[str]: """simple docstring""" def _replace(__UpperCamelCase ): lowerCAmelCase_ : Tuple = match.groups()[0] if "," not in imports: return f'''[{imports}]''' lowerCAmelCase_ : Optional[int] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ : Optional[int] = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) + "]" lowerCAmelCase_ : Union[str, Any] = import_statement.split("\n" ) if len(__UpperCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase_ : Optional[int] = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase_ : Optional[Any] = [(i, _re_strip_line.search(__UpperCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase_ : List[Any] = sort_objects(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] ) lowerCAmelCase_ : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__UpperCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase_ : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase_ : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ : Any = keys[:-1] lowerCAmelCase_ : Dict = get_indent(lines[1] ) + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) return "\n".join(__UpperCamelCase ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase_ : List[str] = _re_bracket_content.sub(_replace , __UpperCamelCase ) return import_statement def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=True ) -> Optional[int]: """simple docstring""" with open(__UpperCamelCase , encoding="utf-8" ) as f: lowerCAmelCase_ : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase_ : int = split_code_in_indented_blocks( __UpperCamelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__UpperCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase_ : Optional[int] = main_blocks[block_idx] lowerCAmelCase_ : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase_ : str = 0 while line_idx < len(__UpperCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase_ : Optional[int] = len(__UpperCamelCase ) else: line_idx += 1 if line_idx >= len(__UpperCamelCase ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase_ : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase_ : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase_ : Tuple = split_code_in_indented_blocks(__UpperCamelCase , indent_level=__UpperCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase_ : List[Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase_ : Dict = [(pattern.search(__UpperCamelCase ).groups()[0] if pattern.search(__UpperCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase_ : Any = [(i, key) for i, key in enumerate(__UpperCamelCase ) if key is not None] lowerCAmelCase_ : Union[str, Any] = [x[0] for x in sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : str = [] for i in range(len(__UpperCamelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase_ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__UpperCamelCase ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase_ : Any = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__UpperCamelCase ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write("\n".join(__UpperCamelCase ) ) def __lowerCamelCase ( __UpperCamelCase=True ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Any = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: lowerCAmelCase_ : Dict = sort_imports(os.path.join(__UpperCamelCase , "__init__.py" ) , check_only=__UpperCamelCase ) if result: lowerCAmelCase_ : Union[str, Any] = [os.path.join(__UpperCamelCase , "__init__.py" )] if len(__UpperCamelCase ) > 0: raise ValueError(f'''Would overwrite {len(__UpperCamelCase )} files, run `make style`.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
161
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase_ = logging.get_logger(__name__) class __A ( lowerCAmelCase_ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = """AutoTokenizer""" __lowerCamelCase : int = ["""tokenizer"""] __lowerCamelCase : Dict = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__(self , A , A=None ) -> Any: """simple docstring""" super().__init__(snake_case_ ) _a = speaker_embeddings @classmethod def a__ (cls , A , A="speaker_embeddings_path.json" , **A ) -> Optional[Any]: """simple docstring""" if speaker_embeddings_dict_path is not None: _a = get_file_from_repo( snake_case_ , snake_case_ , subfolder=kwargs.pop('''subfolder''' , snake_case_ ) , cache_dir=kwargs.pop('''cache_dir''' , snake_case_ ) , force_download=kwargs.pop('''force_download''' , snake_case_ ) , proxies=kwargs.pop('''proxies''' , snake_case_ ) , resume_download=kwargs.pop('''resume_download''' , snake_case_ ) , local_files_only=kwargs.pop('''local_files_only''' , snake_case_ ) , use_auth_token=kwargs.pop('''use_auth_token''' , snake_case_ ) , revision=kwargs.pop('''revision''' , snake_case_ ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(snake_case_ , snake_case_ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _a = None else: with open(snake_case_ ) as speaker_embeddings_json: _a = json.load(snake_case_ ) else: _a = None _a = AutoTokenizer.from_pretrained(snake_case_ , **snake_case_ ) return cls(tokenizer=snake_case_ , speaker_embeddings=snake_case_ ) def a__ (self , A , A="speaker_embeddings_path.json" , A="speaker_embeddings" , A = False , **A , ) -> Tuple: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(snake_case_ , snake_case_ , '''v2''' ) , exist_ok=snake_case_ ) _a = {} _a = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _a = self._load_voice_preset(snake_case_ ) _a = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , snake_case_ , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=snake_case_ , ) _a = os.path.join(snake_case_ , f'''{prompt_key}_{key}.npy''' ) _a = tmp_dict with open(os.path.join(snake_case_ , snake_case_ ) , '''w''' ) as fp: json.dump(snake_case_ , snake_case_ ) super().save_pretrained(snake_case_ , snake_case_ , **snake_case_ ) def a__ (self , A = None , **A ) -> List[Any]: """simple docstring""" _a = self.speaker_embeddings[voice_preset] _a = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _a = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , snake_case_ ) , cache_dir=kwargs.pop('''cache_dir''' , snake_case_ ) , force_download=kwargs.pop('''force_download''' , snake_case_ ) , proxies=kwargs.pop('''proxies''' , snake_case_ ) , resume_download=kwargs.pop('''resume_download''' , snake_case_ ) , local_files_only=kwargs.pop('''local_files_only''' , snake_case_ ) , use_auth_token=kwargs.pop('''use_auth_token''' , snake_case_ ) , revision=kwargs.pop('''revision''' , snake_case_ ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.''' ) _a = np.load(snake_case_ ) return voice_preset_dict def a__ (self , A = None ) -> List[str]: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__(self , A=None , A=None , A="pt" , A=256 , A=False , A=True , A=False , **A , ) -> int: """simple docstring""" if voice_preset is not None and not isinstance(snake_case_ , snake_case_ ): if ( isinstance(snake_case_ , snake_case_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _a = self._load_voice_preset(snake_case_ ) else: if isinstance(snake_case_ , snake_case_ ) and not voice_preset.endswith('''.npz''' ): _a = voice_preset + '''.npz''' _a = np.load(snake_case_ ) if voice_preset is not None: self._validate_voice_preset_dict(snake_case_ , **snake_case_ ) _a = BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) _a = self.tokenizer( snake_case_ , return_tensors=snake_case_ , padding='''max_length''' , max_length=snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) if voice_preset is not None: _a = voice_preset return encoded_text
211
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __SCREAMING_SNAKE_CASE :Optional[int] = TypeVar('''T''') class A_ ( Generic[T] ): def __init__( self : List[Any] , snake_case_ : list[T] , snake_case_ : Callable[[T, T], T] ): _UpperCAmelCase = None _UpperCAmelCase = len(snake_case_ ) _UpperCAmelCase = [any_type for _ in range(self.N )] + arr _UpperCAmelCase = fnc self.build() def lowercase ( self : List[Any] ): for p in range(self.N - 1 , 0 , -1 ): _UpperCAmelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase ( self : Optional[Any] , snake_case_ : int , snake_case_ : T ): p += self.N _UpperCAmelCase = v while p > 1: _UpperCAmelCase = p // 2 _UpperCAmelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase ( self : Any , snake_case_ : int , snake_case_ : int ): # noqa: E741 _UpperCAmelCase , _UpperCAmelCase = l + self.N, r + self.N _UpperCAmelCase = None while l <= r: if l % 2 == 1: _UpperCAmelCase = self.st[l] if res is None else self.fn(snake_case_ , self.st[l] ) if r % 2 == 0: _UpperCAmelCase = self.st[r] if res is None else self.fn(snake_case_ , self.st[r] ) _UpperCAmelCase , _UpperCAmelCase = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __SCREAMING_SNAKE_CASE :List[str] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __SCREAMING_SNAKE_CASE :Any = SegmentTree(test_array, min) __SCREAMING_SNAKE_CASE :Any = SegmentTree(test_array, max) __SCREAMING_SNAKE_CASE :Any = SegmentTree(test_array, lambda a, b: a + b) def UpperCAmelCase_ ( ) -> None: '''simple docstring''' for i in range(len(__lowercase ) ): for j in range(__lowercase , len(__lowercase ) ): _UpperCAmelCase = reduce(__lowercase , test_array[i : j + 1] ) _UpperCAmelCase = reduce(__lowercase , test_array[i : j + 1] ) _UpperCAmelCase = reduce(lambda __lowercase , __lowercase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowercase , __lowercase ) assert max_range == max_segment_tree.query(__lowercase , __lowercase ) assert sum_range == sum_segment_tree.query(__lowercase , __lowercase ) test_all_segments() for index, value in test_updates.items(): __SCREAMING_SNAKE_CASE :str = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
22
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : Tuple ) -> Optional[Any]: lowerCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "width_multiplier" ) ) class __lowerCamelCase : """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=13 , SCREAMING_SNAKE_CASE__ : Any=64 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Any="swish" , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=10 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : int=0.25 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , ) -> Optional[int]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = make_divisible(512 * width_multiplier , divisor=8 ) lowerCAmelCase__ = hidden_act lowerCAmelCase__ = conv_kernel_size lowerCAmelCase__ = output_stride lowerCAmelCase__ = classifier_dropout_prob lowerCAmelCase__ = use_labels lowerCAmelCase__ = is_training lowerCAmelCase__ = num_labels lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = width_multiplier lowerCAmelCase__ = ffn_dropout lowerCAmelCase__ = attn_dropout def a ( self : Optional[int] ) -> int: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels, pixel_labels def a ( self : Optional[int] ) -> Optional[Any]: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: lowerCAmelCase__ = MobileViTVaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a ( self : str ) -> Union[str, Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) snake_case__ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : str ) -> str: lowerCAmelCase__ = MobileViTVaModelTester(self ) lowerCAmelCase__ = MobileViTVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def a ( self : Optional[Any] ) -> str: pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def a ( self : List[Any] ) -> List[str]: pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def a ( self : str ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def a ( self : Any ) -> str: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def a ( self : int ) -> Union[str, Any]: pass def a ( self : Dict ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Dict: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase__ = 2 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> Any: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : int ) -> Any: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : Optional[int] ) -> Tuple: return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def a ( self : Any ) -> Dict: lowerCAmelCase__ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @slow def a ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase__ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ = model.to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = outputs.logits # verify the logits lowerCAmelCase__ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @slow def a ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase__ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ = model.to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = outputs.logits.detach().cpu() lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ , target_sizes=[(50, 60)] ) lowerCAmelCase__ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ )
368
import string def _A ( lowerCAmelCase_ : str ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): lowerCAmelCase__ = "" for symbol in message: if symbol in string.ascii_uppercase: lowerCAmelCase__ = string.ascii_uppercase.find(lowerCAmelCase_ ) lowerCAmelCase__ = num - key if num < 0: lowerCAmelCase__ = num + len(string.ascii_uppercase ) lowerCAmelCase__ = translated + string.ascii_uppercase[num] else: lowerCAmelCase__ = translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def _A ( ): """simple docstring""" lowerCAmelCase__ = input("Encrypted message: " ) lowerCAmelCase__ = message.upper() decrypt(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
221
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( """\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n""" ) a__ = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } a__ = """\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = ( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) a__ = """\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = ( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) a__ = """\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n""" a__ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n""" a__ = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n""" a__ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n""" a__ = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" a__ = """""" a__ = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" a__ = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" a__ = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ) -> int: assert ReadMe.from_string(a_ , a_ ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Dict: with pytest.raises(a_ , match=re.escape(expected_error.format(path="""root""" ) ) ): _snake_case : Union[str, Any] = ReadMe.from_string(a_ , a_ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: with pytest.raises(a_ , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(a_ , a_ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: ReadMe.from_string(a_ , a_ , suppress_parsing_errors=a_ ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : Optional[Any] = Path(a_ ) / "README.md" with open(a_ , """w+""" ) as readme_file: readme_file.write(a_ ) _snake_case : Tuple = ReadMe.from_readme(a_ , a_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : Optional[Any] = Path(a_ ) / "README.md" with open(a_ , """w+""" ) as readme_file: readme_file.write(a_ ) _snake_case : Any = expected_error.format(path=a_ ) with pytest.raises(a_ , match=re.escape(a_ ) ): _snake_case : str = ReadMe.from_readme(a_ , a_ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : List[str] = Path(a_ ) / "README.md" with open(a_ , """w+""" ) as readme_file: readme_file.write(a_ ) _snake_case : Any = expected_error.format(path=a_ ) with pytest.raises(a_ , match=re.escape(a_ ) ): ReadMe.from_readme(a_ , a_ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : List[Any] = Path(a_ ) / "README.md" with open(a_ , """w+""" ) as readme_file: readme_file.write(a_ ) ReadMe.from_readme(a_ , a_ , suppress_parsing_errors=a_ )
317
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __a = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : CLIPSegForImageSegmentation , lowerCAmelCase__ : CLIPSegProcessor , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : StableDiffusionSafetyChecker , lowerCAmelCase__ : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: _UpperCAmelCase : str = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) _UpperCAmelCase : Any = dict(scheduler.config ) _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Optional[Any] = FrozenDict(lowerCAmelCase__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: _UpperCAmelCase : Union[str, Any] = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = dict(scheduler.config ) _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Dict = FrozenDict(lowerCAmelCase__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowerCAmelCase__ , segmentation_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> Optional[int]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Dict = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[int] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : float = 7.5 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , **lowerCAmelCase__ : Any , ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) _UpperCAmelCase : List[Any] = self.segmentation_model(**lowerCAmelCase__ ) _UpperCAmelCase : Any = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _UpperCAmelCase : str = self.numpy_to_pil(lowerCAmelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , )
145
0
from math import log from scipy.constants import Boltzmann, physical_constants _snake_case = 300 # TEMPERATURE (unit = K) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, ) -> float: if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
342
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCamelCase = get_logger(__name__) lowerCamelCase = Path(__file__).parent / '''model_card_template.md''' lowerCamelCase = uuida().hex lowerCamelCase = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCamelCase = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCamelCase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def lowerCamelCase_ ( _a = None ): """simple docstring""" lowerCAmelCase__ : List[str] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def lowerCamelCase_ ( _a , _a = None , _a = None ): """simple docstring""" if token is None: lowerCAmelCase__ : int = HfFolder.get_token() if organization is None: lowerCAmelCase__ : List[Any] = whoami(_a )['''name'''] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def lowerCamelCase_ ( _a , _a ): """simple docstring""" if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowerCAmelCase__ : List[str] = args.hub_token if hasattr(_a , '''hub_token''' ) else None lowerCAmelCase__ : Union[str, Any] = get_full_repo_name(_a , token=_a ) lowerCAmelCase__ : List[Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowerCAmelCase__ : Any = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def lowerCamelCase_ ( _a , _a = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash lowerCAmelCase__ : Any = str(Path(_a ).as_posix() ) lowerCAmelCase__ : List[str] = re.search(R'''snapshots/([^/]+)/''' , _a ) if search is None: return None lowerCAmelCase__ : str = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCamelCase = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCamelCase = os.path.join(hf_cache_home, '''diffusers''') def lowerCamelCase_ ( _a = None , _a = None ): """simple docstring""" if new_cache_dir is None: lowerCAmelCase__ : Optional[int] = DIFFUSERS_CACHE if old_cache_dir is None: lowerCAmelCase__ : int = old_diffusers_cache lowerCAmelCase__ : str = Path(_a ).expanduser() lowerCAmelCase__ : Optional[int] = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowerCAmelCase__ : Any = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCamelCase = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCamelCase = 0 else: with open(cache_version_file) as f: try: lowerCamelCase = int(f.read()) except ValueError: lowerCamelCase = 0 if cache_version < 1: lowerCamelCase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCamelCase = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' '''the directory exists and can be written to.''' ) def lowerCamelCase_ ( _a , _a = None ): """simple docstring""" if variant is not None: lowerCAmelCase__ : int = weights_name.split('''.''' ) lowerCAmelCase__ : Any = splits[:-1] + [variant] + splits[-1:] lowerCAmelCase__ : Optional[Any] = '''.'''.join(_a ) return weights_name def lowerCamelCase_ ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): """simple docstring""" lowerCAmelCase__ : str = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint lowerCAmelCase__ : int = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): lowerCAmelCase__ : Optional[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowerCAmelCase__ : Optional[Any] = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , _a , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}\' so that the correct variant file can be added.' , _a , ) try: # 2. Load model file as usual lowerCAmelCase__ : List[Any] = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' '''this model name. Check the model page at ''' f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
131
import unittest from transformers import DonutProcessor lowerCamelCase = '''naver-clova-ix/donut-base''' class _a ( unittest.TestCase): def UpperCAmelCase__( self : str )-> int: lowerCAmelCase__ : Any = DonutProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : Dict = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowerCAmelCase__ : Any = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowerCAmelCase__ : str = self.processor.tokenajson(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
131
1
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __magic_name__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = AudioClassificationPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) # test with a raw waveform _A: Optional[Any] = np.zeros((3_4_0_0_0,) ) _A: int = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def __magic_name__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any ): """simple docstring""" _A: Any = examples _A: List[str] = audio_classifier(lowerCAmelCase_ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCAmelCase_ , [ {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, ] , ) _A: Optional[Any] = audio_classifier(lowerCAmelCase_ , top_k=1 ) self.assertEqual( lowerCAmelCase_ , [ {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, ] , ) self.run_torchaudio(lowerCAmelCase_ ) @require_torchaudio def __magic_name__ ( self : Any , lowerCAmelCase_ : Optional[int] ): """simple docstring""" import datasets # test with a local file _A: List[str] = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) _A: Any = dataset[0]['''audio''']['''array'''] _A: Optional[int] = audio_classifier(lowerCAmelCase_ ) self.assertEqual( lowerCAmelCase_ , [ {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, ] , ) @require_torch def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[Any] = '''anton-l/wav2vec2-random-tiny-classifier''' _A: Dict = pipeline('''audio-classification''' , model=lowerCAmelCase_ ) _A: List[str] = np.ones((8_0_0_0,) ) _A: str = audio_classifier(lowerCAmelCase_ , top_k=4 ) _A: Tuple = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] _A: str = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _A: Optional[int] = {'''array''': np.ones((8_0_0_0,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} _A: List[str] = audio_classifier(lowerCAmelCase_ , top_k=4 ) self.assertIn(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __magic_name__ ( self : str ): """simple docstring""" import datasets _A: Union[str, Any] = '''superb/wav2vec2-base-superb-ks''' _A: int = pipeline('''audio-classification''' , model=lowerCAmelCase_ ) _A: Union[str, Any] = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) _A: Optional[Any] = np.array(dataset[3]['''speech'''] , dtype=np.floataa ) _A: Tuple = audio_classifier(lowerCAmelCase_ , top_k=4 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=3 ) , [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def __magic_name__ ( self : List[Any] ): """simple docstring""" pass
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' lowercase_ = None @experimental def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) -> List[str]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( a_ , a_ , a_ , a_ , a_ , a_ , a_ ) return _map_with_joblib(a_ , a_ , a_ , a_ , a_ , a_ , a_ ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Any ) -> str: SCREAMING_SNAKE_CASE_ = num_proc if num_proc <= len(a_ ) else len(a_ ) SCREAMING_SNAKE_CASE_ = [] # We organize the splits ourselve (contiguous splits) for index in range(a_ ): SCREAMING_SNAKE_CASE_ = len(a_ ) // num_proc SCREAMING_SNAKE_CASE_ = len(a_ ) % num_proc SCREAMING_SNAKE_CASE_ = div * index + min(a_ , a_ ) SCREAMING_SNAKE_CASE_ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(a_ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"Error dividing inputs iterable among processes. " f"Total number of objects {len(a_ )}, " f"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( f"Spawning {num_proc} processes for {len(a_ )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) SCREAMING_SNAKE_CASE_ = None, None if not disable_tqdm: SCREAMING_SNAKE_CASE_ = (RLock(),), tqdm.set_lock with Pool(a_ , initargs=a_ , initializer=a_ ) as pool: SCREAMING_SNAKE_CASE_ = pool.map(a_ , a_ ) logger.info(f"Finished {num_proc} processes" ) SCREAMING_SNAKE_CASE_ = [obj for proc_res in mapped for obj in proc_res] logger.info(f"Unpacked {len(a_ )} objects" ) return mapped def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Any ) -> Optional[Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=a_ ): return joblib.Parallel()( joblib.delayed(a_ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: SCREAMING_SNAKE_CASE_ = None
225
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor'''] __lowerCAmelCase = '''SamImageProcessor''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __a : Any = self.image_processor __a : List[Any] = -10 __a : str = self.image_processor.size['''longest_edge'''] def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : Tuple = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless __a : Optional[Any] = encoding_image_processor['''original_sizes'''] if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks if Torch or TF tensor __a : Optional[Any] = original_sizes.numpy() __a , __a , __a : int = self._check_and_preprocess_points( input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , ) __a : List[Any] = self._normalize_and_convert( _UpperCAmelCase , _UpperCAmelCase , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="pt" , ): if input_points is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] ) for point in input_points ] else: __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase ) for point, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __a , __a : Tuple = self._pad_points_and_labels(_UpperCAmelCase , _UpperCAmelCase ) __a : List[Any] = np.array(_UpperCAmelCase ) if input_labels is not None: __a : List[Any] = np.array(_UpperCAmelCase ) if input_boxes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Any = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] , is_bounding_box=_UpperCAmelCase ) for box in input_boxes ] else: __a : int = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase , is_bounding_box=_UpperCAmelCase ) for box, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] __a : Optional[int] = np.array(_UpperCAmelCase ) if input_boxes is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __a : Dict = tf.convert_to_tensor(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __a : int = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __a : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Union[str, Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __a : str = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Dict = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = max([point.shape[0] for point in input_points] ) __a : Dict = [] for i, point in enumerate(_UpperCAmelCase ): if point.shape[0] != expected_nb_points: __a : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __a : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_UpperCAmelCase ) __a : int = processed_input_points return input_points, input_labels def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): __a , __a : str = original_size __a , __a : Optional[int] = self.image_processor._get_preprocess_shape(_UpperCAmelCase , longest_edge=_UpperCAmelCase ) __a : List[str] = deepcopy(_UpperCAmelCase ).astype(_UpperCAmelCase ) if is_bounding_box: __a : Optional[int] = coords.reshape(-1 , 2 , 2 ) __a : str = coords[..., 0] * (new_w / old_w) __a : List[Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: __a : List[Any] = coords.reshape(-1 , 4 ) return coords def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if input_points is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks for TF or Torch tensor __a : str = input_points.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_points[0] , _UpperCAmelCase ): raise ValueError('''Input points must be a list of list of floating points.''' ) __a : str = [np.array(_UpperCAmelCase ) for input_point in input_points] else: __a : Optional[int] = None if input_labels is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : Dict = input_labels.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_labels[0] , _UpperCAmelCase ): raise ValueError('''Input labels must be a list of list integers.''' ) __a : Dict = [np.array(_UpperCAmelCase ) for label in input_labels] else: __a : Tuple = None if input_boxes is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_boxes[0] , _UpperCAmelCase ) or not isinstance(input_boxes[0][0] , _UpperCAmelCase ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __a : Optional[Any] = [np.array(_UpperCAmelCase ).astype(np.floataa ) for box in input_boxes] else: __a : Union[str, Any] = None return input_points, input_labels, input_boxes @property def _lowerCamelCase ( self ): __a : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(_UpperCAmelCase ) ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.image_processor.post_process_masks(*_UpperCAmelCase , **_UpperCAmelCase )
160
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase__ = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
143
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__(self : Tuple , __UpperCAmelCase : str , ) -> Dict: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForQuestionAnswering(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForSequenceClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFDistilBertForMultipleChoice(__UpperCAmelCase ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForTokenClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : Any ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Optional[int] = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = False def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = TFDistilBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , dim=3_7 ) def lowercase_ (self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCAmelCase ) def lowercase_ (self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase__ = TFDistilBertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = [1, 6, 7_6_8] self.assertEqual(output.shape , __UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 )
143
1
import math import sys import cva import numpy as np def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Optional[int] ) -> str: UpperCamelCase__ : Optional[Any] = math.sqrt(UpperCamelCase__ ) UpperCamelCase__ : Tuple = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Any , __UpperCAmelCase: Tuple , __UpperCAmelCase: Union[str, Any] ) -> Optional[Any]: UpperCamelCase__ : Union[str, Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str ) -> List[Any]: UpperCamelCase__ : List[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , UpperCamelCase__ ): for j in range(0 , UpperCamelCase__ ): UpperCamelCase__ : str = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: Dict , __UpperCAmelCase: int , __UpperCAmelCase: List[Any] , ) -> Optional[int]: UpperCamelCase__ : Tuple = np.zeros(img.shape ) UpperCamelCase__ : Union[str, Any] = get_gauss_kernel(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ ,UpperCamelCase__ : str = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): UpperCamelCase__ : Any = get_slice(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2] UpperCamelCase__ : Optional[int] = vec_gaussian(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Union[str, Any] = np.multiply(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Dict = np.multiply(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Tuple = np.sum(UpperCamelCase__ ) / np.sum(UpperCamelCase__ ) UpperCamelCase__ : Dict = val return imga def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Optional[int]: UpperCamelCase__ : List[str] = args[1] if args[1:] else '''../image_data/lena.jpg''' UpperCamelCase__ : Optional[int] = float(args[2] ) if args[2:] else 1.0 UpperCamelCase__ : List[str] = float(args[3] ) if args[3:] else 1.0 if args[4:]: UpperCamelCase__ : Dict = int(args[4] ) UpperCamelCase__ : List[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: UpperCamelCase__ : List[str] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parse_args(sys.argv) UpperCAmelCase_ = cva.imread(filename, 0) cva.imshow('input image', img) UpperCAmelCase_ = img / 255 UpperCAmelCase_ = out.astype('float32') UpperCAmelCase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) UpperCAmelCase_ = out * 255 UpperCAmelCase_ = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
201
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __lowerCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ): """simple docstring""" A__ = bnb_quantization_config.load_in_abit A__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) A__ = [] # custom device map if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(device_map.keys() ) > 1: A__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A__ = get_keys_to_not_convert(UpperCamelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase__ ) A__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A__ = [] A__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase__ ) # compatibility with peft A__ = load_in_abit A__ = load_in_abit A__ = get_parameter_device(UpperCamelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) A__ = replace_with_bnb_layers(UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) # convert param to the right dtype A__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A__ = name.replace('.weight' , '' ).replace('.bias' , '' ) A__ = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase__ ): param.to(UpperCamelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): A__ = replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) A__ = get_quantized_model_device_map( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_memory=UpperCamelCase__ , no_split_module_classes=UpperCamelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A__ = True A__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase__ , offload_state_dict=UpperCamelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase__ , device_map=UpperCamelCase__ , offload_dir=UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): A__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) A__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A__ = {} A__ = special_dtypes A__ = no_split_module_classes A__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A__ = get_balanced_memory( UpperCamelCase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=UpperCamelCase__ , **UpperCamelCase__ , ) A__ = max_memory A__ = infer_auto_device_map(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # check if don't have any quantized module on the cpu A__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): """simple docstring""" if modules_to_not_convert is None: A__ = [] A__ , A__ = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , ): """simple docstring""" A__ = False for name, module in model.named_children(): if current_key_name is None: A__ = [] current_key_name.append(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A__ = '.'.join(UpperCamelCase__ ) A__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) A__ = module.weight.data if module.bias is not None: A__ = module.bias.data bnb_module.requires_grad_(UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = True if len(list(module.children() ) ) > 0: A__ , A__ = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" with init_empty_weights(): A__ = deepcopy(UpperCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A__ = find_tied_parameters(UpperCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ = sum(UpperCamelCase__ , [] ) A__ = len(UpperCamelCase__ ) > 0 # Check if it is a base model A__ = False if hasattr(UpperCamelCase__ , 'base_model_prefix' ): A__ = not hasattr(UpperCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ = list(model.named_children() ) A__ = [list_modules[-1][0]] # add last module together with tied weights A__ = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) A__ = list(set(UpperCamelCase__ ) ) + list(UpperCamelCase__ ) # remove ".weight" from the keys A__ = ['.weight', '.bias'] A__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ = name.replace(UpperCamelCase__ , '' ) filtered_module_names.append(UpperCamelCase__ ) return filtered_module_names def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" for m in model.modules(): if isinstance(UpperCamelCase__ , bnb.nn.Linearabit ): return True return False def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return next(parameter.parameters() ).device def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 0 , dtype=UpperCamelCase__ , value=UpperCamelCase__ ) A__ = param_name A__ = model if "." in tensor_name: A__ = tensor_name.split('.' ) for split in splits[:-1]: A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) A__ = new_module A__ = splits[-1] # offload weights A__ = False offload_weight(module._parameters[tensor_name] , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , UpperCamelCase__ , index=UpperCamelCase__ , ) else: offload_weight(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) offload_weight(UpperCamelCase__ , param_name.replace('weight' , 'SCB' ) , UpperCamelCase__ , index=UpperCamelCase__ ) set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 'meta' , dtype=UpperCamelCase__ , value=torch.empty(*param.size() ) )
221
0
"""simple docstring""" def a__ ( __lowercase ) -> bool: _A = set() # To detect a back edge, keep track of vertices currently in the recursion stack _A = set() return any( node not in visited and depth_first_search(__lowercase , __lowercase , __lowercase , __lowercase ) for node in graph ) def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> bool: visited.add(__lowercase ) rec_stk.add(__lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__lowercase , __lowercase , __lowercase , __lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
163
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"vocab_file": "spm_char.model"} a_ = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } a_ = { "microsoft/speecht5_asr": 10_24, "microsoft/speecht5_tts": 10_24, "microsoft/speecht5_vc": 10_24, } class snake_case ( _UpperCamelCase): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self : Any , a__ : List[Any] , a__ : Optional[int]="<s>" , a__ : List[Any]="</s>" , a__ : int="<unk>" , a__ : Any="<pad>" , a__ : Optional[Dict[str, Any]] = None , **a__ : str , ) -> None: '''simple docstring''' _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @property def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' return self.sp_model.get_piece_size() def a_ ( self : int ) -> Tuple: '''simple docstring''' _A = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : Optional[Any] , a__ : Any ) -> List[str]: '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : Any , a__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a__ , out_type=a__ ) def a_ ( self : Optional[Any] , a__ : Optional[int] ) -> Dict: '''simple docstring''' return self.sp_model.piece_to_id(a__ ) def a_ ( self : List[str] , a__ : str ) -> Union[str, Any]: '''simple docstring''' _A = self.sp_model.IdToPiece(a__ ) return token def a_ ( self : Optional[int] , a__ : Union[str, Any] ) -> str: '''simple docstring''' _A = [] _A = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a__ ) + token _A = [] else: current_sub_tokens.append(a__ ) out_string += self.sp_model.decode(a__ ) return out_string.strip() def a_ ( self : str , a__ : Dict , a__ : Dict=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a_ ( self : Any , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) _A = [1] if token_ids_a is None: return ([0] * len(a__ )) + suffix_ones return ([0] * len(a__ )) + ([0] * len(a__ )) + suffix_ones def a_ ( self : str , a__ : str , a__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
163
1
from math import log from scipy.constants import Boltzmann, physical_constants __magic_name__: Tuple = 300 # TEMPERATURE (unit = K) def UpperCamelCase ( _A, _A, _A, ): """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
342
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCamelCase__ =10 def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for i in range(__lowerCamelCase, __lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : Optional[Any] = len(__lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = (left + right) // 3 + 1 _SCREAMING_SNAKE_CASE : Any = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _SCREAMING_SNAKE_CASE : int = one_third - 1 elif array[two_third] < target: _SCREAMING_SNAKE_CASE : Optional[Any] = two_third + 1 else: _SCREAMING_SNAKE_CASE : Union[str, Any] = one_third + 1 _SCREAMING_SNAKE_CASE : Optional[int] = two_third - 1 else: return -1 def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if left < right: if right - left < precision: return lin_search(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = (left + right) // 3 + 1 _SCREAMING_SNAKE_CASE : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCamelCase, one_third - 1, __lowerCamelCase, __lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: return rec_ternary_search(one_third + 1, two_third - 1, __lowerCamelCase, __lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ =input('Enter numbers separated by comma:\n').strip() UpperCamelCase__ =[int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." UpperCamelCase__ =int(input('Enter the number to be found in the list:\n').strip()) UpperCamelCase__ =ite_ternary_search(collection, target) UpperCamelCase__ =rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"Iterative search: {target} found at positions: {resulta}") print(f"Recursive search: {target} found at positions: {resulta}") else: print('Not found')
325
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __SCREAMING_SNAKE_CASE : int = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex __SCREAMING_SNAKE_CASE : Optional[Any] = 10 __SCREAMING_SNAKE_CASE : str = 256 def UpperCamelCase_ ( _UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" if len(_lowerCAmelCase ) < MIN_NUM_TOKENS: return None _UpperCAmelCase : List[Any] = MinHash(num_perm=_lowerCAmelCase ) for token in set(_lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" return {t for t in NON_ALPHA.split(_lowerCAmelCase ) if len(t.strip() ) > 0} class lowerCamelCase_ : '''simple docstring''' def __init__( self : str , *, A : Optional[int] = 0.85 , ): _UpperCAmelCase : List[str] = duplication_jaccard_threshold _UpperCAmelCase : Dict = NUM_PERM _UpperCAmelCase : str = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _UpperCAmelCase : Optional[int] = defaultdict(snake_case_ ) def _A ( self : Optional[Any] , A : Dict , A : Any ): _UpperCAmelCase : Optional[Any] = self._index.query(snake_case_ ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(snake_case_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(snake_case_ ) def _A ( self : str ): _UpperCAmelCase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): _UpperCAmelCase : Optional[int] = [base] + list(snake_case_ ) # reformat the cluster to be a list of dict _UpperCAmelCase : List[str] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(snake_case_ ) return duplicate_clusters def _A ( self : List[Any] , A : Optional[Any] ): _UpperCAmelCase : List[str] = self.get_duplicate_clusters() with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ ) def UpperCamelCase_ ( _UpperCAmelCase : Dict ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[str] = element _UpperCAmelCase : Any = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase_ ( _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowerCAmelCase , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = DuplicationIndex(duplication_jaccard_threshold=_lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCAmelCase ) ) , max_queue_size=100 ) ): di.add(_lowerCAmelCase , _lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = get_tokens(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = get_tokens(_lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __SCREAMING_SNAKE_CASE : int = None def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = [] for elementa in cluster: _UpperCAmelCase : Any = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: _UpperCAmelCase : List[Any] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(_lowerCAmelCase , _lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _UpperCAmelCase : List[Any] = 1 extremes.append(_lowerCAmelCase ) return extremes def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" global _shared_dataset _UpperCAmelCase : List[str] = dataset _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCAmelCase , _lowerCAmelCase , ) , total=len(_lowerCAmelCase ) , ): extremes_list.append(_lowerCAmelCase ) return extremes_list def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] = 0.8_5 ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = make_duplicate_clusters(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase : List[str] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} _UpperCAmelCase : Any = {} _UpperCAmelCase : Any = find_extremes(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: _UpperCAmelCase : str = element _UpperCAmelCase : Optional[Any] = duplicate_indices - set(extreme_dict.keys() ) _UpperCAmelCase : List[Any] = dataset.filter(lambda _UpperCAmelCase , _UpperCAmelCase : idx not in remove_indices , with_indices=_lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _UpperCAmelCase : Tuple = element["base_index"] in extreme_dict if element["is_extreme"]: _UpperCAmelCase : Dict = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(_lowerCAmelCase )}""" ) print(F"""Number of duplicate clusters: {len(_lowerCAmelCase )}""" ) print(F"""Files in duplicate cluster: {len(_lowerCAmelCase )}""" ) print(F"""Unique files in duplicate cluster: {len(_lowerCAmelCase )}""" ) print(F"""Filtered dataset size: {len(_lowerCAmelCase )}""" ) return ds_filter, duplicate_clusters
31
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=sys.maxsize ): '''simple docstring''' UpperCamelCase__ :List[str] = '''bilinear''' UpperCamelCase__ :Optional[Any] = max_size UpperCamelCase__ :List[str] = short_edge_length def __call__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = [] for img in imgs: UpperCamelCase__ :Union[str, Any] = img.shape[:2] # later: provide list and randomly choose index for resize UpperCamelCase__ :Optional[int] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCamelCase__ :List[Any] = size * 1.0 / min(lowerCamelCase__ , lowerCamelCase__ ) if h < w: UpperCamelCase__ :int = size, scale * w else: UpperCamelCase__ :int = scale * h, size if max(lowerCamelCase__ , lowerCamelCase__ ) > self.max_size: UpperCamelCase__ :str = self.max_size * 1.0 / max(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = newh * scale UpperCamelCase__ :Tuple = neww * scale UpperCamelCase__ :List[str] = int(neww + 0.5 ) UpperCamelCase__ :Dict = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCamelCase__ :Dict = Image.fromarray(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCamelCase__ :List[str] = np.asarray(lowerCamelCase__ ) else: UpperCamelCase__ :List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCamelCase__ :str = nn.functional.interpolate( lowerCamelCase__ , (newh, neww) , mode=self.interp_method , align_corners=lowerCamelCase__ ).squeeze(0 ) img_augs.append(lowerCamelCase__ ) return img_augs class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCamelCase__ :Optional[int] = cfg.INPUT.FORMAT UpperCamelCase__ :Optional[int] = cfg.SIZE_DIVISIBILITY UpperCamelCase__ :Optional[int] = cfg.PAD_VALUE UpperCamelCase__ :List[str] = cfg.INPUT.MAX_SIZE_TEST UpperCamelCase__ :str = cfg.MODEL.DEVICE UpperCamelCase__ :int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__ :int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__ :Optional[Any] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = tuple(max(lowerCamelCase__ ) for s in zip(*[img.shape for img in images] ) ) UpperCamelCase__ :Dict = [im.shape[-2:] for im in images] UpperCamelCase__ :List[Any] = [ nn.functional.pad( lowerCamelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return torch.stack(lowerCamelCase__ ), torch.tensor(lowerCamelCase__ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = [images] if single_image: assert len(lowerCamelCase__ ) == 1 for i in range(len(lowerCamelCase__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowerCamelCase__ , images.pop(lowerCamelCase__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowerCamelCase__ , torch.as_tensor(img_tensorize(images.pop(lowerCamelCase__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCamelCase__ :str = torch.tensor([im.shape[:2] for im in images] ) UpperCamelCase__ :Any = self.aug(lowerCamelCase__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCamelCase__ :List[Any] = [self.normalizer(lowerCamelCase__ ) for x in images] # now pad them to do the following operations UpperCamelCase__ :Optional[Any] = self.pad(lowerCamelCase__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCamelCase__ :Optional[int] = torch.true_divide(lowerCamelCase__ , lowerCamelCase__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def a ( __a , __a ) -> Union[str, Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def a ( __a , __a ) -> Optional[int]: '''simple docstring''' assert torch.isfinite(__a ).all(), "Box tensor contains infinite or NaN!" UpperCamelCase__ :Dict = box_size tensor[:, 0].clamp_(min=0 , max=__a ) tensor[:, 1].clamp_(min=0 , max=__a ) tensor[:, 2].clamp_(min=0 , max=__a ) tensor[:, 3].clamp_(min=0 , max=__a )
357
'''simple docstring''' import argparse from collections import defaultdict import yaml __snake_case = '''docs/source/en/_toctree.yml''' def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :int = defaultdict(__a ) UpperCamelCase__ :int = [] UpperCamelCase__ :int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(__a ) UpperCamelCase__ :Union[str, Any] = new_doc_list UpperCamelCase__ :Tuple = [key for key, value in counts.items() if value > 1] UpperCamelCase__ :Union[str, Any] = [] for duplicate_key in duplicates: UpperCamelCase__ :Dict = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) UpperCamelCase__ :Union[str, Any] = sorted(__a , key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__a ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(__a ) # Sort return overview_doc def a ( __a=False ) -> Any: '''simple docstring''' with open(__a , encoding='''utf-8''' ) as f: UpperCamelCase__ :Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ :str = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ :str = content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ :Optional[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase__ :List[Any] = api_doc[scheduler_idx]['''sections'''] UpperCamelCase__ :Union[str, Any] = clean_doc_toc(__a ) UpperCamelCase__ :List[Any] = False if new_scheduler_doc != scheduler_doc: UpperCamelCase__ :Optional[int] = True if overwrite: UpperCamelCase__ :Dict = new_scheduler_doc if diff: if overwrite: UpperCamelCase__ :Any = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def a ( __a=False ) -> Optional[Any]: '''simple docstring''' with open(__a , encoding='''utf-8''' ) as f: UpperCamelCase__ :str = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ :Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ :Any = content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ :str = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase__ :Any = False UpperCamelCase__ :Union[str, Any] = api_doc[pipeline_idx]['''sections'''] UpperCamelCase__ :Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase__ :Dict = pipeline_doc['''section'''] UpperCamelCase__ :Optional[Any] = clean_doc_toc(__a ) if overwrite: UpperCamelCase__ :Optional[int] = new_sub_pipeline_doc new_pipeline_docs.append(__a ) # sort overall pipeline doc UpperCamelCase__ :Optional[Any] = clean_doc_toc(__a ) if new_pipeline_docs != pipeline_docs: UpperCamelCase__ :int = True if overwrite: UpperCamelCase__ :Union[str, Any] = new_pipeline_docs if diff: if overwrite: UpperCamelCase__ :Dict = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
219
0
from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCamelCase__ ( ) -> int: snake_case__ : int = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) snake_case__ : Union[str, Any] = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(A__ ) # Let's go snake_case__ : Any = parser.parse_args() if not hasattr(A__ , 'func' ): parser.print_help() exit(1 ) # Run snake_case__ : List[str] = args.func(A__ ) service.run() if __name__ == "__main__": main()
143
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase__ : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase__ : Optional[int] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase__ : Optional[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase__ : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase__ : Any = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase__ : Dict = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase__ : Optional[int] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def UpperCamelCase__ ( ) -> Any: snake_case__ , snake_case__ : List[str] = randrange(len(A__ ) ), randrange(len(A__ ) ) snake_case__ : str = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] snake_case__ , snake_case__ : Any = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase__ ( A__ = 100 ) -> Optional[int]: return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Any: assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Dict: snake_case__ : Optional[int] = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> str: assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Optional[Any]: assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Union[str, Any]: assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : Union[str, Any] = [PokerHand(A__ ) for hand in SORTED_HANDS] snake_case__ : Optional[Any] = poker_hands.copy() shuffle(A__ ) snake_case__ : Tuple = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def UpperCamelCase__ ( ) -> str: # Test that five high straights are compared correctly. snake_case__ : int = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase__ ( ) -> Union[str, Any]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. snake_case__ : Optional[int] = PokerHand('2C 4S AS 3D 5C' ) snake_case__ : Optional[int] = True snake_case__ : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase__ ( ) -> List[str]: # Problem number 54 from Project Euler # Testing from poker_hands.txt file snake_case__ : Any = 0 snake_case__ : Optional[Any] = os.path.abspath(os.path.dirname(A__ ) ) snake_case__ : List[str] = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: snake_case__ : Tuple = line[:14].strip() snake_case__ : List[str] = line[15:].strip() snake_case__ , snake_case__ : Any = PokerHand(A__ ), PokerHand(A__ ) snake_case__ : Tuple = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
143
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]="None" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = position_biased_input __SCREAMING_SNAKE_CASE = pos_att_type __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
362
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __SCREAMING_SNAKE_CASE = 77 __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[str]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A photo of an astronaut""" __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""numpy""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
331
0
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A ='python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__=None ): require_version(deps[pkg] , UpperCamelCase__ )
163
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __A =logging.getLogger() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = """\n""".join(UpperCamelCase__ ) Path(UpperCamelCase__ ).open("""w""" ).writelines(UpperCamelCase__ ) __A ='patrickvonplaten/t5-tiny-random' __A ='sshleifer/bart-tiny-random' __A ='sshleifer/tiny-mbart' __A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _snake_case ( a__ ): def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Any = Path(self.get_auto_remove_tmp_dir()) / """utest_input.source""" UpperCAmelCase__ : Dict = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() UpperCAmelCase__ : Any = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = str(Path(self.get_auto_remove_tmp_dir()) / """scores.json""") UpperCAmelCase__ : int = """translation_en_to_de""" if model == T5_TINY else """summarization""" UpperCAmelCase__ : Union[str, Any] = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase): run_generate() assert Path(_lowerCamelCase).exists() # os.remove(Path(output_file_name)) def snake_case__ ( self): self.run_eval_tester(_lowerCamelCase) @parameterized.expand([BART_TINY, MBART_TINY]) @slow def snake_case__ ( self , _lowerCamelCase): self.run_eval_tester(_lowerCamelCase) @parameterized.expand([T5_TINY, MBART_TINY]) @slow def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Optional[Any] = Path(self.get_auto_remove_tmp_dir()) / """utest_input.source""" UpperCAmelCase__ : List[str] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() UpperCAmelCase__ : int = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } UpperCAmelCase__ : int = Path(self.get_auto_remove_tmp_dir()) UpperCAmelCase__ : Any = str(tmp_dir / """scores.json""") UpperCAmelCase__ : List[str] = str(tmp_dir / """val.target""") _dump_articles(_lowerCamelCase , text["""en"""]) _dump_articles(_lowerCamelCase , text["""de"""]) UpperCAmelCase__ : int = """translation_en_to_de""" if model == T5_TINY else """summarization""" UpperCAmelCase__ : List[Any] = f''' run_eval_search.py {model} {str(_lowerCamelCase)} {str(_lowerCamelCase)} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""]) with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase): with CaptureStdout() as cs: run_search() UpperCAmelCase__ : Optional[Any] = [""" num_beams | length_penalty""", model, """Best score args"""] UpperCAmelCase__ : Any = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""") else: expected_strings.extend(_lowerCamelCase) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_lowerCamelCase).exists() os.remove(Path(_lowerCamelCase))
163
1
SCREAMING_SNAKE_CASE :Optional[int] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] SCREAMING_SNAKE_CASE :Optional[int] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] SCREAMING_SNAKE_CASE :Optional[int] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] SCREAMING_SNAKE_CASE :Any = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] SCREAMING_SNAKE_CASE :Optional[Any] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] SCREAMING_SNAKE_CASE :int = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] SCREAMING_SNAKE_CASE :Optional[int] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] SCREAMING_SNAKE_CASE :str = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
60
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , )-> Optional[int]: UpperCamelCase_ = size if size is not None else {"height": 18, "width": 18} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = apply_ocr def UpperCAmelCase_ ( self )-> str: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , "do_resize" ) ) self.assertTrue(hasattr(_lowercase , "size" ) ) self.assertTrue(hasattr(_lowercase , "apply_ocr" ) ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self )-> List[str]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , _lowercase ) self.assertIsInstance(encoding.boxes , _lowercase ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> str: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> List[str]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> Any: # with apply_OCR = True UpperCamelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase_ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) UpperCamelCase_ = Image.open(ds[0]["file"] ).convert("RGB" ) UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase_ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 UpperCamelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase ) self.assertListEqual(encoding.boxes , _lowercase ) # with apply_OCR = False UpperCamelCase_ = LayoutLMvaImageProcessor(apply_ocr=_lowercase ) UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
60
1
from math import pi def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
325
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[Any] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCamelCase__ : str = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCamelCase__ : str = model(SCREAMING_SNAKE_CASE )["last_hidden_state"] UpperCamelCase__ : Optional[Any] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCamelCase__ : Any = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
196
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list: UpperCamelCase__ : Tuple = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase__ : Tuple = True for i in range(0 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase__ , UpperCamelCase__ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase__ : List[str] = False for i in range(1 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase__ : List[Any] = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCamelCase : Any =[int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase : Optional[int] =odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
196
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE = 'ViltImageProcessor' _SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , lowercase=None , lowercase=None , **lowercase ) -> int: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase , ) lowerCAmelCase = kwargs.pop("""feature_extractor""" ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase , lowercase ) lowerCAmelCase = self.image_processor def __call__( self , lowercase , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ) -> BatchEncoding: lowerCAmelCase = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) # add pixel_values + pixel_mask lowerCAmelCase = self.image_processor(lowercase , return_tensors=lowercase ) encoding.update(lowercase ) return encoding def _snake_case ( self , *lowercase , **lowercase ) -> List[Any]: return self.tokenizer.batch_decode(*lowercase , **lowercase ) def _snake_case ( self , *lowercase , **lowercase ) -> Optional[Any]: return self.tokenizer.decode(*lowercase , **lowercase ) @property def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase , ) return self.image_processor_class @property def _snake_case ( self ) -> Dict: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowercase , ) return self.image_processor
46
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Dict = '''Hello, World!''' __lowerCamelCase : Optional[Any] = '''en_XX''' def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : bool ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = Path("""data_bin""" ) SCREAMING_SNAKE_CASE__ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__UpperCamelCase ).parent ) , checkpoint_file=Path(__UpperCamelCase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(__UpperCamelCase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(__UpperCamelCase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE__ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = XmodForSequenceClassification(__UpperCamelCase ) if classification_head else XmodForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE__ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE__ = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE__ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE__ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE__ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.fca.weight SCREAMING_SNAKE_CASE__ = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE__ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.fca.weight SCREAMING_SNAKE_CASE__ = xmod_layer.fca.bias SCREAMING_SNAKE_CASE__ = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE__ = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE__ = from_adapter.fca.weight SCREAMING_SNAKE_CASE__ = from_adapter.fca.bias SCREAMING_SNAKE_CASE__ = from_adapter.fca.weight SCREAMING_SNAKE_CASE__ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].dense.weight SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].dense.bias SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.weight SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE__ = xmod.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCamelCase )[0] if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""](xmod.extract_features(__UpperCamelCase ) ) else: SCREAMING_SNAKE_CASE__ = xmod.model(__UpperCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE__ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE__ = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : str = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
219
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class lowerCamelCase__ ( _a ): '''simple docstring''' lowerCamelCase = """ctrl""" lowerCamelCase = ["""past_key_values"""] lowerCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=24_65_34 , __UpperCAmelCase=2_56 , __UpperCAmelCase=12_80 , __UpperCAmelCase=81_92 , __UpperCAmelCase=48 , __UpperCAmelCase=16 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> int: _lowerCAmelCase =vocab_size _lowerCAmelCase =n_positions _lowerCAmelCase =n_embd _lowerCAmelCase =n_layer _lowerCAmelCase =n_head _lowerCAmelCase =dff _lowerCAmelCase =resid_pdrop _lowerCAmelCase =embd_pdrop _lowerCAmelCase =layer_norm_epsilon _lowerCAmelCase =initializer_range _lowerCAmelCase =use_cache super().__init__(**__lowerCAmelCase )
371
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
341
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
143
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> list[int]: '''simple docstring''' if len(__A ) == 0: return array UpperCAmelCase__ , UpperCAmelCase__ = min(__A ), max(__A ) # Compute the variables UpperCAmelCase__ = _max - _min + 1 UpperCAmelCase__ , UpperCAmelCase__ = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCAmelCase__ = i - _min UpperCAmelCase__ = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCAmelCase__ = 0 for i in range(__A ): while holes_repeat[i] > 0: UpperCAmelCase__ = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = input('Enter numbers separated by comma:\n') UpperCamelCase__ = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
143
1
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _snake_case ( _snake_case : Optional[Any] , _snake_case : int , _snake_case : Dict=0 ): # Format the message. if name is None: lowerCAmelCase : List[Any] = None else: lowerCAmelCase : int = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' lowerCAmelCase : Tuple = fmt.format(_snake_case ) # Print and recurse (if needed). if isinstance(_snake_case , _snake_case ): if msg is not None: print(_snake_case ) for k in val.keys(): recursive_print(_snake_case , val[k] , spaces + 2 ) elif isinstance(_snake_case , torch.Tensor ): print(_snake_case , ''':''' , val.size() ) else: print(_snake_case , ''':''' , _snake_case ) def _snake_case ( _snake_case : Dict , _snake_case : Any , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Optional[int] ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase : Any = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase : List[str] = param.view(*_snake_case ) lowerCAmelCase : List[Any] = param.transpose(0 , 2 ) lowerCAmelCase : str = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase : int = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase : List[str] = param.view(*_snake_case ) lowerCAmelCase : Any = param.transpose(0 , 1 ).contiguous() lowerCAmelCase : str = param.view(*_snake_case ) return param def _snake_case ( _snake_case : int , _snake_case : List[str] , _snake_case : Tuple ): # The converted output model. lowerCAmelCase : List[Any] = {} # old versions did not store training args lowerCAmelCase : Any = input_state_dict.get('''args''' , _snake_case ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase : int = ds_args.padded_vocab_size lowerCAmelCase : Optional[int] = ds_args.max_position_embeddings lowerCAmelCase : Dict = ds_args.hidden_size lowerCAmelCase : Tuple = ds_args.num_layers lowerCAmelCase : Tuple = ds_args.num_attention_heads lowerCAmelCase : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase : Dict = config.n_head # The hidden_size per head. lowerCAmelCase : Tuple = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase : Any = input_state_dict['''checkpoint_version'''] else: lowerCAmelCase : Union[str, Any] = 0.0 # The model. lowerCAmelCase : List[str] = input_state_dict['''model'''] # The language model. lowerCAmelCase : Optional[Any] = model['''language_model'''] # The embeddings. lowerCAmelCase : Union[str, Any] = lm['''embedding'''] # The word embeddings. lowerCAmelCase : Any = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. lowerCAmelCase : List[Any] = word_embeddings[: config.vocab_size, :] lowerCAmelCase : List[Any] = word_embeddings # The position embeddings. lowerCAmelCase : Tuple = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase : Optional[Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase : str = pos_embeddings # The transformer. lowerCAmelCase : Dict = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. lowerCAmelCase : Dict = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. lowerCAmelCase : int = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase : int = layer_re.match(_snake_case ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase : Dict = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase : Optional[int] = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase : int = m.group(3 ) # The name of the layer. lowerCAmelCase : Dict = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): lowerCAmelCase : Dict = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' lowerCAmelCase : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase : List[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _snake_case , _snake_case ) lowerCAmelCase : List[str] = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase : Optional[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) lowerCAmelCase : Optional[Any] = masked_bias lowerCAmelCase : Dict = fix_query_key_value_ordering(_snake_case , _snake_case , 3 , _snake_case , _snake_case ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase : Any = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase : Optional[Any] = fix_query_key_value_ordering(_snake_case , _snake_case , 3 , _snake_case , _snake_case ) # Store. No change of shape. lowerCAmelCase : Union[str, Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase : List[str] = megatron_to_transformers[op_name] lowerCAmelCase : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase : int = megatron_to_transformers[op_name] lowerCAmelCase : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase : Optional[Any] = transformer['''final_layernorm.weight'''] lowerCAmelCase : Tuple = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase : str = word_embeddings # It should be done! return output_state_dict def _snake_case ( ): # Create the argument parser. lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=_snake_case , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=_snake_case , help='''An optional config json file describing the pre-trained model.''' , ) lowerCAmelCase : Optional[int] = parser.parse_args() # Extract the basename. lowerCAmelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: lowerCAmelCase : List[Any] = torch.load(_snake_case , map_location='''cpu''' ) else: lowerCAmelCase : int = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) lowerCAmelCase : List[str] = input_state_dict.get('''args''' , _snake_case ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase : Any = '''gelu_fast''' elif ds_args.openai_gelu: lowerCAmelCase : Dict = '''gelu_new''' else: lowerCAmelCase : Optional[int] = '''gelu''' else: # in the very early days this used to be "gelu_new" lowerCAmelCase : str = '''gelu_new''' # Spell out all parameters in case the defaults change. lowerCAmelCase : Optional[int] = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_snake_case , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=_snake_case , summary_activation=_snake_case , summary_proj_to_labels=_snake_case , summary_first_dropout=0.1 , scale_attn_weights=_snake_case , use_cache=_snake_case , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase : Any = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase : Optional[Any] = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) lowerCAmelCase : int = convert_megatron_checkpoint(_snake_case , _snake_case , _snake_case ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_snake_case , _snake_case ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase : Optional[int] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase : Optional[int] = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase : Tuple = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase : Tuple = '''gpt2''' lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowerCAmelCase : Dict = type(_snake_case ).__name__ lowerCAmelCase : Dict = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(_snake_case ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(_snake_case ) # Store the state_dict to file. lowerCAmelCase : Optional[Any] = os.path.join(_snake_case , '''pytorch_model.bin''' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(_snake_case , _snake_case ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
60
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Dict = logging.getLogger(__name__) def _snake_case ( _snake_case : Any , _snake_case : Any ): return (preds == labels).mean() @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class snake_case_: __UpperCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) try: lowerCAmelCase : Tuple = processors[data_args.task_name]() lowerCAmelCase : Any = processor.get_labels() lowerCAmelCase : Union[str, Any] = len(_snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_snake_case : EvalPrediction ) -> Dict: lowerCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_snake_case , p.label_ids )} # Data collator lowerCAmelCase : List[Any] = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : Union[str, Any] = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase : Any = trainer.evaluate() lowerCAmelCase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _snake_case , _snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_snake_case ) return results def _snake_case ( _snake_case : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
60
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case__ = datasets.load_iris() snake_case__ = np.array(data["""data"""]) snake_case__ = np.array(data["""target"""]) snake_case__ = data["""target_names"""] snake_case__ , snake_case__ , snake_case__ , snake_case__ = train_test_split(X, y) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : List[str] ) -> Optional[int]: return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int]=5 ) -> Optional[int]: A_ : Optional[int] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified A_ : str = [] for data_point in data: A_ : int = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A_ : int = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A_ : Union[str, Any] = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} __lowerCAmelCase = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __lowerCAmelCase = { '''AI-Sweden/gpt-sw3-126m''': 20_48, '''AI-Sweden/gpt-sw3-350m''': 20_48, '''AI-Sweden/gpt-sw3-1.6b''': 20_48, '''AI-Sweden/gpt-sw3-6.7b''': 20_48, '''AI-Sweden/gpt-sw3-20b''': 20_48, } class __a ( __UpperCamelCase ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : str = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' lowercase__: Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__: Optional[int] = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) lowercase__: Optional[Any] = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowercase__: Union[str, Any] = '<|endoftext|>' if eos_token is None else eos_token lowercase__: Optional[int] = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowercase__: List[str] = unk_token if pad_token is None else pad_token lowercase__: Optional[int] = eos_token if bos_token is None else bos_token else: lowercase__: Optional[int] = '<pad>' if pad_token is None else pad_token lowercase__: Tuple = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowercase__: int = do_lower_case lowercase__: Optional[int] = remove_space lowercase__: Optional[Any] = keep_accents lowercase__: str = vocab_file lowercase__: str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) # Used for whitespace normalization in input texts # fmt : off lowercase__: str = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowercase__: Tuple = re.compile( F'[{"".join(map(lowerCAmelCase__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]' ) def __getstate__( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = self.__dict__.copy() lowercase__: List[str] = None return state def __setstate__( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__: str = {} lowercase__: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' lowercase__: Optional[int] = self.non_printing_characters_re.sub('' , lowerCAmelCase__ ) # Normalize whitespaces lowercase__: Tuple = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization lowercase__: Union[str, Any] = unicodedata.normalize('NFC' , lowerCAmelCase__ ) return text def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: str = self.preprocess_text(lowerCAmelCase__ ) return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return self.sp_model.PieceToId(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(lowerCAmelCase__ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ) -> str: '''simple docstring''' return out_string def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' lowercase__: Dict = [] lowercase__: Tuple = '' lowercase__: Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token lowercase__: Optional[int] = True lowercase__: List[Any] = [] else: current_sub_tokens.append(lowerCAmelCase__ ) lowercase__: int = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, int]: '''simple docstring''' lowercase__: List[Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: lowercase__: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Optional[int] = self.preprocess_text(lowerCAmelCase__ ) lowercase__: Optional[int] = self.sp_model.encode(lowerCAmelCase__ ) else: lowercase__: Optional[Any] = [self.preprocess_text(lowerCAmelCase__ ) for t in text] lowercase__: List[Any] = self.sp_model.encode(lowerCAmelCase__ ) if return_tensors is True or return_tensors == "pt": lowercase__: str = torch.tensor(lowerCAmelCase__ ) return token_ids def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' return self.sp_model.decode(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[int]: '''simple docstring''' lowercase__: Dict = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] lowercase__: List[Any] = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(lowerCAmelCase__ ) + F'{self.bos_token}Bot:' ) return self.encode(text=lowerCAmelCase__ )
196
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def snake_case_ ( snake_case=32 , snake_case=10 , snake_case=1_00 , snake_case=10_26 , snake_case=True , snake_case="data/tokenized_stories_train_wikitext103.jbl" , snake_case="igf_context_pairs.jbl" , ) -> Union[str, Any]: set_seed(3 ) # generate train_data and objective_set lowercase__ , lowercase__: List[str] = generate_datasets( snake_case , snake_case , number=snake_case , min_len=10_26 , trim=snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase__: Optional[Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model lowercase__: str = load_gpta('gpt2' ).to(snake_case ) print('computing perplexity on objective set' ) lowercase__: int = compute_perplexity(snake_case , snake_case , snake_case ).item() print('perplexity on objective set:' , snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def snake_case_ ( snake_case , snake_case=15 , snake_case=1_28 , snake_case=1_00 , snake_case="igf_model.pt" , ) -> Optional[Any]: set_seed(42 ) # Load pre-trained model lowercase__: Any = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model lowercase__: Any = SecondaryLearner(snake_case ) # Train secondary learner lowercase__: Tuple = train_secondary_learner( snake_case , snake_case , max_epochs=snake_case , batch_size=snake_case , eval_freq=1_00 , igf_model_path=snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def snake_case_ ( snake_case , snake_case , snake_case , snake_case=32 , snake_case=10_00 , snake_case=16 , snake_case=1.0 , snake_case=recopy_gpta , snake_case=None , snake_case=10 , snake_case="gpt2_finetuned.pt" , ) -> Tuple: lowercase__: Dict = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) lowercase__: Optional[int] = RandomSampler(snake_case ) lowercase__: Optional[int] = DataLoader(snake_case , sampler=snake_case ) lowercase__: int = max_steps // (len(snake_case )) + 1 lowercase__: Union[str, Any] = 0 lowercase__: Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case ) lowercase__ , lowercase__ , lowercase__: Union[str, Any] = recopy_model(snake_case , snake_case , snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case ) secondary_learner.eval() lowercase__: List[Any] = [] lowercase__: str = 0 lowercase__: Tuple = [] lowercase__: Dict = [] # Compute the performance of the transformer model at the beginning lowercase__: Optional[Any] = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print('Test perplexity, step' , snake_case , ':' , snake_case ) for epoch in range(int(snake_case ) ): for step, example in enumerate(snake_case ): torch.cuda.empty_cache() lowercase__: Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase__: Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase__: Union[str, Any] = model(snake_case , labels=snake_case ) lowercase__: Tuple = True if secondary_learner is not None: lowercase__: Optional[Any] = secondary_learner.forward( torch.tensor(snake_case , dtype=torch.long , device=snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase__: Optional[Any] = -1 if predicted_q < threshold: lowercase__: str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase__: List[Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase__: Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase__: int = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print('Test perplexity, step' , snake_case , ':' , snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def snake_case_ ( ) -> str: lowercase__: Tuple = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=snake_case , type=snake_case , required=snake_case , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=snake_case , type=snake_case , required=snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=snake_case , default=snake_case , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=snake_case , default=snake_case , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=snake_case , type=snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=snake_case , default=snake_case , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=1_00 , type=snake_case , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=1_00 , type=snake_case , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=10_00 , type=snake_case , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=1_28 , type=snake_case , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=snake_case , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=snake_case , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=1_00 , type=snake_case , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=10_26 , type=snake_case , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=snake_case , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=snake_case , type=snake_case , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=snake_case , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=snake_case , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=snake_case , type=snake_case , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=snake_case , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner lowercase__: Tuple = joblib.load('data/IGF_values.jbl' ) # Train secondary learner lowercase__: List[str] = training_secondary_learner( snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model lowercase__: Dict = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase__ , lowercase__: Tuple = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=1_00 , min_len=10_26 , trim=snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case , snake_case , snake_case , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=snake_case , secondary_learner=snake_case , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
196
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __snake_case ( unittest.TestCase ): __lowerCamelCase : Dict = MODEL_FOR_MASKED_LM_MAPPING __lowerCamelCase : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) UpperCAmelCase : List[Any] =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 3_8015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 2_5506, '''token_str''': ''' accuser'''}, ] , ) UpperCAmelCase : Tuple =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 3_8015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 2_5506, '''token_str''': ''' accuser''', }, ] , ) UpperCAmelCase : Dict =unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Any =pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) UpperCAmelCase : List[Any] =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : Union[str, Any] =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : int =unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_3606, '''token_str''': ''' Clara'''}, ] , ) UpperCAmelCase : List[str] =unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] =pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() UpperCAmelCase : Dict =pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case__ , snake_case__ ) @slow @require_torch def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : str =pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(snake_case__ ) @slow @require_tf def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) UpperCAmelCase : int =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_2790, '''token_str''': ''' Lyon''', }, ] , ) UpperCAmelCase : int =unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any =pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) UpperCAmelCase : List[str] =None UpperCAmelCase : str =None self.run_pipeline_test(snake_case__ , [] ) @require_tf def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) UpperCAmelCase : str =None UpperCAmelCase : Dict =None self.run_pipeline_test(snake_case__ , [] ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) UpperCAmelCase : Any =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : int =[ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Any =fill_masker.tokenizer UpperCAmelCase : Optional[int] =fill_masker.model UpperCAmelCase : Dict =fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : int =fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : Optional[Any] =fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( snake_case__ , [ [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], ] , ) with self.assertRaises(snake_case__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case__ ): fill_masker('''This is''' ) self.run_test_top_k(snake_case__ , snake_case__ ) self.run_test_targets(snake_case__ , snake_case__ ) self.run_test_top_k_targets(snake_case__ , snake_case__ ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case__ , snake_case__ ) self.fill_mask_with_multiple_masks(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =tokenizer.get_vocab() UpperCAmelCase : List[str] =sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase : Any =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ , targets=snake_case__ ) UpperCAmelCase : Tuple =fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : int ={vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , snake_case__ ) UpperCAmelCase : Optional[Any] =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(snake_case__ ) ) # Call argument UpperCAmelCase : Union[str, Any] =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : Optional[int] =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case__ ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : Any ={vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , snake_case__ ) UpperCAmelCase : Optional[int] =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(snake_case__ ) ) # Score equivalence UpperCAmelCase : Any =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case__ ) UpperCAmelCase : Union[str, Any] =[top_mask['''token_str'''] for top_mask in outputs] UpperCAmelCase : Optional[int] =[top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ) == set(snake_case__ ): UpperCAmelCase : List[Any] =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case__ ) UpperCAmelCase : List[str] =[top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) # Raises with invalid with self.assertRaises(snake_case__ ): UpperCAmelCase : int =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case__ ): UpperCAmelCase : int =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(snake_case__ ): UpperCAmelCase : Any =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ , top_k=2 ) UpperCAmelCase : Optional[Any] =fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : Any =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : List[Any] =fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =tokenizer.get_vocab() UpperCAmelCase : int =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) # top_k=2, ntargets=3 UpperCAmelCase : Optional[Any] =sorted(vocab.keys() )[:3] UpperCAmelCase : str =fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=snake_case__ ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase : Tuple =[el['''token_str'''] for el in sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ).issubset(snake_case__ ): UpperCAmelCase : str =fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=snake_case__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : str =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : Union[str, Any] =tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase : List[Any] =sorted(vocab.keys() )[:3] UpperCAmelCase : Optional[int] =[targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase : str =fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=snake_case__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case__ ) , 3 ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : Union[str, Any] =fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( snake_case__ , [ [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], ] , )
78
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json'''} __snake_case = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __snake_case = {'''mgp-str''': 27} class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case__ , snake_case__="[GO]" , snake_case__="[GO]" , snake_case__="[s]" , snake_case__="[GO]" , **snake_case__ ) -> Any: '''simple docstring''' super().__init__( unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : int =json.load(snake_case__ ) UpperCAmelCase : List[str] ={v: k for k, v in self.vocab.items()} @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return len(self.vocab ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =[] for s in text: char_tokens.extend(snake_case__ ) return char_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(snake_case__ ) ) return UpperCAmelCase : List[Any] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) return (vocab_file,)
78
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : float | Decimal , _lowerCamelCase : float = 10**-10): lowercase__ : Optional[int] = a while True: lowercase__ : int = Decimal(_lowerCamelCase) - ( Decimal(eval(_lowerCamelCase)) / Decimal(eval(str(diff(_lowerCamelCase)))) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCamelCase)) < precision: # noqa: S307 return float(_lowerCamelCase) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ () -> list[list[int]]: return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _A : Tuple =generate_large_matrix() _A : str =( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> None: assert all(row == sorted(UpperCamelCase , reverse=UpperCamelCase ) for row in grid ) assert all(list(UpperCamelCase ) == sorted(UpperCamelCase , reverse=UpperCamelCase ) for col in zip(*UpperCamelCase ) ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : int = len(UpperCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase__ : int = (left + right) // 2 lowerCamelCase__ : str = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase__ : Dict = mid + 1 else: lowerCamelCase__ : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : List[str] = len(grid[0] ) for i in range(len(UpperCamelCase ) ): lowerCamelCase__ : Tuple = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCamelCase ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : Union[str, Any] = 0 for row in grid: for i, number in enumerate(UpperCamelCase ): if number < 0: total += len(UpperCamelCase ) - i break return total def SCREAMING_SNAKE_CASE_ () -> None: from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase__ : Union[str, Any] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase__ : int = timeit(f'''{func}(grid=grid)''' , setup=UpperCamelCase , number=500 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
360
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__ : Union[str, Any] = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , **UpperCamelCase__: Optional[int] ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Any , **UpperCamelCase__: List[str] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , **UpperCamelCase__: int ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Tuple = self.get_tokenizer() lowerCamelCase__ : Any = self.get_rust_tokenizer() lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : str = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) lowerCamelCase__ : Any = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[int] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : str = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) lowerCamelCase__ : Optional[int] = self.get_image_processor(do_normalize=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=UpperCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : int = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.prepare_image_inputs() lowerCamelCase__ : str = image_processor(UpperCamelCase__ , return_tensors="""np""" ) lowerCamelCase__ : Optional[int] = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : int = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Optional[Any] = processor(text=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Dict = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Any = self.prepare_image_inputs() lowerCamelCase__ : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Any = processor.batch_decode(UpperCamelCase__ ) lowerCamelCase__ : int = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Tuple = self.prepare_image_inputs() lowerCamelCase__ : str = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
129
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class __snake_case ( unittest.TestCase ): def __a ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=__UpperCamelCase , ) assert hasattr(self , 'env' ) def __a ( self , __UpperCamelCase=1 ) -> Optional[int]: '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=__UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCamelCase , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' TrainingJobAnalytics(__UpperCamelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : List[str] = self.create_estimator() # run training estimator.fit() # result dataframe snake_case__ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case__ : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) snake_case__ : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __UpperCamelCase )
143
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __snake_case : __lowerCamelCase = XGLMConfig __lowerCamelCase = {} __lowerCamelCase = """gelu""" def __init__( self , __UpperCamelCase , __UpperCamelCase=14 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=0.0_2 , ) -> str: '''simple docstring''' snake_case__ : Any = parent snake_case__ : Optional[int] = batch_size snake_case__ : List[str] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : Optional[int] = use_input_mask snake_case__ : Any = use_labels snake_case__ : List[str] = vocab_size snake_case__ : List[Any] = d_model snake_case__ : List[str] = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : str = ffn_dim snake_case__ : Optional[Any] = activation_function snake_case__ : str = activation_dropout snake_case__ : int = attention_dropout snake_case__ : List[str] = max_position_embeddings snake_case__ : Optional[int] = initializer_range snake_case__ : List[str] = None snake_case__ : List[str] = 0 snake_case__ : Optional[int] = 2 snake_case__ : Union[str, Any] = 1 def __a ( self ) -> List[str]: '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) snake_case__ : int = None if self.use_input_mask: snake_case__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[Any] = self.get_config() snake_case__ : Optional[int] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __a ( self ) -> Any: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCamelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCamelCase , ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Any = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Tuple = config_and_inputs snake_case__ : Tuple = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () __lowerCamelCase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> str: '''simple docstring''' snake_case__ : Union[str, Any] = TFXGLMModelTester(self ) snake_case__ : Optional[int] = ConfigTester(self , config_class=__UpperCamelCase , n_embd=37 ) def __a ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @slow def __a ( self ) -> Dict: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = TFXGLMModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __a ( self ) -> Any: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __snake_case ( unittest.TestCase ): @slow def __a ( self , __UpperCamelCase=True ) -> int: '''simple docstring''' snake_case__ : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) snake_case__ : Tuple = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case__ : List[str] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on snake_case__ : int = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCamelCase ) @slow def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) snake_case__ : Dict = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) snake_case__ : Any = tokenizer('Today is a nice day and' , return_tensors='tf' ) snake_case__ : Dict = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): snake_case__ : Optional[int] = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase , seed=[7, 0] ) snake_case__ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : str = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : str = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) snake_case__ : Optional[int] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) snake_case__ : Any = 'left' # use different length sentences to test batching snake_case__ : int = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] snake_case__ : Any = tokenizer(__UpperCamelCase , return_tensors='tf' , padding=__UpperCamelCase ) snake_case__ : List[Any] = inputs['input_ids'] snake_case__ : List[str] = model.generate(input_ids=__UpperCamelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) snake_case__ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids snake_case__ : str = model.generate(input_ids=__UpperCamelCase , max_new_tokens=12 ) snake_case__ : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids snake_case__ : Dict = model.generate(input_ids=__UpperCamelCase , max_new_tokens=12 ) snake_case__ : List[Any] = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) snake_case__ : Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : Union[str, Any] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [non_padded_sentence, padded_sentence] )
143
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowercase__ : List[Any] = None lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase__ : Union[str, Any] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } lowercase__ : int = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } lowercase__ : List[Any] = "▁" class a__ ( UpperCamelCase__ ): a : int = VOCAB_FILES_NAMES a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : int = AlbertTokenizer def __init__( self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ) -> Dict: '''simple docstring''' a = ( AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ , normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token ) super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = False if not self.vocab_file else True def lowerCAmelCase_ ( self , A , A = None ) -> List[int]: '''simple docstring''' a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self , A , A = None ) -> List[int]: '''simple docstring''' a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
361
lowercase__ : Optional[int] = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
180
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __snake_case =datasets.load_iris() __snake_case =np.array(data["""data"""]) __snake_case =np.array(data["""target"""]) __snake_case =data["""target_names"""] __snake_case , __snake_case , __snake_case , __snake_case =train_test_split(X, y) def a_ ( lowerCamelCase : str , lowerCamelCase : Tuple ): return np.linalg.norm(np.array(lowerCamelCase ) - np.array(lowerCamelCase ) ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str]=5 ): lowerCAmelCase = zip(lowerCamelCase , lowerCamelCase ) # List of distances of all points from the point to be classified lowerCAmelCase = [] for data_point in data: lowerCAmelCase = euclidean_distance(data_point[0] , lowerCamelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase = Counter(lowerCamelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
4
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" snake_case = '''maskformer-swin''' snake_case = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Any , __UpperCAmelCase : Dict=224 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[Any]=96 , __UpperCAmelCase : Any=[2, 2, 6, 2] , __UpperCAmelCase : List[str]=[3, 6, 12, 24] , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : List[Any]=4.0 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : List[str]=1E-5 , __UpperCAmelCase : str=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : Dict , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = image_size _A = patch_size _A = num_channels _A = embed_dim _A = depths _A = len(__UpperCAmelCase ) _A = num_heads _A = window_size _A = mlp_ratio _A = qkv_bias _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = drop_path_rate _A = hidden_act _A = use_absolute_embeddings _A = layer_norm_eps _A = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) _A = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__UpperCAmelCase ) + 1 )] _A , _A = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
174
'''simple docstring''' from collections import defaultdict from math import gcd def __lowercase ( __lowercase = 150_0000 ) -> int: '''simple docstring''' _A = defaultdict(__lowercase ) _A = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __lowercase , 2 ): if gcd(__lowercase , __lowercase ) > 1: continue _A = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__lowercase , limit + 1 , __lowercase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
174
1
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Union[str, Any] ) -> str: UpperCAmelCase = {} def UpperCAmelCase__ ( self :Any , lowercase_ :List[Any] , lowercase_ :List[str] , lowercase_ :Dict=1 ) -> List[Any]: if self.graph.get(lowercase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCAmelCase = [[w, v]] if not self.graph.get(lowercase_ ): UpperCAmelCase = [] def UpperCAmelCase__ ( self :Any ) -> Optional[int]: return list(self.graph ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[int] , lowercase_ :Optional[Any] ) -> Dict: if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :Tuple=-2 , lowercase_ :List[Any]=-1 ) -> List[Any]: if s == d: return [] UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def UpperCAmelCase__ ( self :List[str] , lowercase_ :int=-1 ) -> Tuple: if c == -1: UpperCAmelCase = floor(random() * 1_00_00 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1 ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Optional[Any]=-2 ) -> Optional[int]: UpperCAmelCase = deque() UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase__ ( self :Any , lowercase_ :Optional[int] ) -> List[Any]: UpperCAmelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase__ ( self :Tuple , lowercase_ :List[str] ) -> List[str]: return len(self.graph[u] ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Any=-2 ) -> int: UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return sorted_nodes def UpperCAmelCase__ ( self :str ) -> str: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> Tuple: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :int=-2 , lowercase_ :List[str]=-1 ) -> Any: UpperCAmelCase = time() self.dfs(lowercase_ , lowercase_ ) UpperCAmelCase = time() return end - begin def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[str]=-2 ) -> str: UpperCAmelCase = time() self.bfs(lowercase_ ) UpperCAmelCase = time() return end - begin class A_ : """simple docstring""" def __init__( self :List[str] ) -> Union[str, Any]: UpperCAmelCase = {} def UpperCAmelCase__ ( self :str , lowercase_ :Dict , lowercase_ :Optional[Any] , lowercase_ :Optional[int]=1 ) -> Dict: # check if the u exists if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCAmelCase = [[w, v]] # add the other way if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCAmelCase = [[w, u]] def UpperCAmelCase__ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :Tuple ) -> Optional[Any]: if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) # the other way round if self.graph.get(lowercase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Optional[int]=-2 , lowercase_ :Optional[int]=-1 ) -> List[str]: if s == d: return [] UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def UpperCAmelCase__ ( self :List[str] , lowercase_ :Optional[int]=-1 ) -> Any: if c == -1: UpperCAmelCase = floor(random() * 1_00_00 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1 ) def UpperCAmelCase__ ( self :Dict , lowercase_ :int=-2 ) -> int: UpperCAmelCase = deque() UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[Any] ) -> str: return len(self.graph[u] ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Any: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def UpperCAmelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: return list(self.graph ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Union[str, Any]=-2 , lowercase_ :List[str]=-1 ) -> str: UpperCAmelCase = time() self.dfs(lowercase_ , lowercase_ ) UpperCAmelCase = time() return end - begin def UpperCAmelCase__ ( self :Any , lowercase_ :int=-2 ) -> str: UpperCAmelCase = time() self.bfs(lowercase_ ) UpperCAmelCase = time() return end - begin
78
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case_ = logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""pixel_values"""] def __init__( self :int , lowercase_ :bool = True , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :bool = True , lowercase_ :Union[int, float] = 1 / 2_55 , lowercase_ :bool = True , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :bool = True , **lowercase_ :Union[str, Any] , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase = size if size is not None else {'height': 3_84, 'width': 3_84} UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase = do_convert_rgb def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :np.ndarray , lowercase_ :Dict[str, int] , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Any , ) -> np.ndarray: UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCAmelCase = (size['height'], size['width']) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :np.ndarray , lowercase_ :Union[int, float] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[int] , ) -> int: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :np.ndarray , lowercase_ :Union[float, List[float]] , lowercase_ :Union[float, List[float]] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[Any] , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :ImageInput , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Dict[str, int]] = None , lowercase_ :PILImageResampling = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[float] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[str, TensorType]] = None , lowercase_ :bool = None , lowercase_ :ChannelDimension = ChannelDimension.FIRST , **lowercase_ :Tuple , ) -> PIL.Image.Image: UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase_ ) return encoded_outputs
78
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' while second != 0: snake_case : int = first & second first ^= second snake_case : Dict = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = int(input("Enter the first number: ").strip()) lowercase__ = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
350
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
83
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =tempfile.mkdtemp() a__ : List[Any] =BlipImageProcessor() a__ : int =BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) a__ : Optional[Any] =BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def _lowercase ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def _lowercase ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a__ : Union[str, Any] =[Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ : List[str] =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) a__ : Union[str, Any] =self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) a__ : Optional[Any] =BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : str =self.get_image_processor() a__ : int =self.get_tokenizer() a__ : Optional[Any] =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict =self.prepare_image_inputs() a__ : List[str] =image_processor(lowerCAmelCase__ , return_tensors="np" ) a__ : Union[str, Any] =processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : int =self.get_image_processor() a__ : int =self.get_tokenizer() a__ : Dict =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict ="lower newer" a__ : Any =processor(text=lowerCAmelCase__ ) a__ : Optional[int] =tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[Any] =self.get_image_processor() a__ : Any =self.get_tokenizer() a__ : Dict =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : List[str] ="lower newer" a__ : List[str] =self.prepare_image_inputs() a__ : Union[str, Any] =processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> int: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : Tuple =self.get_tokenizer() a__ : Optional[Any] =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Optional[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : List[str] =processor.batch_decode(lowerCAmelCase__ ) a__ : Dict =tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : int =self.get_image_processor() a__ : str =self.get_tokenizer() a__ : Union[str, Any] =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Optional[Any] ="lower newer" a__ : int =self.prepare_image_inputs() a__ : Optional[int] =processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
95
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase__ ( lowerCamelCase_ : Any): '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ : Dict = name.replace('''img_encoder.pos_embed''' ,'''vision_model.embeddings.position_embeddings''') if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ : int = name.replace('''img_encoder.patch_embed.proj''' ,'''vision_model.embeddings.patch_embeddings.projection''') if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ : Optional[int] = name.replace('''img_encoder.patch_embed.norm''' ,'''vision_model.embeddings.layernorm''') if "img_encoder.layers" in name: lowerCAmelCase__ : Tuple = name.replace('''img_encoder.layers''' ,'''vision_model.encoder.stages''') if "blocks" in name and "res" not in name: lowerCAmelCase__ : Dict = name.replace('''blocks''' ,'''layers''') if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ : Optional[int] = name.replace('''attn''' ,'''self_attn''') if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''proj''' ,'''out_proj''') if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ : List[Any] = name.replace('''pre_assign_attn.attn.proj''' ,'''pre_assign_attn.attn.out_proj''') if "norm1" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''norm1''' ,'''layer_norm1''') if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ : int = name.replace('''norm2''' ,'''layer_norm2''') if "img_encoder.norm" in name: lowerCAmelCase__ : List[Any] = name.replace('''img_encoder.norm''' ,'''vision_model.layernorm''') # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ : List[Any] = name.replace('''text_encoder.token_embedding''' ,'''text_model.embeddings.token_embedding''') if "text_encoder.positional_embedding" in name: lowerCAmelCase__ : Tuple = name.replace('''text_encoder.positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''') if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''text_encoder.transformer.resblocks.''' ,'''text_model.encoder.layers.''') if "ln_1" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_1''' ,'''layer_norm1''') if "ln_2" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_2''' ,'''layer_norm2''') if "c_fc" in name: lowerCAmelCase__ : Optional[Any] = name.replace('''c_fc''' ,'''fc1''') if "c_proj" in name: lowerCAmelCase__ : List[str] = name.replace('''c_proj''' ,'''fc2''') if "text_encoder" in name: lowerCAmelCase__ : str = name.replace('''text_encoder''' ,'''text_model''') if "ln_final" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_final''' ,'''final_layer_norm''') # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ : Tuple = name.replace('''img_projector.linear_hidden.''' ,'''visual_projection.''') if "img_projector.linear_out." in name: lowerCAmelCase__ : Optional[Any] = name.replace('''img_projector.linear_out.''' ,'''visual_projection.3.''') if "text_projector.linear_hidden" in name: lowerCAmelCase__ : Tuple = name.replace('''text_projector.linear_hidden''' ,'''text_projection''') if "text_projector.linear_out" in name: lowerCAmelCase__ : Dict = name.replace('''text_projector.linear_out''' ,'''text_projection.3''') return name def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : List[str]): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : List[str] = orig_state_dict.pop(lowerCamelCase_) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : Tuple = key.split('''.''') lowerCAmelCase__ , lowerCAmelCase__ : List[str] = int(key_split[2]), int(key_split[4]) lowerCAmelCase__ : Any = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ : Tuple = val[:dim, :] lowerCAmelCase__ : Dict = val[dim : dim * 2, :] lowerCAmelCase__ : List[str] = val[-dim:, :] else: lowerCAmelCase__ : List[Any] = val[:dim] lowerCAmelCase__ : List[str] = val[dim : dim * 2] lowerCAmelCase__ : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : Dict = key.split('''.''') lowerCAmelCase__ : List[str] = int(key_split[3]) lowerCAmelCase__ : Any = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ : Tuple = val[:dim, :] lowerCAmelCase__ : Union[str, Any] = val[ dim : dim * 2, : ] lowerCAmelCase__ : List[Any] = val[-dim:, :] else: lowerCAmelCase__ : Union[str, Any] = val[:dim] lowerCAmelCase__ : List[str] = val[dim : dim * 2] lowerCAmelCase__ : str = val[-dim:] else: lowerCAmelCase__ : int = rename_key(lowerCamelCase_) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ : Dict = val.squeeze_() else: lowerCAmelCase__ : Tuple = val return orig_state_dict def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : str = Image.open(requests.get(lowerCamelCase_ ,stream=lowerCamelCase_).raw) return im @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : int ,lowerCamelCase_ : Tuple="groupvit-gcc-yfcc" ,lowerCamelCase_ : int=False): '''simple docstring''' lowerCAmelCase__ : Dict = GroupViTConfig() lowerCAmelCase__ : Dict = GroupViTModel(lowerCamelCase_).eval() lowerCAmelCase__ : Optional[int] = torch.load(lowerCamelCase_ ,map_location='''cpu''')['''model'''] lowerCAmelCase__ : List[Any] = convert_state_dict(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ , lowerCAmelCase__ : Any = model.load_state_dict(lowerCamelCase_ ,strict=lowerCamelCase_) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase_) == 0) # verify result lowerCAmelCase__ : Optional[Any] = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''') lowerCAmelCase__ : Tuple = prepare_img() lowerCAmelCase__ : Dict = processor(text=['''a photo of a cat''', '''a photo of a dog'''] ,images=lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors='''pt''') with torch.no_grad(): lowerCAmelCase__ : str = model(**lowerCamelCase_) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[13.3523, 6.3629]]) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ : Tuple = torch.tensor([[16.1873, 8.6230]]) else: raise ValueError(f"""Model name {model_name} not supported.""") assert torch.allclose(outputs.logits_per_image ,lowerCamelCase_ ,atol=1E-3) processor.save_pretrained(lowerCamelCase_) model.save_pretrained(lowerCamelCase_) print('''Successfully saved processor and model to''' ,lowerCamelCase_) if push_to_hub: print('''Pushing to the hub...''') processor.push_to_hub(lowerCamelCase_ ,organization='''nielsr''') model.push_to_hub(lowerCamelCase_ ,organization='''nielsr''') if __name__ == "__main__": __snake_case : int =argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) __snake_case : Tuple =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
129
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , a_ ) __A = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __A = dataset_size < in_memory_max_size else: __A = False __A = is_small_dataset(a_ ) assert result == expected
124
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE :int = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Tuple = '''poolformer''' def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]=3 ,SCREAMING_SNAKE_CASE__ : Any=1_6 ,SCREAMING_SNAKE_CASE__ : Tuple=1_6 ,SCREAMING_SNAKE_CASE__ : List[Any]=3 ,SCREAMING_SNAKE_CASE__ : Optional[int]=4.0 ,SCREAMING_SNAKE_CASE__ : int=[2, 2, 6, 2] ,SCREAMING_SNAKE_CASE__ : Dict=[6_4, 1_2_8, 3_2_0, 5_1_2] ,SCREAMING_SNAKE_CASE__ : Tuple=[7, 3, 3, 3] ,SCREAMING_SNAKE_CASE__ : int=[4, 2, 2, 2] ,SCREAMING_SNAKE_CASE__ : int=[2, 1, 1, 1] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=4 ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : str=1E-5 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.02 ,**SCREAMING_SNAKE_CASE__ : Tuple ,): __lowerCamelCase : str = num_channels __lowerCamelCase : Any = patch_size __lowerCamelCase : Optional[int] = stride __lowerCamelCase : List[str] = padding __lowerCamelCase : List[str] = pool_size __lowerCamelCase : str = hidden_sizes __lowerCamelCase : List[Any] = mlp_ratio __lowerCamelCase : Optional[int] = depths __lowerCamelCase : Optional[int] = patch_sizes __lowerCamelCase : Union[str, Any] = strides __lowerCamelCase : Any = num_encoder_blocks __lowerCamelCase : Tuple = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : List[Any] = use_layer_scale __lowerCamelCase : List[str] = layer_scale_init_value __lowerCamelCase : str = initializer_range super().__init__(**SCREAMING_SNAKE_CASE__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[str] = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Dict): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCAmelCase ( self : Optional[Any]): return 2E-3
73
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _SCREAMING_SNAKE_CASE = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _SCREAMING_SNAKE_CASE = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = VOCAB_FILES_NAMES lowerCamelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :Optional[Any] = BertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> List[str]: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A = getattr(lowerCAmelCase_ , normalizer_state.pop("""type""" ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**lowerCAmelCase_ ) _A = do_lower_case def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> List[str]: _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: _A = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
180
0
import math def _a ( a :int ) -> Any: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( a :int = 10_001 ) -> Optional[int]: try: a = int(A__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) a = [] a = 2 while len(A__ ) < nth: if is_prime(A__ ): primes.append(A__ ) num += 1 else: num += 1 return primes[len(A__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
350
def _a ( a :int = 600_851_475_143 ) -> int: try: a = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = 0 @slow def _snake_case (self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowercase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowercase ) , 0 ) def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def _snake_case (self ): __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) # Check that tokenizer_type ≠ model_type __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , config=__lowercase ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _snake_case (self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowercase , '''vocab.txt''' ) ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type='''bert''' , use_fast=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowercase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowercase , '''merges.txt''' ) ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type='''gpt2''' , use_fast=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @require_tokenizers def _snake_case (self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowercase , '''vocab.txt''' ) ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowercase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowercase , '''merges.txt''' ) ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): with pytest.raises(__lowercase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def _snake_case (self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowerCAmelCase = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowercase , __lowercase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowercase ) else: self.assertEqual(tokenizer.do_lower_case , __lowercase ) self.assertEqual(tokenizer.model_max_length , 5_12 ) @require_tokenizers def _snake_case (self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowercase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): __lowerCAmelCase = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def _snake_case (self ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __lowerCAmelCase = TOKENIZER_MAPPING.values() __lowerCAmelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowercase ) @require_tokenizers def _snake_case (self ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowercase ) , __lowercase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowercase ) @require_tokenizers def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowercase ) __lowerCAmelCase = '''Hello, world. How are you?''' __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertEqual('''[UNK]''' , tokens[0] ) __lowerCAmelCase = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowercase ) __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowercase ) , __lowercase ) self.assertEqual(tokenizer.model_max_length , 5_12 ) self.assertEqual(tokenizer.vocab_size , 3_00_00 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): # Check we can load the tokenizer config of an online model. __lowerCAmelCase = get_tokenizer_config('''bert-base-cased''' ) __lowerCAmelCase = config.pop('''_commit_hash''' , __lowercase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowercase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. __lowerCAmelCase = get_tokenizer_config(__lowercase ) self.assertDictEqual(__lowercase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = get_tokenizer_config(__lowercase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def _snake_case (self ): try: AutoConfig.register('''custom''' , __lowercase ) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) __lowerCAmelCase = CustomTokenizer.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _snake_case (self ): try: AutoConfig.register('''custom''' , __lowercase ) # Can register in two steps AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowercase , slow_tokenizer_class=__lowercase , fast_tokenizer_class=__lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = BertTokenizerFast.from_pretrained(__lowercase ) bert_tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = CustomTokenizerFast.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case (self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase ): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): __lowerCAmelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version __lowerCAmelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def _snake_case (self ): class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = False class a__ ( __A ): """simple docstring""" __UpperCamelCase : Union[str, Any] = NewTokenizer __UpperCamelCase : Tuple = False try: AutoConfig.register('''custom''' , __lowercase ) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase ) # If remote code is not set, the default is to use local __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __lowerCAmelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) __lowerCAmelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __lowerCAmelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) __lowerCAmelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowercase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version __lowerCAmelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowercase , use_fast=__lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def _snake_case (self ): with self.assertRaisesRegex( __lowercase , '''bert-base is not a local folder and is not a valid model identifier''' ): __lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base''' ) def _snake_case (self ): with self.assertRaisesRegex( __lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase , revision='''aaaaaa''' ) def _snake_case (self ): # Make sure we have cached the tokenizer. __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
174
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a__ ( __A ): """simple docstring""" __UpperCamelCase : torch.FloatTensor class a__ ( __A , __A ): """simple docstring""" @register_to_config def __init__(self , __lowercase = 3 , __lowercase = 3 , __lowercase = ("DownEncoderBlock2D",) , __lowercase = ("UpDecoderBlock2D",) , __lowercase = (64,) , __lowercase = 1 , __lowercase = "silu" , __lowercase = 3 , __lowercase = 32 , __lowercase = 2_56 , __lowercase = 32 , __lowercase = None , __lowercase = 0.1_8_2_1_5 , __lowercase = "group" , ): super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=__lowercase , out_channels=__lowercase , down_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , double_z=__lowercase , ) __lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = VectorQuantizer(__lowercase , __lowercase , beta=0.2_5 , remap=__lowercase , sane_index_shape=__lowercase ) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=__lowercase , out_channels=__lowercase , up_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , norm_type=__lowercase , ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = self.encoder(__lowercase ) __lowerCAmelCase = self.quant_conv(__lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowercase ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = False , __lowercase = True ): # also go through quantization layer if not force_not_quantize: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.quantize(__lowercase ) else: __lowerCAmelCase = h __lowerCAmelCase = self.post_quant_conv(__lowercase ) __lowerCAmelCase = self.decoder(__lowercase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = sample __lowerCAmelCase = self.encode(__lowercase ).latents __lowerCAmelCase = self.decode(__lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase )
174
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[Any] = """sew-d""" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase : List[str] =hidden_size UpperCAmelCase : Any =feat_extract_norm UpperCAmelCase : Any =feat_extract_activation UpperCAmelCase : int =list(snake_case__ ) UpperCAmelCase : Union[str, Any] =list(snake_case__ ) UpperCAmelCase : Optional[Any] =list(snake_case__ ) UpperCAmelCase : Dict =conv_bias UpperCAmelCase : Any =num_conv_pos_embeddings UpperCAmelCase : List[Any] =num_conv_pos_embedding_groups UpperCAmelCase : int =len(self.conv_dim ) UpperCAmelCase : Optional[Any] =num_hidden_layers UpperCAmelCase : Tuple =intermediate_size UpperCAmelCase : Optional[Any] =squeeze_factor UpperCAmelCase : List[Any] =max_position_embeddings UpperCAmelCase : Tuple =position_buckets UpperCAmelCase : Optional[int] =share_att_key UpperCAmelCase : Optional[Any] =relative_attention UpperCAmelCase : Optional[Any] =norm_rel_ebd UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : str =hidden_act UpperCAmelCase : str =num_attention_heads UpperCAmelCase : str =hidden_dropout UpperCAmelCase : str =attention_dropout UpperCAmelCase : int =activation_dropout UpperCAmelCase : Optional[int] =feat_proj_dropout UpperCAmelCase : List[Any] =final_dropout UpperCAmelCase : int =layer_norm_eps UpperCAmelCase : List[Any] =feature_layer_norm_eps UpperCAmelCase : Any =initializer_range UpperCAmelCase : Dict =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : List[str] =apply_spec_augment UpperCAmelCase : Tuple =mask_time_prob UpperCAmelCase : List[str] =mask_time_length UpperCAmelCase : int =mask_time_min_masks UpperCAmelCase : int =mask_feature_prob UpperCAmelCase : Tuple =mask_feature_length UpperCAmelCase : str =mask_feature_min_masks # ctc loss UpperCAmelCase : int =ctc_loss_reduction UpperCAmelCase : str =ctc_zero_infinity # sequence classification UpperCAmelCase : Optional[int] =use_weighted_layer_sum UpperCAmelCase : Optional[Any] =classifier_proj_size @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
351
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __snake_case = threading.Lock() __snake_case = None __snake_case = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } __snake_case = logging.WARNING __snake_case = True def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =os.getenv('''TRANSFORMERS_VERBOSITY''' , __lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowerCAmelCase_ ( )-> str: '''simple docstring''' return __name__.split('''.''' )[0] def lowerCAmelCase_ ( )-> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase : Union[str, Any] =logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase : str =sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase : List[Any] =_get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase : Optional[int] =False def lowerCAmelCase_ ( )-> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return UpperCAmelCase : str =_get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase : Optional[Any] =None def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return log_levels def lowerCAmelCase_ ( __lowerCAmelCase = None )-> logging.Logger: '''simple docstring''' if name is None: UpperCAmelCase : int =_get_library_name() _configure_library_root_logger() return logging.getLogger(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Any: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() UpperCAmelCase : int =False def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() UpperCAmelCase : Tuple =True def lowerCAmelCase_ ( )-> None: '''simple docstring''' UpperCAmelCase : List[Any] =_get_library_root_logger().handlers for handler in handlers: UpperCAmelCase : str =logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' UpperCAmelCase : int =_get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__lowerCAmelCase ) def lowerCAmelCase_ ( self , *__lowerCAmelCase , **__lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , __lowerCAmelCase ) if no_advisory_warnings: return self.warning(*__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = warning_advice @functools.lru_cache(__lowerCAmelCase ) def lowerCAmelCase_ ( self , *__lowerCAmelCase , **__lowerCAmelCase )-> Optional[int]: '''simple docstring''' self.warning(*__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = warning_once class __snake_case : def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: # pylint: disable=unused-argument '''simple docstring''' UpperCAmelCase : Any =args[0] if args else None def __iter__( self ) -> List[Any]: '''simple docstring''' return iter(self._iterator ) def __getattr__( self , snake_case__ ) -> str: '''simple docstring''' def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> int: '''simple docstring''' return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' return class __snake_case : def __call__( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __snake_case = _tqdm_cls() def lowerCAmelCase_ ( )-> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' global _tqdm_active UpperCAmelCase : Dict =True hf_hub_utils.enable_progress_bars() def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' global _tqdm_active UpperCAmelCase : List[str] =False hf_hub_utils.disable_progress_bars()
78
0
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase , UpperCAmelCase : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = controlnet_params UpperCAmelCase : int = """bird""" UpperCAmelCase : Tuple = jax.device_count() UpperCAmelCase : Optional[int] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) UpperCAmelCase : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCAmelCase : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : str = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCAmelCase : int = replicate(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCAmelCase : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase : Optional[Any] = images[0, 253:256, 253:256, -1] UpperCAmelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase : Union[str, Any] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase , UpperCAmelCase : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase : int = controlnet_params UpperCAmelCase : List[Any] = """Chef in the kitchen""" UpperCAmelCase : Dict = jax.device_count() UpperCAmelCase : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) UpperCAmelCase : List[str] = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCAmelCase : Tuple = replicate(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCAmelCase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase : int = images[0, 253:256, 253:256, -1] UpperCAmelCase : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase : Any = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
109
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy snake_case_ : Dict = logging.get_logger(__name__) class lowercase__ ( lowercase ): def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : float ,**lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : List[Any] = feature_size _UpperCamelCase : Any = sampling_rate _UpperCamelCase : Optional[Any] = padding_value _UpperCamelCase : Union[str, Any] = kwargs.pop('padding_side' ,'right' ) _UpperCamelCase : Dict = kwargs.pop('return_attention_mask' ,lowerCamelCase__ ) super().__init__(**lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] ,lowerCamelCase__ : Union[bool, str, PaddingStrategy] = True ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,): '''simple docstring''' # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowerCamelCase__ ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): _UpperCamelCase : int = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F' to this method that includes {self.model_input_names[0]}, but you provided' F' {list(processed_features.keys() )}' ) _UpperCamelCase : List[Any] = processed_features[self.model_input_names[0]] _UpperCamelCase : Dict = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase__ ) == 0: if return_attention_mask: _UpperCamelCase : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _UpperCamelCase : List[str] = required_input[0] if isinstance(lowerCamelCase__ ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _UpperCamelCase : List[str] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase__ ): _UpperCamelCase : Dict = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase__ ): _UpperCamelCase : Any = 'tf' elif is_torch_tensor(lowerCamelCase__ ): _UpperCamelCase : Optional[int] = 'pt' elif isinstance(lowerCamelCase__ ,(int, float, list, tuple, np.ndarray) ): _UpperCamelCase : int = 'np' else: raise ValueError( F'type of {first_element} unknown: {type(lowerCamelCase__ )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): _UpperCamelCase : Any = to_numpy(lowerCamelCase__ ) else: _UpperCamelCase : Any = [to_numpy(lowerCamelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy _UpperCamelCase : Optional[int] = self._get_padding_strategies(padding=lowerCamelCase__ ,max_length=lowerCamelCase__ ) _UpperCamelCase : str = processed_features[self.model_input_names[0]] _UpperCamelCase : List[str] = len(lowerCamelCase__ ) if not all(len(lowerCamelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _UpperCamelCase : List[str] = [] for i in range(lowerCamelCase__ ): _UpperCamelCase : List[str] = {k: v[i] for k, v in processed_features.items()} # truncation _UpperCamelCase : List[str] = self._truncate( lowerCamelCase__ ,max_length=lowerCamelCase__ ,pad_to_multiple_of=lowerCamelCase__ ,truncation=lowerCamelCase__ ,) truncated_inputs.append(lowerCamelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _UpperCamelCase : Union[str, Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _UpperCamelCase : Any = PaddingStrategy.MAX_LENGTH _UpperCamelCase : Optional[Any] = {} for i in range(lowerCamelCase__ ): # padding _UpperCamelCase : Any = self._pad( truncated_inputs[i] ,max_length=lowerCamelCase__ ,padding_strategy=lowerCamelCase__ ,pad_to_multiple_of=lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,) for key, value in outputs.items(): if key not in batch_outputs: _UpperCamelCase : Dict = [] if value.dtype is np.dtype(np.floataa ): _UpperCamelCase : Any = value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase__ ) return BatchFeature(lowerCamelCase__ ,tensor_type=lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[bool] = None ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _UpperCamelCase : Optional[Any] = len(lowerCamelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCamelCase : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCamelCase : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _UpperCamelCase : Tuple = np.ones(len(lowerCamelCase__ ) ,dtype=np.intaa ) if needs_to_be_padded: _UpperCamelCase : Dict = max_length - len(lowerCamelCase__ ) if self.padding_side == "right": if return_attention_mask: _UpperCamelCase : Optional[int] = np.pad( processed_features['attention_mask'] ,(0, difference) ) _UpperCamelCase : Union[str, Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _UpperCamelCase : List[Any] = np.pad( lowerCamelCase__ ,lowerCamelCase__ ,'constant' ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _UpperCamelCase : List[Any] = np.pad( processed_features['attention_mask'] ,(difference, 0) ) _UpperCamelCase : List[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _UpperCamelCase : List[str] = np.pad( lowerCamelCase__ ,lowerCamelCase__ ,'constant' ,constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[bool] = None ,): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _UpperCamelCase : int = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCamelCase : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCamelCase : Optional[int] = len(lowerCamelCase__ ) > max_length if needs_to_be_truncated: _UpperCamelCase : Dict = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _UpperCamelCase : Optional[Any] = processed_features['attention_mask'][:max_length] return processed_features def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : int=False ,lowerCamelCase__ : Optional[Any]=None ): '''simple docstring''' # Get padding strategy if padding is not False: if padding is True: _UpperCamelCase : Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : Tuple = PaddingStrategy(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = padding else: _UpperCamelCase : List[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
83
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = 'funnel' UpperCAmelCase__ : Optional[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self: str , UpperCamelCase_: Optional[Any]=3_05_22 , UpperCamelCase_: Optional[Any]=[4, 4, 4] , UpperCamelCase_: List[str]=None , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Optional[Any]=7_68 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: Optional[Any]=64 , UpperCamelCase_: Any=30_72 , UpperCamelCase_: Optional[Any]="gelu_new" , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Dict=None , UpperCamelCase_: Optional[int]=1E-9 , UpperCamelCase_: Optional[Any]="mean" , UpperCamelCase_: Any="relative_shift" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=True , UpperCamelCase_: Union[str, Any]=True , **UpperCamelCase_: List[str] , ): __lowerCamelCase = vocab_size __lowerCamelCase = block_sizes __lowerCamelCase = [1] * len(UpperCamelCase_ ) if block_repeats is None else block_repeats assert len(UpperCamelCase_ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __lowerCamelCase = num_decoder_layers __lowerCamelCase = d_model __lowerCamelCase = n_head __lowerCamelCase = d_head __lowerCamelCase = d_inner __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = initializer_range __lowerCamelCase = initializer_std __lowerCamelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' __lowerCamelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' __lowerCamelCase = attention_type __lowerCamelCase = separate_cls __lowerCamelCase = truncate_seq __lowerCamelCase = pool_q_only super().__init__(**UpperCamelCase_ ) @property def lowerCAmelCase__ ( self: Tuple ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase__ ( self: str , UpperCamelCase_: Optional[Any] ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def lowerCAmelCase__ ( self: Optional[int] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Tuple ): raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
357
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase : Dict = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=None ) -> List[str]: snake_case : Optional[Any] = True while ask_again: snake_case : int = input(lowercase ) try: if default is not None and len(lowercase ) == 0: return default return convert_value(lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=[] ,lowercase=None ,lowercase=0 ) -> Optional[Any]: snake_case : Dict = BulletMenu(lowercase ,lowercase ) snake_case : Any = menu.run(default_choice=lowercase ) return convert_value(lowercase ) if convert_value is not None else result def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : Optional[int] = int(lowercase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : Dict = int(lowercase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: snake_case : Optional[int] = int(lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: snake_case : Any = int(lowercase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: snake_case : Tuple = int(lowercase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: return {"yes": True, "no": False}[value.lower()] class __lowercase (argparse.RawDescriptionHelpFormatter ): """simple docstring""" def UpperCAmelCase ( self , A , A , A , A ) -> Any: snake_case : List[Any] = super()._format_usage(A , A , A , A ) snake_case : Dict = usage.replace("""<command> [<args>] """ , """""" ) return usage
124
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : int = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Optional[int] = len(lowercase ) snake_case : str = matrix_length // 2 snake_case : int = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : str = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[Any] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : str = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case , snake_case , snake_case , snake_case : Optional[Any] = split_matrix(lowercase ) snake_case , snake_case , snake_case , snake_case : Any = split_matrix(lowercase ) snake_case : List[Any] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[str] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Tuple = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : str = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : int = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : List[str] = matrix_addition(lowercase ,lowercase ) snake_case : Any = matrix_addition(lowercase ,lowercase ) snake_case : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : Optional[Any] = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Optional[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : str = matrix_dimensions(lowercase ) snake_case : Optional[Any] = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Optional[Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : Any = matrixa snake_case : Optional[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : Optional[int] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : int = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
124
1
from collections import defaultdict def _A (__a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : str = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase__ ) if ret % 2 == 0: cuts.append(lowerCAmelCase__ ) return ret def _A () -> Optional[int]: """simple docstring""" dfs(1 ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = 10, 9 UpperCAmelCase_ : Union[str, Any] = defaultdict(list) UpperCAmelCase_ : dict[int, bool] = {} UpperCAmelCase_ : list[int] = [] UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
360
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def _A (__a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _A (__a ) -> np.ndarray: """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def _A (__a , __a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_ : Union[str, Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
318
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : List[Any] = 16 __lowerCAmelCase : Any = 32 def a__ ( A_, A_, A_, A_, A_ = 16 ): '''simple docstring''' __magic_name__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __magic_name__ = DatasetDict( { """train""": dataset["""train"""].select(A_ ), """validation""": dataset["""train"""].select(A_ ), """test""": dataset["""validation"""], } ) def tokenize_function(A_ ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=A_, max_length=A_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ = datasets.map( A_, batched=A_, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(A_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ = 16 elif accelerator.mixed_precision != "no": __magic_name__ = 8 else: __magic_name__ = None return tokenizer.pad( A_, padding="""longest""", max_length=A_, pad_to_multiple_of=A_, return_tensors="""pt""", ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets["""train"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) __magic_name__ = DataLoader( tokenized_datasets["""validation"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) __magic_name__ = DataLoader( tokenized_datasets["""test"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = [] # Download the dataset __magic_name__ = load_dataset("""glue""", """mrpc""" ) # Create our splits __magic_name__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __magic_name__ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config["""lr"""] __magic_name__ = int(config["""num_epochs"""] ) __magic_name__ = int(config["""seed"""] ) __magic_name__ = int(config["""batch_size"""] ) __magic_name__ = evaluate.load("""glue""", """mrpc""" ) # If the batch size is too big we use gradient accumulation __magic_name__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ = MAX_GPU_BATCH_SIZE set_seed(A_ ) # New Code # # Create our folds: __magic_name__ = kfold.split(np.zeros(datasets["""train"""].num_rows ), datasets["""train"""]["""label"""] ) __magic_name__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A_ ): __magic_name__ , __magic_name__ , __magic_name__ = get_fold_dataloaders( A_, A_, A_, A_, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=A_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ = AdamW(params=model.parameters(), lr=A_ ) # Instantiate scheduler __magic_name__ = get_linear_schedule_with_warmup( optimizer=A_, num_warmup_steps=100, num_training_steps=(len(A_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( A_, A_, A_, A_, A_ ) # Now we train the model for epoch in range(A_ ): model.train() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ = model(**A_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(A_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=A_, references=A_, ) __magic_name__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''', A_ ) # New Code # # We also run predictions on the test set at the very end __magic_name__ = [] for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A_, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __magic_name__ = torch.cat(A_, dim=0 ) __magic_name__ = torch.stack(A_, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __magic_name__ = metric.compute(predictions=A_, references=A_ ) accelerator.print("""Average test metrics from all folds:""", A_ ) def a__ ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=A_, default=A_, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""", type=A_, default=3, help="""The number of splits to perform across the dataset""" ) __magic_name__ = parser.parse_args() __magic_name__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(A_, A_ ) if __name__ == "__main__": main()
88
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = 1 @register_to_config def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]: _A : Dict = None _A : List[Any] = None _A : Dict = None def a__ ( self , _a , _a = None ) -> Union[str, Any]: _A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def a__ ( self , _a , _a , _a , _a=None ) -> Dict: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _A : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _A : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): _A : List[Any] = std.unsqueeze(-1 ) _A : int = -score / std # compute _A : Tuple = -1.0 / len(self.timesteps ) _A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _A : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _A : Union[str, Any] = beta_t.unsqueeze(-1 ) _A : Tuple = -0.5 * beta_t * x _A : Tuple = torch.sqrt(_a ) _A : Dict = drift - diffusion**2 * score _A : Dict = x + drift * dt # add noise _A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _A : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
26
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCAmelCase_ : Tuple = flax_key_tuple[:-1] + ('weight',) UpperCAmelCase_ : List[Any] = torch.permute(lowerCamelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCamelCase_ ): # linear layer UpperCAmelCase_ : Optional[int] = flax_key_tuple[:-1] + ('weight',) UpperCAmelCase_ : Dict = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase_ : int = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] ): """simple docstring""" if "metadata" in layer: UpperCAmelCase_ : List[str] = layer.split('metadata' ) UpperCAmelCase_ : List[Any] = ''.join(split_layer[0] )[:-1] UpperCAmelCase_ : Tuple = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: UpperCAmelCase_ : Dict = layer.split('kvstore' ) UpperCAmelCase_ : List[Any] = ''.join(split_layer[0] )[:-1] UpperCAmelCase_ : Dict = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: UpperCAmelCase_ : List[str] = layer.split('/' ) UpperCAmelCase_ : List[Any] = '/'.join(split_layer[:-1] ) UpperCAmelCase_ : Any = (split_layer[-1],) if "kvstore/path" in layer: UpperCAmelCase_ : Union[str, Any] = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: UpperCAmelCase_ : List[str] = 'file' else: UpperCAmelCase_ : Optional[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCAmelCase_ : Dict = rename_keys(lowerCamelCase_ ) UpperCAmelCase_ : str = {} for k, v in current_block.items(): UpperCAmelCase_ : Optional[Any] = v UpperCAmelCase_ : Any = new_current_block torch.save(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCamelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : str = WEIGHTS_NAME ): """simple docstring""" UpperCAmelCase_ : Tuple = convert_file_size_to_int(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Union[str, Any] = 0 os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: UpperCAmelCase_ : str = serialization.msgpack_restore(fp.read() )['optimizer']['target'] UpperCAmelCase_ : Union[str, Any] = flatten_dict(lowerCamelCase_ , sep='/' ) UpperCAmelCase_ : Union[str, Any] = {} for layer in checkpoint_info.keys(): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = get_key_and_tensorstore_dict( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if curr_real_layer_name in all_layers: UpperCAmelCase_ : Optional[int] = content else: UpperCAmelCase_ : Optional[int] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCAmelCase_ : int = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCAmelCase_ : Any = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCAmelCase_ , UpperCAmelCase_ : Tuple = rename_base_flax_keys(tuple(key.split('/' ) ) , lowerCamelCase_ ) UpperCAmelCase_ : str = '/'.join(lowerCamelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCAmelCase_ : Dict = os.path.join( lowerCamelCase_ , weights_name.replace('.bin' , F'''-{len(lowerCamelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCAmelCase_ : str = {} UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Union[str, Any] = raw_weights.to(getattr(lowerCamelCase_ , lowerCamelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ , weights_name.replace('.bin' , F'''-{len(lowerCamelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCamelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCAmelCase_ : Any = {} UpperCAmelCase_ : List[Any] = {} for idx, shard in enumerate(lowerCamelCase_ ): UpperCAmelCase_ : Dict = weights_name.replace( '.bin' , F'''-{idx+1:05d}-of-{len(lowerCamelCase_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCAmelCase_ : Dict = shard for key in shard: UpperCAmelCase_ : Dict = shard_file # Add the metadata UpperCAmelCase_ : Optional[Any] = {'total_size': total_size} UpperCAmelCase_ : List[str] = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , 'w' , encoding='utf-8' ) as f: UpperCAmelCase_ : int = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '\n' f.write(lowerCamelCase_ ) return metadata, index if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : Any = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _lowerCamelCase ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCAmelCase_ : Optional[Any] = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) UpperCAmelCase_ : str = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) UpperCAmelCase_ : Dict = TaTokenizer.from_pretrained('t5-small' ) UpperCAmelCase_ : Optional[Any] = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' UpperCAmelCase_ : int = tokenizer(lowerCamelCase_ , return_tensors='pt' ).input_ids UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
1
from sklearn.metrics import fa_score import datasets UpperCAmelCase_ = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' UpperCAmelCase_ = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' UpperCAmelCase_ = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ), reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''], ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None, __magic_name__=1, __magic_name__="binary", __magic_name__=None ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Dict = fa_score( lowercase_, lowercase_, labels=lowercase_, pos_label=lowercase_, average=lowercase_, sample_weight=lowercase_ ) return {"f1": float(lowercase_ ) if score.size == 1 else score}
201
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) snake_case_ = logging.getLogger(__name__) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = git.Repo(search_parent_directories=lowercase_ ) UpperCAmelCase = { 'repo_id': str(lowercase_ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(lowercase_ , 'git_log.json' ) , 'w' ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def _lowerCAmelCase ( lowercase_ ): if params.n_gpu <= 0: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = True UpperCAmelCase = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase = int(os.environ['WORLD_SIZE'] ) UpperCAmelCase = int(os.environ['N_GPU_NODE'] ) UpperCAmelCase = int(os.environ['RANK'] ) # number of nodes / node ID UpperCAmelCase = params.world_size // params.n_gpu_per_node UpperCAmelCase = params.global_rank // params.n_gpu_per_node UpperCAmelCase = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase = 1 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase = params.node_id == 0 and params.local_rank == 0 UpperCAmelCase = params.n_nodes > 1 # summary UpperCAmelCase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _lowerCAmelCase ( lowercase_ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
78
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device A = False class __lowercase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): __a : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = '''A painting of a squirrel eating a burger ''' __a : Union[str, Any] = torch.manual_seed(0 ) __a : List[Any] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) __a : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = generator.manual_seed(0 ) __a : Any = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowerCamelCase ( self ): __a : Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = '''A painting of a squirrel eating a burger ''' __a : Tuple = torch.manual_seed(0 ) __a : int = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __a : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a : Optional[int] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
188
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A = TypeVar('''T''') class __lowercase ( Generic[T] ): '''simple docstring''' __lowerCAmelCase = 42 # Cache store of keys __lowerCAmelCase = 42 # References of the keys in cache __lowerCAmelCase = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ): __a : Optional[int] = deque() __a : Dict = set() if not n: __a : List[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __a : str = n def _lowerCamelCase ( self , _UpperCAmelCase ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __a : int = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _lowerCamelCase ( self ): for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ): return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() A = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
188
1
import qiskit def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" lowerCamelCase__ : Any = qiskit.Aer.get_backend('''aer_simulator''' ) lowerCamelCase__ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCamelCase__ : Optional[int] = qiskit.execute(__snake_case , __snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__snake_case ) if __name__ == "__main__": _A : Union[str, Any] = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
142
__UpperCAmelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" A_ : Tuple = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: A_ : Tuple = F"{olid} is not a valid Open Library olid" raise ValueError(a_ ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" A_ : Optional[Any] = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } A_ : int = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A_ : Union[str, Any] = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] A_ : Optional[int] = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(a_ , a_ ): A_ : Optional[Any] = """, """.join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCamelCase__ : Optional[int] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(f'\nSearching Open Library for ISBN: {isbn}...\n') try: UpperCamelCase__ : Union[str, Any] = summarize_book(get_openlibrary_data(f'isbn/{isbn}')) print('\n'.join(f'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'Sorry, there are no results for ISBN: {isbn}.')
164
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
164
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase__ ( snake_case_ : dict ) -> tuple: return (data["data"], data["target"]) def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> np.ndarray: __snake_case = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(snake_case_ , snake_case_ ) # Predict target for test data __snake_case = xgb.predict(snake_case_ ) __snake_case = predictions.reshape(len(snake_case_ ) , 1 ) return predictions def lowerCamelCase__ ( ) -> None: __snake_case = fetch_california_housing() __snake_case , __snake_case = data_handling(snake_case_ ) __snake_case , __snake_case , __snake_case , __snake_case = train_test_split( snake_case_ , snake_case_ , test_size=0.25 , random_state=1 ) __snake_case = xgboost(snake_case_ , snake_case_ , snake_case_ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(snake_case_ , snake_case_ )}""" ) print(f"""Mean Square Error : {mean_squared_error(snake_case_ , snake_case_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
24
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="new-model" if is_tf_available(): class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =NewModelConfig @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = '''bert-base-cased''' SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = '''bert-base-cased''' SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _UpperCamelCase ( self ) -> str: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModelForCausalLM.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _UpperCamelCase ( self ) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _UpperCamelCase ( self ) -> Optional[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModelForMaskedLM.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _UpperCamelCase ( self ) -> List[str]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _UpperCamelCase ( self ) -> Union[str, Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _UpperCamelCase ( self ) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def _UpperCamelCase ( self ) -> str: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14410 ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14410 ) def _UpperCamelCase ( self ) -> Union[str, Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE_ = ['''FunnelBaseModel'''] SCREAMING_SNAKE_CASE_ = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Optional[int]: try: AutoConfig.register('''new-model''' , _A ) SCREAMING_SNAKE_CASE_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE_ = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE_ = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _UpperCamelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained('''bert-base''' ) def _UpperCamelCase ( self ) -> Tuple: with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def _UpperCamelCase ( self ) -> List[Any]: with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def _UpperCamelCase ( self ) -> Tuple: # Make sure we have cached the model. SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE_ = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
257
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __UpperCAmelCase = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" __UpperCAmelCase = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" __UpperCAmelCase = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCamelCase ( self , _A , _A , _A=4 , _A=False ) -> List[str]: SCREAMING_SNAKE_CASE_ = compute_bleu( reference_corpus=_A , translation_corpus=_A , max_order=_A , smooth=_A ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
257
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py A : List[Any] = '''.''' if __name__ == "__main__": A : Optional[Any] = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') A : Dict = [] A : Dict = [] with open(doctest_file_path) as fp: for line in fp: A : Dict = line.strip() A : Optional[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: A : Dict = '''\n'''.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
274
from math import ceil def __lowerCamelCase ( __a :int = 1_0_0_1 ) -> int: """simple docstring""" A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
274
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCamelCase_ = _symbol_database.Default() UpperCamelCase_ = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) UpperCamelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCamelCase_ = None UpperCamelCase_ = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCamelCase_ = 4_5 UpperCamelCase_ = 1_5_8_1 UpperCamelCase_ = 1_5_1_7 UpperCamelCase_ = 1_5_7_0 UpperCamelCase_ = 1_5_8_4 UpperCamelCase_ = 1_7_9_3 UpperCamelCase_ = 1_7_9_5 UpperCamelCase_ = 1_9_1_6 UpperCamelCase_ = 1_8_6_4 UpperCamelCase_ = 1_9_0_5 UpperCamelCase_ = 1_9_1_9 UpperCamelCase_ = 2_4_2_9 UpperCamelCase_ = 2_2_0_8 UpperCamelCase_ = 2_4_1_8 UpperCamelCase_ = 2_3_2_3 UpperCamelCase_ = 2_4_0_7 # @@protoc_insertion_point(module_scope)
350
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase_ = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
246
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = torch.device('''cpu''') def UpperCAmelCase__ ( ): '''simple docstring''' a__ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ =Image.open(requests.get(_A , stream=_A ).raw ) return im def UpperCAmelCase__ ( _A : Optional[int] ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def UpperCAmelCase__ ( _A : List[str] , _A : Union[str, Any] , _A : str ): '''simple docstring''' a__ =dct.pop(_A ) a__ =val def UpperCAmelCase__ ( _A : Any ): '''simple docstring''' a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: a__ =k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: a__ =k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: a__ =k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a__ =k_new.split('''.''' ) if ls[2].isdigit(): a__ ='''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a__ =k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCAmelCase__ ( _A : int , _A : Union[str, Any] , _A : int ): '''simple docstring''' a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =10_00 a__ ='''huggingface/label-files''' a__ ='''imagenet-1k-id2label.json''' a__ =json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) a__ ={int(_A ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a__ =torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' , check_hash=_A ) else: a__ =torch.load(_A , map_location='''cpu''' ) a__ =checkpoint a__ =create_rename_keys(_A ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_A , _A , _A ) # load HuggingFace model a__ =SwiftFormerForImageClassification(_A ).eval() hf_model.load_state_dict(_A ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a__ =processor(images=_A , return_tensors='''pt''' ) # compare outputs from both models a__ =get_expected_output(_A ) a__ =hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , _A , atol=1E-3 ) Path(_A ).mkdir(exist_ok=_A ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_A ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') lowerCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
188
import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_ ) -> List[str]: """simple docstring""" a__ =data a__ =[0X67452301, 0Xefcdab89, 0X98badcfe, 0X10325476, 0Xc3d2e1f0] @staticmethod def _UpperCAmelCase ( lowercase_, lowercase_ ) -> Union[str, Any]: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0Xffffffff def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) a__ =self.data + padding + struct.pack('''>Q''', 8 * len(self.data ) ) return padded_data def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 ) ] def _UpperCAmelCase ( self, lowercase_ ) -> List[Any]: """simple docstring""" a__ =list(struct.unpack('''>16L''', lowercase_ ) ) + [0] * 64 for i in range(16, 80 ): a__ =self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 ) return w def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.padding() a__ =self.split_blocks() for block in self.blocks: a__ =self.expand_block(lowercase_ ) a__, a__, a__, a__, a__ =self.h for i in range(0, 80 ): if 0 <= i < 20: a__ =(b & c) | ((~b) & d) a__ =0X5a827999 elif 20 <= i < 40: a__ =b ^ c ^ d a__ =0X6ed9eba1 elif 40 <= i < 60: a__ =(b & c) | (b & d) | (c & d) a__ =0X8f1bbcdc elif 60 <= i < 80: a__ =b ^ c ^ d a__ =0Xca62c1d6 a__, a__, a__, a__, a__ =( self.rotate(lowercase_, 5 ) + f + e + k + expanded_block[i] & 0Xffffffff, a, self.rotate(lowercase_, 30 ), c, d, ) a__ =( self.h[0] + a & 0Xffffffff, self.h[1] + b & 0Xffffffff, self.h[2] + c & 0Xffffffff, self.h[3] + d & 0Xffffffff, self.h[4] + e & 0Xffffffff, ) return ("{:08x}" * 5).format(*self.h ) def UpperCAmelCase__ ( ): '''simple docstring''' a__ =b'''Test String''' assert SHAaHash(_A ).final_hash() == hashlib.shaa(_A ).hexdigest() # noqa: S324 def UpperCAmelCase__ ( ): '''simple docstring''' a__ =argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) a__ =parser.parse_args() a__ =args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: a__ =f.read() else: a__ =bytes(_A , '''utf-8''' ) print(SHAaHash(_A ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
188
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=8 ) -> str: A: Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A: Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=5_1_2 , __lowercase=5_1_2 ) -> str: A: List[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) A: List[str] = np.array(pil_image.convert('''RGB''' ) ) A: Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 A: List[Any] = np.transpose(__lowercase , [2, 0, 1] ) A: Optional[Any] = torch.from_numpy(__lowercase ).unsqueeze(0 ) return image class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : UNetaDConditionModel , SCREAMING_SNAKE_CASE_ : DDPMScheduler , SCREAMING_SNAKE_CASE_ : VQModel , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , movq=SCREAMING_SNAKE_CASE_ , ) A: str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict: '''simple docstring''' A: int = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) A: Tuple = max(num_inference_steps - init_timestep , 0 ) A: str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int=None ) -> Union[str, Any]: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(SCREAMING_SNAKE_CASE_ )}""" ) A: Dict = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) A: int = batch_size * num_images_per_prompt if image.shape[1] == 4: A: Any = image else: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A: List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE_ ) ] A: Tuple = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) else: A: Dict = self.movq.encode(SCREAMING_SNAKE_CASE_ ).latent_dist.sample(SCREAMING_SNAKE_CASE_ ) A: str = self.movq.config.scaling_factor * init_latents A: Dict = torch.cat([init_latents] , dim=0 ) A: List[str] = init_latents.shape A: Optional[int] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents A: Dict = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = init_latents return latents def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) A: int = torch.device(f"""cuda:{gpu_id}""" ) A: int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 ) -> str: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) A: Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=SCREAMING_SNAKE_CASE_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A: Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: A , A: Any = cpu_offload_with_hook(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prev_module_hook=SCREAMING_SNAKE_CASE_ ) # We'll offload the last model manually. A: Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , SCREAMING_SNAKE_CASE_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE_ : int = 5_12 , SCREAMING_SNAKE_CASE_ : int = 5_12 , SCREAMING_SNAKE_CASE_ : int = 1_00 , SCREAMING_SNAKE_CASE_ : float = 4.0 , SCREAMING_SNAKE_CASE_ : float = 0.3 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Tuple: '''simple docstring''' A: Union[str, Any] = self._execution_device A: Tuple = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A: str = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) A: str = image_embeds.shape[0] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A: str = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) if do_classifier_free_guidance: A: List[Any] = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) A: Tuple = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) A: Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A: Tuple = [image] if not all(isinstance(SCREAMING_SNAKE_CASE_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(SCREAMING_SNAKE_CASE_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) A: Tuple = torch.cat([prepare_image(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i in image] , dim=0 ) A: List[Any] = image.to(dtype=image_embeds.dtype , device=SCREAMING_SNAKE_CASE_ ) A: Tuple = self.movq.encode(SCREAMING_SNAKE_CASE_ )['''latents'''] A: Any = latents.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) A , A: Dict = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) A , A: Optional[int] = downscale_height_and_width(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.movq_scale_factor ) A: Optional[int] = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , image_embeds.dtype , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance A: List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A: Any = {'''image_embeds''': image_embeds} A: List[str] = self.unet( sample=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , added_cond_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] if do_classifier_free_guidance: A , A: str = noise_pred.split(latents.shape[1] , dim=1 ) A , A: Optional[Any] = noise_pred.chunk(2 ) A , A: List[Any] = variance_pred.chunk(2 ) A: Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A: List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A , A: int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A: Tuple = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )[0] # post-processing A: Union[str, Any] = self.movq.decode(SCREAMING_SNAKE_CASE_ , force_not_quantize=SCREAMING_SNAKE_CASE_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: A: List[Any] = image * 0.5 + 0.5 A: List[str] = image.clamp(0 , 1 ) A: Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A: List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
334
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' pass class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> None: '''simple docstring''' A: Any = data A: Node | None = None def __iter__( self : Optional[int] ) -> List[str]: '''simple docstring''' A: List[str] = self A: Dict = [] while node: if node in visited: raise ContainsLoopError visited.append(SCREAMING_SNAKE_CASE_ ) yield node.data A: str = node.next_node @property def _snake_case ( self : List[str] ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCamelCase = Node(1) UpperCamelCase = Node(2) UpperCamelCase = Node(3) UpperCamelCase = Node(4) print(root_node.has_loop) # False UpperCamelCase = root_node.next_node print(root_node.has_loop) # True UpperCamelCase = Node(5) UpperCamelCase = Node(6) UpperCamelCase = Node(5) UpperCamelCase = Node(6) print(root_node.has_loop) # False UpperCamelCase = Node(1) print(root_node.has_loop) # False
334
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } __A = { "Salesforce/codegen-350M-mono": 2_048, } class A ( __UpperCAmelCase ): lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] lowerCamelCase : List[Any] = CodeGenTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) if kwargs.pop("""add_bos_token""" , lowerCamelCase__ ): lowercase__ = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: lowercase__ = getattr(lowerCamelCase__ , pre_tok_state.pop("""type""" ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCamelCase__ ) lowercase__ = add_prefix_space def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__ = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__ = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> str: '''simple docstring''' lowercase__ = super().decode( token_ids=lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ , **lowerCamelCase__ , ) if truncate_before_pattern is not None and len(lowerCamelCase__ ) > 0: lowercase__ = self.truncate(lowerCamelCase__ , lowerCamelCase__ ) return decoded_text def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' def find_re(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = pattern.search(lowerCamelCase__ , lowerCamelCase__ ) return m.start() if m else -1 lowercase__ = [re.compile(lowerCamelCase__ , re.MULTILINE ) for pattern in truncate_before_pattern] lowercase__ = list(re.finditer("""^print""" , lowerCamelCase__ , re.MULTILINE ) ) if len(lowerCamelCase__ ) > 1: lowercase__ = completion[: prints[1].start()] lowercase__ = list(re.finditer("""^def""" , lowerCamelCase__ , re.MULTILINE ) ) if len(lowerCamelCase__ ) > 1: lowercase__ = completion[: defs[1].start()] lowercase__ = 0 lowercase__ = [ pos for pos in [find_re(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for terminal in terminals] if pos != -1 ] if len(lowerCamelCase__ ) > 0: return completion[: min(lowerCamelCase__ )] else: return completion
164
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def A__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(lowerCamelCase__ ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: '''simple docstring''' lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ) if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def A__ ( self ) -> str: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = """french fries""" lowercase__ = sd_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = [inputs["""prompt"""]] * 2 lowercase__ = np.array(inputs["""image"""] ).astype(np.floataa ) / 2_55.0 lowercase__ = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 ).to(lowerCamelCase__ ) lowercase__ = image / 2 + 0.5 lowercase__ = image.permute(0 , 3 , 1 , 2 ) lowercase__ = image.repeat(2 , 1 , 1 , 1 ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase__ = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" ) lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [round(lowerCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = VaeImageProcessor(do_resize=lowerCamelCase__ , do_normalize=lowerCamelCase__ ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) )[0] lowercase__ = components["""vae"""] lowercase__ = self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase__ = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase__ = pipe(**lowerCamelCase__ )[0] lowercase__ = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase__ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' lowercase__ = torch.manual_seed(lowerCamelCase__ ) lowercase__ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) lowercase__ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def A__ ( self ) -> str: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> str: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase__ = 0 def callback_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: lowercase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__ = False lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() pipe(**lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A__ ( self ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ = inputs["""image"""].resize((504, 504) ) lowercase__ = """timbrooks/instruct-pix2pix""" lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase__ , safety_checker=lowerCamelCase__ , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = pipe(**lowerCamelCase__ ) lowercase__ = output.images[0] lowercase__ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase__ = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
164
1
"""simple docstring""" from itertools import permutations def __snake_case ( SCREAMING_SNAKE_CASE__ : tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase : Optional[int] = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __snake_case ( SCREAMING_SNAKE_CASE__ : int = 10 ) -> int: '''simple docstring''' return sum( int("".join(map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE__ ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": print(F"{solution() = }")
202
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = 'owlvit_text_model' def __init__( self : int , A : int=4_9_4_0_8 , A : Optional[Any]=5_1_2 , A : Optional[Any]=2_0_4_8 , A : str=1_2 , A : int=8 , A : Tuple=1_6 , A : List[Any]="quick_gelu" , A : Tuple=1e-5 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : str=1.0 , A : str=0 , A : List[str]=4_9_4_0_6 , A : str=4_9_4_0_7 , **A : Optional[Any] , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = initializer_factor @classmethod def snake_case_ ( cls : Any , A : Union[str, os.PathLike] , **A : Dict ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'owlvit_vision_model' def __init__( self : Union[str, Any] , A : Optional[int]=7_6_8 , A : int=3_0_7_2 , A : List[str]=1_2 , A : List[str]=1_2 , A : Optional[int]=3 , A : Optional[int]=7_6_8 , A : str=3_2 , A : Tuple="quick_gelu" , A : Dict=1e-5 , A : Optional[int]=0.0 , A : List[Any]=0.02 , A : str=1.0 , **A : Tuple , ): super().__init__(**A ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Any = attention_dropout _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = initializer_factor @classmethod def snake_case_ ( cls : Optional[int] , A : Union[str, os.PathLike] , **A : int ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = 'owlvit' __SCREAMING_SNAKE_CASE : Optional[Any] = True def __init__( self : Optional[Any] , A : Dict=None , A : Tuple=None , A : Optional[Any]=5_1_2 , A : Optional[Any]=2.6_592 , A : int=True , **A : Tuple , ): super().__init__(**A ) if text_config is None: _UpperCAmelCase : List[Any] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: _UpperCAmelCase : Tuple = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) _UpperCAmelCase : str = OwlViTTextConfig(**A ) _UpperCAmelCase : int = OwlViTVisionConfig(**A ) _UpperCAmelCase : Optional[Any] = projection_dim _UpperCAmelCase : str = logit_scale_init_value _UpperCAmelCase : Optional[Any] = return_dict _UpperCAmelCase : str = 1.0 @classmethod def snake_case_ ( cls : Dict , A : Union[str, os.PathLike] , **A : Any ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) @classmethod def snake_case_ ( cls : Optional[int] , A : Dict , A : Dict , **A : Optional[Any] ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : int = text_config _UpperCAmelCase : Dict = vision_config return cls.from_dict(A , **A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _UpperCamelCase ): @property def snake_case_ ( self : List[str] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def snake_case_ ( self : Optional[int] ): return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def snake_case_ ( self : str ): return 1e-4 def snake_case_ ( self : str , A : "ProcessorMixin" , A : int = -1 , A : int = -1 , A : Optional["TensorType"] = None , ): _UpperCAmelCase : Optional[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _UpperCAmelCase : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def snake_case_ ( self : List[Any] ): return 1_4
202
1
def __lowercase ( a__ , a__ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
257
from heapq import heappop, heappush import numpy as np def __lowercase ( a__ , a__ , a__ , a__ , ) -> tuple[float | int, list[tuple[int, int]]]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = grid.shape __SCREAMING_SNAKE_CASE = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [(0, source)], set() __SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=a__ ) __SCREAMING_SNAKE_CASE = None while queue: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heappop(a__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = predecessors[x, y] path.append(a__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a__ ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a__ , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE = dist + 1 __SCREAMING_SNAKE_CASE = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
257
1
'''simple docstring''' import inspect import unittest class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: try: import diffusers # noqa: F401 except ImportError: assert False def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: import diffusers from diffusers.dependency_versions_table import deps lowerCAmelCase__ = inspect.getmembers(lowerCamelCase_ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowerCAmelCase__ = '''k-diffusion''' elif backend == "invisible_watermark": lowerCAmelCase__ = '''invisible-watermark''' assert backend in deps, F"""{backend} is not in the deps table!"""
228
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _snake_case ( A , A , A , A , ) -> list[float]: lowerCAmelCase__ , lowerCAmelCase__ = coefficient_matrix.shape lowerCAmelCase__ , lowerCAmelCase__ = constant_matrix.shape if rowsa != colsa: lowerCAmelCase__ = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(A ) if colsa != 1: lowerCAmelCase__ = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(A ) if rowsa != rowsa: lowerCAmelCase__ = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(A ) if len(A ) != rowsa: lowerCAmelCase__ = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(A )} and {rowsa}""" ) raise ValueError(A ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) lowerCAmelCase__ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCAmelCase__ , lowerCAmelCase__ = table.shape strictly_diagonally_dominant(A ) # Iterates the whole matrix for given number of times for _ in range(A ): lowerCAmelCase__ = [] for row in range(A ): lowerCAmelCase__ = 0 for col in range(A ): if col == row: lowerCAmelCase__ = table[row][col] elif col == cols - 1: lowerCAmelCase__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCAmelCase__ = (temp + val) / denom new_val.append(A ) lowerCAmelCase__ = new_val return [float(A ) for i in new_val] def _snake_case ( A ) -> bool: lowerCAmelCase__ , lowerCAmelCase__ = table.shape lowerCAmelCase__ = True for i in range(0 , A ): lowerCAmelCase__ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
228
1
from datetime import datetime import matplotlib.pyplot as plt import torch def _UpperCamelCase ( snake_case__ ) -> List[str]: for param in module.parameters(): __UpperCAmelCase : Tuple = False def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCAmelCase : str = """mps""" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = plt.imshow(_lowerCAmelCase ) fig.axes.get_xaxis().set_visible(_lowerCAmelCase ) fig.axes.get_yaxis().set_visible(_lowerCAmelCase ) plt.show() def _UpperCamelCase ( ) -> int: __UpperCAmelCase : List[str] = datetime.now() __UpperCAmelCase : Optional[Any] = current_time.strftime("%H:%M:%S" ) return timestamp
157
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : int = 25_00_04 lowerCamelCase__ : Any = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( __a , unittest.TestCase): __a : Optional[int] = MBartTokenizer __a : Union[str, Any] = MBartTokenizerFast __a : Union[str, Any] = True __a : Union[str, Any] = True def __snake_case ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : str = MBartTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Dict = MBartTokenizer(_A , keep_accents=_A ) _UpperCAmelCase : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _UpperCAmelCase : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCAmelCase : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : str = self.tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : Dict = tempfile.mkdtemp() _UpperCAmelCase : str = tokenizer_r.save_pretrained(_A ) _UpperCAmelCase : str = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _UpperCAmelCase : Tuple = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(_A ) _UpperCAmelCase : int = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True _UpperCAmelCase : List[Any] = tempfile.mkdtemp() _UpperCAmelCase : Any = tokenizer_r.save_pretrained(_A , legacy_format=_A ) _UpperCAmelCase : Dict = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(_A ) _UpperCAmelCase : Any = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False _UpperCAmelCase : List[Any] = tempfile.mkdtemp() _UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(_A , legacy_format=_A ) _UpperCAmelCase : Dict = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(_A ) _UpperCAmelCase : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase): __a : Optional[Any] = """facebook/mbart-large-en-ro""" __a : Dict = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __a : List[str] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __a : int = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __snake_case ( cls ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) _UpperCAmelCase : Tuple = 1 return cls def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def __snake_case ( self ) -> str: '''simple docstring''' self.assertIn(_A , self.tokenizer.all_special_ids ) _UpperCAmelCase : List[Any] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] _UpperCAmelCase : str = self.tokenizer.decode(_A , skip_special_tokens=_A ) _UpperCAmelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , _A ) _UpperCAmelCase : str = 10 _UpperCAmelCase : str = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _A ) self.assertEqual(len(_A ) , _A ) def __snake_case ( self ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) _UpperCAmelCase : Any = MBartTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors="""pt""" ) _UpperCAmelCase : str = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __snake_case ( self ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) _UpperCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors="""pt""" ) _UpperCAmelCase : List[str] = self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors="""pt""" ) _UpperCAmelCase : str = targets["""input_ids"""] _UpperCAmelCase : List[Any] = shift_tokens_right(_A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(_A ) , { # A, test, EOS, en_XX """input_ids""": [[62, 30_34, 2, 25_00_04]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
246
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowerCamelCase (a_ :list[float]) -> list[float]: lowercase :int = [] lowercase :List[str] = len(a_) for i in range(a_): lowercase :float = -1 for j in range(i + 1 , a_): if arr[i] < arr[j]: lowercase :Dict = arr[j] break result.append(a_) return result def lowerCamelCase (a_ :list[float]) -> list[float]: lowercase :Dict = [] for i, outer in enumerate(a_): lowercase :float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase :Optional[int] = inner break result.append(a_) return result def lowerCamelCase (a_ :list[float]) -> list[float]: lowercase :str = len(a_) lowercase :list[float] = [] lowercase :list[float] = [-1] * arr_size for index in reversed(range(a_)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase :Optional[Any] = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCAmelCase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
172
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase (a_ :List[Any]) -> Any: lowercase :Tuple = 384 lowercase :int = 7 if "tiny" in model_name: lowercase :Union[str, Any] = 96 lowercase :Any = (2, 2, 6, 2) lowercase :Any = (3, 6, 12, 24) elif "small" in model_name: lowercase :int = 96 lowercase :Any = (2, 2, 18, 2) lowercase :Optional[int] = (3, 6, 12, 24) elif "base" in model_name: lowercase :Optional[int] = 128 lowercase :Any = (2, 2, 18, 2) lowercase :Dict = (4, 8, 16, 32) lowercase :Tuple = 12 lowercase :List[Any] = 512 elif "large" in model_name: lowercase :List[str] = 192 lowercase :Optional[int] = (2, 2, 18, 2) lowercase :Any = (6, 12, 24, 48) lowercase :Any = 12 lowercase :str = 768 # set label information lowercase :Optional[int] = 150 lowercase :str = '''huggingface/label-files''' lowercase :List[str] = '''ade20k-id2label.json''' lowercase :List[str] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :Union[str, Any] = {int(a_): v for k, v in idalabel.items()} lowercase :Dict = {v: k for k, v in idalabel.items()} lowercase :List[str] = SwinConfig( embed_dim=a_ , depths=a_ , num_heads=a_ , window_size=a_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) lowercase :List[str] = UperNetConfig( backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , ) return config def lowerCamelCase (a_ :Any) -> Optional[Any]: lowercase :Any = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''')) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''')) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""")) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""")) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""")) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""")) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ]) # fmt: on return rename_keys def lowerCamelCase (a_ :int , a_ :str , a_ :Union[str, Any]) -> int: lowercase :Any = dct.pop(a_) lowercase :Tuple = val def lowerCamelCase (a_ :Optional[int] , a_ :int) -> Optional[int]: lowercase :int = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowercase :List[str] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase :Optional[Any] = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""") lowercase :int = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowercase :Optional[Any] = in_proj_weight[:dim, :] lowercase :str = in_proj_bias[: dim] lowercase :Optional[Any] = in_proj_weight[ dim : dim * 2, : ] lowercase :Optional[int] = in_proj_bias[ dim : dim * 2 ] lowercase :List[str] = in_proj_weight[ -dim :, : ] lowercase :Any = in_proj_bias[-dim :] # fmt: on def lowerCamelCase (a_ :Tuple) -> Any: lowercase , lowercase :Tuple = x.shape lowercase :str = x.reshape(a_ , 4 , in_channel // 4) lowercase :str = x[:, [0, 2, 1, 3], :].transpose(1 , 2).reshape(a_ , a_) return x def lowerCamelCase (a_ :Optional[int]) -> Tuple: lowercase , lowercase :Any = x.shape lowercase :Union[str, Any] = x.reshape(a_ , in_channel // 4 , 4) lowercase :int = x[:, :, [0, 2, 1, 3]].transpose(1 , 2).reshape(a_ , a_) return x def lowerCamelCase (a_ :Any) -> Union[str, Any]: lowercase :int = x.shape[0] lowercase :Any = x.reshape(4 , in_channel // 4) lowercase :Any = x[[0, 2, 1, 3], :].transpose(0 , 1).reshape(a_) return x def lowerCamelCase (a_ :str) -> Union[str, Any]: lowercase :List[str] = x.shape[0] lowercase :Optional[Any] = x.reshape(in_channel // 4 , 4) lowercase :List[Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1).reshape(a_) return x def lowerCamelCase (a_ :int , a_ :Optional[int] , a_ :List[Any]) -> Dict: lowercase :Dict = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } lowercase :List[Any] = model_name_to_url[model_name] lowercase :Tuple = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''' , file_name=a_)[ '''state_dict''' ] for name, param in state_dict.items(): print(a_ , param.shape) lowercase :Union[str, Any] = get_upernet_config(a_) lowercase :int = UperNetForSemanticSegmentation(a_) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase :Union[str, Any] = state_dict.pop(a_) if "bn" in key: lowercase :int = key.replace('''bn''' , '''batch_norm''') lowercase :str = val # rename keys lowercase :List[str] = create_rename_keys(a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , config.backbone_config) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase :str = reverse_correct_unfold_reduction_order(a_) if "norm" in key: lowercase :int = reverse_correct_unfold_norm_order(a_) model.load_state_dict(a_) # verify on image lowercase :Dict = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowercase :str = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') lowercase :Union[str, Any] = SegformerImageProcessor() lowercase :int = processor(a_ , return_tensors='''pt''').pixel_values with torch.no_grad(): lowercase :Optional[int] = model(a_) lowercase :int = outputs.logits print(logits.shape) print('''First values of logits:''' , logits[0, 0, :3, :3]) # assert values if model_name == "upernet-swin-tiny": lowercase :Union[str, Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]]) elif model_name == "upernet-swin-small": lowercase :List[str] = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]]) elif model_name == "upernet-swin-base": lowercase :Tuple = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]]) elif model_name == "upernet-swin-large": lowercase :str = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]]) print('''Logits:''' , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving processor to {pytorch_dump_folder_path}""") processor.save_pretrained(a_) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""") model.push_to_hub(F"""openmmlab/{model_name}""") processor.push_to_hub(F"""openmmlab/{model_name}""") if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F"""upernet-swin-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
172
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCamelCase =logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase ="\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=8 ): """simple docstring""" SCREAMING_SNAKE_CASE =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=512, lowerCAmelCase_=512 ): """simple docstring""" SCREAMING_SNAKE_CASE =pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1 ) SCREAMING_SNAKE_CASE =np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE =arr.astype(np.floataa ) / 127.5 - 1 SCREAMING_SNAKE_CASE =np.transpose(lowerCAmelCase_, [2, 0, 1] ) SCREAMING_SNAKE_CASE =torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ) return image class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[int] ,snake_case : UNetaDConditionModel ,snake_case : DDPMScheduler ,snake_case : VQModel ,): super().__init__() self.register_modules( unet=snake_case ,scheduler=snake_case ,movq=snake_case ,) SCREAMING_SNAKE_CASE =2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ,snake_case : str ,snake_case : Any ): # get the original timestep using init_timestep SCREAMING_SNAKE_CASE =min(int(num_inference_steps * strength ) ,snake_case ) SCREAMING_SNAKE_CASE =max(num_inference_steps - init_timestep ,0 ) SCREAMING_SNAKE_CASE =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCAmelCase ( self : Optional[int] ,snake_case : Any ,snake_case : Union[str, Any] ,snake_case : Tuple ,snake_case : Dict ,snake_case : Optional[int] ,snake_case : Optional[int] ,snake_case : List[Any]=None ): if not isinstance(snake_case ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case )}' ) SCREAMING_SNAKE_CASE =image.to(device=snake_case ,dtype=snake_case ) SCREAMING_SNAKE_CASE =batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE =image else: if isinstance(snake_case ,snake_case ) and len(snake_case ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(snake_case )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(snake_case ,snake_case ): SCREAMING_SNAKE_CASE =[ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case ) ] SCREAMING_SNAKE_CASE =torch.cat(snake_case ,dim=0 ) else: SCREAMING_SNAKE_CASE =self.movq.encode(snake_case ).latent_dist.sample(snake_case ) SCREAMING_SNAKE_CASE =self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE =torch.cat([init_latents] ,dim=0 ) SCREAMING_SNAKE_CASE =init_latents.shape SCREAMING_SNAKE_CASE =randn_tensor(snake_case ,generator=snake_case ,device=snake_case ,dtype=snake_case ) # get latents SCREAMING_SNAKE_CASE =self.scheduler.add_noise(snake_case ,snake_case ,snake_case ) SCREAMING_SNAKE_CASE =init_latents return latents def _lowerCAmelCase ( self : Any ,snake_case : Optional[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE =torch.device(f'cuda:{gpu_id}' ) SCREAMING_SNAKE_CASE =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case ,snake_case ) def _lowerCAmelCase ( self : int ,snake_case : Any=0 ): if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE =torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' ,silence_dtype_warnings=snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE =None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cpu_offload_with_hook(snake_case ,snake_case ,prev_module_hook=snake_case ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCAmelCase ( self : List[Any] ): if not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case ) def __call__( self : Any ,snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] ,snake_case : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] ,snake_case : int = 512 ,snake_case : int = 512 ,snake_case : int = 100 ,snake_case : float = 4.0 ,snake_case : float = 0.3 ,snake_case : int = 1 ,snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,snake_case : Optional[str] = "pil" ,snake_case : bool = True ,): SCREAMING_SNAKE_CASE =self._execution_device SCREAMING_SNAKE_CASE =guidance_scale > 1.0 if isinstance(snake_case ,snake_case ): SCREAMING_SNAKE_CASE =torch.cat(snake_case ,dim=0 ) SCREAMING_SNAKE_CASE =image_embeds.shape[0] if isinstance(snake_case ,snake_case ): SCREAMING_SNAKE_CASE =torch.cat(snake_case ,dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE =image_embeds.repeat_interleave(snake_case ,dim=0 ) SCREAMING_SNAKE_CASE =negative_image_embeds.repeat_interleave(snake_case ,dim=0 ) SCREAMING_SNAKE_CASE =torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=snake_case ) if not isinstance(snake_case ,snake_case ): SCREAMING_SNAKE_CASE =[image] if not all(isinstance(snake_case ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'Input is in incorrect format: {[type(snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) SCREAMING_SNAKE_CASE =torch.cat([prepare_image(snake_case ,snake_case ,snake_case ) for i in image] ,dim=0 ) SCREAMING_SNAKE_CASE =image.to(dtype=image_embeds.dtype ,device=snake_case ) SCREAMING_SNAKE_CASE =self.movq.encode(snake_case )['latents'] SCREAMING_SNAKE_CASE =latents.repeat_interleave(snake_case ,dim=0 ) self.scheduler.set_timesteps(snake_case ,device=snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.get_timesteps(snake_case ,snake_case ,snake_case ) SCREAMING_SNAKE_CASE =timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =downscale_height_and_width(snake_case ,snake_case ,self.movq_scale_factor ) SCREAMING_SNAKE_CASE =self.prepare_latents( snake_case ,snake_case ,snake_case ,snake_case ,image_embeds.dtype ,snake_case ,snake_case ) for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE ={'image_embeds': image_embeds} SCREAMING_SNAKE_CASE =self.unet( sample=snake_case ,timestep=snake_case ,encoder_hidden_states=snake_case ,added_cond_kwargs=snake_case ,return_dict=snake_case ,)[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =noise_pred.split(latents.shape[1] ,dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE =torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE =self.scheduler.step( snake_case ,snake_case ,snake_case ,generator=snake_case ,)[0] # post-processing SCREAMING_SNAKE_CASE =self.movq.decode(snake_case ,force_not_quantize=snake_case )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE =image * 0.5 + 0.5 SCREAMING_SNAKE_CASE =image.clamp(0 ,1 ) SCREAMING_SNAKE_CASE =image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE =self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
334
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase__ : Any = ['bert-base-uncased', 'bert-base-cased'] UpperCamelCase__ : Dict = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class _lowerCAmelCase ( tf.keras.Model ): """simple docstring""" def __init__( self , _lowerCamelCase ) -> str: super().__init__() A_ : List[str] = tokenizer A_ : Any = AutoConfig.from_pretrained(_lowerCamelCase ) A_ : List[Any] = TFAutoModel.from_config(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[int] = self.tokenizer(_lowerCamelCase ) A_ : int = self.bert(**_lowerCamelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> List[str]: super().setUp() A_ : str = [ BertTokenizer.from_pretrained(_lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false A_ : Optional[int] = [TFBertTokenizer.from_pretrained(_lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_lowerCamelCase , use_fast_bert_tokenizer=_lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A_ : Optional[Any] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] A_ : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCAmelCase_ ( self ) -> Tuple: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): A_ : List[str] = tokenizer(_lowerCamelCase , return_tensors="""tf""" , padding="""longest""" ) A_ : List[str] = tf_tokenizer(_lowerCamelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def UpperCAmelCase_ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: A_ : Tuple = tf_tokenizer(self.paired_sentences ) A_ : str = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def UpperCAmelCase_ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: A_ : Tuple = tf.function(_lowerCamelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): A_ : List[str] = tf.constant(_lowerCamelCase ) A_ : Tuple = compiled_tokenizer(_lowerCamelCase ) A_ : List[Any] = tf_tokenizer(_lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: for tf_tokenizer in self.tf_tokenizers: A_ : str = ModelToSave(tokenizer=_lowerCamelCase ) A_ : Dict = tf.convert_to_tensor(self.test_sentences ) A_ : Optional[Any] = model(_lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A_ : str = Path(_lowerCamelCase ) / """saved.model""" model.save(_lowerCamelCase ) A_ : Dict = tf.keras.models.load_model(_lowerCamelCase ) A_ : List[str] = loaded_model(_lowerCamelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
361
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Any = 0 def UpperCAmelCase_ ( self ) -> Dict: A_ : str = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[int] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : List[str] = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[str] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Tuple = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: A_ : int = CLIPConfig() # Create a dummy config file with image_proceesor_type A_ : Dict = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Any = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally A_ : str = AutoImageProcessor.from_pretrained(_lowerCamelCase ).to_dict() config_dict.pop("""image_processor_type""" ) A_ : Dict = CLIPImageProcessor(**_lowerCamelCase ) # save in new folder model_config.save_pretrained(_lowerCamelCase ) config.save_pretrained(_lowerCamelCase ) A_ : Any = AutoImageProcessor.from_pretrained(_lowerCamelCase ) # make sure private variable is not incorrectly saved A_ : int = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = Path(_lowerCamelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) A_ : Tuple = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: with self.assertRaisesRegex( _lowerCamelCase , """clip-base is not a local folder and is not a valid model identifier""" ): A_ : Optional[Any] = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase_ ( self ) -> Dict: with self.assertRaisesRegex( _lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase , revision="""aaaaaa""" ) def UpperCAmelCase_ ( self ) -> Any: with self.assertRaisesRegex( _lowerCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): A_ : List[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase_ ( self ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCamelCase ): A_ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCamelCase ): A_ : List[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) A_ : str = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase , trust_remote_code=_lowerCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCAmelCase_ ( self ) -> Dict: try: AutoConfig.register("""custom""" , _lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCamelCase ): AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[Any] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Dict = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Optional[int] = CustomImageProcessor.from_pretrained(_lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) A_ : List[str] = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self ) -> List[str]: class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = True try: AutoConfig.register("""custom""" , _lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) # If remote code is not set, the default is to use local A_ : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. A_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub A_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(_lowerCamelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
164
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _A : Any = logging.get_logger(__name__) _A : Any = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class a__ ( a_ ): __lowerCAmelCase = """mctct""" def __init__( self , _a=8_065 , _a=1_536 , _a=36 , _a=6_144 , _a=4 , _a=384 , _a=920 , _a=1E-5 , _a=0.3 , _a="relu" , _a=0.0_2 , _a=0.3 , _a=0.3 , _a=1 , _a=0 , _a=2 , _a=1 , _a=0.3 , _a=1 , _a=(7,) , _a=(3,) , _a=80 , _a=1 , _a=None , _a="sum" , _a=False , **_a , ): super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) lowercase : Optional[Any] = vocab_size lowercase : Optional[Any] = hidden_size lowercase : Dict = num_hidden_layers lowercase : Any = intermediate_size lowercase : List[str] = num_attention_heads lowercase : int = attention_head_dim lowercase : Dict = max_position_embeddings lowercase : Optional[int] = layer_norm_eps lowercase : Optional[int] = layerdrop lowercase : Optional[int] = hidden_act lowercase : str = initializer_range lowercase : Optional[Any] = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : Optional[int] = pad_token_id lowercase : Optional[int] = bos_token_id lowercase : Dict = eos_token_id lowercase : Union[str, Any] = conv_glu_dim lowercase : Dict = conv_dropout lowercase : Optional[Any] = num_conv_layers lowercase : int = input_feat_per_channel lowercase : Optional[Any] = input_channels lowercase : Tuple = conv_channels lowercase : Any = ctc_loss_reduction lowercase : Union[str, Any] = ctc_zero_infinity # prevents config testing fail with exporting to json lowercase : str = list(_a ) lowercase : Tuple = list(_a ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
202
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A : List[str] = logging.get_logger(__name__) _A : List[str] = {"""vocab_file""": """spiece.model"""} _A : List[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } _A : str = { """google/bigbird-roberta-base""": 40_96, """google/bigbird-roberta-large""": 40_96, """google/bigbird-base-trivia-itc""": 40_96, } class a__ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] __lowerCAmelCase = [] def __init__( self , _a , _a="<unk>" , _a="<s>" , _a="</s>" , _a="<pad>" , _a="[SEP]" , _a="[MASK]" , _a="[CLS]" , _a = None , **_a , ): lowercase : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token lowercase : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowercase : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token lowercase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , sep_token=_a , mask_token=_a , cls_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowercase : Optional[Any] = vocab_file lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def __magic_name__ ( self ): return self.sp_model.get_piece_size() def __magic_name__ ( self ): lowercase : str = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase : Union[str, Any] = self.__dict__.copy() lowercase : Dict = None return state def __setstate__( self , _a ): lowercase : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase : List[str] = {} lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self , _a ): return self.sp_model.encode(_a , out_type=_a ) def __magic_name__ ( self , _a ): return self.sp_model.piece_to_id(_a ) def __magic_name__ ( self , _a ): lowercase : Union[str, Any] = self.sp_model.IdToPiece(_a ) return token def __magic_name__ ( self , _a ): lowercase : List[Any] = [] lowercase : List[Any] = "" lowercase : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token lowercase : int = True lowercase : Union[str, Any] = [] else: current_sub_tokens.append(_a ) lowercase : int = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __magic_name__ ( self , _a , _a = False , _a = None , _a = True , **_a , ): lowercase : int = kwargs.pop("use_source_tokenizer" , _a ) lowercase : Union[str, Any] = self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase : Any = [] lowercase : Dict = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) lowercase : int = [] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowercase : Dict = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(_a ) ) else: lowercase : Union[str, Any] = "".join(_a ) lowercase : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase : Union[str, Any] = self.clean_up_tokenization(_a ) return clean_text else: return text def __magic_name__ ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : List[Any] = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: lowercase : int = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def __magic_name__ ( self , _a , _a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : List[str] = [self.cls_token_id] lowercase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def __magic_name__ ( self , _a , _a = None ): lowercase : Tuple = [self.sep_token_id] lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
202
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _A ( datasets.BeamBasedBuilder ): def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''')}) , supervised_keys=__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()})] def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__SCREAMING_SNAKE_CASE) class _A ( datasets.BeamBasedBuilder ): def _lowerCamelCase ( self : int): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})}) , supervised_keys=__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()}) ] def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__SCREAMING_SNAKE_CASE) def __snake_case ( ): return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def __snake_case ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class _A ( __UpperCAmelCase ): @require_beam def _lowerCamelCase ( self : str): '''simple docstring''' __a = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow'))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) __a = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def _lowerCamelCase ( self : List[Any]): '''simple docstring''' import apache_beam as beam __a = beam.io.parquetio.WriteToParquet __a = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''') with patch('''apache_beam.io.parquetio.WriteToParquet''') as write_parquet_mock: __a = partial(__SCREAMING_SNAKE_CASE , num_shards=2) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow'))) self.assertTrue( os.path.exists( os.path.join( __SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow'))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) __a = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content''']) , sorted(['''foo''', '''bar''', '''foobar'''])) self.assertTrue( os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: __a = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare) @require_beam def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = len(get_test_nested_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a = NestedBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow'))) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})})) __a = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset
131
# Lint as: python3 import itertools import os import re __snake_case :int = re.compile(r'''([A-Z]+)([A-Z][a-z])''') __snake_case :List[Any] = re.compile(r'''([a-z\d])([A-Z])''') __snake_case :Dict = re.compile(r'''(?<!_)_(?!_)''') __snake_case :Optional[int] = re.compile(r'''(_{2,})''') __snake_case :Optional[Any] = r'''^\w+(\.\w+)*$''' __snake_case :Union[str, Any] = r'''<>:/\|?*''' def __snake_case ( _UpperCAmelCase ): __a = _uppercase_uppercase_re.sub(R'''\1_\2''' , _UpperCAmelCase ) __a = _lowercase_uppercase_re.sub(R'''\1_\2''' , _UpperCAmelCase ) return name.lower() def __snake_case ( _UpperCAmelCase ): __a = _single_underscore_re.split(_UpperCAmelCase ) __a = [_multiple_underscores_re.split(_UpperCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_UpperCAmelCase ) if n != '''''' ) def __snake_case ( _UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , _UpperCAmelCase ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(_UpperCAmelCase )}-{split}' def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): __a = filename_prefix_for_split(_UpperCAmelCase , _UpperCAmelCase ) if filetype_suffix: prefix += f'.{filetype_suffix}' __a = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) return f'{filepath}*' def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __a = filename_prefix_for_split(_UpperCAmelCase , _UpperCAmelCase ) __a = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if shard_lengths: __a = len(_UpperCAmelCase ) __a = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(_UpperCAmelCase )] if filetype_suffix: __a = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: __a = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
131
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowerCAmelCase ( pl.LightningModule ): def __init__( self :Union[str, Any] , __magic_name__ :Optional[int] ): '''simple docstring''' super().__init__() a = model a = 2 a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' pass def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: # load longformer model from model identifier a = LongformerModel.from_pretrained(__lowerCamelCase ) a = LightningModel(__lowerCamelCase ) a = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model a = LongformerForQuestionAnswering.from_pretrained(__lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowerCamelCase ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase : List[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
228
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCamelCase ( __lowercase : List[str] ): '''simple docstring''' A_ : str = [] for line in lines: A_ : List[str] = re.sub(r'#.*' ,'' ,_a ) # remove comments if line: filtered_lines.append(_a ) A_ : Optional[int] = """\n""".join(_a ) # Make a hash from all this code A_ : List[str] = full_str.encode('utf-8' ) return shaaaa(_a ).hexdigest() # get importable module names and hash for caching _UpperCAmelCase = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _UpperCAmelCase = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _UpperCAmelCase = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name _UpperCAmelCase = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
365
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
192
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str]= logging.get_logger(__name__) _a : Optional[Any]= { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class UpperCamelCase ( lowercase ): UpperCAmelCase : str = """luke""" def __init__(self : List[str] , _A : Tuple=5_02_67 , _A : Optional[Any]=50_00_00 , _A : Dict=7_68 , _A : List[Any]=2_56 , _A : List[Any]=12 , _A : List[Any]=12 , _A : Optional[Any]=30_72 , _A : Optional[int]="gelu" , _A : int=0.1 , _A : List[Any]=0.1 , _A : Any=5_12 , _A : Dict=2 , _A : str=0.02 , _A : Tuple=1E-12 , _A : List[str]=True , _A : str=None , _A : Optional[Any]=1 , _A : Any=0 , _A : List[Any]=2 , **_A : Any , ) -> List[str]: super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A) __snake_case : Tuple = vocab_size __snake_case : Optional[Any] = entity_vocab_size __snake_case : Any = hidden_size __snake_case : Optional[int] = entity_emb_size __snake_case : List[Any] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : str = intermediate_size __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : Optional[int] = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : int = use_entity_aware_attention __snake_case : List[str] = classifier_dropout
172
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Union[str, Any]) -> Optional[Any]: __snake_case : int = 0 def _lowercase (self : Union[str, Any]) -> Optional[Any]: __snake_case : int = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(_A , _A) def _lowercase (self : Any) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Union[str, Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Dict = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Any = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[str]) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case : int = Path(_A) / 'preprocessor_config.json' __snake_case : Dict = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case : List[Any] = AutoImageProcessor.from_pretrained(_A).to_dict() config_dict.pop('image_processor_type') __snake_case : Dict = CLIPImageProcessor(**_A) # save in new folder model_config.save_pretrained(_A) config.save_pretrained(_A) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) # make sure private variable is not incorrectly saved __snake_case : Optional[int] = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(_A , _A) def _lowercase (self : Union[str, Any]) -> str: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = Path(_A) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) __snake_case : Any = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> str: with self.assertRaisesRegex( _A , 'clip-base is not a local folder and is not a valid model identifier'): __snake_case : Tuple = AutoImageProcessor.from_pretrained('clip-base') def _lowercase (self : Optional[int]) -> int: with self.assertRaisesRegex( _A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case : int = AutoImageProcessor.from_pretrained(_A , revision='aaaaaa') def _lowercase (self : Tuple) -> Optional[int]: with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __snake_case : Any = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def _lowercase (self : Tuple) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A): __snake_case : Optional[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(_A): __snake_case : Any = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) __snake_case : Any = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Dict = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor') def _lowercase (self : int) -> str: try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): AutoImageProcessor.register(_A , _A) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = CustomImageProcessor.from_pretrained(_A) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : int) -> str: class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = True try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # If remote code is not set, the default is to use local __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __snake_case : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __snake_case : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(not hasattr(_A , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
172
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['OwlViTFeatureExtractor'] __SCREAMING_SNAKE_CASE : Optional[Any] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
import os import pytest from attr import dataclass __SCREAMING_SNAKE_CASE : int = 'us-east-1' # defaults region @dataclass class lowercase_ : _lowerCamelCase = 42 _lowerCamelCase = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _lowerCamelCase = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5_500, } _lowerCamelCase = {**hyperparameters, 'max_steps': 1_000} @property def UpperCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCamelCase ( self ): return f"""{self.framework}-transfromers-test""" @property def UpperCamelCase ( self ): return f"""./tests/sagemaker/scripts/{self.framework}""" @property def UpperCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
284
0