code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _UpperCAmelCase ( yaml.SafeLoader ): def lowerCamelCase ( self :Tuple , __UpperCamelCase :Optional[int] ): A = [self.constructed_objects[key_node] for key_node, _ in node.value] A = [tuple(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else key for key in keys] A = Counter(lowerCamelCase__ ) A = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def lowerCamelCase ( self :str , __UpperCamelCase :Optional[int] , __UpperCamelCase :Dict=False ): A = super().construct_mapping(lowerCamelCase__ , deep=lowerCamelCase__ ) self._check_no_duplicates_on_constructed_node(lowerCamelCase__ ) return mapping def A__ ( UpperCamelCase ): A = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: A = full_content[1:].index("---" ) + 1 A = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowercase__ ) class _UpperCAmelCase ( __UpperCAmelCase ): # class attributes UpperCamelCase = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase ( cls :List[str] , __UpperCamelCase :List[str] ): with open(lowerCamelCase__ , encoding="utf-8" ) as readme_file: A, A = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCamelCase__ ) else: return cls() def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :str ): if path.exists(): with open(lowerCamelCase__ , encoding="utf-8" ) as readme_file: A = readme_file.read() else: A = None A = self._to_readme(lowerCamelCase__ ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as readme_file: readme_file.write(lowerCamelCase__ ) def lowerCamelCase ( self :Any , __UpperCamelCase :Optional[Any] = None ): if readme_content is not None: A, A = _split_yaml_from_readme(lowerCamelCase__ ) A = "---\n" + self.to_yaml_string() + "---\n" + content else: A = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def lowerCamelCase ( cls :Dict , __UpperCamelCase :Optional[int] ): A = yaml.load(lowerCamelCase__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields A = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCamelCase__ ) def lowerCamelCase ( self :int ): return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCamelCase__ , allow_unicode=lowerCamelCase__ , encoding="utf-8" , ).decode("utf-8" ) _snake_case : Optional[Any] = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser _snake_case : Optional[int] = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') _snake_case : int = ap.parse_args() _snake_case : Dict = Path(args.readme_filepath) _snake_case : List[Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
292
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def _A ( lowercase__ ): return "".join(sorted(lowercase__ ) ) def _A ( lowercase__ ): return word_by_signature[signature(lowercase__ )] __A = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __A = sorted({word.strip().lower() for word in data.splitlines()}) __A = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __A = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
164
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } UpperCAmelCase__ : List[Any] = { 'allenai/longformer-base-4096': 4096, 'allenai/longformer-large-4096': 4096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase__ ( ) -> Any: _A: Tuple = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _A: List[str] = bs[:] _A: Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(a ) cs.append(2**8 + n ) n += 1 _A: Optional[Any] = [chr(a ) for n in cs] return dict(zip(a , a ) ) def lowerCamelCase__ ( a ) -> Tuple: _A: Dict = set() _A: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Optional[int] = char return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]="replace" , lowerCAmelCase_ : Union[str, Any]="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : List[Any]="<unk>" , lowerCAmelCase_ : Union[str, Any]="<pad>" , lowerCAmelCase_ : int="<mask>" , lowerCAmelCase_ : Any=False , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" _A: Any = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _A: Optional[Any] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _A: List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _A: List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _A: Union[str, Any] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _A: Dict = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _A: List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: List[str] = json.load(lowerCAmelCase_ ) _A: Tuple = {v: k for k, v in self.encoder.items()} _A: Any = errors # how to handle errors in decoding _A: Dict = bytes_to_unicode() _A: Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Optional[Any] = merges_handle.read().split('''\n''' )[1:-1] _A: Any = [tuple(merge.split() ) for merge in bpe_merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Optional[int] = {} _A: Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _A: List[str] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" if token in self.cache: return self.cache[token] _A: Optional[int] = tuple(lowerCAmelCase_ ) _A: int = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Dict = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: List[str] = bigram _A: Optional[int] = [] _A: Optional[Any] = 0 while i < len(lowerCAmelCase_ ): try: _A: Dict = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: List[Any] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: int = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = ''' '''.join(lowerCAmelCase_ ) _A: Optional[int] = word return word def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Any ): """simple docstring""" _A: Dict = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _A: Optional[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) return bpe_tokens def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : str , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Dict = ''''''.join(lowerCAmelCase_ ) _A: List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __magic_name__ ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: int = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: str = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: Any = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __magic_name__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A: Tuple = [self.cls_token_id] _A: List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def __magic_name__ ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Optional[int] = [self.sep_token_id] _A: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Any=False , **lowerCAmelCase_ : int ): """simple docstring""" _A: Any = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _A: str = ''' ''' + text return (text, kwargs)
301
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCamelCase = logging.get_logger(__name__) class _a ( _lowercase): _a : Optional[Any] = ['''pixel_values'''] def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **_SCREAMING_SNAKE_CASE : int , )-> None: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = size if size is not None else {'''shortest_edge''': 256} lowerCAmelCase__ : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase__ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : Any = resample lowerCAmelCase__ : str = do_center_crop lowerCAmelCase__ : Dict = crop_size lowerCAmelCase__ : str = do_rescale lowerCAmelCase__ : List[str] = rescale_factor lowerCAmelCase__ : int = do_normalize lowerCAmelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Dict , )-> np.ndarray: lowerCAmelCase__ : str = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase__ : List[str] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : List[str] , )-> np.ndarray: lowerCAmelCase__ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Optional[int] )-> np.ndarray: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : str , )-> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : ImageInput , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = None , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[float] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE : Tuple , )-> Optional[Any]: lowerCAmelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : List[str] = size if size is not None else self.size lowerCAmelCase__ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = resample if resample is not None else self.resample lowerCAmelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) lowerCAmelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : List[str] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Optional[int] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ : List[Any] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCAmelCase__ : Dict = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowerCAmelCase__ : Dict = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCAmelCase__ : List[Any] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCAmelCase__ : Tuple = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase__ : Dict = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase__ : Dict = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Tuple] = None )-> List[Any]: lowerCAmelCase__ : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Tuple = target_sizes.numpy() lowerCAmelCase__ : Tuple = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ : Any = logits.argmax(dim=1 ) lowerCAmelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
131
from __future__ import annotations lowerCamelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class _a : def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : dict[str, list[str]] , _SCREAMING_SNAKE_CASE : str )-> None: lowerCAmelCase__ : List[Any] = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase__ : dict[str, str | None] = {} lowerCAmelCase__ : str = source_vertex def UpperCAmelCase__( self : str )-> None: lowerCAmelCase__ : Dict = {self.source_vertex} lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : List[str] = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase__ : int = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = vertex queue.append(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : str )-> str: if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase__ : str = self.parent.get(_SCREAMING_SNAKE_CASE ) if target_vertex_parent is None: lowerCAmelCase__ : Optional[Any] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) return self.shortest_path(_SCREAMING_SNAKE_CASE ) + F'->{target_vertex}' if __name__ == "__main__": lowerCamelCase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
131
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = "roberta-prelayernorm" def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> List[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size _SCREAMING_SNAKE_CASE : Dict = num_hidden_layers _SCREAMING_SNAKE_CASE : Tuple = num_attention_heads _SCREAMING_SNAKE_CASE : List[str] = hidden_act _SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Any = max_position_embeddings _SCREAMING_SNAKE_CASE : str = type_vocab_size _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type _SCREAMING_SNAKE_CASE : str = use_cache _SCREAMING_SNAKE_CASE : List[Any] = classifier_dropout class lowerCAmelCase__( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: _SCREAMING_SNAKE_CASE : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 1 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase ) return image @property def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type="v_prediction" ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=UpperCamelCase , low_res_scheduler=UpperCamelCase , scheduler=UpperCamelCase , vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) lowerCamelCase_ = "A painting of a squirrel eating a burger" lowerCamelCase_ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=UpperCamelCase , generator=UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ = output.images lowerCamelCase_ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=UpperCamelCase , generator=UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=UpperCamelCase , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] lowerCamelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase_ = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type="v_prediction" ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=UpperCamelCase , low_res_scheduler=UpperCamelCase , scheduler=UpperCamelCase , vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) lowerCamelCase_ = "A painting of a squirrel eating a burger" lowerCamelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ = output.images assert image.shape[0] == 2 lowerCamelCase_ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=UpperCamelCase , generator=UpperCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type="v_prediction" ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase_ = unet.half() lowerCamelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=UpperCamelCase , low_res_scheduler=UpperCamelCase , scheduler=UpperCamelCase , vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) lowerCamelCase_ = "A painting of a squirrel eating a burger" lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=2 , output_type="np" , ).images lowerCamelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) lowerCamelCase_ = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = "a cat sitting on a park bench" lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=UpperCamelCase , image=UpperCamelCase , generator=UpperCamelCase , output_type="np" , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def snake_case ( self ): """simple docstring""" lowerCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) lowerCamelCase_ = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = "a cat sitting on a park bench" lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=UpperCamelCase , image=UpperCamelCase , generator=UpperCamelCase , output_type="np" , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def snake_case ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCamelCase_ = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ = "a cat sitting on a park bench" lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=UpperCamelCase , image=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , output_type="np" , ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
55
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase (lowercase_: int , lowercase_: Dict , lowercase_: Tuple ) -> Any: # Construct model if gpta_config_file == "": A__ : Dict = GPTaConfig() else: A__ : List[Any] = GPTaConfig.from_json_file(lowercase_ ) A__ : Tuple = GPTaModel(lowercase_ ) # Load weights from numpy load_tf_weights_in_gpta(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) A_ : str = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
192
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __A=None , __A=None , *__A , **__A ) -> Optional[Any]: super().__init__(*__A , **__A ) if config is None: assert isinstance(self.model , __A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) a =self.model.config else: a =config a =data_args a =self.config.tgt_vocab_size if isinstance(self.config , __A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: a =torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a =label_smoothed_nll_loss def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]: if self.optimizer is None: a =['''bias''', '''LayerNorm.weight'''] a =[ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] a =Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a =Adafactor a ={'''scale_parameter''': False, '''relative_step''': False} else: a =AdamW a ={ '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } a =self.args.learning_rate if self.sharded_ddp: a =OSS( params=__A , optim=__A , **__A , ) else: a =optimizer_cls(__A , **__A ) if self.lr_scheduler is None: a =self._get_lr_scheduler(__A ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: a =arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a =schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a =schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: a =schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__A ) return scheduler def SCREAMING_SNAKE_CASE ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Optional[int]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a =model(**__A , use_cache=__A )[0] a =self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models a , a =model(**__A , labels=__A , use_cache=__A )[:2] else: # compute label smoothed loss a =model(**__A , use_cache=__A )[0] a =torch.nn.functional.log_softmax(__A , dim=-1 ) a , a =self.loss_fn(__A , __A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Optional[Any]: a =inputs.pop('''labels''' ) a , a =self._compute_loss(__A , __A , __A ) return loss def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a =self._prepare_inputs(__A ) a ={ '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a =self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **__A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a =self._pad_tensors_to_max_len(__A , gen_kwargs['''max_length'''] ) a =inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data a , a =self._compute_loss(__A , __A , __A ) a =loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a =generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a =self._pad_tensors_to_max_len(__A , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> List[Any]: # If PAD token is not defined at least EOS token has to be defined a =self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) a =pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) a =tensor return padded_tensor
355
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=[30, 30] , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=None , __A=8 , __A=10 , ) -> List[Any]: a =parent a =batch_size a =image_size a =patch_size a =num_channels a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =type_sequence_label_size a =initializer_range a =num_labels a =scope a =n_targets a =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens a =(image_size[1] // patch_size) * (image_size[0] // patch_size) a =num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) a =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) a =[] for i in range(self.batch_size ): a ={} a =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__A ) a =torch.rand(self.n_targets , 4 , device=__A ) labels.append(__A ) a =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> int: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> List[Any]: a =YolosModel(config=__A ) model.to(__A ) model.eval() a =model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict: a =YolosForObjectDetection(__A ) model.to(__A ) model.eval() a =model(pixel_values=__A ) a =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) a =model(pixel_values=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Any: a =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": a =[] for i in range(self.model_tester.batch_size ): a ={} a =torch.ones( size=(self.model_tester.n_targets,) , device=__A , dtype=torch.long ) a =torch.ones( self.model_tester.n_targets , 4 , device=__A , dtype=torch.float ) labels.append(__A ) a =labels return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =YolosModelTester(self ) a =ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # YOLOS does not use inputs_embeds pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True # in YOLOS, the seq_len is different a =self.model_tester.expected_seq_len for model_class in self.all_model_classes: a =True a =False a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a =len(__A ) # Check attention is always last and order is fine a =True a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =1 self.assertEqual(out_len + added_hidden_states , len(__A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self ) -> str: def check_hidden_states_output(__A , __A , __A ): a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.hidden_states a =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) # YOLOS has a different seq_length a =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__A , __A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =YolosModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Dict: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__A ) a =self.default_image_processor a =prepare_img() a =image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): a =model(inputs.pixel_values ) # verify outputs a =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __A ) a =torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=__A , ) a =torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 ) ) # verify postprocessing a =image_processor.post_process_object_detection( __A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] a =torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(__A ) a =[75, 75, 17, 63, 17] a =torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(__A ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __A , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __A ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __A ) )
215
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __snake_case : Dict =pytest.mark.integration @require_faiss class lowerCamelCase__ ( _UpperCamelCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(lowerCAmelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" import faiss lowerCAmelCase__ : Optional[int] = self._create_dummy_dataset() lowerCAmelCase__ : Any = dset.map( lambda __lowerCamelCase ,__lowerCamelCase : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=lowerCAmelCase_ ,keep_in_memory=lowerCAmelCase_ ) lowerCAmelCase__ : Optional[int] = dset.add_faiss_index('''vecs''' ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''' ) dset.drop_index('''vecs''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" import faiss lowerCAmelCase__ : Tuple = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='''vecs''' ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) lowerCAmelCase__ , lowerCAmelCase__ : str = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" import faiss lowerCAmelCase__ : Dict = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='''vecs''' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCAmelCase_ ) as tmp_file: dset.save_faiss_index('''vecs''' ,tmp_file.name ) dset.load_faiss_index('''vecs2''' ,tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase__ , lowerCAmelCase__ : Any = dset.get_nearest_examples('''vecs2''' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''' ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(lowerCAmelCase_ ,partial(dset.get_nearest_examples ,'''vecs2''' ,np.ones(5 ,dtype=np.floataa ) ) ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase__ : Any = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowerCAmelCase__ : Optional[Any] = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase__ : Dict = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} lowerCAmelCase__ : Tuple = Elasticsearch() dset.add_elasticsearch_index('''filename''' ,es_client=lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = dset.get_nearest_examples('''filename''' ,'''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''' ) @require_faiss class lowerCamelCase__ ( _UpperCamelCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> int: """simple docstring""" import faiss lowerCAmelCase__ : Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query lowerCAmelCase__ : Optional[Any] = np.zeros(5 ,dtype=np.floataa ) lowerCAmelCase__ : Any = 1 lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = index.search(lowerCAmelCase_ ) self.assertRaises(lowerCAmelCase_ ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries lowerCAmelCase__ : Optional[Any] = np.eye(5 ,dtype=np.floataa )[::-1] lowerCAmelCase__ , lowerCAmelCase__ : Any = index.search_batch(lowerCAmelCase_ ) self.assertRaises(lowerCAmelCase_ ,index.search_batch ,queries[0] ) lowerCAmelCase__ : str = [scores[0] for scores in total_scores] lowerCAmelCase__ : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase_ ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,lowerCAmelCase_ ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" import faiss lowerCAmelCase__ : Tuple = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) lowerCAmelCase__ : Union[str, Any] = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(lowerCAmelCase_ ): lowerCAmelCase__ : List[Any] = FaissIndex(string_factory='''Flat''' ,custom_index=faiss.IndexFlat(5 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" import faiss lowerCAmelCase__ : str = faiss.IndexFlat(5 ) lowerCAmelCase__ : Dict = FaissIndex(custom_index=lowerCAmelCase_ ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" import faiss lowerCAmelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCAmelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase__ : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase__ : Optional[Any] = np.zeros(5 ,dtype=np.floataa ) lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ , lowerCAmelCase__ : str = index.search(lowerCAmelCase_ ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]): '''simple docstring''' import faiss lowerCAmelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 ,dtype=np.floataa)) lowerCAmelCase__ : Any = '''index.faiss''' lowerCAmelCase__ : Tuple = f"""mock://{index_name}""" index.save(lowerCAmelCase_ ,storage_options=mockfs.storage_options) lowerCAmelCase__ : List[Any] = FaissIndex.load(lowerCAmelCase_ ,storage_options=mockfs.storage_options) lowerCAmelCase__ : Optional[int] = np.zeros(5 ,dtype=np.floataa) lowerCAmelCase__ : int = 1 lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = index.search(lowerCAmelCase_) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCamelCase__ ( _UpperCamelCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> int: """simple docstring""" from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowerCAmelCase__ : Any = Elasticsearch() lowerCAmelCase__ : Union[str, Any] = {'''acknowledged''': True} lowerCAmelCase__ : Optional[Any] = ElasticSearchIndex(es_client=lowerCAmelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query lowerCAmelCase__ : Dict = '''foo''' lowerCAmelCase__ : Any = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = index.search(lowerCAmelCase_ ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout lowerCAmelCase__ : Optional[Any] = '''foo''' lowerCAmelCase__ : Tuple = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = index.search(lowerCAmelCase_ ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries lowerCAmelCase__ : int = ['''foo''', '''bar''', '''foobar'''] lowerCAmelCase__ : List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = index.search_batch(lowerCAmelCase_ ) lowerCAmelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCAmelCase__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase_ ) ,0 ) self.assertListEqual([1, 1, 1] ,lowerCAmelCase_ ) # batched queries with timeout lowerCAmelCase__ : Any = ['''foo''', '''bar''', '''foobar'''] lowerCAmelCase__ : Tuple = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowerCAmelCase__ , lowerCAmelCase__ : Any = index.search_batch(lowerCAmelCase_ ,request_timeout=30 ) lowerCAmelCase__ : Dict = [scores[0] for scores in total_scores] lowerCAmelCase__ : Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase_ ) ,0 ) self.assertListEqual([1, 1, 1] ,lowerCAmelCase_ )
129
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : Union[str, Any] = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = ['LayoutLMv3FeatureExtractor'] _snake_case : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "wav2vec2" def __init__( self : Union[str, Any] , snake_case_ : Any=32 , snake_case_ : str=768 , snake_case_ : str=12 , snake_case_ : int=12 , snake_case_ : Union[str, Any]=3_072 , snake_case_ : Optional[int]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : List[str]=0.1 , snake_case_ : int=0.1 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : Union[str, Any]=1E-5 , snake_case_ : int="group" , snake_case_ : Optional[Any]="gelu" , snake_case_ : List[Any]=(512, 512, 512, 512, 512, 512, 512) , snake_case_ : Tuple=(5, 2, 2, 2, 2, 2, 2) , snake_case_ : Tuple=(10, 3, 3, 3, 3, 2, 2) , snake_case_ : Optional[int]=False , snake_case_ : str=128 , snake_case_ : List[str]=16 , snake_case_ : Optional[Any]=False , snake_case_ : Any=True , snake_case_ : str=0.05 , snake_case_ : Optional[int]=10 , snake_case_ : Dict=2 , snake_case_ : Tuple=0.0 , snake_case_ : Union[str, Any]=10 , snake_case_ : List[Any]=0 , snake_case_ : int=320 , snake_case_ : Any=2 , snake_case_ : int=0.1 , snake_case_ : Optional[Any]=100 , snake_case_ : Optional[Any]=256 , snake_case_ : Any=256 , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]="sum" , snake_case_ : Optional[Any]=False , snake_case_ : str=False , snake_case_ : Optional[Any]=256 , snake_case_ : Optional[int]=(512, 512, 512, 512, 1_500) , snake_case_ : List[Any]=(5, 3, 3, 1, 1) , snake_case_ : Dict=(1, 2, 3, 1, 1) , snake_case_ : List[Any]=512 , snake_case_ : Optional[int]=0 , snake_case_ : str=1 , snake_case_ : Optional[int]=2 , snake_case_ : Tuple=False , snake_case_ : Dict=3 , snake_case_ : Any=2 , snake_case_ : Optional[Any]=3 , snake_case_ : List[str]=None , snake_case_ : List[Any]=None , **snake_case_ : Dict , ): super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) snake_case__ : Dict = hidden_size snake_case__ : Any = feat_extract_norm snake_case__ : Dict = feat_extract_activation snake_case__ : Tuple = list(snake_case_ ) snake_case__ : int = list(snake_case_ ) snake_case__ : Optional[Any] = list(snake_case_ ) snake_case__ : Dict = conv_bias snake_case__ : Dict = num_conv_pos_embeddings snake_case__ : List[str] = num_conv_pos_embedding_groups snake_case__ : List[str] = len(self.conv_dim ) snake_case__ : Tuple = num_hidden_layers snake_case__ : str = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = num_attention_heads snake_case__ : int = hidden_dropout snake_case__ : List[Any] = attention_dropout snake_case__ : List[str] = activation_dropout snake_case__ : Tuple = feat_proj_dropout snake_case__ : int = final_dropout snake_case__ : Tuple = layerdrop snake_case__ : Optional[Any] = layer_norm_eps snake_case__ : Optional[Any] = initializer_range snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = do_stable_layer_norm snake_case__ : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ : Dict = apply_spec_augment snake_case__ : str = mask_time_prob snake_case__ : Optional[Any] = mask_time_length snake_case__ : Tuple = mask_time_min_masks snake_case__ : Optional[int] = mask_feature_prob snake_case__ : str = mask_feature_length snake_case__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case__ : List[Any] = num_codevectors_per_group snake_case__ : Tuple = num_codevector_groups snake_case__ : Union[str, Any] = contrastive_logits_temperature snake_case__ : Tuple = feat_quantizer_dropout snake_case__ : Any = num_negatives snake_case__ : Optional[int] = codevector_dim snake_case__ : Optional[Any] = proj_codevector_dim snake_case__ : Union[str, Any] = diversity_loss_weight # ctc loss snake_case__ : str = ctc_loss_reduction snake_case__ : List[str] = ctc_zero_infinity # adapter snake_case__ : List[Any] = add_adapter snake_case__ : Optional[int] = adapter_kernel_size snake_case__ : Any = adapter_stride snake_case__ : Optional[Any] = num_adapter_layers snake_case__ : Any = output_hidden_size or hidden_size snake_case__ : int = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ : Union[str, Any] = list(snake_case_ ) snake_case__ : List[Any] = list(snake_case_ ) snake_case__ : Tuple = list(snake_case_ ) snake_case__ : List[Any] = xvector_output_dim @property def lowerCamelCase ( self : Optional[int] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
360
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __a = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , ) -> List[Any]: output_path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , enable_onnx_checker=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) else: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ) -> int: snake_case__ : str = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case__ : List[Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: snake_case__ : Tuple = """cpu""" snake_case__ : int = Path(_lowerCAmelCase ) # VAE DECODER snake_case__ : List[str] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) snake_case__ : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part snake_case__ : Dict = vae_decoder.decode onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , 25 , 25 ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_lowerCAmelCase , ) del vae_decoder if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
43
0
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) __lowerCAmelCase = hex_num[0] == """-""" if is_negative: __lowerCAmelCase = hex_num[1:] try: __lowerCAmelCase = int(_lowerCAmelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) __lowerCAmelCase = """""" while int_num > 0: __lowerCAmelCase = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
301
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
1
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 2**power SCREAMING_SNAKE_CASE__ = 0 while n: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
204
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Tuple = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(__UpperCamelCase , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(__UpperCamelCase , force_download=__UpperCamelCase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split("""/""" ) SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(__UpperCamelCase )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( __UpperCamelCase , legacy_format=__UpperCamelCase , filename_prefix=__UpperCamelCase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(__UpperCamelCase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) __lowerCamelCase : Any = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
204
1
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A__ ( UpperCAmelCase_=None , UpperCAmelCase_=None ): return field(default_factory=lambda: default , metadata=UpperCAmelCase_ ) @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """The csv file to plot."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowercase__ = list_field( default=lowercase , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def A__ ( UpperCAmelCase_ ): try: int(UpperCAmelCase_ ) return True except ValueError: return False def A__ ( UpperCAmelCase_ ): try: float(UpperCAmelCase_ ) return True except ValueError: return False class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = args _UpperCamelCase : Optional[Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file ,newline='' ) as csv_file: _UpperCamelCase : List[Any] = csv.DictReader(lowerCamelCase__ ) for row in reader: _UpperCamelCase : Any = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _UpperCamelCase : Optional[int] = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _UpperCamelCase : Dict = float(row['result'] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Optional[int] = plt.subplots() _UpperCamelCase : List[str] = 'Time usage' if self.args.is_time else 'Memory usage' _UpperCamelCase : List[Any] = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCamelCase : Dict = sorted(set(self.result_dict[model_name]['bsz'] ) ) _UpperCamelCase : Optional[int] = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _UpperCamelCase : List[str] = self.result_dict[model_name]['result'] ((_UpperCamelCase) , (_UpperCamelCase)) : Tuple = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCamelCase : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCamelCase : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] ,dtype=lowerCamelCase__ ,) else: _UpperCamelCase : str = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] ,dtype=np.floataa ,) ((_UpperCamelCase) , (_UpperCamelCase)) : Tuple = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _UpperCamelCase : Dict = np.asarray(lowerCamelCase__ ,lowerCamelCase__ )[: len(lowerCamelCase__ )] plt.scatter( lowerCamelCase__ ,lowerCamelCase__ ,label=F'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(lowerCamelCase__ ,lowerCamelCase__ ,'--' ) title_str += F' {label_model_name} vs.' _UpperCamelCase : Optional[Any] = title_str[:-4] _UpperCamelCase : str = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCamelCase__ ) plt.xlabel(lowerCamelCase__ ) plt.ylabel(lowerCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A__ ( ): _UpperCamelCase : str = HfArgumentParser(UpperCAmelCase_ ) _UpperCamelCase : Dict = parser.parse_args_into_dataclasses()[0] _UpperCamelCase : List[str] = Plot(args=UpperCAmelCase_ ) plot.plot() if __name__ == "__main__": main()
83
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[Any] = """canine""" def __init__( self , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=1_6384 , a=16 , a=0.02 , a=1e-12 , a=0 , a=0xE_000 , a=0xE_001 , a=4 , a=4 , a=8 , a=1_6384 , a=128 , **a , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) lowercase__ : int = max_position_embeddings lowercase__ : List[str] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : Dict = type_vocab_size lowercase__ : Any = layer_norm_eps # Character config: lowercase__ : List[Any] = downsampling_rate lowercase__ : Dict = upsampling_kernel_size lowercase__ : Any = num_hash_functions lowercase__ : Any = num_hash_buckets lowercase__ : Optional[int] = local_transformer_stride
216
from __future__ import annotations from collections.abc import Callable def snake_case__ ( SCREAMING_SNAKE_CASE_ : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE_ : int | float , SCREAMING_SNAKE_CASE_ : int | float , SCREAMING_SNAKE_CASE_ : int = 100 , ): '''simple docstring''' lowercase__ : Tuple = x_start lowercase__ : Tuple = fnc(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = 0.0 for _ in range(SCREAMING_SNAKE_CASE_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowercase__ : Any = (x_end - x_start) / steps + xa lowercase__ : Optional[Any] = fnc(SCREAMING_SNAKE_CASE_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowercase__ : Any = xa lowercase__ : str = fxa return area if __name__ == "__main__": def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') snake_case_ = 10 while i <= 100_000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
216
1
"""simple docstring""" from math import factorial __UpperCamelCase = {str(digit): factorial(digit) for digit in range(10)} def UpperCAmelCase ( UpperCAmelCase ) -> int: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowerCAmelCase_ ) ) def UpperCAmelCase ( UpperCAmelCase = 60 , UpperCAmelCase = 1000000 ) -> int: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length snake_case_ = 0 # the cached sizes of the previous chains snake_case_ = {} for start_chain_element in range(1 , lowerCAmelCase_ ): # The temporary set will contain the elements of the chain snake_case_ = set() snake_case_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. snake_case_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowerCAmelCase_ ) chain_set_length += 1 snake_case_ = digit_factorial_sum(lowerCAmelCase_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] snake_case_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
69
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : List[str] = logging.get_logger(__name__) A_ : Optional[Any] = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } A_ : Dict = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = EfficientNetConfig() _UpperCAmelCase : List[Any] = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase : str = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase : int = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase : Optional[Any] = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : List[str] = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase : Optional[int] = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase : List[str] = """huggingface/label-files""" _UpperCAmelCase : Optional[Any] = """imagenet-1k-id2label.json""" _UpperCAmelCase : List[str] = 1000 _UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : str = {v: k for k, v in idalabel.items()} return config def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Tuple = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : str = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : Tuple = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=lowerCAmelCase_ , ) return preprocessor def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : int = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase : Optional[int] = sorted(set(lowerCAmelCase_ ) ) _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = {b: str(lowerCAmelCase_ ) for b, i in zip(lowerCAmelCase_ , range(lowerCAmelCase_ ) )} _UpperCAmelCase : List[str] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase : Any = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase : str = """efficientnet.""" + item[1] _UpperCAmelCase : Optional[Any] = """classifier.weight""" _UpperCAmelCase : Optional[Any] = """classifier.bias""" return key_mapping def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase : Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _UpperCAmelCase : int = torch.from_numpy(np.transpose(lowerCAmelCase_ ) ) else: _UpperCAmelCase : List[str] = torch.from_numpy(lowerCAmelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = model_classes[model_name]( include_top=lowerCAmelCase_ , weights="""imagenet""" , input_tensor=lowerCAmelCase_ , input_shape=lowerCAmelCase_ , pooling=lowerCAmelCase_ , classes=1000 , classifier_activation="""softmax""" , ) _UpperCAmelCase : List[str] = original_model.trainable_variables _UpperCAmelCase : Any = original_model.non_trainable_variables _UpperCAmelCase : Optional[int] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase : Dict = param.numpy() _UpperCAmelCase : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase : List[Any] = get_efficientnet_config(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(lowerCAmelCase_ ).eval() _UpperCAmelCase : int = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase : Optional[int] = rename_keys(lowerCAmelCase_ ) replace_params(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Initialize preprocessor and preprocess input image _UpperCAmelCase : str = convert_image_processor(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase : List[str] = hf_model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase : int = False _UpperCAmelCase : Optional[int] = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : Dict = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _UpperCAmelCase : Optional[Any] = image.img_to_array(lowerCAmelCase_ ) _UpperCAmelCase : str = np.expand_dims(lowerCAmelCase_ , axis=0 ) _UpperCAmelCase : str = original_model.predict(lowerCAmelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase_ ): os.mkdir(lowerCAmelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase_ ) preprocessor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _UpperCAmelCase : List[Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCAmelCase_ ) hf_model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") A_ : Optional[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
215
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__( datasets.Metric): def lowerCAmelCase__ ( self: Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any=4 , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = compute_bleu( reference_corpus=UpperCamelCase_ , translation_corpus=UpperCamelCase_ , max_order=UpperCamelCase_ , smooth=UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase), (__lowerCamelCase), (__lowerCamelCase), (__lowerCamelCase), (__lowerCamelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( UpperCAmelCase_ ): """simple docstring""" UpperCamelCase_ : Any = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : Optional[Any] = """ViltImageProcessor""" UpperCamelCase_ : Optional[int] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Tuple , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowercase , ) _UpperCAmelCase : Tuple = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowercase , __lowercase ) _UpperCAmelCase : Optional[Any] = self.image_processor def __call__( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : str = True , lowerCAmelCase__ : Any = False , lowerCAmelCase__ : int = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : Tuple = 0 , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : Tuple = False , lowerCAmelCase__ : Optional[Any] = False , lowerCAmelCase__ : Optional[int] = False , lowerCAmelCase__ : str = False , lowerCAmelCase__ : Dict = True , lowerCAmelCase__ : List[Any] = None , **lowerCAmelCase__ : str , ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Tuple = self.tokenizer( text=__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , stride=__lowercase , pad_to_multiple_of=__lowercase , return_token_type_ids=__lowercase , return_attention_mask=__lowercase , return_overflowing_tokens=__lowercase , return_special_tokens_mask=__lowercase , return_offsets_mapping=__lowercase , return_length=__lowercase , verbose=__lowercase , return_tensors=__lowercase , **__lowercase , ) # add pixel_values + pixel_mask _UpperCAmelCase : str = self.image_processor(__lowercase , return_tensors=__lowercase ) encoding.update(__lowercase ) return encoding def _lowerCAmelCase ( self : List[Any] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : int ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def _lowerCAmelCase ( self : Optional[Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Any ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = self.tokenizer.model_input_names _UpperCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowercase , ) return self.image_processor_class @property def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowercase , ) return self.image_processor
145
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) __UpperCamelCase :List[str] = AlbertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
43
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = "Usage of script: script_name <size_of_canvas:int>" lowercase_ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : int = bool(random.getrandbits(1 ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Any = 0 __snake_case : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : str = pt if pt: if alive < 2: __snake_case : Optional[Any] = False elif alive == 2 or alive == 3: __snake_case : Union[str, Any] = True elif alive > 3: __snake_case : Optional[int] = False else: if alive == 3: __snake_case : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["w", "k"]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self : Optional[int] , A_ : int = 128 , A_ : int = 256 , A_ : float = 2000.0 , A_ : int = 768 , A_ : int = 12 , A_ : int = 12 , A_ : int = 64 , A_ : int = 2048 , A_ : float = 0.1 , ) -> str: """simple docstring""" super().__init__() lowerCamelCase_ = nn.Sequential( nn.Linear(A_ , d_model * 4 , bias=A_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=A_ ) , nn.SiLU() , ) lowerCamelCase_ = nn.Embedding(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = nn.Linear(A_ , A_ , bias=A_ ) lowerCamelCase_ = nn.Dropout(p=A_ ) lowerCamelCase_ = nn.ModuleList() for lyr_num in range(A_ ): # FiLM conditional T5 decoder lowerCamelCase_ = DecoderLayer(d_model=A_ , d_kv=A_ , num_heads=A_ , d_ff=A_ , dropout_rate=A_ ) self.decoders.append(A_ ) lowerCamelCase_ = TaLayerNorm(A_ ) lowerCamelCase_ = nn.Dropout(p=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ , bias=A_ ) def a__ ( self : Tuple , A_ : int , A_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def a__ ( self : Any , A_ : Tuple , A_ : int , A_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCamelCase_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCamelCase_ = self.conditioning_emb(A_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCamelCase_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCamelCase_ = torch.broadcast_to( torch.arange(A_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCamelCase_ = self.position_encoding(A_ ) lowerCamelCase_ = self.continuous_inputs_projection(A_ ) inputs += position_encodings lowerCamelCase_ = self.dropout(A_ ) # decoder: No padding present. lowerCamelCase_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCamelCase_ = [(x, self.encoder_decoder_mask(A_ , A_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCamelCase_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCamelCase_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCamelCase_ = lyr( A_ , conditioning_emb=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , )[0] lowerCamelCase_ = self.decoder_norm(A_ ) lowerCamelCase_ = self.post_dropout(A_ ) lowerCamelCase_ = self.spec_out(A_ ) return spec_out class A( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , A_ : Tuple , A_ : List[str] , A_ : Dict , A_ : Any , A_ : List[str] , A_ : Union[str, Any]=1E-6 ) -> Dict: """simple docstring""" super().__init__() lowerCamelCase_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=A_ , d_kv=A_ , num_heads=A_ , dropout_rate=A_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=A_ , d_kv=A_ , num_heads=A_ , dropout_rate=A_ , layer_norm_epsilon=A_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=A_ , d_ff=A_ , dropout_rate=A_ , layer_norm_epsilon=A_ ) ) def a__ ( self : Optional[Any] , A_ : Dict , A_ : Any=None , A_ : Dict=None , A_ : Optional[int]=None , A_ : Dict=None , A_ : int=None , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.layer[0]( A_ , conditioning_emb=A_ , attention_mask=A_ , ) if encoder_hidden_states is not None: lowerCamelCase_ = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) lowerCamelCase_ = self.layer[1]( A_ , key_value_states=A_ , attention_mask=A_ , ) # Apply Film Conditional Feed Forward layer lowerCamelCase_ = self.layer[-1](A_ , A_ ) return (hidden_states,) class A( nn.Module ): '''simple docstring''' def __init__( self : List[str] , A_ : Optional[Any] , A_ : int , A_ : Union[str, Any] , A_ : Dict ) -> int: """simple docstring""" super().__init__() lowerCamelCase_ = TaLayerNorm(A_ ) lowerCamelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=A_ ) lowerCamelCase_ = Attention(query_dim=A_ , heads=A_ , dim_head=A_ , out_bias=A_ , scale_qk=A_ ) lowerCamelCase_ = nn.Dropout(A_ ) def a__ ( self : Tuple , A_ : List[str] , A_ : Dict=None , A_ : Union[str, Any]=None , ) -> Dict: """simple docstring""" lowerCamelCase_ = self.layer_norm(A_ ) if conditioning_emb is not None: lowerCamelCase_ = self.FiLMLayer(A_ , A_ ) # Self-attention block lowerCamelCase_ = self.attention(A_ ) lowerCamelCase_ = hidden_states + self.dropout(A_ ) return hidden_states class A( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , A_ : Union[str, Any] , A_ : List[Any] , A_ : int , A_ : Any , A_ : Optional[int] ) -> int: """simple docstring""" super().__init__() lowerCamelCase_ = Attention(query_dim=A_ , heads=A_ , dim_head=A_ , out_bias=A_ , scale_qk=A_ ) lowerCamelCase_ = TaLayerNorm(A_ , eps=A_ ) lowerCamelCase_ = nn.Dropout(A_ ) def a__ ( self : Dict , A_ : Optional[Any] , A_ : Optional[int]=None , A_ : Any=None , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.layer_norm(A_ ) lowerCamelCase_ = self.attention( A_ , encoder_hidden_states=A_ , attention_mask=attention_mask.squeeze(1 ) , ) lowerCamelCase_ = hidden_states + self.dropout(A_ ) return layer_output class A( nn.Module ): '''simple docstring''' def __init__( self : str , A_ : Optional[int] , A_ : Union[str, Any] , A_ : str , A_ : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() lowerCamelCase_ = TaDenseGatedActDense(d_model=A_ , d_ff=A_ , dropout_rate=A_ ) lowerCamelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=A_ ) lowerCamelCase_ = TaLayerNorm(A_ , eps=A_ ) lowerCamelCase_ = nn.Dropout(A_ ) def a__ ( self : List[str] , A_ : Any , A_ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.layer_norm(A_ ) if conditioning_emb is not None: lowerCamelCase_ = self.film(A_ , A_ ) lowerCamelCase_ = self.DenseReluDense(A_ ) lowerCamelCase_ = hidden_states + self.dropout(A_ ) return hidden_states class A( nn.Module ): '''simple docstring''' def __init__( self : Any , A_ : str , A_ : str , A_ : Optional[int] ) -> Tuple: """simple docstring""" super().__init__() lowerCamelCase_ = nn.Linear(A_ , A_ , bias=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ , bias=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ , bias=A_ ) lowerCamelCase_ = nn.Dropout(A_ ) lowerCamelCase_ = NewGELUActivation() def a__ ( self : Optional[int] , A_ : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.act(self.wi_a(A_ ) ) lowerCamelCase_ = self.wi_a(A_ ) lowerCamelCase_ = hidden_gelu * hidden_linear lowerCamelCase_ = self.dropout(A_ ) lowerCamelCase_ = self.wo(A_ ) return hidden_states class A( nn.Module ): '''simple docstring''' def __init__( self : Any , A_ : str , A_ : List[str]=1E-6 ) -> Optional[int]: """simple docstring""" super().__init__() lowerCamelCase_ = nn.Parameter(torch.ones(A_ ) ) lowerCamelCase_ = eps def a__ ( self : str , A_ : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=A_ ) lowerCamelCase_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCamelCase_ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class A( nn.Module ): '''simple docstring''' def a__ ( self : List[str] , A_ : torch.Tensor ) -> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(A_ , 3.0 )) )) class A( nn.Module ): '''simple docstring''' def __init__( self : Any , A_ : List[str] , A_ : List[str] ) -> Dict: """simple docstring""" super().__init__() lowerCamelCase_ = nn.Linear(A_ , out_features * 2 , bias=A_ ) def a__ ( self : Dict , A_ : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.scale_bias(A_ ) lowerCamelCase_ , lowerCamelCase_ = torch.chunk(A_ , 2 , -1 ) lowerCamelCase_ = x * (1 + scale) + shift return x
204
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = 1 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def a__ ( self : Any ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(A_ ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase_ = output.images lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=A_ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] lowerCamelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase_ = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase_ = output.images assert image.shape[0] == 2 lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=A_ , generator=A_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def a__ ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase_ = unet.half() lowerCamelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=A_ , generator=A_ , num_inference_steps=2 , output_type='np' , ).images lowerCamelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Tuple ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) lowerCamelCase_ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCamelCase_ = 'a cat sitting on a park bench' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def a__ ( self : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) lowerCamelCase_ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCamelCase_ = 'a cat sitting on a park bench' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase_ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ = 'a cat sitting on a park bench' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , image=A_ , generator=A_ , num_inference_steps=5 , output_type='np' , ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
204
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class A (SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = FlaxAutoencoderKL @property def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = 4 A__ = 3 A__ = (32, 32) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.uniform(lowercase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def a_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } A__ = self.dummy_input return init_dict, inputs_dict
369
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple=13 , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=33 , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Optional[Any]=5 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : List[Any]=37 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[Any]=5_12 , __lowerCAmelCase : Dict=16 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Tuple=None , ) -> int: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : Optional[int] ) -> str: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a_ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" A__ = EsmModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ) -> str: """simple docstring""" A__ = EsmForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> Any: """simple docstring""" A__ = self.num_labels A__ = EsmForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : Any ) -> Dict: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = False __lowerCamelCase : Union[str, Any] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : List[Any] = () __lowerCamelCase : Optional[int] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Any = True def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = EsmModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def a_ ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def a_ ( self : Optional[int] ) -> int: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = EsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs()[0] A__ = EsmEmbeddings(config=__lowerCAmelCase ) A__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) A__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) A__ = create_position_ids_from_input_ids(__lowerCAmelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCAmelCase , __lowerCAmelCase ) ) ) def a_ ( self : List[Any] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs()[0] A__ = EsmEmbeddings(config=__lowerCAmelCase ) A__ = torch.empty(2 , 4 , 30 ) A__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] A__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) A__ = embeddings.create_position_ids_from_inputs_embeds(__lowerCAmelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCAmelCase , __lowerCAmelCase ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a_ ( self : List[Any] ) -> Dict: """simple docstring""" pass @require_torch class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def a_ ( self : int ) -> Optional[int]: """simple docstring""" with torch.no_grad(): A__ = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ = model(__lowerCAmelCase )[0] A__ = 33 A__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __lowerCAmelCase ) A__ = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def a_ ( self : List[str] ) -> Tuple: """simple docstring""" with torch.no_grad(): A__ = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A__ = model(__lowerCAmelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) )
276
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ ='src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowercase__ =importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowercase__ =spec.loader.load_module() lowercase__ =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase__ =re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowercase__ ={ 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def __UpperCamelCase ( ): __a : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): __a : List[Any] = False # source code of `config_class` __a : Dict = inspect.getsource(lowerCAmelCase__ ) __a : Tuple = _re_checkpoint.findall(lowerCAmelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __a , __a : Dict = checkpoint # verify the checkpoint name corresponds to the checkpoint link __a : Tuple = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: __a : str = True break __a : str = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __a : int = '''\n'''.join(sorted(lowerCAmelCase__ ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
216
from __future__ import annotations import math import random from typing import Any class UpperCamelCase__ : def __init__(self : Optional[Any] ): __a : list[Any] = [] __a : int = 0 __a : int = 0 def lowerCAmelCase (self : Optional[int] ): return self.head == self.tail def lowerCAmelCase (self : List[Any] , snake_case_ : Any ): self.data.append(snake_case_ ) __a : str = self.tail + 1 def lowerCAmelCase (self : Optional[int] ): __a : int = self.data[self.head] __a : Union[str, Any] = self.head + 1 return ret def lowerCAmelCase (self : Union[str, Any] ): return self.tail - self.head def lowerCAmelCase (self : Union[str, Any] ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCamelCase__ : def __init__(self : List[str] , snake_case_ : Any ): __a : List[str] = data __a : MyNode | None = None __a : MyNode | None = None __a : int = 1 def lowerCAmelCase (self : int ): return self.data def lowerCAmelCase (self : Dict ): return self.left def lowerCAmelCase (self : int ): return self.right def lowerCAmelCase (self : int ): return self.height def lowerCAmelCase (self : Optional[Any] , snake_case_ : Any ): __a : Tuple = data def lowerCAmelCase (self : Any , snake_case_ : MyNode | None ): __a : Any = node def lowerCAmelCase (self : Union[str, Any] , snake_case_ : MyNode | None ): __a : List[str] = node def lowerCAmelCase (self : Optional[int] , snake_case_ : int ): __a : Union[str, Any] = height def __UpperCamelCase ( lowerCAmelCase__ : MyNode | None ): if node is None: return 0 return node.get_height() def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): if a > b: return a return b def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): print('''left rotation node:''' , node.get_data() ) __a : str = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) __a : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) __a : Union[str, Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): print('''right rotation node:''' , node.get_data() ) __a : List[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) __a : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) __a : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): __a : Union[str, Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): __a : Optional[int] = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : MyNode | None , lowerCAmelCase__ : Any ): if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __a : Tuple = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __a : str = right_rotation(lowerCAmelCase__ ) else: __a : Dict = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __a : Dict = node.get_right() assert right_child is not None if data < right_child.get_data(): __a : str = rl_rotation(lowerCAmelCase__ ) else: __a : Tuple = left_rotation(lowerCAmelCase__ ) __a : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): while True: __a : Union[str, Any] = root.get_right() if right_child is None: break __a : str = right_child return root.get_data() def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): while True: __a : Optional[int] = root.get_left() if left_child is None: break __a : int = left_child return root.get_data() def __UpperCamelCase ( lowerCAmelCase__ : MyNode , lowerCAmelCase__ : Any ): __a : Optional[Any] = root.get_left() __a : List[str] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __a : str = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) elif left_child is not None: __a : int = left_child elif right_child is not None: __a : List[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __a : List[Any] = left_rotation(lowerCAmelCase__ ) else: __a : Union[str, Any] = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __a : int = right_rotation(lowerCAmelCase__ ) else: __a : Tuple = lr_rotation(lowerCAmelCase__ ) __a : str = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class UpperCamelCase__ : def __init__(self : Optional[Any] ): __a : MyNode | None = None def lowerCAmelCase (self : List[Any] ): return get_height(self.root ) def lowerCAmelCase (self : Any , snake_case_ : Any ): print('''insert:''' + str(snake_case_ ) ) __a : List[Any] = insert_node(self.root , snake_case_ ) def lowerCAmelCase (self : Dict , snake_case_ : Any ): print('''delete:''' + str(snake_case_ ) ) if self.root is None: print('''Tree is empty!''' ) return __a : Union[str, Any] = del_node(self.root , snake_case_ ) def __str__(self : List[str] , ): # a level traversale, gives a more intuitive look on the tree __a : Union[str, Any] = '''''' __a : int = MyQueue() q.push(self.root ) __a : List[str] = self.get_height() if layer == 0: return output __a : List[Any] = 0 while not q.is_empty(): __a : List[str] = q.pop() __a : Optional[int] = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(snake_case_ ) q.push(snake_case_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __a : int = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , snake_case_ ) - 1: __a : str = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __UpperCamelCase ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase__ =AVLtree() lowercase__ =list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
216
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: snake_case_ : Dict = None snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} snake_case_ : Union[str, Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } snake_case_ : int = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off snake_case_ : Any = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __snake_case ( a ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : Tuple = NllbTokenizer UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self : Dict , _snake_case : List[Any]=None , _snake_case : Union[str, Any]=None , _snake_case : List[Any]="<s>" , _snake_case : Optional[Any]="</s>" , _snake_case : Optional[int]="</s>" , _snake_case : Tuple="<s>" , _snake_case : Tuple="<unk>" , _snake_case : int="<pad>" , _snake_case : List[str]="<mask>" , _snake_case : Union[str, Any]=None , _snake_case : Tuple=None , _snake_case : str=None , _snake_case : Any=False , **_snake_case : Tuple , ): """simple docstring""" UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token UpperCAmelCase_ = legacy_behaviour super().__init__( vocab_file=_snake_case , tokenizer_file=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case , additional_special_tokens=_snake_case , legacy_behaviour=_snake_case , **_snake_case , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True UpperCAmelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens}) UpperCAmelCase_ = { lang_code: self.convert_tokens_to_ids(_snake_case) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ = src_lang if src_lang is not None else '''eng_Latn''' UpperCAmelCase_ = self.convert_tokens_to_ids(self._src_lang) UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def lowerCamelCase ( self : int): """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase ( self : Any , _snake_case : str): """simple docstring""" UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def lowerCamelCase ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase ( self : Tuple , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[str] , _snake_case : Optional[str] , **_snake_case : Any): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case) UpperCAmelCase_ = self.convert_tokens_to_ids(_snake_case) UpperCAmelCase_ = tgt_lang_id return inputs def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : str = "eng_Latn" , _snake_case : Optional[List[str]] = None , _snake_case : str = "fra_Latn" , **_snake_case : Optional[int] , ): """simple docstring""" UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def lowerCamelCase ( self : List[str]): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def lowerCamelCase ( self : Optional[Any] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.convert_tokens_to_ids(_snake_case) if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] UpperCAmelCase_ = self.convert_ids_to_tokens(self.prefix_tokens) UpperCAmelCase_ = self.convert_ids_to_tokens(self.suffix_tokens) UpperCAmelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase ( self : List[str] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.convert_tokens_to_ids(_snake_case) if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] UpperCAmelCase_ = self.convert_ids_to_tokens(self.prefix_tokens) UpperCAmelCase_ = self.convert_ids_to_tokens(self.suffix_tokens) UpperCAmelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case): copyfile(self.vocab_file , _snake_case) return (out_vocab_file,)
359
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Optional[int] = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() UpperCAmelCase_ : Union[str, Any] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) UpperCAmelCase_ : Optional[Any] = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } UpperCAmelCase_ : str = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6_0_0_0, 'return_attention_mask': False, 'do_normalize': True, } UpperCAmelCase_ : List[str] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase_ : int = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) # load decoder from hub UpperCAmelCase_ : List[Any] = 'hf-internal-testing/ngram-beam-search-decoder' def __UpperCAmelCase ( self , **_UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(_UpperCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> List[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_feature_extractor() UpperCAmelCase_ : Optional[Any] = self.get_decoder() UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _UpperCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : List[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(_UpperCamelCase , 'include' ): WavaVecaProcessorWithLM( tokenizer=_UpperCamelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = self.get_decoder() UpperCAmelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) UpperCAmelCase_ : Tuple = floats_list((3, 1_0_0_0) ) UpperCAmelCase_ : List[str] = feature_extractor(_UpperCamelCase , return_tensors='np' ) UpperCAmelCase_ : Any = processor(_UpperCamelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Optional[int] = self.get_feature_extractor() UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = 'This is a test string' UpperCAmelCase_ : str = processor(text=_UpperCamelCase ) UpperCAmelCase_ : List[str] = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self , _UpperCamelCase=(2, 1_0, 1_6) , _UpperCamelCase=7_7 ) -> Optional[Any]: np.random.seed(_UpperCamelCase ) return np.random.rand(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : int = self.get_feature_extractor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = self.get_decoder() UpperCAmelCase_ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) UpperCAmelCase_ : int = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) UpperCAmelCase_ : Union[str, Any] = processor.decode(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = decoder.decode_beams(_UpperCamelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: UpperCAmelCase_ : List[Any] = self.get_feature_extractor() UpperCAmelCase_ : str = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : Dict = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) UpperCAmelCase_ : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase_ : Union[str, Any] = processor.batch_decode(_UpperCamelCase ) else: with get_context(_UpperCamelCase ).Pool() as pool: UpperCAmelCase_ : Union[str, Any] = processor.batch_decode(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = list(_UpperCamelCase ) with get_context('fork' ).Pool() as p: UpperCAmelCase_ : Dict = decoder.decode_beams_batch(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_UpperCamelCase , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(_UpperCamelCase , decoded_processor.logit_score ) self.assertListEqual(_UpperCamelCase , decoded_processor.lm_score ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Optional[int] = self.get_feature_extractor() UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = self.get_decoder() UpperCAmelCase_ : int = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) UpperCAmelCase_ : Any = self._get_dummy_logits() UpperCAmelCase_ : List[str] = 1_5 UpperCAmelCase_ : str = -20.0 UpperCAmelCase_ : List[Any] = -4.0 UpperCAmelCase_ : Dict = processor.batch_decode( _UpperCamelCase , beam_width=_UpperCamelCase , beam_prune_logp=_UpperCamelCase , token_min_logp=_UpperCamelCase , ) UpperCAmelCase_ : List[str] = decoded_processor_out.text UpperCAmelCase_ : Dict = list(_UpperCamelCase ) with get_context('fork' ).Pool() as pool: UpperCAmelCase_ : Optional[int] = decoder.decode_beams_batch( _UpperCamelCase , _UpperCamelCase , beam_width=_UpperCamelCase , beam_prune_logp=_UpperCamelCase , token_min_logp=_UpperCamelCase , ) UpperCAmelCase_ : Dict = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase_ : Union[str, Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase_ : str = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , _UpperCamelCase ) self.assertTrue(np.array_equal(_UpperCamelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , _UpperCamelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(_UpperCamelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , _UpperCamelCase , atol=1E-3 ) ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : str = self.get_feature_extractor() UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_decoder() UpperCAmelCase_ : Tuple = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase_ : List[Any] = 2.0 UpperCAmelCase_ : List[str] = 5.0 UpperCAmelCase_ : Optional[Any] = -20.0 UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Any = processor.batch_decode( _UpperCamelCase , alpha=_UpperCamelCase , beta=_UpperCamelCase , unk_score_offset=_UpperCamelCase , lm_score_boundary=_UpperCamelCase , ) UpperCAmelCase_ : Dict = decoded_processor_out.text UpperCAmelCase_ : Any = list(_UpperCamelCase ) decoder.reset_params( alpha=_UpperCamelCase , beta=_UpperCamelCase , unk_score_offset=_UpperCamelCase , lm_score_boundary=_UpperCamelCase , ) with get_context('fork' ).Pool() as pool: UpperCAmelCase_ : Tuple = decoder.decode_beams_batch( _UpperCamelCase , _UpperCamelCase , ) UpperCAmelCase_ : List[Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , _UpperCamelCase ) UpperCAmelCase_ : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase_ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase_ : Union[str, Any] = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() UpperCAmelCase_ : List[Any] = os.listdir(_UpperCamelCase ) UpperCAmelCase_ : List[str] = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : List[Any] = snapshot_download('hf-internal-testing/processor_with_lm' ) UpperCAmelCase_ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Any = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase_ : Dict = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() UpperCAmelCase_ : int = os.listdir(_UpperCamelCase ) UpperCAmelCase_ : Dict = os.listdir(_UpperCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Any = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase_ : Any = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase_ : Union[str, Any] = floats_list((3, 1_0_0_0) ) UpperCAmelCase_ : Tuple = processor_wavaveca(_UpperCamelCase , return_tensors='np' ) UpperCAmelCase_ : List[str] = processor_auto(_UpperCamelCase , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) UpperCAmelCase_ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase_ : List[Any] = processor_wavaveca.batch_decode(_UpperCamelCase ) UpperCAmelCase_ : List[str] = processor_auto.batch_decode(_UpperCamelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : str = self.get_feature_extractor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_decoder() UpperCAmelCase_ : Dict = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase_ : Tuple = self._get_dummy_logits()[0] UpperCAmelCase_ : Union[str, Any] = processor.decode(_UpperCamelCase , output_word_offsets=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase_ : List[Any] = self._get_dummy_logits() UpperCAmelCase_ : Any = processor.batch_decode(_UpperCamelCase , output_word_offsets=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase ) ) self.assertListEqual( [' '.join(self.get_from_offsets(_UpperCamelCase , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __UpperCAmelCase ( self ) -> List[str]: import torch UpperCAmelCase_ : Optional[Any] = load_dataset('common_voice' , 'en' , split='train' , streaming=_UpperCamelCase ) UpperCAmelCase_ : Dict = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) UpperCAmelCase_ : Any = iter(_UpperCamelCase ) UpperCAmelCase_ : int = next(_UpperCamelCase ) UpperCAmelCase_ : List[str] = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) UpperCAmelCase_ : List[Any] = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase_ : Dict = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(_UpperCamelCase ).logits.cpu().numpy() UpperCAmelCase_ : List[Any] = processor.decode(logits[0] , output_word_offsets=_UpperCamelCase ) UpperCAmelCase_ : List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase_ : Tuple = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] UpperCAmelCase_ : List[str] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(_UpperCamelCase , 'word' ) ) , _UpperCamelCase ) self.assertEqual(' '.join(self.get_from_offsets(_UpperCamelCase , 'word' ) ) , output.text ) # output times UpperCAmelCase_ : Tuple = torch.tensor(self.get_from_offsets(_UpperCamelCase , 'start_time' ) ) UpperCAmelCase_ : List[Any] = torch.tensor(self.get_from_offsets(_UpperCamelCase , 'end_time' ) ) # fmt: off UpperCAmelCase_ : Tuple = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) UpperCAmelCase_ : Optional[int] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=0.01 ) )
29
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = True @register_to_config def __init__( self , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = ("DownEncoderBlock2D",) , _UpperCamelCase = ("UpDecoderBlock2D",) , _UpperCamelCase = (6_4,) , _UpperCamelCase = 1 , _UpperCamelCase = "silu" , _UpperCamelCase = 4 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[str] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder UpperCAmelCase_ : Dict = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) UpperCAmelCase_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ : List[Any] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : int = False # only relevant if vae tiling is enabled UpperCAmelCase_ : Optional[int] = self.config.sample_size UpperCAmelCase_ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : Optional[Any] = 0.25 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[str]: if isinstance(_UpperCamelCase , (Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> int: UpperCAmelCase_ : Tuple = use_tiling def __UpperCAmelCase ( self ) -> Dict: self.enable_tiling(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = True def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : Optional[int] = {} def fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): UpperCAmelCase_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : Union[str, Any] = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) UpperCAmelCase_ : str = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : List[str] = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : Any = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): UpperCAmelCase_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : List[str] = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : Any = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : Dict = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : str = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Dict = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=2 ) UpperCAmelCase_ : List[Any] = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Union[str, Any] = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : Optional[Any] = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Union[str, Any] = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = sample UpperCAmelCase_ : Union[str, Any] = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: UpperCAmelCase_ : str = posterior.sample(generator=_UpperCamelCase ) else: UpperCAmelCase_ : int = posterior.mode() UpperCAmelCase_ : Dict = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
29
1
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = word.split() def justify(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) -> str: snake_case = max_width - width snake_case = len(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase_ ): num_spaces_between_words_list[i] += 1 snake_case = [] for i in range(UpperCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase_ ) snake_case = [] snake_case = [] snake_case = 0 for word in words: if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase_ ) width += len(UpperCamelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) ) # reset new line and new width snake_case , snake_case = [word], len(UpperCamelCase_ ) snake_case = max_width - width - len(UpperCamelCase_ ) answer.append(''' '''.join(UpperCamelCase_ ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
370
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = UnCLIPImageVariationPipeline __magic_name__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __magic_name__ = IMAGE_VARIATION_BATCH_PARAMS __magic_name__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __magic_name__ = False @property def a_ ( self ): return 3_2 @property def a_ ( self ): return 3_2 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 1_0_0 @property def a_ ( self ): snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a_ ( self ): torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__snake_case ) @property def a_ ( self ): torch.manual_seed(0 ) snake_case = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(__snake_case ) @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } snake_case = UnCLIPTextProjModel(**__snake_case ) return model @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''sample_size''': 3_2, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def a_ ( self ): return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def a_ ( self ): torch.manual_seed(0 ) snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def a_ ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model def a_ ( self ): snake_case = self.dummy_decoder snake_case = self.dummy_text_proj snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_super_res_first snake_case = self.dummy_super_res_last snake_case = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) snake_case = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) snake_case = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) snake_case = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def a_ ( self , __snake_case , __snake_case=0 , __snake_case=True ): snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('''mps''' ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) if pil_image: snake_case = input_image * 0.5 + 0.5 snake_case = input_image.clamp(0 , 1 ) snake_case = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) snake_case = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = torch.device('''cpu''' ) class A__ : """simple docstring""" __magic_name__ = 1 snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device=__snake_case ).manual_seed(0 ) snake_case = pipe.decoder.dtype snake_case = 1 snake_case = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case = pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) snake_case = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case = pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case ).images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) # Don't pass image, instead pass embedding snake_case = pipeline_inputs.pop('''image''' ) snake_case = pipe.image_encoder(__snake_case ).image_embeds snake_case = pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case , image_embeddings=__snake_case , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def a_ ( self ): snake_case = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__snake_case , expected_max_diff=__snake_case ) @skip_mps def a_ ( self ): snake_case = torch_device == '''cpu''' snake_case = True snake_case = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=__snake_case , relax_max_difference=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) def a_ ( self ): snake_case = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case = [2, 3] self._test_inference_batch_consistent( batch_sizes=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__snake_case ) @skip_mps def a_ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a_ ( self ): return super().test_save_load_local() @skip_mps def a_ ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) snake_case = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case = pipeline( __snake_case , generator=__snake_case , output_type='''np''' , ) snake_case = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(__snake_case , __snake_case , 1_5 )
213
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : List[Any] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
1
"""simple docstring""" import os def snake_case (): '''simple docstring''' a : Optional[Any] = os.path.join(os.path.dirname(A_ ) , 'num.txt' ) with open(A_ ) as file_hand: return str(sum(int(A_ ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
186
"""simple docstring""" def snake_case (A_ :list[int] , A_ :str ): '''simple docstring''' a : Optional[int] = int(A_ ) # Initialize Result a : int = [] # Traverse through all denomination for denomination in reversed(A_ ): # Find denominations while int(A_ ) >= int(A_ ): total_value -= int(A_ ) answer.append(A_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _UpperCamelCase : Dict = [] _UpperCamelCase : str = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): _UpperCamelCase : Dict = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) _UpperCamelCase : Optional[int] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter _UpperCamelCase : Union[str, Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] _UpperCamelCase : Dict = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f'''Following is minimal change for {value}: ''') _UpperCamelCase : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
186
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class a : def __init__( self : str , lowercase_ : Any , lowercase_ : Dict=2 , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=False , lowercase_ : List[Any]=10 , lowercase_ : Dict=3 , lowercase_ : str=32 * 4 , lowercase_ : Dict=32 * 6 , lowercase_ : Union[str, Any]=4 , lowercase_ : str=32 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = is_training snake_case_ = use_auxiliary_loss snake_case_ = num_queries snake_case_ = num_channels snake_case_ = min_size snake_case_ = max_size snake_case_ = num_labels snake_case_ = mask_feature_size def A_ ( self : Optional[Any] ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase_ ) snake_case_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_ ) snake_case_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_ ) > 0.5 ).float() snake_case_ = (torch.rand((self.batch_size, self.num_labels) , device=lowercase_ ) > 0.5).long() snake_case_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A_ ( self : Any ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def A_ ( self : List[Any] ): snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = self.prepare_config_and_inputs() snake_case_ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def A_ ( self : Any , lowercase_ : int , lowercase_ : Tuple ): snake_case_ = output.encoder_hidden_states snake_case_ = output.pixel_decoder_hidden_states snake_case_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , config.decoder_config.decoder_layers ) def A_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : List[str]=False ): with torch.no_grad(): snake_case_ = MaskFormerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) snake_case_ = model(lowercase_ , output_hidden_states=lowercase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Union[str, Any] ): snake_case_ = MaskFormerForInstanceSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() def comm_check_on_output(lowercase_ : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case_ = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) snake_case_ = model(lowercase_ ) comm_check_on_output(lowercase_ ) snake_case_ = model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) comm_check_on_output(lowercase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Union[str, Any] ): snake_case_ = MaskFormerModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def A_ ( self : Any ): self.config_tester.run_common_tests() def A_ ( self : Dict ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowercase_ ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def A_ ( self : List[Any] ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def A_ ( self : str ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def A_ ( self : Tuple ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def A_ ( self : Optional[Any] ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A_ ( self : List[str] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A_ ( self : Union[str, Any] ): pass def A_ ( self : str ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) @slow def A_ ( self : List[str] ): for model_name in ["facebook/maskformer-swin-small-coco"]: snake_case_ = MaskFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def A_ ( self : Optional[int] ): snake_case_ = (self.model_tester.min_size,) * 2 snake_case_ = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowercase_ ), '''mask_labels''': torch.randn((2, 10, *size) , device=lowercase_ ), '''class_labels''': torch.zeros(2 , 10 , device=lowercase_ ).long(), } snake_case_ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowercase_ ) snake_case_ = model(**lowercase_ ) self.assertTrue(outputs.loss is not None ) def A_ ( self : List[str] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def A_ ( self : str ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ).to(lowercase_ ) snake_case_ = model(**lowercase_ , output_attentions=lowercase_ ) self.assertTrue(outputs.attentions is not None ) def A_ ( self : Dict ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss snake_case_ = self.all_model_classes[1] snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.train() snake_case_ = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ).loss loss.backward() def A_ ( self : List[str] ): # only MaskFormerForInstanceSegmentation has the loss snake_case_ = self.all_model_classes[1] snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = True snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.train() snake_case_ = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) snake_case_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't snake_case_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a : List[Any] = 1E-4 def __magic_name__ ( ) -> Optional[int]: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class a ( unittest.TestCase ): @cached_property def A_ ( self : Tuple ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def A_ ( self : Optional[int] ): snake_case_ = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(lowercase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) snake_case_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1088) ) with torch.no_grad(): snake_case_ = model(**lowercase_ ) snake_case_ = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) snake_case_ = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) snake_case_ = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def A_ ( self : List[str] ): snake_case_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(lowercase_ ) .eval() ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) snake_case_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1088) ) with torch.no_grad(): snake_case_ = model(**lowercase_ ) # masks_queries_logits snake_case_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) snake_case_ = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] snake_case_ = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits snake_case_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case_ = torch.tensor( [ [1.6_512e00, -5.2_572e00, -3.3_519e00], [3.6_169e-02, -5.9_025e00, -2.9_313e00], [1.0_766e-04, -7.7_630e00, -5.1_263e00], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def A_ ( self : Any ): snake_case_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(lowercase_ ) .eval() ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) snake_case_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1088) ) with torch.no_grad(): snake_case_ = model(**lowercase_ ) # masks_queries_logits snake_case_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) snake_case_ = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] snake_case_ = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits snake_case_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case_ = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def A_ ( self : Dict ): snake_case_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(lowercase_ ) .eval() ) snake_case_ = self.default_image_processor snake_case_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) snake_case_ = inputs['''pixel_values'''].to(lowercase_ ) snake_case_ = [el.to(lowercase_ ) for el in inputs['''mask_labels''']] snake_case_ = [el.to(lowercase_ ) for el in inputs['''class_labels''']] with torch.no_grad(): snake_case_ = model(**lowercase_ ) self.assertTrue(outputs.loss is not None )
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A__: str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Dict=None ) ->str: return field(default_factory=lambda: default, metadata=UpperCAmelCase__ ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) snake_case_ = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) snake_case_ = list_field( default=[8, 32, 128, 512] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Use FP16 to accelerate inference.'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Benchmark training of model'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Verbose memory tracing'} ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Trace memory line by line'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Save result to a CSV file'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Save all print statements in a log file'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Whether to print environment information'} ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) snake_case_ = field( default=F"inference_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) snake_case_ = field( default=F"inference_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) snake_case_ = field( default=F"train_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) snake_case_ = field( default=F"train_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) snake_case_ = field( default=F"env_info_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving environment information.'} , ) snake_case_ = field( default=F"log_{round(time() )}.csv" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) snake_case_ = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , snake_case , ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def _UpperCamelCase ( self : int ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
296
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
285
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'resnet' lowerCamelCase = ['basic', 'bottleneck'] def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) A__ = num_channels A__ = embedding_size A__ = hidden_sizes A__ = depths A__ = layer_type A__ = hidden_act A__ = downsample_in_first_stage A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.11' ) @property def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case__ ( self : Any )-> float: '''simple docstring''' return 1E-3
7
0
SCREAMING_SNAKE_CASE__ = [0, 2, 4, 6, 8] SCREAMING_SNAKE_CASE__ = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: list[int] , __lowerCamelCase: int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase_ = 0 for digit in range(10 ): lowercase_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __lowerCamelCase , __lowerCamelCase ) return result lowercase_ = 0 for digita in range(10 ): lowercase_ = digita if (remainder + digita) % 2 == 0: lowercase_ = ODD_DIGITS else: lowercase_ = EVEN_DIGITS for digita in other_parity_digits: lowercase_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __lowerCamelCase , __lowerCamelCase , ) return result def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 9 ): '''simple docstring''' lowercase_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__lowerCamelCase , 0 , [0] * length , __lowerCamelCase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
297
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> Tuple: '''simple docstring''' if not head: return True # split the list to two parts _UpperCAmelCase = head.next, head while fast and fast.next: _UpperCAmelCase = fast.next.next _UpperCAmelCase = slow.next _UpperCAmelCase = slow.next _UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part _UpperCAmelCase = None while second: _UpperCAmelCase = second.next _UpperCAmelCase = node _UpperCAmelCase = second _UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _UpperCAmelCase = node.next _UpperCAmelCase = head.next return True def UpperCAmelCase_ ( __lowercase : str ) -> Dict: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) _UpperCAmelCase = head while fast and fast.next: _UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack _UpperCAmelCase = [slow.val] while slow.next: _UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _UpperCAmelCase = cur.next return True def UpperCAmelCase_ ( __lowercase : Any ) -> int: '''simple docstring''' if not head or not head.next: return True _UpperCAmelCase = {} _UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(__SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = [pos] _UpperCAmelCase = head.next pos += 1 _UpperCAmelCase = pos - 1 _UpperCAmelCase = 0 for v in d.values(): if len(__SCREAMING_SNAKE_CASE ) % 2 != 0: middle += 1 else: _UpperCAmelCase = 0 for i in range(0 , len(__SCREAMING_SNAKE_CASE ) ): if v[i] + v[len(__SCREAMING_SNAKE_CASE ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
22
"""simple docstring""" __SCREAMING_SNAKE_CASE ={} def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase_ : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase_ : Optional[int] = _calculate(days - 1 , __SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase_ : Any = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase_ : Dict = _calculate(days - 1 , __SCREAMING_SNAKE_CASE , 0 ) lowercase_ : str = state_late + state_absent + state_ontime lowercase_ : Tuple = prizestrings return prizestrings def lowercase__( __SCREAMING_SNAKE_CASE : int = 30 ): return _calculate(__SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
213
0
"""simple docstring""" import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def lowercase_ ( _lowerCamelCase : List[Any]): # fetching a list of articles in json format lowercase__ : List[Any] = requests.get(_NEWS_API + bbc_news_api_key).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1): print(f'''{i}.) {article["title"]}''') if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) UpperCamelCase = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Optional[int] = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) A_ : List[str] = { '''repo_id''': str(SCREAMING_SNAKE_CASE ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(SCREAMING_SNAKE_CASE , '''git_log.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=4 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if params.n_gpu <= 0: A_ : List[str] = 0 A_ : List[str] = -1 A_ : Tuple = True A_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 A_ : str = int(os.environ['''WORLD_SIZE'''] ) A_ : str = int(os.environ['''N_GPU_NODE'''] ) A_ : List[Any] = int(os.environ['''RANK'''] ) # number of nodes / node ID A_ : List[str] = params.world_size // params.n_gpu_per_node A_ : Optional[Any] = params.global_rank // params.n_gpu_per_node A_ : int = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 A_ : Optional[int] = 1 A_ : List[str] = 0 A_ : Optional[Any] = 0 A_ : str = 0 A_ : Optional[Any] = 1 A_ : Union[str, Any] = 1 A_ : List[str] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode A_ : List[Any] = params.node_id == 0 and params.local_rank == 0 A_ : str = params.n_nodes > 1 # summary A_ : str = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
186
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = np.inf def set_batch_size(SCREAMING_SNAKE_CASE ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": A_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : str = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ : Optional[int] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ : Union[str, Any] = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _snake_case ( self )->Optional[int]: '''simple docstring''' if self.streaming: A_ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : List[str] = None A_ : List[str] = None A_ : List[Any] = None A_ : Dict = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = dataset A_ : Union[str, Any] = path_or_buf A_ : Any = batch_size or get_writer_batch_size(dataset.features ) A_ : Optional[int] = parquet_writer_kwargs def _snake_case ( self )->int: '''simple docstring''' A_ : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ : str = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ : Tuple = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : List[Any] = 0 A_ : int = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.dataset.features.arrow_schema A_ : List[str] = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ : List[Any] = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
186
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Tuple = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class lowerCamelCase ( _UpperCAmelCase ): lowercase : Dict = 'distilbert' lowercase : str = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=4 * 768 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.2 , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : List[Any] = vocab_size UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : List[str] = sinusoidal_pos_embds UpperCamelCase : str = n_layers UpperCamelCase : int = n_heads UpperCamelCase : int = dim UpperCamelCase : List[str] = hidden_dim UpperCamelCase : Optional[int] = dropout UpperCamelCase : int = attention_dropout UpperCamelCase : Dict = activation UpperCamelCase : Any = initializer_range UpperCamelCase : int = qa_dropout UpperCamelCase : Optional[int] = seq_classif_dropout super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ ) class lowerCamelCase ( _UpperCAmelCase ): @property def a_ ( self ): if self.task == "multiple-choice": UpperCamelCase : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
27
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ): '''simple docstring''' UpperCamelCase : List[str] = args.log_outputs UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCamelCase : List[Any] = load_metric("""wer""" ) UpperCamelCase : Any = load_metric("""cer""" ) # compute metrics UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) # print & log results UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case_ ) with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt' UpperCamelCase : str = f'log_{dataset_id}_targets.txt' with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ): p.write(f'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(snake_case_ ,with_indices=snake_case_ ) def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) ) return text def A_ ( snake_case_ : str ): '''simple docstring''' # load dataset UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase : Dict = feature_extractor.sampling_rate # resample audio UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: UpperCamelCase : int = 0 if torch.cuda.is_available() else -1 UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Union[str, Any] ): UpperCamelCase : List[Any] = asr( batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s ) UpperCamelCase : Union[str, Any] = prediction["""text"""] UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ ,snake_case_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __A : Optional[Any] = parser.parse_args() main(args)
27
1
import pprint import requests SCREAMING_SNAKE_CASE_ = """https://zenquotes.io/api""" def __lowercase ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __lowercase ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = random_quotes() pprint.pprint(response)
296
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = random.Random() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE = global_rng SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int]=7 ,lowerCamelCase__ : Optional[Any]=400 ,lowerCamelCase__ : List[str]=2000 ,lowerCamelCase__ : List[str]=2048 ,lowerCamelCase__ : Any=128 ,lowerCamelCase__ : List[str]=1 ,lowerCamelCase__ : str=512 ,lowerCamelCase__ : Optional[Any]=30 ,lowerCamelCase__ : Tuple=44100 ,) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = min_seq_length SCREAMING_SNAKE_CASE = max_seq_length SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE = spectrogram_length SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = num_audio_channels SCREAMING_SNAKE_CASE = hop_length SCREAMING_SNAKE_CASE = chunk_length SCREAMING_SNAKE_CASE = sampling_rate def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Union[str, Any]=False ) -> str: '''simple docstring''' def _flatten(lowerCamelCase__ : List[Any] ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[Any] = TvltFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,"""spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""sampling_rate""" ) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE = feature_extractor( lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ,mask_audio=lowerCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE = np.asarray(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE = ds.sort("""id""" ).select(range(lowerCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE = TvltFeatureExtractor() SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape ,(1, 1, 192, 128) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,lowerCamelCase__ ,atol=1e-4 ) )
296
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCamelCase ( lowercase_ ): lowercase = ['image_processor', 'feature_extractor'] lowercase = 'TvltImageProcessor' lowercase = 'TvltFeatureExtractor' def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' super().__init__(image_processor=__UpperCamelCase ,feature_extractor=__UpperCamelCase ) lowercase_ : int = image_processor lowercase_ : str = feature_extractor def __call__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=False ,__UpperCamelCase=False ,*__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) lowercase_ : Dict = None if images is not None: lowercase_ : int = self.image_processor(__UpperCamelCase ,mask_pixel=__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) if images_mixed is not None: lowercase_ : str = self.image_processor(__UpperCamelCase ,is_mixed=__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) if audio is not None: lowercase_ : Optional[Any] = self.feature_extractor( __UpperCamelCase ,*__UpperCamelCase ,sampling_rate=__UpperCamelCase ,mask_audio=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Union[str, Any] = {} if audio is not None: output_dict.update(__UpperCamelCase ) if images is not None: output_dict.update(__UpperCamelCase ) if images_mixed_dict is not None: output_dict.update(__UpperCamelCase ) return output_dict @property def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : str = self.image_processor.model_input_names lowercase_ : str = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
356
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
0
'''simple docstring''' from collections import defaultdict class a__: def __init__( self : List[Any] , __snake_case : Tuple , __snake_case : Optional[Any] ): a : Dict = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 a : Any = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__snake_case ) ) ] a : List[Any] = defaultdict(__snake_case ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 a : str = (1 << len(__snake_case )) - 1 def lowercase_ ( self : str , __snake_case : List[Any] , __snake_case : Dict ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement a : int = self.count_ways_until(__snake_case , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. a : List[str] = total_ways_util return self.dp[mask][task_no] def lowercase_ ( self : str , __snake_case : Tuple ): # Store the list of persons for each task for i in range(len(__snake_case ) ): for j in task_performed[i]: self.task[j].append(__snake_case ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCAmelCase: List[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCAmelCase: Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
297
'''simple docstring''' from __future__ import annotations import math class a__: def __init__( self : List[str] , __snake_case : int ): a : str = size # approximate the overall size of segment tree with given value a : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update a : Any = [0 for i in range(0 , 4 * size )] a : Dict = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase_ ( self : int , __snake_case : int ): return idx * 2 def lowercase_ ( self : Dict , __snake_case : int ): return idx * 2 + 1 def lowercase_ ( self : Dict , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : list[int] ): if left_element == right_element: a : Tuple = a[left_element - 1] else: a : Tuple = (left_element + right_element) // 2 self.build(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case ) self.build(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case ) a : Union[str, Any] = max( self.segment_tree[self.left(__snake_case )] , self.segment_tree[self.right(__snake_case )] ) def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int ): if self.flag[idx] is True: a : int = self.lazy[idx] a : Union[str, Any] = False if left_element != right_element: a : Dict = self.lazy[idx] a : int = self.lazy[idx] a : Tuple = True a : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: a : int = val if left_element != right_element: a : int = val a : Dict = val a : List[str] = True a : List[str] = True return True a : Tuple = (left_element + right_element) // 2 self.update(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) self.update(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case , __snake_case , __snake_case ) a : Optional[int] = max( self.segment_tree[self.left(__snake_case )] , self.segment_tree[self.right(__snake_case )] ) return True def lowercase_ ( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int ): if self.flag[idx] is True: a : str = self.lazy[idx] a : Optional[Any] = False if left_element != right_element: a : Dict = self.lazy[idx] a : Union[str, Any] = self.lazy[idx] a : Dict = True a : int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] a : Dict = (left_element + right_element) // 2 a : Optional[int] = self.query(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case , __snake_case ) a : Union[str, Any] = self.query(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case , __snake_case ) return max(__snake_case , __snake_case ) def __str__( self : Any ): return str([self.query(1 , 1 , self.size , __snake_case , __snake_case ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowerCAmelCase: Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] lowerCAmelCase: int = 1_5 lowerCAmelCase: Optional[int] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
297
1
"""simple docstring""" from jiwer import compute_measures import datasets _snake_case = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _snake_case = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' _snake_case = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _lowercase ( self : Optional[int] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[int]=False ) -> Union[str, Any]: if concatenate_texts: return compute_measures(UpperCAmelCase__ , UpperCAmelCase__ )["wer"] else: _a : Any = 0 _a : Any = 0 for prediction, reference in zip(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Optional[int] = compute_measures(UpperCAmelCase__ , UpperCAmelCase__ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
352
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
0
from queue import PriorityQueue from typing import Any import numpy as np def a__ ( A_, A_, A_, A_, A_, A_, A_, A_, A_, ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue __magic_name__ = cst_fwd.get(A_, np.inf ) __magic_name__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __magic_name__ = new_cost_f __magic_name__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __magic_name__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = -1 __magic_name__ = set() __magic_name__ = set() __magic_name__ = {source: 0} __magic_name__ = {destination: 0} __magic_name__ = {source: None} __magic_name__ = {destination: None} __magic_name__ = PriorityQueue() __magic_name__ = PriorityQueue() __magic_name__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __magic_name__ , __magic_name__ = queue_forward.get() visited_forward.add(A_ ) __magic_name__ , __magic_name__ = queue_backward.get() visited_backward.add(A_ ) __magic_name__ = pass_and_relaxation( A_, A_, A_, A_, A_, A_, A_, A_, A_, ) __magic_name__ = pass_and_relaxation( A_, A_, A_, A_, A_, A_, A_, A_, A_, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __magic_name__ = shortest_distance return shortest_path_distance __lowerCAmelCase : Optional[Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __lowerCAmelCase : Optional[Any] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
88
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
0
"""simple docstring""" from __future__ import annotations from typing import Any def __lowerCamelCase ( a_ : list ) -> int: if not postfix_notation: return 0 __SCREAMING_SNAKE_CASE :Dict = {"+", "-", "*", "/"} __SCREAMING_SNAKE_CASE :list[Any] = [] for token in postfix_notation: if token in operations: __SCREAMING_SNAKE_CASE :List[str] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any ) -> List[Any]: __SCREAMING_SNAKE_CASE :Any = UniSpeechSatForSequenceClassification.from_pretrained(a_ , config=a_ ) __SCREAMING_SNAKE_CASE :int = downstream_dict['''projector.weight'''] __SCREAMING_SNAKE_CASE :List[Any] = downstream_dict['''projector.bias'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = downstream_dict['''model.post_net.linear.weight'''] __SCREAMING_SNAKE_CASE :List[str] = downstream_dict['''model.post_net.linear.bias'''] return model def __lowerCamelCase ( a_ : Union[str, Any] , a_ : List[Any] , a_ : List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Any = UniSpeechSatForAudioFrameClassification.from_pretrained(a_ , config=a_ ) __SCREAMING_SNAKE_CASE :List[str] = downstream_dict['''model.linear.weight'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = downstream_dict['''model.linear.bias'''] return model def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[Any] , a_ : int ) -> List[str]: __SCREAMING_SNAKE_CASE :List[str] = UniSpeechSatForXVector.from_pretrained(a_ , config=a_ ) __SCREAMING_SNAKE_CASE :Optional[int] = downstream_dict['''connector.weight'''] __SCREAMING_SNAKE_CASE :Tuple = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __SCREAMING_SNAKE_CASE :str = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __SCREAMING_SNAKE_CASE :int = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __SCREAMING_SNAKE_CASE :Any = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __SCREAMING_SNAKE_CASE :Optional[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __SCREAMING_SNAKE_CASE :Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __SCREAMING_SNAKE_CASE :Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __SCREAMING_SNAKE_CASE :str = downstream_dict['''objective.W'''] return model @torch.no_grad() def __lowerCamelCase ( a_ : Optional[int] , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE :str = torch.load(a_ , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE :str = checkpoint['''Downstream'''] __SCREAMING_SNAKE_CASE :str = UniSpeechSatConfig.from_pretrained(a_ ) __SCREAMING_SNAKE_CASE :List[str] = WavaVecaFeatureExtractor.from_pretrained( a_ , return_attention_mask=a_ , do_normalize=a_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __SCREAMING_SNAKE_CASE :str = convert_classification(a_ , a_ , a_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __SCREAMING_SNAKE_CASE :Tuple = convert_diarization(a_ , a_ , a_ ) elif arch.endswith('''ForXVector''' ): __SCREAMING_SNAKE_CASE :List[Any] = convert_xvector(a_ , a_ , a_ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __SCREAMING_SNAKE_CASE :Dict = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(a_ ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") lowerCamelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
239
0
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __lowercase : int = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , **__a ): '''simple docstring''' super().__init__(**__a ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self , __a , **__a ): '''simple docstring''' return super().__call__(__a , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' __a : List[str] = {} if "candidate_labels" in kwargs: __a : List[Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __a : Optional[int] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self , __a , __a=None , __a="This is a sound of {}." ): '''simple docstring''' if isinstance(__a , __a ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a : Union[str, Any] = requests.get(__a ).content else: with open(__a , 'rb' ) as f: __a : Tuple = f.read() if isinstance(__a , __a ): __a : Dict = ffmpeg_read(__a , self.feature_extractor.sampling_rate ) if not isinstance(__a , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) __a : Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) __a : Tuple = candidate_labels __a : int = [hypothesis_template.format(__a ) for x in candidate_labels] __a : Tuple = self.tokenizer(__a , return_tensors=self.framework , padding=__a ) __a : Union[str, Any] = [text_inputs] return inputs def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Union[str, Any] = model_inputs.pop('candidate_labels' ) __a : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , __a ): __a : Dict = text_inputs[0] else: # Batching case. __a : Tuple = text_inputs[0][0] __a : Union[str, Any] = self.model(**__a , **__a ) __a : Tuple = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Dict = model_outputs.pop('candidate_labels' ) __a : Tuple = model_outputs['logits'][0] if self.framework == "pt": __a : Optional[Any] = logits.softmax(dim=0 ) __a : List[Any] = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) __a : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(__a , __a ) , key=lambda __a : -x[0] ) ] return result
27
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): __a : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) __a : Tuple = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __a : List[str] = components[:-1] + [test_fn.replace('.py' , '' )] __a : Optional[Any] = '.'.join(_SCREAMING_SNAKE_CASE ) return test_module_path def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : List[str] = get_module_path(_SCREAMING_SNAKE_CASE ) __a : Dict = importlib.import_module(_SCREAMING_SNAKE_CASE ) return test_module def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : List[str] = [] __a : List[str] = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : Any = [] __a : str = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): __a : int = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(_SCREAMING_SNAKE_CASE ) > 0: test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : Any = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Tuple = test_class() if hasattr(_SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() __a : List[Any] = None if hasattr(_SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a : List[str] = test.model_tester.__class__ return model_tester def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : int = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ): __a : List[Any] = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [] for test_class in test_classes: __a : Any = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : int = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = get_model_classes(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = { model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = get_model_classes(_SCREAMING_SNAKE_CASE ) __a : str = { model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(_SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
27
1
from ..utils import DummyObject, requires_backends class lowerCamelCase (metaclass=__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["torch", "torchsde"] def __init__( self : Tuple, *_UpperCAmelCase : List[str], **_UpperCAmelCase : Dict ) -> Any: """simple docstring""" requires_backends(self, ["torch", "torchsde"] ) @classmethod def A_ ( cls : Union[str, Any], *_UpperCAmelCase : int, **_UpperCAmelCase : int ) -> str: """simple docstring""" requires_backends(cls, ["torch", "torchsde"] ) @classmethod def A_ ( cls : str, *_UpperCAmelCase : int, **_UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" requires_backends(cls, ["torch", "torchsde"] )
362
from __future__ import annotations import time _lowerCamelCase : Tuple = list[tuple[int, int]] _lowerCamelCase : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCamelCase : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int], _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : Node | None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = pos_x SCREAMING_SNAKE_CASE__ : List[Any] = pos_y SCREAMING_SNAKE_CASE__ : str = (pos_y, pos_x) SCREAMING_SNAKE_CASE__ : Dict = goal_x SCREAMING_SNAKE_CASE__ : List[Any] = goal_y SCREAMING_SNAKE_CASE__ : str = parent class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : tuple[int, int], _UpperCAmelCase : tuple[int, int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = Node(start[1], start[0], goal[1], goal[0], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Node(goal[1], goal[0], goal[1], goal[0], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = [self.start] SCREAMING_SNAKE_CASE__ : str = False def A_ ( self : Dict ) -> Path | None: """simple docstring""" while self.node_queue: SCREAMING_SNAKE_CASE__ : int = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE__ : Dict = True return self.retrace_path(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def A_ ( self : Any, _UpperCAmelCase : Node ) -> list[Node]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = [] for action in delta: SCREAMING_SNAKE_CASE__ : str = parent.pos_x + action[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase, _UpperCAmelCase, self.target.pos_y, self.target.pos_x, _UpperCAmelCase ) ) return successors def A_ ( self : List[str], _UpperCAmelCase : Node | None ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = node SCREAMING_SNAKE_CASE__ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_node.parent path.reverse() return path class lowerCamelCase : """simple docstring""" def __init__( self : List[str], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = BreadthFirstSearch(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = BreadthFirstSearch(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = False def A_ ( self : List[str] ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE__ : int = self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE__ : List[Any] = True return self.retrace_bidirectional_path( _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = current_bwd_node SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_fwd_node SCREAMING_SNAKE_CASE__ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def A_ ( self : int, _UpperCAmelCase : Node, _UpperCAmelCase : Node ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.fwd_bfs.retrace_path(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _lowerCamelCase : Optional[Any] = (0, 0) _lowerCamelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _lowerCamelCase : Dict = time.time() _lowerCamelCase : List[Any] = BreadthFirstSearch(init, goal) _lowerCamelCase : Optional[Any] = bfs.search() _lowerCamelCase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) _lowerCamelCase : str = time.time() _lowerCamelCase : Dict = BidirectionalBreadthFirstSearch(init, goal) _lowerCamelCase : Optional[Any] = bd_bfs.search() _lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
191
0
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def a ( __a , __a=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :str = None if token is not None: UpperCamelCase__ :Union[str, Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} UpperCamelCase__ :str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' UpperCamelCase__ :str = requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json() UpperCamelCase__ :Union[str, Any] = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCamelCase__ :str = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCamelCase ): UpperCamelCase__ :int = requests.get(url + f'''&page={i + 2}''' , headers=__UpperCamelCase ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def a ( __a , __a=None ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[Any] = None if token is not None: UpperCamelCase__ :int = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} UpperCamelCase__ :int = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' UpperCamelCase__ :List[str] = requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json() UpperCamelCase__ :Any = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) UpperCamelCase__ :str = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCamelCase ): UpperCamelCase__ :Optional[Any] = requests.get(url + f'''&page={i + 2}''' , headers=__UpperCamelCase ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def a ( __a , __a , __a , __a ) -> str: '''simple docstring''' UpperCamelCase__ :str = None if token is not None: UpperCamelCase__ :List[str] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} UpperCamelCase__ :Union[str, Any] = requests.get(__UpperCamelCase , headers=__UpperCamelCase , allow_redirects=__UpperCamelCase ) UpperCamelCase__ :Any = result.headers['''Location'''] UpperCamelCase__ :str = requests.get(__UpperCamelCase , allow_redirects=__UpperCamelCase ) UpperCamelCase__ :Any = os.path.join(__UpperCamelCase , f'''{artifact_name}.zip''' ) with open(__UpperCamelCase , '''wb''' ) as fp: fp.write(response.content ) def a ( __a , __a=None ) -> str: '''simple docstring''' UpperCamelCase__ :int = [] UpperCamelCase__ :Tuple = [] UpperCamelCase__ :Dict = None with zipfile.ZipFile(__UpperCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__UpperCamelCase ) as f: for line in f: UpperCamelCase__ :Tuple = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCamelCase__ :Optional[Any] = line[: line.index(''': ''' )] UpperCamelCase__ :Tuple = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed UpperCamelCase__ :Optional[Any] = line[len('''FAILED ''' ) :] failed_tests.append(__UpperCamelCase ) elif filename == "job_name.txt": UpperCamelCase__ :Tuple = line if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(__UpperCamelCase )} for `errors` ''' f'''and {len(__UpperCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ''' problem.''' ) UpperCamelCase__ :Tuple = None if job_name and job_links: UpperCamelCase__ :Tuple = job_links.get(__UpperCamelCase , __UpperCamelCase ) # A list with elements of the form (line of error, error, failed test) UpperCamelCase__ :str = [x + [y] + [job_link] for x, y in zip(__UpperCamelCase , __UpperCamelCase )] return result def a ( __a , __a=None ) -> int: '''simple docstring''' UpperCamelCase__ :Optional[int] = [] UpperCamelCase__ :Optional[int] = [os.path.join(__UpperCamelCase , __UpperCamelCase ) for p in os.listdir(__UpperCamelCase ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(__UpperCamelCase , job_links=__UpperCamelCase ) ) return errors def a ( __a , __a=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = Counter() counter.update([x[1] for x in logs] ) UpperCamelCase__ :int = counter.most_common() UpperCamelCase__ :Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCamelCase__ :Optional[Any] = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCamelCase__ :Optional[Any] = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__UpperCamelCase ) ) return r def a ( __a ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :int = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): UpperCamelCase__ :Dict = test.split('''/''' )[2] else: UpperCamelCase__ :int = None return test def a ( __a , __a=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCamelCase__ :List[str] = [x for x in logs if x[2] is not None] UpperCamelCase__ :List[Any] = {x[2] for x in logs} UpperCamelCase__ :Union[str, Any] = {} for test in tests: UpperCamelCase__ :Tuple = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCamelCase__ :Optional[Any] = counter.most_common() UpperCamelCase__ :int = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCamelCase__ :Optional[Any] = sum(error_counts.values() ) if n_errors > 0: UpperCamelCase__ :int = {'''count''': n_errors, '''errors''': error_counts} UpperCamelCase__ :int = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__UpperCamelCase ) ) return r def a ( __a ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :int = '''| no. | error | status |''' UpperCamelCase__ :Tuple = '''|-:|:-|:-|''' UpperCamelCase__ :Union[str, Any] = [header, sep] for error in reduced_by_error: UpperCamelCase__ :int = reduced_by_error[error]['''count'''] UpperCamelCase__ :str = f'''| {count} | {error[:100]} | |''' lines.append(__UpperCamelCase ) return "\n".join(__UpperCamelCase ) def a ( __a ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :int = '''| model | no. of errors | major error | count |''' UpperCamelCase__ :Any = '''|-:|-:|-:|-:|''' UpperCamelCase__ :Tuple = [header, sep] for model in reduced_by_model: UpperCamelCase__ :Tuple = reduced_by_model[model]['''count'''] UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = list(reduced_by_model[model]['''errors'''].items() )[0] UpperCamelCase__ :Any = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(__UpperCamelCase ) return "\n".join(__UpperCamelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') __snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __snake_case = get_job_links(args.workflow_run_id, token=args.token) __snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __snake_case = k.find(''' / ''') __snake_case = k[index + len(''' / ''') :] __snake_case = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __snake_case = reduce_by_error(errors) __snake_case = reduce_by_model(errors) __snake_case = make_github_table(reduced_by_error) __snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
97
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCamelCase = 1.5 UpperCamelCase = int(factor * num_class_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=__UpperCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: UpperCamelCase = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: UpperCamelCase = int(factor * num_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase ) with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open( F"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: UpperCamelCase = class_images[count] count += 1 try: UpperCamelCase = requests.get(images["""url"""] ) if img.status_code == 200: UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase__ ( )-> str: UpperCamelCase = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
321
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[Any]=99 , lowerCamelCase_ : str=32 , lowerCamelCase_ : Optional[Any]=5 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : int=37 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : Optional[Any]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Optional[int]=512 , lowerCamelCase_ : Optional[int]=16 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : int=3 , lowerCamelCase_ : Dict=4 , lowerCamelCase_ : List[str]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope UpperCamelCase = self.vocab_size - 1 def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] , *lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = OpenAIGPTModel(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = model(__lowercase , token_type_ids=__lowercase , head_mask=__lowercase ) UpperCamelCase = model(__lowercase , token_type_ids=__lowercase ) UpperCamelCase = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , *lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = OpenAIGPTLMHeadModel(__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , *lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = OpenAIGPTDoubleHeadsModel(__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , *lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = OpenAIGPTForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __A , __A , __A , unittest.TestCase ): __lowerCAmelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowerCAmelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowerCAmelCase = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : int ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any]=False ): """simple docstring""" UpperCamelCase = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowercase , ) UpperCamelCase = inputs_dict["""labels"""] UpperCamelCase = inputs_dict["""labels"""] UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowercase , ) UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = OpenAIGPTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__lowercase , n_embd=37 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowercase ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowercase ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowercase ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowercase ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = OpenAIGPTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(__lowercase ) UpperCamelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowercase ) # the president is UpperCamelCase = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCamelCase = model.generate(__lowercase , do_sample=__lowercase ) self.assertListEqual(output_ids[0].tolist() , __lowercase )
359
def lowercase( UpperCamelCase_ ) -> list[list]: '''simple docstring''' UpperCamelCase = current_set.copy() for row_index, row in enumerate(UpperCamelCase_ ): UpperCamelCase = row[0] for column_index, column in enumerate(UpperCamelCase_ ): if magnitude == 0: UpperCamelCase = column continue UpperCamelCase = column / magnitude # Subtract to cancel term UpperCamelCase = current_set[0] UpperCamelCase = [first_row] UpperCamelCase = current_set[1::] for row in current_set: UpperCamelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCamelCase_ ) continue for column_index in range(len(UpperCamelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCamelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCamelCase = final_set[0] UpperCamelCase = [] UpperCamelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCamelCase = simplify(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , UpperCamelCase_ ) UpperCamelCase = resultant return final_set def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) UpperCamelCase = len(UpperCamelCase_ ) + 1 if any(len(UpperCamelCase_ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(UpperCamelCase_ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(UpperCamelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCamelCase = equations.copy() if any(0 in row for row in data_set ): UpperCamelCase = data_set.copy() UpperCamelCase = [] for row_index, row in enumerate(UpperCamelCase_ ): if 0 not in row: UpperCamelCase = data_set.pop(UpperCamelCase_ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , UpperCamelCase_ ) UpperCamelCase = data_set.copy() UpperCamelCase = simplify(UpperCamelCase_ ) UpperCamelCase = simplified[::-1] UpperCamelCase = [] for row in simplified: UpperCamelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCamelCase = row.copy()[: len(UpperCamelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCamelCase_ ) == 0: solutions.append(0 ) continue UpperCamelCase = temp_row[1::] UpperCamelCase = temp_row[::-1] for column_index, column in enumerate(UpperCamelCase_ ): current_solution -= column * solutions[column_index] solutions.append(UpperCamelCase_ ) UpperCamelCase = [] for item in solutions: final.append(float(round(UpperCamelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
165
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class snake_case_: __UpperCamelCase = 42 __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = None __UpperCamelCase = field(default='''Translation''' , init=a__ , repr=a__ ) def __call__( self : Union[str, Any] ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowerCamelCase__ ( self : List[Any] ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class snake_case_: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = None __UpperCamelCase = field(default='''TranslationVariableLanguages''' , init=a__ , repr=a__ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = sorted(set(self.languages ) ) if self.languages else None lowerCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self : List[Any] ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[Any] ): lowerCAmelCase : List[Any] = set(self.languages ) if self.languages and set(UpperCamelCase_ ) - lang_set: raise ValueError( F'''Some languages in example ({", ".join(sorted(set(UpperCamelCase_ ) - lang_set ) )}) are not in valid set ({", ".join(UpperCamelCase_ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCAmelCase : List[str] = [] for lang, text in translation_dict.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCAmelCase, lowerCAmelCase : Optional[Any] = zip(*sorted(UpperCamelCase_ ) ) return {"language": languages, "translation": translations} def lowerCamelCase__ ( self : Dict ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
60
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ : str = None lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } lowercase__ : Optional[int] = { 'google/rembert': 2_56, } lowercase__ : str = '▁' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = RemBertTokenizer def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
324
0
"""simple docstring""" from __future__ import annotations def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [True] * limit UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCAmelCase = i * 2 while index < limit: UpperCAmelCase = False UpperCAmelCase = index + i UpperCAmelCase = [2] for i in range(3 , _snake_case , 2 ): if is_prime[i]: primes.append(_snake_case ) return primes def _a ( _snake_case = 100_0000 ): """simple docstring""" UpperCAmelCase = prime_sieve(_snake_case ) UpperCAmelCase = 0 UpperCAmelCase = 0 for i in range(len(_snake_case ) ): for j in range(i + length , len(_snake_case ) ): UpperCAmelCase = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCAmelCase = j - i UpperCAmelCase = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
234
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable a ={"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
73
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self : int , lowercase_ : Optional[int] , lowercase_ : Any=13 , lowercase_ : List[str]=7 , lowercase_ : List[Any]=True , lowercase_ : str=True , lowercase_ : Dict=True , lowercase_ : List[str]=True , lowercase_ : List[str]=99 , lowercase_ : Dict=32 , lowercase_ : List[Any]=5 , lowercase_ : List[str]=4 , lowercase_ : Dict=37 , lowercase_ : List[Any]="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Any=0.1 , lowercase_ : int=512 , lowercase_ : Tuple=16 , lowercase_ : str=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Any=3 , lowercase_ : Any=4 , lowercase_ : Dict=None , ): lowercase_ : Tuple = parent lowercase_ : Tuple = batch_size lowercase_ : Optional[int] = seq_length lowercase_ : Union[str, Any] = is_training lowercase_ : int = use_input_mask lowercase_ : Union[str, Any] = use_token_type_ids lowercase_ : Tuple = use_labels lowercase_ : Tuple = vocab_size lowercase_ : int = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : Union[str, Any] = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : int = hidden_dropout_prob lowercase_ : Union[str, Any] = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : List[Any] = type_sequence_label_size lowercase_ : Optional[int] = initializer_range lowercase_ : str = num_labels lowercase_ : int = num_choices lowercase_ : List[Any] = scope def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : str = None if self.use_input_mask: lowercase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Optional[int] = None if self.use_token_type_ids: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : str = None lowercase_ : Optional[int] = None lowercase_ : Union[str, Any] = None if self.use_labels: lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : int ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[int] ): lowercase_ : Optional[Any] = NystromformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) lowercase_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ ) lowercase_ : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any ): lowercase_ : List[Any] = NystromformerForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Tuple ): lowercase_ : Any = NystromformerForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : int ): lowercase_ : Any = self.num_labels lowercase_ : Union[str, Any] = NystromformerForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Any = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): lowercase_ : int = self.num_labels lowercase_ : int = NystromformerForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : str = self.num_choices lowercase_ : Union[str, Any] = NystromformerForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = config_and_inputs lowercase_ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = NystromformerModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : int = type self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = NystromformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[str] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) lowercase_ : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): lowercase_ : Tuple = model(lowercase_ )[0] lowercase_ : Tuple = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowercase_ ) lowercase_ : Dict = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = """the [MASK] of Belgium is Brussels""" lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) lowercase_ : List[Any] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) lowercase_ : str = tokenizer(lowercase_ , return_tensors="""pt""" ) with torch.no_grad(): lowercase_ : Tuple = model(encoding.input_ids ).logits lowercase_ : Optional[int] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(lowercase_ ) , """capital""" )
239
0
from ...processing_utils import ProcessorMixin class A ( A_ ): UpperCamelCase_ : str ='''SpeechT5FeatureExtractor''' UpperCamelCase_ : int ='''SpeechT5Tokenizer''' def __init__(self , lowerCAmelCase , lowerCAmelCase ): super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__(self , *lowerCAmelCase , **lowerCAmelCase ): __lowercase= kwargs.pop('audio' , lowerCAmelCase ) __lowercase= kwargs.pop('text' , lowerCAmelCase ) __lowercase= kwargs.pop('text_target' , lowerCAmelCase ) __lowercase= kwargs.pop('audio_target' , lowerCAmelCase ) __lowercase= kwargs.pop('sampling_rate' , lowerCAmelCase ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: __lowercase= self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase ) elif text is not None: __lowercase= self.tokenizer(lowerCAmelCase , **lowerCAmelCase ) else: __lowercase= None if audio_target is not None: __lowercase= self.feature_extractor(audio_target=lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase ) __lowercase= targets['input_values'] elif text_target is not None: __lowercase= self.tokenizer(lowerCAmelCase , **lowerCAmelCase ) __lowercase= targets['input_ids'] else: __lowercase= None if inputs is None: return targets if targets is not None: __lowercase= labels __lowercase= targets.get('attention_mask' ) if decoder_attention_mask is not None: __lowercase= decoder_attention_mask return inputs def _A (self , *lowerCAmelCase , **lowerCAmelCase ): __lowercase= kwargs.pop('input_values' , lowerCAmelCase ) __lowercase= kwargs.pop('input_ids' , lowerCAmelCase ) __lowercase= kwargs.pop('labels' , lowerCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: __lowercase= self.feature_extractor.pad(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) elif input_ids is not None: __lowercase= self.tokenizer.pad(lowerCAmelCase , **lowerCAmelCase ) else: __lowercase= None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase , lowerCAmelCase ) and "input_ids" in labels[0]): __lowercase= self.tokenizer.pad(lowerCAmelCase , **lowerCAmelCase ) __lowercase= targets['input_ids'] else: __lowercase= self.feature_extractor.feature_size __lowercase= self.feature_extractor.num_mel_bins __lowercase= self.feature_extractor.pad(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) __lowercase= feature_size_hack __lowercase= targets['input_values'] else: __lowercase= None if inputs is None: return targets if targets is not None: __lowercase= labels __lowercase= targets.get('attention_mask' ) if decoder_attention_mask is not None: __lowercase= decoder_attention_mask return inputs def _A (self , *lowerCAmelCase , **lowerCAmelCase ): return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def _A (self , *lowerCAmelCase , **lowerCAmelCase ): return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase )
304
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class a_ (metaclass=_a ): __lowerCAmelCase : Union[str, Any] = ['''speech'''] def __init__( self , *snake_case_ , **snake_case_ ): requires_backends(self , ["""speech"""] ) class a_ (metaclass=_a ): __lowerCAmelCase : Dict = ['''speech'''] def __init__( self , *snake_case_ , **snake_case_ ): requires_backends(self , ["""speech"""] )
309
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __lowerCamelCase ( a_ : str , a_ : Dict , a_ : Any , a_ : str ) -> str: __SCREAMING_SNAKE_CASE :int = s.rsplit(a_ , a_ ) return new.join(a_ ) def __lowerCamelCase ( a_ : List[str] ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __lowerCamelCase ( a_ : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE :Optional[int] = {} __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __SCREAMING_SNAKE_CASE :Optional[Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: __SCREAMING_SNAKE_CASE :str = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): __SCREAMING_SNAKE_CASE :List[Any] = rreplace(a_ , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): __SCREAMING_SNAKE_CASE :List[Any] = rreplace(a_ , '''.b''' , '''.bias''' , 1 ) __SCREAMING_SNAKE_CASE :Optional[Any] = value.float() return upgrade @torch.no_grad() def __lowerCamelCase ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int]=None , a_ : Dict=True ) -> Union[str, Any]: from dall_e import Encoder __SCREAMING_SNAKE_CASE :int = Encoder() if os.path.exists(a_ ): __SCREAMING_SNAKE_CASE :Dict = torch.load(a_ ) else: __SCREAMING_SNAKE_CASE :List[str] = torch.hub.load_state_dict_from_url(a_ ) if isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :List[str] = ckpt.state_dict() encoder.load_state_dict(a_ ) if config_path is not None: __SCREAMING_SNAKE_CASE :Any = FlavaImageCodebookConfig.from_pretrained(a_ ) else: __SCREAMING_SNAKE_CASE :Optional[int] = FlavaImageCodebookConfig() __SCREAMING_SNAKE_CASE :Tuple = FlavaImageCodebook(a_ ).eval() __SCREAMING_SNAKE_CASE :List[str] = encoder.state_dict() __SCREAMING_SNAKE_CASE :Union[str, Any] = upgrade_state_dict(a_ ) hf_model.load_state_dict(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = hf_model.state_dict() __SCREAMING_SNAKE_CASE :Union[str, Any] = count_parameters(a_ ) __SCREAMING_SNAKE_CASE :Any = count_parameters(a_ ) assert torch.allclose(a_ , a_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(a_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCamelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
191
0
def UpperCamelCase__( UpperCamelCase__ : int = 1_00 )->int: A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"{solution() = }")
39
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE = '''Pix2StructImageProcessor''' __SCREAMING_SNAKE_CASE = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self,__lowerCamelCase,__lowerCamelCase ): A__ = False super().__init__(__lowerCamelCase,__lowerCamelCase ) def __call__( self,__lowerCamelCase=None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 2048,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: A__ = self.tokenizer A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,**__lowerCamelCase ) else: # add pixel_values and bbox A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,header_text=__lowerCamelCase,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) if "attention_mask" in text_encoding: A__ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: A__ = text_encoding.pop('''input_ids''' ) else: A__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @property def UpperCamelCase ( self ): A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
1
from collections.abc import Callable import numpy as np def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> np.array: __a = int(np.ceil((x_end - xa) / step_size ) ) __a = np.zeros((n + 1,) ) __a = ya __a = xa for k in range(a__ ): __a = y[k] + step_size * ode_func(a__ , y[k] ) __a = y[k] + ( (step_size / 2) * (ode_func(a__ , y[k] ) + ode_func(x + step_size , a__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
6
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel A_ : Dict = HfApi() A_ : List[str] = {} # fmt: off A_ : Dict = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) A_ : List[Any] = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) A_ : str = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) A_ : List[Any] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) A_ : Tuple = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) A_ : List[str] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) A_ : List[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) A_ : Dict = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) A_ : Tuple = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) A_ : str = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) A_ : str = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) A_ : int = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) A_ : int = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) A_ : str = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) A_ : Optional[int] = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on A_ : List[str] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": A_ : Dict = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): A_ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: A_ : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) A_ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) A_ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): A_ : Optional[int] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F'{mod.modelId} has passed successfully!!!')
165
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = "maskformer-swin" __A : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , snake_case__ : Dict=2_2_4 , snake_case__ : Any=4 , snake_case__ : Dict=3 , snake_case__ : str=9_6 , snake_case__ : List[str]=[2, 2, 6, 2] , snake_case__ : Optional[int]=[3, 6, 1_2, 2_4] , snake_case__ : Optional[Any]=7 , snake_case__ : int=4.0 , snake_case__ : str=True , snake_case__ : Dict=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : List[str]="gelu" , snake_case__ : Tuple=False , snake_case__ : int=0.02 , snake_case__ : Tuple=1e-5 , snake_case__ : Optional[int]=None , snake_case__ : Tuple=None , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Optional[int] = image_size lowercase :List[Any] = patch_size lowercase :Optional[Any] = num_channels lowercase :Union[str, Any] = embed_dim lowercase :Union[str, Any] = depths lowercase :List[Any] = len(snake_case__ ) lowercase :Optional[Any] = num_heads lowercase :Optional[Any] = window_size lowercase :Optional[int] = mlp_ratio lowercase :str = qkv_bias lowercase :int = hidden_dropout_prob lowercase :List[str] = attention_probs_dropout_prob lowercase :str = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Tuple = use_absolute_embeddings lowercase :Union[str, Any] = layer_norm_eps lowercase :Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase :Optional[int] = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) lowercase :Optional[int] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(snake_case__ ) + 1 )] lowercase , lowercase :List[str] = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
172
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _A ( unittest.TestCase ): def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = "ZinengTang/tvlt-base" __UpperCAmelCase : str = tempfile.mkdtemp() def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def __A ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Any = self.get_feature_extractor() __UpperCAmelCase : List[Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : str = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase__ ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_feature_extractor() __UpperCAmelCase : List[str] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) __UpperCAmelCase : str = np.ones([12_000] ) __UpperCAmelCase : Tuple = feature_extractor(lowerCamelCase__ , return_tensors="""np""" ) __UpperCAmelCase : List[str] = processor(audio=lowerCamelCase__ , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_feature_extractor() __UpperCAmelCase : List[Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) __UpperCAmelCase : List[Any] = np.ones([3, 224, 224] ) __UpperCAmelCase : int = image_processor(lowerCamelCase__ , return_tensors="""np""" ) __UpperCAmelCase : Any = processor(images=lowerCamelCase__ , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Dict = self.get_feature_extractor() __UpperCAmelCase : Union[str, Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = np.ones([12_000] ) __UpperCAmelCase : Any = np.ones([3, 224, 224] ) __UpperCAmelCase : Optional[Any] = processor(audio=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_feature_extractor() __UpperCAmelCase : int = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
254
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 50 ): _UpperCAmelCase : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
234
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : Union[str, Any] = size if size is not None else {'''shortest_edge''': 18} __a : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __a : Tuple = parent __a : str = batch_size __a : Optional[Any] = num_channels __a : Dict = image_size __a : str = min_resolution __a : Any = max_resolution __a : Union[str, Any] = do_resize __a : str = size __a : int = do_center_crop __a : Tuple = crop_size __a : str = do_normalize __a : Tuple = image_mean __a : Dict = image_std def _lowerCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = LevitImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Union[str, Any] = LevitImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __a : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processing __a : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : Dict = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processing __a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : Dict = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
188
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor''', '''tokenizer'''] __lowerCAmelCase = '''CLIPImageProcessor''' __lowerCAmelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) __a : Any = kwargs.pop('''feature_extractor''' ) __a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a : Any = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: __a : List[str] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __a : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer.model_input_names __a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
188
1
'''simple docstring''' import math _UpperCamelCase : Tuple = 10 _UpperCamelCase : Any = 7 _UpperCamelCase : Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def __UpperCAmelCase ( A : int = 2_0 ) -> str: UpperCAmelCase_ : Tuple = math.comb(A , A ) UpperCAmelCase_ : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , A ) UpperCAmelCase_ : Any = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
304
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[torch.FloatTensor] =None lowercase : torch.FloatTensor =None lowercase : Optional[Tuple[torch.FloatTensor]] =None lowercase : Optional[Tuple[torch.FloatTensor]] =None class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase=512, lowerCAmelCase="cls", lowerCAmelCase=False, lowerCAmelCase=True, **lowerCAmelCase, ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =project_dim lowerCamelCase_ =pooler_fn lowerCamelCase_ =learn_encoder lowerCamelCase_ =use_attention_mask class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =[r'pooler', r'logit_scale'] lowercase : Union[str, Any] =[r'position_ids', r'predictions.decoder.bias'] lowercase : Any ='roberta' lowercase : Optional[Any] =RobertaSeriesConfig def __init__( self, lowerCAmelCase ): """simple docstring""" super().__init__(lowerCAmelCase ) lowerCamelCase_ =XLMRobertaModel(lowerCAmelCase ) lowerCamelCase_ =nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase_ =getattr(lowerCAmelCase, '''has_pre_transformation''', lowerCAmelCase ) if self.has_pre_transformation: lowerCamelCase_ =nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase_ =nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps ) self.post_init() def lowercase__ ( self, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ =self.base_model( input_ids=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, position_ids=lowerCAmelCase, head_mask=lowerCAmelCase, inputs_embeds=lowerCAmelCase, encoder_hidden_states=lowerCAmelCase, encoder_attention_mask=lowerCAmelCase, output_attentions=lowerCAmelCase, output_hidden_states=True if self.has_pre_transformation else output_hidden_states, return_dict=lowerCAmelCase, ) if self.has_pre_transformation: lowerCamelCase_ =outputs['''hidden_states'''][-2] lowerCamelCase_ =self.pre_LN(lowerCAmelCase ) lowerCamelCase_ =self.transformation_pre(lowerCAmelCase ) return TransformationModelOutput( projection_state=lowerCAmelCase, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) else: lowerCamelCase_ =self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
369
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
0
from __future__ import annotations def __A ( __lowerCAmelCase )-> float: """simple docstring""" if not nums: raise ValueError('List is empty' ) return sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
39
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: Tuple ={ 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =[ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Tuple =[ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Any = ["""pixel_values"""] def __init__(self : Any , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : Dict[str, int] = None , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Dict , ): super().__init__(**__a ) UpperCAmelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = do_rescale UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase (self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ): UpperCAmelCase_ = get_size_dict(__a ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _lowercase (self : List[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): UpperCAmelCase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def _lowercase (self : str , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def _lowercase (self : Dict , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : Dict , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__a ) if not is_batched(__a ): UpperCAmelCase_ = [images] if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
106
1
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: '''simple docstring''' if not (isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) __snake_case : Dict = len(UpperCAmelCase_ ) __snake_case : Union[str, Any] = len(UpperCAmelCase_ ) __snake_case : str = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __snake_case : int = 0 __snake_case : str = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __snake_case : str = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __snake_case : Union[str, Any] = i __snake_case : List[Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
172
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _a : str= logging.get_logger(__name__) _a : str= {"vocab_file": "spiece.model"} _a : Tuple= { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } _a : int= { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) _a : Optional[int]= 0 _a : str= 1 _a : Tuple= 2 _a : str= 3 _a : Optional[Any]= 4 class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : str = """left""" def __init__(self : List[Any] , _A : List[str] , _A : int=False , _A : Tuple=True , _A : Optional[Any]=False , _A : List[Any]="<s>" , _A : Dict="</s>" , _A : str="<unk>" , _A : Optional[Any]="<sep>" , _A : Optional[Any]="<pad>" , _A : Optional[Any]="<cls>" , _A : Dict="<mask>" , _A : List[Any]=["<eop>", "<eod>"] , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __snake_case : str = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else mask_token __snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case : Tuple = 3 __snake_case : Optional[int] = do_lower_case __snake_case : Union[str, Any] = remove_space __snake_case : Dict = keep_accents __snake_case : str = vocab_file __snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_A) @property def _lowercase (self : Dict) -> List[str]: return len(self.sp_model) def _lowercase (self : Dict) -> Union[str, Any]: __snake_case : str = {self.convert_ids_to_tokens(_A): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : Union[str, Any]) -> List[str]: __snake_case : Optional[Any] = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__(self : Union[str, Any] , _A : Optional[Any]) -> str: __snake_case : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case : List[Any] = {} __snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowercase (self : Any , _A : Tuple) -> List[str]: if self.remove_space: __snake_case : List[Any] = ' '.join(inputs.strip().split()) else: __snake_case : Tuple = inputs __snake_case : int = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __snake_case : str = unicodedata.normalize('NFKD' , _A) __snake_case : Tuple = ''.join([c for c in outputs if not unicodedata.combining(_A)]) if self.do_lower_case: __snake_case : Union[str, Any] = outputs.lower() return outputs def _lowercase (self : List[Any] , _A : str) -> List[str]: __snake_case : int = self.preprocess_text(_A) __snake_case : Dict = self.sp_model.encode(_A , out_type=_A) __snake_case : Union[str, Any] = [] for piece in pieces: if len(_A) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __snake_case : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __snake_case : List[str] = cur_pieces[1:] else: __snake_case : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_A) else: new_pieces.append(_A) return new_pieces def _lowercase (self : Union[str, Any] , _A : Union[str, Any]) -> Any: return self.sp_model.PieceToId(_A) def _lowercase (self : Tuple , _A : str) -> Optional[int]: return self.sp_model.IdToPiece(_A) def _lowercase (self : List[str] , _A : Dict) -> List[Any]: __snake_case : str = ''.join(_A).replace(_A , ' ').strip() return out_string def _lowercase (self : Dict , _A : List[int] , _A : bool = False , _A : bool = None , _A : bool = True , **_A : str , ) -> str: __snake_case : Tuple = kwargs.pop('use_source_tokenizer' , _A) __snake_case : Tuple = self.convert_ids_to_tokens(_A , skip_special_tokens=_A) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case : List[str] = [] __snake_case : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A)) __snake_case : List[Any] = [] sub_texts.append(_A) else: current_sub_text.append(_A) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __snake_case : Optional[int] = ''.join(_A) __snake_case : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case : str = self.clean_up_tokenization(_A) return clean_text else: return text def _lowercase (self : Dict , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : int = [self.sep_token_id] __snake_case : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase (self : List[str] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A) if token_ids_a is not None: return ([0] * len(_A)) + [1] + ([0] * len(_A)) + [1, 1] return ([0] * len(_A)) + [1, 1] def _lowercase (self : Dict , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowercase (self : Tuple , _A : str , _A : Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_A): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __snake_case : str = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _A) elif not os.path.isfile(self.vocab_file): with open(_A , 'wb') as fi: __snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(_A) return (out_vocab_file,)
172
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def a ( cls : Tuple ) -> int: lowerCAmelCase__ = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a ( cls : Union[str, Any] ) -> str: try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def a ( self : str ) -> str: lowerCAmelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowerCAmelCase__ = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_ , repo_id="test-config" , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) lowerCAmelCase__ = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) def a ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowerCAmelCase__ = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) lowerCAmelCase__ = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) def a ( self : Optional[int] ) -> List[str]: CustomConfig.register_for_auto_class() lowerCAmelCase__ = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowerCAmelCase__ = AutoConfig.from_pretrained(f'{USER}/test-dynamic-config' , trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase__ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCAmelCase__ = c.n_embd + 1 # int lowerCAmelCase__ = c.resid_pdrop + 1.0 # float lowerCAmelCase__ = not c.scale_attn_weights # bool lowerCAmelCase__ = c.summary_type + "foo" # str c.update_from_string( f'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(lowerCamelCase_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase_ , c.summary_type , "mismatch for key: summary_type" ) def a ( self : Union[str, Any] ) -> Any: lowerCAmelCase__ = PretrainedConfig() lowerCAmelCase__ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowerCAmelCase__ = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_ , lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f' {", ".join(lowerCamelCase_ )}.' ) def a ( self : Optional[Any] ) -> Dict: with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase__ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowerCAmelCase__ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase_ ) def a ( self : List[str] ) -> List[Any]: # A mock response for an HTTP head request to emulate server down lowerCAmelCase__ = mock.Mock() lowerCAmelCase__ = 500 lowerCAmelCase__ = {} lowerCAmelCase__ = HTTPError lowerCAmelCase__ = {} # Download this model to make sure it's in the cache. lowerCAmelCase__ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase_ ) as mock_head: lowerCAmelCase__ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def a ( self : Any ) -> List[str]: # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase__ = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def a ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase__ = AutoConfig.from_pretrained("bert-base-cased" ) lowerCAmelCase__ = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCAmelCase__ = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCAmelCase__ = ["config.42.0.0.json"] lowerCAmelCase__ = 768 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase_ , "config.42.0.0.json" ) ) lowerCAmelCase__ = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def a ( self : Union[str, Any] ) -> Optional[Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowerCAmelCase__ = "hf-internal-testing/test-two-configs" import transformers as new_transformers lowerCAmelCase__ = "v4.0.0" lowerCAmelCase__ , lowerCAmelCase__ = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCAmelCase__ = "v3.0.0" lowerCAmelCase__ = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
361
def _A ( lowerCAmelCase_ : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
221
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCamelCase = '''sshleifer/bart-tiny-random''' lowerCamelCase = '''patrickvonplaten/t5-tiny-random''' @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return AutoConfig.from_pretrained(lowercase_ ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__, *a__ =create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.num_hidden_layers, 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__, *a__ =create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=1, d=lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__, *a__ =create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=1, d=lowercase_ ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__, *a__ =create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, 1 ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" with self.assertRaises(lowercase_ ): create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=lowercase_, d=lowercase_ )
188
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =scope def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowercase_, initializer_range=self.initializer_range, use_stable_embedding=lowercase_, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]: """simple docstring""" a__ =OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Any: """simple docstring""" a__ =True a__ =OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, ) a__ =model(lowercase_, attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[str]: """simple docstring""" a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[Any]: """simple docstring""" a__ =True a__ =True a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, use_cache=lowercase_, ) a__ =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ =ids_tensor((self.batch_size, 3), config.vocab_size ) a__ =ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and a__ =torch.cat([input_ids, next_tokens], dim=-1 ) a__ =torch.cat([input_mask, next_mask], dim=-1 ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, past_key_values=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] # select random slice a__ =ids_tensor((1,), output_from_past.shape[-1] ).item() a__ =output_from_no_past[:, -3:, random_slice_idx].detach() a__ =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-3 ) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ : List[str] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =OpenLlamaModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ =type self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''single_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''multi_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase ( self, lowercase_ ) -> Optional[Any]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =ids_tensor([1, 10], config.vocab_size ) a__ =ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ =OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() a__ =original_model(lowercase_ ).last_hidden_state a__ =original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ ={'''type''': scaling_type, '''factor''': 10.0} a__ =OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() a__ =scaled_model(lowercase_ ).last_hidden_state a__ =scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) )
188
1
def UpperCamelCase_( lowerCamelCase_ ) -> int: assert column_title.isupper() _lowercase : Tuple = 0 _lowercase : int = len(lowerCamelCase_ ) - 1 _lowercase : Any = 0 while index >= 0: _lowercase : Dict = (ord(column_title[index] ) - 64) * pow(26 , lowerCamelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
84
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json SCREAMING_SNAKE_CASE : Optional[Any] = "sshleifer/mar_enro_6_3_student" class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> str: """simple docstring""" super().setUp() _lowercase : int = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz', extract_compressed_file=lowerCamelCase, ) _lowercase : Any = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" MarianMTModel.from_pretrained(lowerCamelCase) @slow @require_torch_gpu def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowercase : Optional[int] = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py')[1].strip() _lowercase : List[Any] = bash_script.replace('\\\n', '').strip().replace('"$@"', '') for k, v in env_vars_to_replace.items(): _lowercase : str = bash_script.replace(lowerCamelCase, str(lowerCamelCase)) _lowercase : Optional[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowercase : Tuple = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowercase : int = ['finetune.py'] + bash_script.split() + args with patch.object(lowerCamelCase, 'argv', lowerCamelCase): _lowercase : Optional[int] = argparse.ArgumentParser() _lowercase : str = pl.Trainer.add_argparse_args(lowerCamelCase) _lowercase : List[str] = SummarizationModule.add_model_specific_args(lowerCamelCase, os.getcwd()) _lowercase : List[Any] = parser.parse_args() _lowercase : Union[str, Any] = main(lowerCamelCase) # Check metrics _lowercase : Tuple = load_json(model.metrics_save_path) _lowercase : Dict = metrics['val'][0] _lowercase : int = metrics['val'][-1] self.assertEqual(len(metrics['val']), (args.max_epochs / args.val_check_interval)) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''], lowerCamelCase) self.assertGreater(last_step_stats['val_avg_gen_time'], 0.0_1) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'], 1.0) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'], 2) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'], 17) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu']), 1.1) # check lightning ckpt can be loaded and has a reasonable statedict _lowercase : List[Any] = os.listdir(lowerCamelCase) _lowercase : Optional[Any] = [x for x in contents if x.endswith('.ckpt')][0] _lowercase : List[str] = os.path.join(args.output_dir, lowerCamelCase) _lowercase : List[Any] = torch.load(lowerCamelCase, map_location='cpu') _lowercase : str = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowercase : int = {os.path.basename(lowerCamelCase) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test']) == 1 class _lowerCamelCase( _a ): @timeout_decorator.timeout(6_00) @slow @require_torch_gpu def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowercase : Optional[Any] = { '--fp16_opt_level=O1': '', '$MAX_LEN': 1_28, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowercase : Optional[int] = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py')[1].strip() ) _lowercase : Any = bash_script.replace('\\\n', '').strip().replace('"$@"', '') _lowercase : List[str] = bash_script.replace('--fp16 ', ' ') for k, v in env_vars_to_replace.items(): _lowercase : Optional[int] = bash_script.replace(lowerCamelCase, str(lowerCamelCase)) _lowercase : Any = self.get_auto_remove_tmp_dir() _lowercase : str = bash_script.replace('--fp16', '') _lowercase : Dict = 6 _lowercase : Tuple = ( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(lowerCamelCase, 'argv', lowerCamelCase): _lowercase : Dict = argparse.ArgumentParser() _lowercase : int = pl.Trainer.add_argparse_args(lowerCamelCase) _lowercase : Tuple = SummarizationDistiller.add_model_specific_args(lowerCamelCase, os.getcwd()) _lowercase : Optional[int] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowercase : Tuple = distill_main(lowerCamelCase) # Check metrics _lowercase : Tuple = load_json(model.metrics_save_path) _lowercase : Any = metrics['val'][0] _lowercase : int = metrics['val'][-1] assert len(metrics['val']) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''], lowerCamelCase) # check lightning ckpt can be loaded and has a reasonable statedict _lowercase : List[str] = os.listdir(lowerCamelCase) _lowercase : List[Any] = [x for x in contents if x.endswith('.ckpt')][0] _lowercase : List[str] = os.path.join(args.output_dir, lowerCamelCase) _lowercase : Tuple = torch.load(lowerCamelCase, map_location='cpu') _lowercase : Dict = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowercase : List[Any] = {os.path.basename(lowerCamelCase) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test']) == 1
84
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__(self , A , A=12 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=512 , A=0.02 , A=0 , A=None , ) -> Dict: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_labels _a = vocab_size _a = hidden_size _a = projection_dim _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = dropout _a = attention_dropout _a = max_position_embeddings _a = initializer_range _a = scope _a = bos_token_id def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _a = input_mask.numpy() _a , _a = input_mask.shape _a = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): _a = 1 _a = 0 _a = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def a__ (self ) -> Any: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = TFBlipTextModel(config=_snake_case ) _a = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) _a = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = BlipTextModelTester(self ) _a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Tuple: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def a__ (self ) -> str: """simple docstring""" pass def a__ (self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def a__ (self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def a__ (self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def a__ (self ) -> Dict: """simple docstring""" pass @slow def a__ (self ) -> str: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def a__ (self , A=True ) -> Optional[Any]: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
211
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __snake_case = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __snake_case = [ord(letter) for letter in string.ascii_lowercase] __snake_case = {ord(char) for char in VALID_CHARS} __snake_case = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str | None: '''simple docstring''' UpperCAmelCase : str ="" UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): UpperCAmelCase : Dict =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def lowerCAmelCase_ ( __lowerCAmelCase )-> list[str]: '''simple docstring''' UpperCAmelCase : list[str] =[] for key in product(__lowerCAmelCase , repeat=3 ): UpperCAmelCase : Dict =try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def lowerCAmelCase_ ( __lowerCAmelCase = "p059_cipher.txt" )-> int: '''simple docstring''' UpperCAmelCase : list[int] UpperCAmelCase : list[str] UpperCAmelCase : str UpperCAmelCase : str UpperCAmelCase : str =Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase : Optional[int] =[int(__lowerCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase : Any =filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase : Optional[Any] =filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break UpperCAmelCase : Tuple =possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f'{solution() = }')
78
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : str = """rwkv""" __lowerCamelCase : str = {"""max_position_embeddings""": """context_length"""} def __init__( self , snake_case__=5_0277 , snake_case__=1024 , snake_case__=4096 , snake_case__=32 , snake_case__=None , snake_case__=None , snake_case__=1e-5 , snake_case__=0 , snake_case__=0 , snake_case__=6 , snake_case__=False , snake_case__=True , **snake_case__ , ) -> List[str]: '''simple docstring''' UpperCAmelCase : int =vocab_size UpperCAmelCase : List[str] =context_length UpperCAmelCase : Any =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : str =attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase : List[Any] =intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase : Optional[int] =layer_norm_epsilon UpperCAmelCase : int =rescale_every UpperCAmelCase : Any =use_cache UpperCAmelCase : List[str] =bos_token_id UpperCAmelCase : Any =eos_token_id super().__init__( tie_word_embeddings=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
78
1
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Any = f'{sampling_rate}' lowerCAmelCase__ : Optional[Any] = '''1''' lowerCAmelCase__ : List[str] = '''f32le''' lowerCAmelCase__ : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(A_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase__ : Any = ffmpeg_process.communicate(A_ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error lowerCAmelCase__ : Any = output_stream[0] lowerCAmelCase__ : Union[str, Any] = np.frombuffer(A_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ = "f32le" , ): lowerCAmelCase__ : List[str] = f'{sampling_rate}' lowerCAmelCase__ : str = '''1''' if format_for_conversion == "s16le": lowerCAmelCase__ : Tuple = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : List[str] = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) lowerCAmelCase__ : Tuple = platform.system() if system == "Linux": lowerCAmelCase__ : Optional[int] = '''alsa''' lowerCAmelCase__ : str = '''default''' elif system == "Darwin": lowerCAmelCase__ : Optional[int] = '''avfoundation''' lowerCAmelCase__ : Any = ''':0''' elif system == "Windows": lowerCAmelCase__ : Dict = '''dshow''' lowerCAmelCase__ : List[Any] = '''default''' lowerCAmelCase__ : Optional[int] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] lowerCAmelCase__ : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase__ : Optional[Any] = _ffmpeg_stream(A_ , A_ ) for item in iterator: yield item def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ = None , A_ = None , A_ = "f32le" , ): if stream_chunk_s is not None: lowerCAmelCase__ : Any = stream_chunk_s else: lowerCAmelCase__ : str = chunk_length_s lowerCAmelCase__ : List[str] = ffmpeg_microphone(A_ , A_ , format_for_conversion=A_ ) if format_for_conversion == "s16le": lowerCAmelCase__ : str = np.intaa lowerCAmelCase__ : Any = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : Optional[Any] = np.floataa lowerCAmelCase__ : Dict = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: lowerCAmelCase__ : str = chunk_length_s / 6 lowerCAmelCase__ : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A_ , (int, float) ): lowerCAmelCase__ : Optional[Any] = [stride_length_s, stride_length_s] lowerCAmelCase__ : str = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase__ : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase__ : Optional[Any] = datetime.datetime.now() lowerCAmelCase__ : Optional[int] = datetime.timedelta(seconds=A_ ) for item in chunk_bytes_iter(A_ , A_ , stride=(stride_left, stride_right) , stream=A_ ): # Put everything back in numpy scale lowerCAmelCase__ : Optional[int] = np.frombuffer(item['''raw'''] , dtype=A_ ) lowerCAmelCase__ : str = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) lowerCAmelCase__ : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ = False ): lowerCAmelCase__ : str = b'''''' lowerCAmelCase__ ,lowerCAmelCase__ : int = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) lowerCAmelCase__ : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(A_ ) < chunk_len: lowerCAmelCase__ : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A_ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase__ : Dict = (_stride_left, stride_right) lowerCAmelCase__ : Optional[int] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: lowerCAmelCase__ : Optional[Any] = False yield item lowerCAmelCase__ : int = stride_left lowerCAmelCase__ : List[str] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A_ ) > stride_left: lowerCAmelCase__ : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: lowerCAmelCase__ : Tuple = False yield item def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : str = 2**24 # 16Mo try: with subprocess.Popen(A_ , stdout=subprocess.PIPE , bufsize=A_ ) as ffmpeg_process: while True: lowerCAmelCase__ : List[str] = ffmpeg_process.stdout.read(A_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
106
"""simple docstring""" import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : Dict="sayef/fsner-bert-base-uncased" ): super(lowercase_ ,self ).__init__() lowerCAmelCase__ : int = AutoModel.from_pretrained(lowercase_ ,return_dict=lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.nn.CosineSimilarity(3 ,1E-08 ) lowerCAmelCase__ : List[str] = torch.nn.Softmax(dim=1 ) def __lowerCAmelCase ( self : str ,**lowercase_ : int ): return self.bert(**lowercase_ ).last_hidden_state def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Optional[int] ): return token_embeddings.sum(2 ,keepdim=lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : int ,lowercase_ : str ,lowercase_ : Tuple=1 ): return self.softmax(T * self.cos(lowercase_ ,lowercase_ ) ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : List[Any] = W_supports['''sizes'''].tolist() lowerCAmelCase__ : Dict = W_supports['''start_token_id'''].item() lowerCAmelCase__ : Union[str, Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase__ : Optional[Any] = self.BERT(**lowercase_ ) lowerCAmelCase__ : int = self.BERT(**lowercase_ ) lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : int = W_supports['''input_ids'''] == start_token_id lowerCAmelCase__ : Optional[Any] = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(lowercase_ ): if i == 0: lowerCAmelCase__ : str = 0 else: lowerCAmelCase__ : List[Any] = support_sizes[i - 1] lowerCAmelCase__ : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase__ : List[Any] = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase__ : Union[str, Any] = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase__ : Any = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase__ : List[Any] = torch.vstack((p_starts, p_start) ) lowerCAmelCase__ : List[Any] = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase__ : Union[str, Any] = p_start lowerCAmelCase__ : str = p_end return p_starts, p_ends
106
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = ["""pixel_values"""] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , SCREAMING_SNAKE_CASE_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **SCREAMING_SNAKE_CASE_ : Dict , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) A: Tuple = size if size is not None else {'''shortest_edge''': 2_24} A: Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) A: str = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} A: Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) A: List[Any] = do_resize A: Union[str, Any] = size A: List[Any] = resample A: Any = do_center_crop A: List[str] = crop_size A: List[Any] = do_rescale A: Optional[Any] = rescale_factor A: Optional[int] = do_normalize A: Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A: Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> np.ndarray: '''simple docstring''' A: Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A: Tuple = int((2_56 / 2_24) * size['''shortest_edge'''] ) A: List[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( SCREAMING_SNAKE_CASE_ , size=(size_dict['''height'''], size_dict['''width''']) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> np.ndarray: '''simple docstring''' A: Dict = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, float] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[float] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, Iterable[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, Iterable[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[TensorType] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : int , ) -> BatchFeature: '''simple docstring''' A: Union[str, Any] = do_resize if do_resize is not None else self.do_resize A: List[str] = resample if resample is not None else self.resample A: Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop A: Optional[int] = do_rescale if do_rescale is not None else self.do_rescale A: Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor A: Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A: Union[str, Any] = image_mean if image_mean is not None else self.image_mean A: Optional[int] = image_std if image_std is not None else self.image_std A: Dict = size if size is not None else self.size A: Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) A: Any = crop_size if crop_size is not None else self.crop_size A: Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) A: Optional[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A: Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: A: str = [self.resize(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: A: Optional[int] = [self.center_crop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: A: Dict = [self.rescale(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: A: Optional[Any] = [self.normalize(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] A: List[str] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] A: int = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
334
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCAmelCase__ = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') lowerCAmelCase__ = F"""https://www.google.com/search?q={query}&num=100""" lowerCAmelCase__ = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: lowerCAmelCase__ = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: lowerCAmelCase__ = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
72
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = "ResNetConfig" # Base docstring __lowerCamelCase = "microsoft/resnet-50" __lowerCamelCase = [1, 20_48, 7, 7] # Image classification docstring __lowerCamelCase = "microsoft/resnet-50" __lowerCamelCase = "tiger cat" __lowerCamelCase = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 3 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> Any: super().__init__() A__ = nn.Convad( __UpperCAmelCase ,__UpperCAmelCase ,kernel_size=__UpperCAmelCase ,stride=__UpperCAmelCase ,padding=kernel_size // 2 ,bias=__UpperCAmelCase ) A__ = nn.BatchNormad(__UpperCAmelCase ) A__ = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = self.convolution(__UpperCAmelCase ) A__ = self.normalization(__UpperCAmelCase ) A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ) -> Any: super().__init__() A__ = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) A__ = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) A__ = config.num_channels def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) A__ = self.embedder(__UpperCAmelCase ) A__ = self.pooler(__UpperCAmelCase ) return embedding class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ) -> Optional[Any]: super().__init__() A__ = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,stride=__UpperCAmelCase ,bias=__UpperCAmelCase ) A__ = nn.BatchNormad(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = self.convolution(__UpperCAmelCase ) A__ = self.normalization(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> int: super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,activation=__UpperCAmelCase ) ,) A__ = ACTaFN[activation] def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = hidden_state A__ = self.layer(__UpperCAmelCase ) A__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ,__UpperCAmelCase = 4 ) -> int: super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = out_channels // reduction A__ = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,activation=__UpperCAmelCase ) ,) A__ = ACTaFN[activation] def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = hidden_state A__ = self.layer(__UpperCAmelCase ) A__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,) -> Any: super().__init__() A__ = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer A__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ,activation=config.hidden_act ) ,*[layer(__UpperCAmelCase ,__UpperCAmelCase ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = input for layer in self.layers: A__ = layer(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__() A__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) A__ = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCAmelCase ,config.depths[1:] ): self.stages.append(ResNetStage(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,depth=__UpperCAmelCase ) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = True ) -> BaseModelOutputWithNoAttention: A__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A__ = hidden_states + (hidden_state,) A__ = stage_module(__UpperCAmelCase ) if output_hidden_states: A__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase ,hidden_states=__UpperCAmelCase ,) class UpperCamelCase__( __A ): lowerCAmelCase__ : str = ResNetConfig lowerCAmelCase__ : str = 'resnet' lowerCAmelCase__ : int = 'pixel_values' lowerCAmelCase__ : Any = True def snake_case__ ( self ,__UpperCAmelCase ) -> List[Any]: if isinstance(__UpperCAmelCase ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='fan_out' ,nonlinearity='relu' ) elif isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = value __lowerCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __lowerCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __A , ) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Union[str, Any]: super().__init__(__UpperCAmelCase ) A__ = config A__ = ResNetEmbeddings(__UpperCAmelCase ) A__ = ResNetEncoder(__UpperCAmelCase ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention: A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.embedder(__UpperCAmelCase ) A__ = self.encoder( __UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = encoder_outputs[0] A__ = self.pooler(__UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase ,pooler_output=__UpperCAmelCase ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __A , ) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Tuple: super().__init__(__UpperCAmelCase ) A__ = config.num_labels A__ = ResNetModel(__UpperCAmelCase ) # classification head A__ = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def snake_case__ ( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> ImageClassifierOutputWithNoAttention: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.resnet(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(__UpperCAmelCase ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = 'single_label_classification' else: A__ = 'multi_label_classification' if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) if not return_dict: A__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase ,logits=__UpperCAmelCase ,hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __A , ) class UpperCamelCase__( __A , __A ): def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__(__UpperCAmelCase ) super()._init_backbone(__UpperCAmelCase ) A__ = [config.embedding_size] + config.hidden_sizes A__ = ResNetEmbeddings(__UpperCAmelCase ) A__ = ResNetEncoder(__UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @replace_return_docstrings(output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BackboneOutput: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = self.embedder(__UpperCAmelCase ) A__ = self.encoder(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = outputs.hidden_states A__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=__UpperCAmelCase ,)
221
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _a : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] _a : Optional[int] = DisjunctiveConstraint(UpperCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowercase ( self : str ) -> Optional[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _a : List[str] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(UpperCAmelCase__ ) # fails here def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a : int = [[1, 2, 3], [1, 2, 4]] _a : List[Any] = DisjunctiveConstraint(UpperCAmelCase__ ) _a , _a , _a : int = dc.update(1 ) _a : str = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _a , _a , _a : Optional[int] = dc.update(2 ) _a : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _a , _a , _a : List[str] = dc.update(3 ) _a : Tuple = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowercase ( self : Union[str, Any] ) -> int: _a : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _a : Dict = DisjunctiveConstraint(UpperCAmelCase__ ) _a , _a , _a : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _a , _a , _a : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _a , _a , _a : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _a , _a , _a : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _a , _a , _a : List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _a , _a , _a : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _a , _a , _a : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
324
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _SCREAMING_SNAKE_CASE ( A__ ): def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :int = tempfile.mkdtemp() lowerCAmelCase_ :Any = 5 # Realm tok lowerCAmelCase_ :List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase_ :Dict = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(__A , exist_ok=__A ) lowerCAmelCase_ :Optional[Any] = os.path.join(__A , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase_ :Union[str, Any] = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(__A , exist_ok=__A ) def __lowerCAmelCase ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Union[str, Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :int = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Optional[Any] = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=__A , ) return block_records def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Optional[Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Optional[int] = self.get_config() lowerCAmelCase_ :Optional[int] = self.get_dummy_retriever() lowerCAmelCase_ :Tuple = retriever.tokenizer lowerCAmelCase_ :List[Any] = np.array([0, 3] , dtype="""long""" ) lowerCAmelCase_ :Dict = tokenizer(["""Test question"""] ).input_ids lowerCAmelCase_ :List[str] = tokenizer( ["""the fourth"""] , add_special_tokens=__A , return_token_type_ids=__A , return_attention_mask=__A , ).input_ids lowerCAmelCase_ :Optional[Any] = config.reader_seq_len lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Any = retriever( __A , __A , answer_ids=__A , max_length=__A , return_tensors="""np""" ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[int] = self.get_config() lowerCAmelCase_ :int = self.get_dummy_retriever() lowerCAmelCase_ :Union[str, Any] = retriever.tokenizer lowerCAmelCase_ :Dict = np.array([0, 3, 5] , dtype="""long""" ) lowerCAmelCase_ :Dict = tokenizer(["""Test question"""] ).input_ids lowerCAmelCase_ :Any = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=__A , return_token_type_ids=__A , return_attention_mask=__A , ).input_ids lowerCAmelCase_ :Tuple = config.reader_seq_len lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :int = retriever( __A , __A , answer_ids=__A , max_length=__A , return_tensors="""np""" ) self.assertEqual([False, True, True] , __A ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __A ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __A ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Optional[int] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path lowerCAmelCase_ :Union[str, Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: lowerCAmelCase_ :Union[str, Any] = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) lowerCAmelCase_ :List[str] = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
84
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _snake_case ( lowercase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) lowerCAmelCase_ :Union[str, Any] = FileLock(str(tmpdir / """foo.lock""" ) ) lowerCAmelCase_ :Dict = 0.01 with locka.acquire(): with pytest.raises(lowercase__ ): lowerCAmelCase_ :List[Any] = time.time() locka.acquire(lowercase__ ) assert time.time() - _start > timeout def _snake_case ( lowercase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[Any] = """a""" * 1_0_0_0 + """.lock""" lowerCAmelCase_ :Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowercase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 lowerCAmelCase_ :Any = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase__ ): locka.acquire(0 )
84
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor A_ : Union[str, Any] =logging.get_logger(__name__) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , a__ , ) super().__init__(*a__ , **a__ )
80
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __a : def __init__( self , a__=None , a__=None ): # Input as list _lowerCamelCase = list(poly_a or [0] )[:] _lowerCamelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCamelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _lowerCamelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _lowerCamelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _lowerCamelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _lowerCamelCase = self.__multiply() def snake_case_ ( self , a__ ): _lowerCamelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(a__ ) <= 1: return dft[0] # _lowerCamelCase = self.c_max_length // 2 while next_ncol > 0: _lowerCamelCase = [[] for i in range(a__ )] _lowerCamelCase = self.root**next_ncol # First half of next step _lowerCamelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _lowerCamelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _lowerCamelCase = new_dft _lowerCamelCase = next_ncol // 2 return dft[0] def snake_case_ ( self ): _lowerCamelCase = self.__dft('A' ) _lowerCamelCase = self.__dft('B' ) _lowerCamelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _lowerCamelCase = 2 while next_ncol <= self.c_max_length: _lowerCamelCase = [[] for i in range(a__ )] _lowerCamelCase = self.root ** (next_ncol // 2) _lowerCamelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _lowerCamelCase = new_inverse_c next_ncol *= 2 # Unpack _lowerCamelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): _lowerCamelCase = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _lowerCamelCase = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _lowerCamelCase = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
80
1
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging snake_case_ = """\ """ snake_case_ = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ snake_case_ = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self :str ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def UpperCAmelCase__ ( self :str , lowercase_ :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :int = 16 , lowercase_ :bool = True , lowercase_ :Any=None ) -> Optional[int]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase = 'cuda' else: UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCAmelCase = AutoModelForCausalLM.from_pretrained(lowercase_ ) UpperCAmelCase = model.to(lowercase_ ) UpperCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowercase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase = model.config.max_length - 1 else: UpperCAmelCase = model.config.max_length UpperCAmelCase = tokenizer( lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors='pt' , return_attention_mask=lowercase_ , ).to(lowercase_ ) UpperCAmelCase = encodings['input_ids'] UpperCAmelCase = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase = [] UpperCAmelCase = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(lowercase_ ) , lowercase_ ) ): UpperCAmelCase = min(start_index + batch_size , len(lowercase_ ) ) UpperCAmelCase = encoded_texts[start_index:end_index] UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowercase_ ) UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowercase_ ), attn_mask] , dim=1 ) UpperCAmelCase = encoded_batch with torch.no_grad(): UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ ).logits UpperCAmelCase = out_logits[..., :-1, :].contiguous() UpperCAmelCase = labels[..., 1:].contiguous() UpperCAmelCase = attn_mask[..., 1:].contiguous() UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowercase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowercase_ )}
78
"""simple docstring""" import requests snake_case_ = """""" # <-- Put your OpenWeatherMap appid here! snake_case_ = """https://api.openweathermap.org/data/2.5/""" def _lowerCAmelCase ( lowercase_ = "Chicago" , lowercase_ = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def _lowerCAmelCase ( lowercase_ = "Kolkata, India" , lowercase_ = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def _lowerCAmelCase ( lowercase_ = 5_5.6_8 , lowercase_ = 1_2.5_7 , lowercase_ = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: snake_case_ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
78
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , ) -> Any: UpperCAmelCase : int = size if size is not None else {'height': 18, 'width': 18} UpperCAmelCase : List[str] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Dict = image_size UpperCAmelCase : int = min_resolution UpperCAmelCase : Tuple = max_resolution UpperCAmelCase : List[str] = do_resize UpperCAmelCase : Dict = size UpperCAmelCase : Dict = do_normalize def _lowercase( self ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ImageGPTImageProcessor if is_vision_available() else None def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = ImageGPTImageProcessingTester(self ) @property def _lowercase( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , """clusters""" ) ) self.assertTrue(hasattr(_A , """do_resize""" ) ) self.assertTrue(hasattr(_A , """size""" ) ) self.assertTrue(hasattr(_A , """do_normalize""" ) ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _lowercase( self ) -> int: UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase : Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , obj[key] ) ) else: self.assertEqual(obj[key] , _A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : List[Any] = os.path.join(_A , """image_processor.json""" ) image_processor_first.to_json_file(_A ) UpperCAmelCase : Optional[Any] = self.image_processing_class.from_json_file(_A ).to_dict() UpperCAmelCase : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_A ) UpperCAmelCase : Optional[int] = self.image_processing_class.from_pretrained(_A ).to_dict() UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _A ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def _lowercase( self ) -> int: pass def __lowerCamelCase ( ) -> str: UpperCAmelCase : Tuple = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) UpperCAmelCase : List[str] = Image.open(dataset[4]["""file"""] ) UpperCAmelCase : List[Any] = Image.open(dataset[5]["""file"""] ) UpperCAmelCase : Any = [imagea, imagea] return images @require_vision @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) UpperCAmelCase : Union[str, Any] = prepare_images() # test non-batched UpperCAmelCase : List[Any] = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCAmelCase : int = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _A ) # test batched UpperCAmelCase : List[str] = image_processing(_A , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCAmelCase : Any = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _A )
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCamelCase =logging.get_logger(__name__) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = ['pixel_values'] def __init__( self : Dict ,snake_case : bool = True ,snake_case : Dict[str, int] = None ,snake_case : PILImageResampling = PILImageResampling.BICUBIC ,snake_case : bool = True ,snake_case : Dict[str, int] = None ,snake_case : bool = True ,snake_case : Union[int, float] = 1 / 255 ,snake_case : bool = True ,snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case ) SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,param_name='crop_size' ) SCREAMING_SNAKE_CASE =do_resize SCREAMING_SNAKE_CASE =size SCREAMING_SNAKE_CASE =resample SCREAMING_SNAKE_CASE =do_center_crop SCREAMING_SNAKE_CASE =crop_size SCREAMING_SNAKE_CASE =do_rescale SCREAMING_SNAKE_CASE =rescale_factor SCREAMING_SNAKE_CASE =do_normalize SCREAMING_SNAKE_CASE =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE =image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowerCAmelCase ( self : List[str] ,snake_case : np.ndarray ,snake_case : Dict[str, int] ,snake_case : PILImageResampling = PILImageResampling.BICUBIC ,snake_case : Optional[Union[str, ChannelDimension]] = None ,**snake_case : Tuple ,): SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: SCREAMING_SNAKE_CASE =int((256 / 224) * size['shortest_edge'] ) SCREAMING_SNAKE_CASE =get_resize_output_image_size(snake_case ,size=snake_case ,default_to_square=snake_case ) SCREAMING_SNAKE_CASE ={'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( snake_case ,size=(size_dict['height'], size_dict['width']) ,resample=snake_case ,data_format=snake_case ,**snake_case ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : np.ndarray ,snake_case : Dict[str, int] ,snake_case : Optional[Union[str, ChannelDimension]] = None ,**snake_case : str ,): SCREAMING_SNAKE_CASE =get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(snake_case ,size=(size['height'], size['width']) ,data_format=snake_case ,**snake_case ) def _lowerCAmelCase ( self : List[Any] ,snake_case : np.ndarray ,snake_case : Union[int, float] ,snake_case : Optional[Union[str, ChannelDimension]] = None ,**snake_case : Tuple ,): return rescale(snake_case ,scale=snake_case ,data_format=snake_case ,**snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : np.ndarray ,snake_case : Union[float, List[float]] ,snake_case : Union[float, List[float]] ,snake_case : Optional[Union[str, ChannelDimension]] = None ,**snake_case : Tuple ,): return normalize(snake_case ,mean=snake_case ,std=snake_case ,data_format=snake_case ,**snake_case ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : ImageInput ,snake_case : Optional[bool] = None ,snake_case : Optional[Dict[str, int]] = None ,snake_case : PILImageResampling = None ,snake_case : Optional[bool] = None ,snake_case : Optional[Dict[str, int]] = None ,snake_case : Optional[bool] = None ,snake_case : Optional[float] = None ,snake_case : Optional[bool] = None ,snake_case : Optional[Union[float, Iterable[float]]] = None ,snake_case : Optional[Union[float, Iterable[float]]] = None ,snake_case : Optional[TensorType] = None ,snake_case : ChannelDimension = ChannelDimension.FIRST ,**snake_case : Optional[int] ,): SCREAMING_SNAKE_CASE =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE =size if size is not None else self.size SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case ) SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,param_name='crop_size' ) SCREAMING_SNAKE_CASE =make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE =[to_numpy_array(snake_case ) for image in images] if do_resize: SCREAMING_SNAKE_CASE =[self.resize(snake_case ,snake_case ,snake_case ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE =[self.center_crop(snake_case ,snake_case ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE =[self.rescale(snake_case ,snake_case ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE =[self.normalize(snake_case ,snake_case ,snake_case ) for image in images] SCREAMING_SNAKE_CASE =[to_channel_dimension_format(snake_case ,snake_case ) for image in images] SCREAMING_SNAKE_CASE ={'pixel_values': images} return BatchFeature(data=snake_case ,tensor_type=snake_case )
334
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example UpperCamelCase : Optional[Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCamelCase : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] ) -> list[list[int]]: """simple docstring""" a : List[str] = [] for i in range(len(snake_case ) ): a : Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours a : Tuple = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(snake_case ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(snake_case ) - 1: neighbour_count += cells[i + 1][j] if i < len(snake_case ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. a : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(snake_case ) return next_generation def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] , snake_case : int ) -> list[Image.Image]: """simple docstring""" a : int = [] for _ in range(snake_case ): # Create output image a : int = Image.new('RGB' , (len(cells[0] ), len(snake_case )) ) a : Tuple = img.load() # Save cells to image for x in range(len(snake_case ) ): for y in range(len(cells[0] ) ): a : Union[str, Any] = 255 - cells[y][x] * 255 a : int = (colour, colour, colour) # Save image images.append(snake_case ) a : Any = new_generation(snake_case ) return images if __name__ == "__main__": UpperCamelCase : Any = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
368
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class UpperCamelCase : """simple docstring""" A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) A : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.task_name.lower() class UpperCamelCase ( a_ ): """simple docstring""" A : int = "train" A : Tuple = "dev" A : List[Any] = "test" class UpperCamelCase ( a_ ): """simple docstring""" A : GlueDataTrainingArguments A : str A : List[InputFeatures] def __init__( self : Tuple , UpperCAmelCase_ : GlueDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizerBase , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[str] = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCAmelCase_ , ) a : Dict = args a : int = glue_processors[args.task_name]() a : int = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): try: a : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file a : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) a : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a : str = label_list[2], label_list[1] a : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Union[str, Any] = cached_features_file + '.lock' with FileLock(UpperCAmelCase_): if os.path.exists(UpperCAmelCase_) and not args.overwrite_cache: a : Optional[Any] = time.time() a : Optional[Any] = torch.load(UpperCAmelCase_) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: a : List[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: a : Optional[Any] = self.processor.get_test_examples(args.data_dir) else: a : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: a : Dict = examples[:limit_length] a : List[Any] = glue_convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , max_length=args.max_seq_length , label_list=UpperCAmelCase_ , output_mode=self.output_mode , ) a : Dict = time.time() torch.save(self.features , UpperCAmelCase_) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : Tuple): """simple docstring""" return len(self.features) def __getitem__( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.label_list
345
0
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Union[str, Any]="<unk>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : int=125 , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : List[Any] , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _UpperCamelCase = [f"""<extra_id_{i}>""" for i in range(lowerCAmelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCamelCase = len(set(filter(lambda lowerCAmelCase__ : bool('''extra_id''' in str(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token super().__init__( eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , extra_ids=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = extra_ids _UpperCamelCase = 2**8 # utf is 8 bits # define special tokens dict _UpperCamelCase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _UpperCamelCase = len(self.special_tokens_encoder ) _UpperCamelCase = len(lowerCAmelCase__ ) for i, token in enumerate(lowerCAmelCase__ ): _UpperCamelCase = self.vocab_size + i - n _UpperCamelCase = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case__ ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase__ )) + [1] return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] ) -> List[int]: '''simple docstring''' if len(lowerCAmelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = self._add_eos_if_not_present(lowerCAmelCase__ ) if token_ids_a is None: return token_ids_a else: _UpperCamelCase = self._add_eos_if_not_present(lowerCAmelCase__ ) return token_ids_a + token_ids_a def snake_case__ ( self : List[str] , lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = [chr(lowerCAmelCase__ ) for i in text.encode('''utf-8''' )] return tokens def snake_case__ ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' if token in self.special_tokens_encoder: _UpperCamelCase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _UpperCamelCase = self.added_tokens_encoder[token] elif len(lowerCAmelCase__ ) != 1: _UpperCamelCase = self.unk_token_id else: _UpperCamelCase = ord(lowerCAmelCase__ ) + self._num_special_tokens return token_id def snake_case__ ( self : Dict , lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if index in self.special_tokens_decoder: _UpperCamelCase = self.special_tokens_decoder[index] else: _UpperCamelCase = chr(index - self._num_special_tokens ) return token def snake_case__ ( self : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = b'''''' for token in tokens: if token in self.special_tokens_decoder: _UpperCamelCase = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: _UpperCamelCase = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: _UpperCamelCase = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: _UpperCamelCase = token.encode('''utf-8''' ) else: _UpperCamelCase = bytes([ord(lowerCAmelCase__ )] ) bstring += tok_string _UpperCamelCase = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def snake_case__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' return ()
324
'''simple docstring''' import os import numpy import onnx def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]: """simple docstring""" _UpperCamelCase = a.name _UpperCamelCase = b.name _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = a == b _UpperCamelCase = name_a _UpperCamelCase = name_b return res def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase, lowercase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase ) _graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase ) def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowercase, lowercase, lowercase ) def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple: """simple docstring""" _UpperCamelCase = list(model.graph.initializer ) _UpperCamelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _UpperCamelCase = inits[i].name _UpperCamelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, lowercase, lowercase ) def a__ ( lowercase : Dict ) -> Dict: """simple docstring""" _UpperCamelCase = os.path.dirname(lowercase ) _UpperCamelCase = os.path.basename(lowercase ) _UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) ) _UpperCamelCase = list(model.graph.initializer ) _UpperCamelCase = set() _UpperCamelCase = {} _UpperCamelCase = [] _UpperCamelCase = 0 for i in range(len(lowercase ) ): if i in dup_set: continue for j in range(i + 1, len(lowercase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j] ): dup_set.add(lowercase ) dup_set.add(lowercase ) _UpperCamelCase = inits[j].data_type _UpperCamelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''', lowercase ) total_reduced_size += mem_size _UpperCamelCase = inits[i].name _UpperCamelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase ) else: _UpperCamelCase = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' ) _UpperCamelCase = sorted(lowercase ) _remove_dup_initializers_from_model(lowercase, lowercase, lowercase ) _UpperCamelCase = '''optimized_''' + model_file_name _UpperCamelCase = os.path.join(lowercase, lowercase ) onnx.save(lowercase, lowercase ) return new_model
324
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[int] =CustomTokenizer pass
97
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ :Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ :int = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ :List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ :List[str] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
97
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=30 , a=4_00 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=True , a=1 / 2_55 , a=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean UpperCamelCase__ = image_std UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_pad def __a ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self , a , a=False ): if not batched: UpperCamelCase__ = image_inputs[0] if isinstance(a , Image.Image ): UpperCamelCase__ , UpperCamelCase__ = image.size else: UpperCamelCase__ , UpperCamelCase__ = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ = int(self.size["shortest_edge"] * h / w ) UpperCamelCase__ = self.size["shortest_edge"] elif w > h: UpperCamelCase__ = self.size["shortest_edge"] UpperCamelCase__ = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase__ = self.size["shortest_edge"] UpperCamelCase__ = self.size["shortest_edge"] else: UpperCamelCase__ = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ = max(a , key=lambda a : item[0] )[0] UpperCamelCase__ = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = DeformableDetrImageProcessor if is_vision_available() else None def __a ( self ): UpperCamelCase__ = DeformableDetrImageProcessingTester(self ) @property def __a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "do_rescale" ) ) self.assertTrue(hasattr(a , "do_pad" ) ) self.assertTrue(hasattr(a , "size" ) ) def __a ( self ): UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , a ) UpperCamelCase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , a ) def __a ( self ): pass def __a ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(a , batched=a ) UpperCamelCase__ = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ = image_processing(a , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ = image_processing(a , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self ): # prepare image and target UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCamelCase__ = json.loads(f.read() ) UpperCamelCase__ = {"image_id": 3_97_69, "annotations": target} # encode them UpperCamelCase__ = DeformableDetrImageProcessor() UpperCamelCase__ = image_processing(images=a , annotations=a , return_tensors="pt" ) # verify pixel values UpperCamelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , a ) UpperCamelCase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area UpperCamelCase__ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , a ) ) # verify boxes UpperCamelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , a ) UpperCamelCase__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , a , atol=1e-3 ) ) # verify image_id UpperCamelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , a ) ) # verify is_crowd UpperCamelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , a ) ) # verify class_labels UpperCamelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , a ) ) # verify orig_size UpperCamelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , a ) ) # verify size UpperCamelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , a ) ) @slow def __a ( self ): # prepare image, target and masks_path UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCamelCase__ = json.loads(f.read() ) UpperCamelCase__ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} UpperCamelCase__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCamelCase__ = DeformableDetrImageProcessor(format="coco_panoptic" ) UpperCamelCase__ = image_processing(images=a , annotations=a , masks_path=a , return_tensors="pt" ) # verify pixel values UpperCamelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , a ) UpperCamelCase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area UpperCamelCase__ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , a ) ) # verify boxes UpperCamelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , a ) UpperCamelCase__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , a , atol=1e-3 ) ) # verify image_id UpperCamelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , a ) ) # verify is_crowd UpperCamelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , a ) ) # verify class_labels UpperCamelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , a ) ) # verify masks UpperCamelCase__ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , a ) # verify orig_size UpperCamelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , a ) ) # verify size UpperCamelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , a ) )
80
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a__ : Any = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def _UpperCamelCase ( __A , __A=None , __A=None , __A=None ) -> int: '''simple docstring''' UpperCamelCase__ = True while ask_again: UpperCamelCase__ = input(__A ) try: if default is not None and len(__A ) == 0: return default return convert_value(__A ) if convert_value is not None else result except Exception: if error_message is not None: print(__A ) def _UpperCamelCase ( __A , __A=[] , __A=None , __A=0 ) -> Any: '''simple docstring''' UpperCamelCase__ = BulletMenu(__A , __A ) UpperCamelCase__ = menu.run(default_choice=__A ) return convert_value(__A ) if convert_value is not None else result def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = int(__A ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = int(__A ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = int(__A ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _UpperCamelCase ( __A ) -> str: '''simple docstring''' UpperCamelCase__ = int(__A ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' UpperCamelCase__ = int(__A ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class lowercase_ ( argparse.RawDescriptionHelpFormatter ): def __a ( self , a , a , a , a ): UpperCamelCase__ = super()._format_usage(a , a , a , a ) UpperCamelCase__ = usage.replace("<command> [<args>] " , "" ) return usage
80
1
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: UpperCAmelCase = F'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: UpperCAmelCase = sylvester(number - 1 ) UpperCAmelCase = num - 1 UpperCAmelCase = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester\'s sequence: {sylvester(8)}""")
359
"""simple docstring""" def _a ( _snake_case = 6008_5147_5143 ): """simple docstring""" try: UpperCAmelCase = int(_snake_case ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: while n % i == 0: UpperCAmelCase = i n //= i i += 1 if n > 1: UpperCAmelCase = n return int(_snake_case ) if __name__ == "__main__": print(F"""{solution() = }""")
234
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : int = VideoToVideoSDPipeline _lowercase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""}) - {"""image""", """width""", """height"""} _lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""}) - {"""image"""} _lowercase : Any = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowercase : Dict = False # No `output_type`. _lowercase : Tuple = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ]) def _lowercase ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) a__ : int =UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=3_2 , attention_head_dim=4 , ) a__ : str =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) a__ : Optional[Any] =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a__ : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) a__ : Union[str, Any] =CLIPTextModel(lowerCAmelCase__ ) a__ : Optional[Any] =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) a__ : Union[str, Any] ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[int]: '''simple docstring''' a__ : Dict =floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith("mps" ): a__ : List[Any] =torch.manual_seed(lowerCAmelCase__ ) else: a__ : List[str] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : Union[str, Any] ={ "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] ="cpu" # ensure determinism for the device-dependent torch.Generator a__ : Tuple =self.get_dummy_components() a__ : int =VideoToVideoSDPipeline(**lowerCAmelCase__ ) a__ : Any =sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : List[Any] =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : List[Any] ="np" a__ : Any =sd_pipe(**lowerCAmelCase__ ).frames a__ : List[str] =frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) a__ : Optional[Any] =np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase__ , expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _lowercase ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass def _lowercase ( self ) -> Any: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Dict =VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames a__ : Optional[Any] =torch.Generator(device="cpu" ).manual_seed(0 ) a__ : Optional[Any] =torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=lowerCAmelCase__ ) a__ : List[str] =video.to("cuda" ) a__ : Tuple ="Spiderman is surfing" a__ : int =pipe(lowerCAmelCase__ , video=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=3 , output_type="pt" ).frames a__ : int =np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
95
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""] UpperCAmelCase_ : int = """OwlViTImageProcessor""" UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __SCREAMING_SNAKE_CASE , ) lowerCAmelCase = kwargs.pop('''feature_extractor''' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )): lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )] elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = [] # Maximum number of queries across batch lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__SCREAMING_SNAKE_CASE ) != max_num_queries: lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE )) lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) encodings.append(__SCREAMING_SNAKE_CASE ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowerCAmelCase = BatchEncoding() lowerCAmelCase = input_ids lowerCAmelCase = attention_mask if query_images is not None: lowerCAmelCase = BatchEncoding() lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values lowerCAmelCase = query_pixel_values if images is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]: return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any: return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple: return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str: return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor
338
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase : Dict = cst_fwd.get(__lowerCAmelCase , np.inf ) _UpperCAmelCase : List[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase : int = new_cost_f _UpperCAmelCase : str = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase : Tuple = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = -1 _UpperCAmelCase : Optional[int] = set() _UpperCAmelCase : List[Any] = set() _UpperCAmelCase : str = {source: 0} _UpperCAmelCase : Union[str, Any] = {destination: 0} _UpperCAmelCase : Union[str, Any] = {source: None} _UpperCAmelCase : List[Any] = {destination: None} _UpperCAmelCase : PriorityQueue[Any] = PriorityQueue() _UpperCAmelCase : PriorityQueue[Any] = PriorityQueue() _UpperCAmelCase : Union[str, Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase , _UpperCAmelCase : Dict = queue_forward.get() visited_forward.add(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = queue_backward.get() visited_backward.add(__lowerCAmelCase ) _UpperCAmelCase : List[str] = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _UpperCAmelCase : Optional[int] = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase : str = shortest_distance return shortest_path_distance lowerCamelCase__ = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } lowerCamelCase__ = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
import sys from collections import defaultdict class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> List[str]: __UpperCamelCase =[] def _a ( self , A_ ) -> List[Any]: return self.node_position[vertex] def _a ( self , A_ , A_ ) -> List[Any]: __UpperCamelCase =pos def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __UpperCamelCase =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __UpperCamelCase =2 * start + 1 else: __UpperCamelCase =2 * start + 2 if heap[smallest_child] < heap[start]: __UpperCamelCase , __UpperCamelCase =heap[smallest_child], positions[smallest_child] __UpperCamelCase , __UpperCamelCase =( heap[start], positions[start], ) __UpperCamelCase , __UpperCamelCase =temp, tempa __UpperCamelCase =self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , A_ ) self.top_to_bottom(A_ , A_ , A_ , A_ ) def _a ( self , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =position[index] while index != 0: __UpperCamelCase =int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __UpperCamelCase =heap[parent] __UpperCamelCase =position[parent] self.set_position(position[parent] , A_ ) else: __UpperCamelCase =val __UpperCamelCase =temp self.set_position(A_ , A_ ) break __UpperCamelCase =parent else: __UpperCamelCase =val __UpperCamelCase =temp self.set_position(A_ , 0 ) def _a ( self , A_ , A_ ) -> List[str]: __UpperCamelCase =len(A_ ) // 2 - 1 for i in range(A_ , -1 , -1 ): self.top_to_bottom(A_ , A_ , len(A_ ) , A_ ) def _a ( self , A_ , A_ ) -> str: __UpperCamelCase =positions[0] __UpperCamelCase =sys.maxsize self.top_to_bottom(A_ , 0 , len(A_ ) , A_ ) return temp def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =Heap() __UpperCamelCase =[0] * len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[-1] * len(SCREAMING_SNAKE_CASE__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __UpperCamelCase =[] # Heap of Distance of vertices from their neighboring vertex __UpperCamelCase =[] for vertex in range(len(SCREAMING_SNAKE_CASE__ ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE__ ) heap.node_position.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] __UpperCamelCase =1 __UpperCamelCase =sys.maxsize for neighbor, distance in adjacency_list[0]: __UpperCamelCase =0 __UpperCamelCase =distance heap.heapify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =heap.delete_minimum(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __UpperCamelCase =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE__ )] ): __UpperCamelCase =distance heap.bottom_to_top( SCREAMING_SNAKE_CASE__ , heap.get_position(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _A = int(input('Enter number of edges: ').strip()) _A = defaultdict(list) for _ in range(edges_number): _A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
62
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
6
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
1
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' def a ( __a ) -> None: '''simple docstring''' UpperCamelCase__ :List[Any] = tweepy.OAuthHandler(__a , __a ) auth.set_access_token(__a , __a ) UpperCamelCase__ :List[str] = tweepy.API(__a ) # initialize a list to hold all the tweepy Tweets UpperCamelCase__ :Dict = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCamelCase__ :Tuple = api.user_timeline(screen_name=__a , count=200 ) # save most recent tweets alltweets.extend(__a ) # save the id of the oldest tweet less one UpperCamelCase__ :Union[str, Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__a ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates UpperCamelCase__ :Union[str, Any] = api.user_timeline( screen_name=__a , count=200 , max_id=__a ) # save most recent tweets alltweets.extend(__a ) # update the id of the oldest tweet less one UpperCamelCase__ :Tuple = alltweets[-1].id - 1 print(f'''...{len(__a )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCamelCase__ :int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , '''w''' ) as f: UpperCamelCase__ :Tuple = csv.writer(__a ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__a ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
97
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Any = Generator( cache_dir=UpperCamelCase_ , features=UpperCamelCase_ , generator=UpperCamelCase_ , gen_kwargs=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' if self.streaming: UpperCamelCase__ :Optional[Any] = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :int = None UpperCamelCase__ :Any = None UpperCamelCase__ :Any = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) UpperCamelCase__ :List[Any] = self.builder.as_dataset( split='''train''' , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset
97
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=1_0_0_0 , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = range_bbox def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # convert bbox to numpy since TF does not support item assignment __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE = bbox[i, j, 3] __SCREAMING_SNAKE_CASE = bbox[i, j, 1] __SCREAMING_SNAKE_CASE = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE = bbox[i, j, 2] __SCREAMING_SNAKE_CASE = bbox[i, j, 0] __SCREAMING_SNAKE_CASE = t __SCREAMING_SNAKE_CASE = tf.convert_to_tensor(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) __SCREAMING_SNAKE_CASE = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFLayoutLMModel(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFLayoutLMForMaskedLM(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFLayoutLMForSequenceClassification(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFLayoutLMForTokenClassification(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFLayoutLMForQuestionAnswering(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : Union[str, Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __lowercase : List[Any] = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Tuple = False __lowercase : Any = True __lowercase : Optional[Any] = 10 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFLayoutLMModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__) @slow def snake_case_ ( self): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFLayoutLMModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @unittest.skip("""Onnx compliancy broke with TF 2.10""") def snake_case_ ( self): pass def _lowerCAmelCase ( ): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""") __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE = model(input_ids=lowerCAmelCase__ , bbox=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) # test the sequence output on [0, :3, :3] __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-3)) # test the pooled output on [1, :3] __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowerCAmelCase__ , atol=1E-3)) @slow def snake_case_ ( self): # initialize model with randomly initialized sequence classification head __SCREAMING_SNAKE_CASE = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE = model( input_ids=lowerCAmelCase__ , bbox=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=tf.convert_to_tensor([1, 1]) , ) # test whether we get a loss as a scalar __SCREAMING_SNAKE_CASE = outputs.loss __SCREAMING_SNAKE_CASE = (2,) self.assertEqual(loss.shape , lowerCAmelCase__) # test the shape of the logits __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = (2, 2) self.assertEqual(logits.shape , lowerCAmelCase__) @slow def snake_case_ ( self): # initialize model with randomly initialized token classification head __SCREAMING_SNAKE_CASE = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=1_3) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE = model( input_ids=lowerCAmelCase__ , bbox=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) # test the shape of the logits __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = tf.convert_to_tensor((2, 2_5, 1_3)) self.assertEqual(logits.shape , lowerCAmelCase__) @slow def snake_case_ ( self): # initialize model with randomly initialized token classification head __SCREAMING_SNAKE_CASE = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""") __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE = model(input_ids=lowerCAmelCase__ , bbox=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) # test the shape of the logits __SCREAMING_SNAKE_CASE = tf.convert_to_tensor((2, 2_5)) self.assertEqual(outputs.start_logits.shape , lowerCAmelCase__) self.assertEqual(outputs.end_logits.shape , lowerCAmelCase__)
255
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=3_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def snake_case_ ( self): ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = NezhaModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = NezhaModel(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = NezhaForMaskedLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = NezhaForNextSentencePrediction(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = NezhaForPreTraining(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = NezhaForQuestionAnswering(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = NezhaForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = NezhaForTokenClassification(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = NezhaForMultipleChoice(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __a , __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : int = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowercase : Optional[Any] = ( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : List[Any] = True def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False): __SCREAMING_SNAKE_CASE = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) if return_labels: if model_class in get_values(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) return inputs_dict def snake_case_ ( self): __SCREAMING_SNAKE_CASE = NezhaModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__) def snake_case_ ( self): # This regression test was failing with PyTorch < 1.3 ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__) @slow def snake_case_ ( self): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = NezhaModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @slow @require_torch_gpu def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.jit.trace( lowerCAmelCase__ , (inputs_dict["""input_ids"""].to("""cpu"""), inputs_dict["""attention_mask"""].to("""cpu"""))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , """bert.pt""")) __SCREAMING_SNAKE_CASE = torch.jit.load(os.path.join(lowerCAmelCase__ , """bert.pt""") , map_location=lowerCAmelCase__) loaded(inputs_dict["""input_ids"""].to(lowerCAmelCase__) , inputs_dict["""attention_mask"""].to(lowerCAmelCase__)) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""") __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]]) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1]]) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__)[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8)) self.assertEqual(output.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4)) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""") __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]]) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__)[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 6, 2_1_1_2_8)) self.assertEqual(output.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor( [[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4))
255
1
'''simple docstring''' lowerCamelCase : Tuple = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _lowerCAmelCase ( ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =input('Enter message: ' ) _SCREAMING_SNAKE_CASE =input('Enter key [alphanumeric]: ' ) _SCREAMING_SNAKE_CASE =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): _SCREAMING_SNAKE_CASE ='encrypt' _SCREAMING_SNAKE_CASE =encrypt_message(_UpperCamelCase , _UpperCamelCase ) elif mode.lower().startswith('d' ): _SCREAMING_SNAKE_CASE ='decrypt' _SCREAMING_SNAKE_CASE =decrypt_message(_UpperCamelCase , _UpperCamelCase ) print(f"\n{mode.title()}ed message:" ) print(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" return translate_message(_UpperCamelCase , _UpperCamelCase , 'encrypt' ) def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" return translate_message(_UpperCamelCase , _UpperCamelCase , 'decrypt' ) def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =key.upper() for symbol in message: _SCREAMING_SNAKE_CASE =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_UpperCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =0 else: translated.append(_UpperCamelCase ) return "".join(_UpperCamelCase ) if __name__ == "__main__": main()
47
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class lowerCAmelCase__ : def __init__( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = {} def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : int=1 ) ->Optional[Any]: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Dict = [[w, v]] if not self.graph.get(lowerCamelCase__ ): _UpperCAmelCase : str = [] def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' return list(self.graph ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str ) ->Any: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[Any]=-2 , lowerCamelCase__ : Optional[int]=-1 ) ->int: '''simple docstring''' if s == d: return [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Union[str, Any] = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase__ ) != 0: _UpperCAmelCase : Tuple = stack[len(lowerCamelCase__ ) - 1] else: _UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return visited def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any=-1 ) ->str: '''simple docstring''' if c == -1: _UpperCAmelCase : str = floor(random() * 1_00_00 ) + 10 for i in range(lowerCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _UpperCAmelCase : Tuple = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase__ , lowerCamelCase__ , 1 ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Union[str, Any]=-2 ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = deque() _UpperCAmelCase : int = [] if s == -2: _UpperCAmelCase : str = list(self.graph )[0] d.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) while d: _UpperCAmelCase : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Union[str, Any] ) ->int: '''simple docstring''' return len(self.graph[u] ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Any=-2 ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : List[str] = [] if s == -2: _UpperCAmelCase : str = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Tuple = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCamelCase__ ) != 0: _UpperCAmelCase : Dict = stack[len(lowerCamelCase__ ) - 1] else: _UpperCAmelCase : List[str] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return sorted_nodes def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = [] _UpperCAmelCase : str = [] _UpperCAmelCase : int = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) _UpperCAmelCase : str = -2 _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Union[str, Any] = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(lowerCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[str] = True if len(lowerCamelCase__ ) != 0: _UpperCAmelCase : Tuple = stack[len(lowerCamelCase__ ) - 1] else: _UpperCAmelCase : Optional[Any] = False indirect_parents.append(lowerCamelCase__ ) _UpperCAmelCase : Any = s _UpperCAmelCase : Dict = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return list(lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : str = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) _UpperCAmelCase : Any = -2 _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : List[str] = False _UpperCAmelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(lowerCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(lowerCamelCase__ ) != 0: _UpperCAmelCase : List[str] = stack[len(lowerCamelCase__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = s _UpperCAmelCase : Optional[Any] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return False def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Tuple=-2 , lowerCamelCase__ : Union[str, Any]=-1 ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = time() self.dfs(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = time() return end - begin def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict=-2 ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = time() self.bfs(lowerCamelCase__ ) _UpperCAmelCase : Tuple = time() return end - begin class lowerCAmelCase__ : def __init__( self : Tuple ) ->int: '''simple docstring''' _UpperCAmelCase : Any = {} def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple=1 ) ->int: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : Dict = [[w, v]] # add the other way if self.graph.get(lowerCamelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : Tuple = [[w, u]] def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase__ ) # the other way round if self.graph.get(lowerCamelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str]=-2 , lowerCamelCase__ : List[str]=-1 ) ->List[Any]: '''simple docstring''' if s == d: return [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = [] if s == -2: _UpperCAmelCase : List[Any] = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase__ ) != 0: _UpperCAmelCase : Optional[int] = stack[len(lowerCamelCase__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return visited def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Dict=-1 ) ->str: '''simple docstring''' if c == -1: _UpperCAmelCase : str = floor(random() * 1_00_00 ) + 10 for i in range(lowerCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _UpperCAmelCase : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase__ , lowerCamelCase__ , 1 ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Union[str, Any]=-2 ) ->Any: '''simple docstring''' _UpperCAmelCase : str = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Union[str, Any] = list(self.graph )[0] d.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) while d: _UpperCAmelCase : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Dict ) ->Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def lowerCAmelCase__ ( self : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = [] _UpperCAmelCase : str = [] _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) _UpperCAmelCase : Any = -2 _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = s _UpperCAmelCase : int = False _UpperCAmelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Union[str, Any] = len(lowerCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(lowerCamelCase__ ) != 0: _UpperCAmelCase : List[str] = stack[len(lowerCamelCase__ ) - 1] else: _UpperCAmelCase : Dict = False indirect_parents.append(lowerCamelCase__ ) _UpperCAmelCase : Dict = s _UpperCAmelCase : Dict = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return list(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) _UpperCAmelCase : Dict = -2 _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Dict = s _UpperCAmelCase : Dict = False _UpperCAmelCase : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : int = len(lowerCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(lowerCamelCase__ ) != 0: _UpperCAmelCase : List[Any] = stack[len(lowerCamelCase__ ) - 1] else: _UpperCAmelCase : Optional[Any] = False indirect_parents.append(lowerCamelCase__ ) _UpperCAmelCase : List[str] = s _UpperCAmelCase : List[Any] = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return False def lowerCAmelCase__ ( self : Optional[Any] ) ->int: '''simple docstring''' return list(self.graph ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict=-2 , lowerCamelCase__ : Dict=-1 ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = time() self.dfs(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : int = time() return end - begin def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Any=-2 ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = time() self.bfs(lowerCamelCase__ ) _UpperCAmelCase : Any = time() return end - begin
234
0
def snake_case_ ( snake_case ) -> int: lowercase__: list[list[int]] = [[0 for _ in range(snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase__: str = 1 for n in range(m + 1 ): for k in range(1 , snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __lowerCAmelCase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: __lowerCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
363
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __a ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Any: '''simple docstring''' lowercase__: List[Any] = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) lowercase__: str = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='test-config' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Dict = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) lowercase__: Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='valid_org/test-config-org' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__: Tuple = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowercase__: int = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__: List[Any] = c.n_embd + 1 # int lowercase__: Any = c.resid_pdrop + 1.0 # float lowercase__: Any = not c.scale_attn_weights # bool lowercase__: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , 'mismatch for key: summary_type' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = PretrainedConfig() lowercase__: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowercase__: List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(lowerCAmelCase__ )}.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__: Optional[Any] = mock.Mock() lowercase__: Tuple = 500 lowercase__: Any = {} lowercase__: Dict = HTTPError lowercase__: Optional[Any] = {} # Download this model to make sure it's in the cache. lowercase__: Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase__ ) as mock_head: lowercase__: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowercase__: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) lowercase__: Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__: str = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__: Dict = ['config.42.0.0.json'] lowercase__: int = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , os.path.join(lowerCAmelCase__ , 'config.42.0.0.json' ) ) lowercase__: Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__: Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowercase__: Tuple = 'v4.0.0' lowercase__ , lowercase__: List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__: Union[str, Any] = 'v3.0.0' lowercase__: Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
288
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _a = logging.get_logger(__name__) _a = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class A_ ( snake_case__ ): _lowercase : List[Any] = 't5' _lowercase : Dict = ['past_key_values'] _lowercase : Dict = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Optional[Any] , UpperCAmelCase : Tuple=3_2_1_2_8 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : Any=6_4 , UpperCAmelCase : Tuple=2_0_4_8 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=8 , UpperCAmelCase : List[Any]=3_2 , UpperCAmelCase : List[Any]=1_2_8 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : str=1E-6 , UpperCAmelCase : Optional[Any]=1.0 , UpperCAmelCase : Dict="relu" , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=0 , UpperCAmelCase : Union[str, Any]=1 , **UpperCAmelCase : Any , ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = vocab_size __lowerCAmelCase: Optional[int] = d_model __lowerCAmelCase: List[Any] = d_kv __lowerCAmelCase: Union[str, Any] = d_ff __lowerCAmelCase: Optional[Any] = num_layers __lowerCAmelCase: Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCAmelCase: Tuple = num_heads __lowerCAmelCase: List[Any] = relative_attention_num_buckets __lowerCAmelCase: Dict = relative_attention_max_distance __lowerCAmelCase: str = dropout_rate __lowerCAmelCase: List[str] = layer_norm_epsilon __lowerCAmelCase: str = initializer_factor __lowerCAmelCase: Tuple = feed_forward_proj __lowerCAmelCase: int = use_cache __lowerCAmelCase: List[str] = self.feed_forward_proj.split('-' ) __lowerCAmelCase: List[Any] = act_info[-1] __lowerCAmelCase: Dict = act_info[0] == 'gated' if len(UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCAmelCase: List[Any] = 'gelu_new' super().__init__( pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase , ) class A_ ( snake_case__ ): @property def UpperCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: __lowerCAmelCase: Any = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowerCAmelCase: List[str] = 'past_encoder_sequence + sequence' __lowerCAmelCase: Union[str, Any] = {0: 'batch'} __lowerCAmelCase: Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowerCAmelCase: Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} __lowerCAmelCase: Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction='inputs' ) return common_inputs @property def UpperCAmelCase ( self : Optional[Any] ) -> int: return 1_3
322
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
1
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( _UpperCamelCase): __UpperCamelCase = (IPNDMScheduler,) __UpperCamelCase = (('num_inference_steps', 50),) def a_ ( self : Tuple , **a__ : str ) -> List[str]: '''simple docstring''' _A = {"num_train_timesteps": 10_00} config.update(**a__ ) return config def a_ ( self : Optional[Any] , a__ : List[str]=0 , **a__ : Union[str, Any] ) -> Dict: '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , a__ ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**a__ ) _A = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) _A = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals _A = dummy_past_residuals[:] _A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a_ ( self : List[Any] ) -> Tuple: '''simple docstring''' pass def a_ ( self : Optional[int] , a__ : Dict=0 , **a__ : Optional[Any] ) -> Any: '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , a__ ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) _A = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[:] _A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a_ ( self : Optional[Any] , **a__ : Dict ) -> List[str]: '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**a__ ) _A = scheduler_class(**a__ ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): _A = model(a__ , a__ ) _A = scheduler.step(a__ , a__ , a__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _A = model(a__ , a__ ) _A = scheduler.step(a__ , a__ , a__ ).prev_sample return sample def a_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , a__ ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**a__ ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(a__ , "set_timesteps" ): scheduler.set_timesteps(a__ ) elif num_inference_steps is not None and not hasattr(a__ , "set_timesteps" ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _A = dummy_past_residuals[:] _A = scheduler.timesteps[5] _A = scheduler.timesteps[6] _A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample _A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a_ ( self : List[str] ) -> List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a__ , time_step=a__ ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=a__ , time_step=a__ ) def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _A = self.full_loop() _A = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
163
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(__lowercase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def a__ ( __lowercase , __lowercase ) -> Optional[Any]: _A = _distribute_shards(**__lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def a__ ( __lowercase , __lowercase , __lowercase ) -> List[str]: _A = _split_gen_kwargs(__lowercase , __lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def a__ ( __lowercase , __lowercase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowercase ): _number_of_shards_in_gen_kwargs(__lowercase ) else: _A = _number_of_shards_in_gen_kwargs(__lowercase ) assert out == expected
163
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
6
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' # Load configuration defined in the metadata file with open(UpperCamelCase_ ) as metadata_file: UpperCamelCase = json.load(UpperCamelCase_ ) UpperCamelCase = LukeConfig(use_entity_aware_attention=UpperCamelCase_ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path UpperCamelCase = torch.load(UpperCamelCase_ , map_location="""cpu""" ) # Load the entity vocab file UpperCamelCase = load_entity_vocab(UpperCamelCase_ ) UpperCamelCase = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase = AddedToken("""<ent>""" , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) UpperCamelCase = AddedToken("""<ent2>""" , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = LukeTokenizer.from_pretrained(UpperCamelCase_ ) # Initialize the embeddings of the special tokens UpperCamelCase = state_dict["""embeddings.word_embeddings.weight"""] UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase = f"""encoder.layer.{layer_index}.attention.self.""" UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCamelCase = entity_emb[entity_vocab["""[MASK]"""]] UpperCamelCase = LukeModel(config=UpperCamelCase_ ).eval() UpperCamelCase , UpperCamelCase = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) if not (len(UpperCamelCase_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {", ".join(UpperCamelCase_ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs UpperCamelCase = LukeTokenizer.from_pretrained(UpperCamelCase_ , task="""entity_classification""" ) UpperCamelCase = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) UpperCamelCase = (39, 42) UpperCamelCase = tokenizer(UpperCamelCase_ , entity_spans=[span] , add_prefix_space=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = model(**UpperCamelCase_ ) # Verify word hidden states if model_size == "large": UpperCamelCase = torch.Size((1, 42, 1024) ) UpperCamelCase = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base UpperCamelCase = torch.Size((1, 42, 768) ) UpperCamelCase = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": UpperCamelCase = torch.Size((1, 1, 1024) ) UpperCamelCase = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base UpperCamelCase = torch.Size((1, 1, 768) ) UpperCamelCase = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCamelCase_ ) ) model.save_pretrained(UpperCamelCase_ ) def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = {} with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCamelCase_ ): UpperCamelCase , UpperCamelCase = line.rstrip().split("""\t""" ) UpperCamelCase = index return entity_vocab if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
165
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _SCREAMING_SNAKE_CASE = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _SCREAMING_SNAKE_CASE = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") _SCREAMING_SNAKE_CASE = [file for file in filepaths if """ """ in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") _SCREAMING_SNAKE_CASE = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") _SCREAMING_SNAKE_CASE = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") _SCREAMING_SNAKE_CASE = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
165
1
"""simple docstring""" import cva import numpy as np class a__ : def __init__( self : Optional[Any], lowerCAmelCase : float, lowerCAmelCase : int ) -> Optional[int]: if k in (0.04, 0.06): lowercase : Dict = k lowercase : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__( self : Any ) -> str: return str(self.k ) def lowercase ( self : List[str], lowerCAmelCase : str ) -> tuple[cva.Mat, list[list[int]]]: lowercase : Optional[Any] = cva.imread(lowerCAmelCase, 0 ) lowercase , lowercase : Optional[int] = img.shape lowercase : list[list[int]] = [] lowercase : Tuple = img.copy() lowercase : Dict = cva.cvtColor(lowerCAmelCase, cva.COLOR_GRAY2RGB ) lowercase , lowercase : Tuple = np.gradient(lowerCAmelCase ) lowercase : int = dx**2 lowercase : List[str] = dy**2 lowercase : Optional[int] = dx * dy lowercase : int = 0.04 lowercase : Union[str, Any] = self.window_size // 2 for y in range(lowerCAmelCase, h - offset ): for x in range(lowerCAmelCase, w - offset ): lowercase : Any = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase : int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase : Optional[Any] = (wxx * wyy) - (wxy**2) lowercase : Union[str, Any] = wxx + wyy lowercase : Any = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 255 ) return color_img, corner_list if __name__ == "__main__": _UpperCamelCase: Optional[Any] = HarrisCorner(0.0_4, 3) _UpperCamelCase , _UpperCamelCase: Any = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
255
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = CLIPTokenizer _lowerCamelCase = CLIPTokenizerFast _lowerCamelCase = True _lowerCamelCase = {} _lowerCamelCase = False def lowercase ( self : Tuple ) -> int: super().setUp() # fmt: off lowercase : Dict = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase : List[Any] = dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowercase : List[str] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] lowercase : Union[str, Any] = {'unk_token': '<unk>'} lowercase : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowercase : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def lowercase ( self : Dict, **lowerCAmelCase : Optional[Any] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase ( self : Optional[Any], **lowerCAmelCase : Tuple ) -> str: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase ( self : Optional[Any], lowerCAmelCase : List[Any] ) -> Optional[Any]: lowercase : int = 'lower newer' lowercase : str = 'lower newer' return input_text, output_text def lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase : str = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowercase : Union[str, Any] = 'lower newer' lowercase : List[str] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] lowercase : List[str] = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowercase : int = tokens + [tokenizer.unk_token] lowercase : Optional[int] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), lowerCAmelCase ) @require_ftfy def lowercase ( self : Tuple ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : List[str] = self.tokenizer_class.from_pretrained(lowerCAmelCase, **lowerCAmelCase ) lowercase : Dict = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase, **lowerCAmelCase ) lowercase : Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' lowercase : int = tokenizer_s.tokenize(lowerCAmelCase ) lowercase : Any = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase : Optional[int] = 'xa\u0303y' + ' ' + 'x\xe3y' lowercase : int = tokenizer_s.tokenize(lowerCAmelCase ) lowercase : Optional[Any] = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) # Test that the tokenization is identical on unicode of space type lowercase : Any = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase : Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase ) lowercase : Union[str, Any] = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) # Test that the tokenization is identical on unicode of line break type lowercase : Optional[Any] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase : str = tokenizer_s.tokenize(lowerCAmelCase ) lowercase : str = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Any ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowercase : Union[str, Any] = f'''{text_of_1_token} {text_of_1_token}''' lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase, use_fast=lowerCAmelCase, ) lowercase : Dict = tokenizer_r(lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1], (len(lowerCAmelCase ) + 1, len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )), ) lowercase : Tuple = f''' {text}''' lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase, use_fast=lowerCAmelCase, ) lowercase : Dict = tokenizer_r(lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(lowerCAmelCase ) + 1, 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )), ) def lowercase ( self : Dict ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def lowercase ( self : List[Any] ) -> str: super().test_tokenization_python_rust_equals() def lowercase ( self : Dict ) -> Tuple: # CLIP always lower cases letters pass
255
1
UpperCamelCase__ : Any = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCamelCase__ = 10 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: for i in range(__lowerCamelCase , __lowerCamelCase ): if array[i] == target: return i return -1 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Dict = len(__lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ : Tuple = (left + right) // 3 + 1 lowerCAmelCase__ : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCAmelCase__ : List[str] = one_third - 1 elif array[two_third] < target: lowerCAmelCase__ : Union[str, Any] = two_third + 1 else: lowerCAmelCase__ : Dict = one_third + 1 lowerCAmelCase__ : str = two_third - 1 else: return -1 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if left < right: if right - left < precision: return lin_search(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ : Any = (left + right) // 3 + 1 lowerCAmelCase__ : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCamelCase , one_third - 1 , __lowerCamelCase , __lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowerCamelCase , __lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = input("""Enter numbers separated by comma:\n""").strip() lowerCamelCase__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCamelCase__ = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCamelCase__ = ite_ternary_search(collection, target) lowerCamelCase__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("""Not found""")
212
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _UpperCAmelCase ( __lowerCamelCase : str ) -> List[Any]: return 1 / (1 + np.exp(-z )) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Optional[Any]: return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> List[str]: _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=7_00_00 ) -> Optional[Any]: _snake_case = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = np.dot(x.T , h - y ) / y.size _snake_case = theta - alpha * gradient # updating the weights _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 1_00 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase__ = datasets.load_iris() UpperCAmelCase__ = iris.data[:, :2] UpperCAmelCase__ = (iris.target != 0) * 1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = logistic_reg(alpha, x, y, max_iterations=70000) print('theta: ', theta) # printing the theta i.e our weights vector def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Union[str, Any]: return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
288
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : str = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Union[str, Any] = '''xlm-roberta-xl''' def __init__( self , lowercase=25_0880 , lowercase=2560 , lowercase=36 , lowercase=32 , lowercase=1_0240 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=514 , lowercase=1 , lowercase=0.02 , lowercase=1e-05 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase) a__ : Optional[Any] = vocab_size a__ : Optional[Any] = hidden_size a__ : Optional[int] = num_hidden_layers a__ : Dict = num_attention_heads a__ : Tuple = hidden_act a__ : Optional[int] = intermediate_size a__ : Tuple = hidden_dropout_prob a__ : List[str] = attention_probs_dropout_prob a__ : Union[str, Any] = max_position_embeddings a__ : Optional[Any] = type_vocab_size a__ : List[str] = initializer_range a__ : Optional[Any] = layer_norm_eps a__ : Optional[int] = position_embedding_type a__ : Tuple = use_cache a__ : List[Any] = classifier_dropout class A__ ( __UpperCAmelCase ): """simple docstring""" @property def __lowercase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": a__ : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
225
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ) -> Tuple: '''simple docstring''' a__ : str = parent a__ : Optional[Any] = batch_size a__ : str = seq_length a__ : int = is_training a__ : str = use_attention_mask a__ : List[str] = use_token_type_ids a__ : Optional[Any] = use_labels a__ : List[Any] = vocab_size a__ : Tuple = hidden_size a__ : Dict = num_hidden_layers a__ : List[str] = num_attention_heads a__ : int = intermediate_size a__ : Any = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : Optional[int] = type_vocab_size a__ : List[Any] = type_sequence_label_size a__ : Union[str, Any] = initializer_range a__ : str = num_choices def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ : Dict = None if self.use_attention_mask: a__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) a__ : Dict = None if self.use_token_type_ids: a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__ : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Tuple = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : Optional[int] = config_and_inputs a__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : int = config_and_inputs a__ : str = True a__ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = True __A : Tuple = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = FlaxBertModelTester(self) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased') a__ : Optional[Any] = model(np.ones((1, 1))) self.assertIsNotNone(lowercase)
225
1
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __A =['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] __A ={'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() __A =logging.get_logger(__name__) __A =' Hello world! cécé herlolip' __A =[ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Any = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = dct.pop(UpperCamelCase__ ) UpperCAmelCase__ : Dict = val def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = torch.load(UpperCamelCase__ , map_location="""cpu""" ) UpperCAmelCase__ : Optional[int] = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = emb.weight.shape UpperCAmelCase__ : int = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) UpperCAmelCase__ : Dict = emb.weight.data return lin_layer @torch.no_grad() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): if not os.path.exists(UpperCamelCase__ ): UpperCAmelCase__ : int = torch.hub.load("""pytorch/fairseq""" , UpperCamelCase__ ).eval() else: UpperCAmelCase__ : int = load_xsum_checkpoint(UpperCamelCase__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCAmelCase__ : int = checkpoint_path.replace(""".""" , """-""" ) UpperCAmelCase__ : Tuple = BartConfig.from_pretrained(UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = bart.encode(UpperCamelCase__ ).unsqueeze(0 ) UpperCAmelCase__ : Optional[int] = BartTokenizer.from_pretrained(UpperCamelCase__ ).encode(UpperCamelCase__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(UpperCamelCase__ , UpperCamelCase__ ).all(): raise ValueError( f'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": UpperCAmelCase__ : Any = bart.state_dict() remove_ignore_keys_(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = BartForSequenceClassification(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = bart.predict("""mnli""" , UpperCamelCase__ , return_logits=UpperCamelCase__ ) UpperCAmelCase__ : Tuple = model(UpperCamelCase__ )[0] # logits else: # no classification heads to worry about UpperCAmelCase__ : Union[str, Any] = bart.model.state_dict() remove_ignore_keys_(UpperCamelCase__ ) UpperCAmelCase__ : int = state_dict["""decoder.embed_tokens.weight"""] UpperCAmelCase__ : str = bart.extract_features(UpperCamelCase__ ) if hf_checkpoint_name == "facebook/bart-large": UpperCAmelCase__ : int = BartModel(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = model(UpperCamelCase__ ).model[0] else: UpperCAmelCase__ : Optional[int] = BartForConditionalGeneration(UpperCamelCase__ ).eval() # an existing summarization ckpt model.model.load_state_dict(UpperCamelCase__ ) if hasattr(UpperCamelCase__ , """lm_head""" ): UpperCAmelCase__ : List[Any] = make_linear_from_emb(model.model.shared ) UpperCAmelCase__ : Optional[Any] = model.model(UpperCamelCase__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) __A =parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
163
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __A =datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): lowerCAmelCase :bool = None lowerCAmelCase :bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): lowerCAmelCase :Optional[Any] = datasets.Audio() lowerCAmelCase :Tuple = '''audio''' lowerCAmelCase :Optional[Any] = AudioFolderConfig lowerCAmelCase :List[str] # definition at the bottom of the script lowerCAmelCase :Union[str, Any] = AudioClassification(audio_column='''audio''' , label_column='''label''' ) __A =[ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] __A =AUDIO_EXTENSIONS
163
1
import string def SCREAMING_SNAKE_CASE_ ( __A : str ) -> List[str]: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): a_ : List[str] = '''''' for symbol in message: if symbol in string.ascii_uppercase: a_ : List[Any] = string.ascii_uppercase.find(UpperCamelCase__ ) a_ : Optional[Any] = num - key if num < 0: a_ : Dict = num + len(string.ascii_uppercase ) a_ : Union[str, Any] = translated + string.ascii_uppercase[num] else: a_ : Dict = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" a_ : Dict = input('Encrypted message: ' ) a_ : Any = message.upper() decrypt(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
352
import os from collections import deque import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]="" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="train" ) -> Tuple: assert os.path.isdir(SCREAMING_SNAKE_CASE__ ) a_ : int = [] a_ : Optional[int] = os.listdir(SCREAMING_SNAKE_CASE__ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue a_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not os.path.isfile(SCREAMING_SNAKE_CASE__ ): continue self.documents.append(SCREAMING_SNAKE_CASE__ ) def __len__( self : Dict ) -> str: return len(self.documents ) def __getitem__( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> str: a_ : int = self.documents[idx] a_ : Tuple = document_path.split('/' )[-1] with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as source: a_ : Dict = source.read() a_ , a_ : Optional[Any] = process_story(SCREAMING_SNAKE_CASE__ ) return document_name, story_lines, summary_lines def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> Any: """simple docstring""" a_ : Optional[Any] = list(filter(lambda __A : len(__A ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it a_ : List[Any] = [_add_missing_period(__A ) for line in nonempty_lines] # gather article lines a_ : int = [] a_ : List[Any] = deque(__A ) while True: try: a_ : Dict = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(__A ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines a_ : List[str] = list(filter(lambda __A : not t.startswith('@highlight' ) , __A ) ) return story_lines, summary_lines def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Any: """simple docstring""" a_ : Any = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Union[str, Any] , __A : List[str] ) -> Union[str, Any]: """simple docstring""" if len(__A ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__A )) ) return sequence def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : str ) -> Any: """simple docstring""" a_ : Optional[int] = torch.ones_like(__A ) a_ : List[str] = sequence == pad_token_id a_ : str = 0 return mask def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Optional[Any] , __A : Dict ) -> List[str]: """simple docstring""" a_ : Optional[int] = [tokenizer.encode(__A ) for line in story_lines] a_ : int = [token for sentence in story_lines_token_ids for token in sentence] a_ : Dict = [tokenizer.encode(__A ) for line in summary_lines] a_ : int = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : List[str] ) -> Optional[Any]: """simple docstring""" a_ : int = [] for sequence in batch: a_ : int = -1 a_ : Dict = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__A ) return torch.tensor(__A )
120
0
"""simple docstring""" from collections.abc import Iterable from typing import Any class lowerCamelCase : def __init__( self : Union[str, Any] , __UpperCAmelCase : int | None = None ) -> Tuple: SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = None # Added in order to delete a node easier SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __repr__( self : Any ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase : def __init__( self : Any , __UpperCAmelCase : Node | None = None ) -> str: SCREAMING_SNAKE_CASE__ = root def __str__( self : Tuple ) -> str: return str(self.root ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Node , __UpperCAmelCase : Node | None ) -> None: if new_children is not None: # reset its kids SCREAMING_SNAKE_CASE__ = node.parent if node.parent is not None: # reset its parent if self.is_right(__UpperCAmelCase ): # If it is the right children SCREAMING_SNAKE_CASE__ = new_children else: SCREAMING_SNAKE_CASE__ = new_children else: SCREAMING_SNAKE_CASE__ = new_children def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Node ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> bool: return self.root is None def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Optional[Any] ) -> None: SCREAMING_SNAKE_CASE__ = Node(__UpperCAmelCase ) # create a new Node if self.empty(): # if Tree is empty SCREAMING_SNAKE_CASE__ = new_node # set its root else: # Tree is not empty SCREAMING_SNAKE_CASE__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: SCREAMING_SNAKE_CASE__ = new_node # We insert the new node in a leaf break else: SCREAMING_SNAKE_CASE__ = parent_node.left else: if parent_node.right is None: SCREAMING_SNAKE_CASE__ = new_node break else: SCREAMING_SNAKE_CASE__ = parent_node.right SCREAMING_SNAKE_CASE__ = parent_node def SCREAMING_SNAKE_CASE ( self : Tuple , *__UpperCAmelCase : Any ) -> None: for value in values: self.__insert(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : str ) -> Node | None: if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: SCREAMING_SNAKE_CASE__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: SCREAMING_SNAKE_CASE__ = node.left if value < node.value else node.right return node def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Node | None = None ) -> Node | None: if node is None: if self.root is None: return None SCREAMING_SNAKE_CASE__ = self.root if not self.empty(): while node.right is not None: SCREAMING_SNAKE_CASE__ = node.right return node def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Node | None = None ) -> Node | None: if node is None: SCREAMING_SNAKE_CASE__ = self.root if self.root is None: return None if not self.empty(): SCREAMING_SNAKE_CASE__ = self.root while node.left is not None: SCREAMING_SNAKE_CASE__ = node.left return node def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : int ) -> None: SCREAMING_SNAKE_CASE__ = self.search(__UpperCAmelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__UpperCAmelCase , __UpperCAmelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(__UpperCAmelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__UpperCAmelCase , node.left ) else: SCREAMING_SNAKE_CASE__ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore SCREAMING_SNAKE_CASE__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Node | None ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Optional[Any]=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : list , __UpperCAmelCase : Node | None ) -> None: if node: self.inorder(__UpperCAmelCase , node.left ) arr.append(node.value ) self.inorder(__UpperCAmelCase , node.right ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Node ) -> int: SCREAMING_SNAKE_CASE__ = [] self.inorder(__UpperCAmelCase , __UpperCAmelCase ) # append all values to list using inorder traversal return arr[k - 1] def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] if curr_node is not None: SCREAMING_SNAKE_CASE__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) SCREAMING_SNAKE_CASE__ = BinarySearchTree() for i in testlist: t.insert(snake_case__ ) # Prints all the elements of the list in order traversal print(snake_case__ ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(snake_case__ ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
165
"""simple docstring""" from collections import defaultdict class lowerCamelCase : def __init__( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ) -> Any: SCREAMING_SNAKE_CASE__ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 SCREAMING_SNAKE_CASE__ = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__UpperCAmelCase ) ) ] SCREAMING_SNAKE_CASE__ = defaultdict(__UpperCAmelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 SCREAMING_SNAKE_CASE__ = (1 << len(__UpperCAmelCase )) - 1 def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Optional[int]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement SCREAMING_SNAKE_CASE__ = self.count_ways_until(__UpperCAmelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. SCREAMING_SNAKE_CASE__ = total_ways_util return self.dp[mask][task_no] def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] ) -> List[str]: # Store the list of persons for each task for i in range(len(__UpperCAmelCase ) ): for j in task_performed[i]: self.task[j].append(__UpperCAmelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": A_ : Any = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. A_ : Any = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
165
1
'''simple docstring''' def snake_case__ ( ) -> int: return 1 def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int = 2_0_0 ) -> int: return two_pound(lowerCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
4
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(__UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits __lowerCamelCase = optax.softmax_cross_entropy(__UpperCAmelCase , onehot(__UpperCAmelCase , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
330
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
1
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=5 ): """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 a :List[str] = torch.tensor(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ).unsqueeze(0 ) # Batch size 1 a :Any = model(UpperCAmelCase_ )[0] # The last hidden-state is the first element of the output tuple a :int = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a :Union[str, Any] = logits[0, masked_index, :] a :str = logits.softmax(dim=0 ) a , a :Optional[Any] = prob.topk(k=UpperCAmelCase_ , dim=0 ) a :Dict = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCAmelCase_ ) )] ) a :Union[str, Any] = tokenizer.mask_token a :Tuple = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): a :int = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(UpperCAmelCase_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(UpperCAmelCase_ ) , UpperCAmelCase_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(UpperCAmelCase_ , UpperCAmelCase_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs snake_case : Any = CamembertTokenizer.from_pretrained('''camembert-base''') snake_case : Optional[Any] = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() snake_case : List[str] = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
281
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowerCamelCase ( UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Any=100 , UpperCAmelCase_ : List[str]=1026 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str="data/tokenized_stories_train_wikitext103.jbl" , UpperCAmelCase_ : List[Any]="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set a , a :Optional[int] = generate_datasets( UpperCAmelCase_ , UpperCAmelCase_ , number=UpperCAmelCase_ , min_len=1026 , trim=UpperCAmelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a :str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model a :str = load_gpta('''gpt2''' ).to(UpperCAmelCase_ ) print('''computing perplexity on objective set''' ) a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).item() print('''perplexity on objective set:''' , UpperCAmelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=15 , UpperCAmelCase_ : Optional[Any]=128 , UpperCAmelCase_ : List[Any]=100 , UpperCAmelCase_ : List[str]="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model a :Tuple = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model a :List[str] = SecondaryLearner(UpperCAmelCase_ ) # Train secondary learner a :List[str] = train_secondary_learner( UpperCAmelCase_ , UpperCAmelCase_ , max_epochs=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , eval_freq=100 , igf_model_path=UpperCAmelCase_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[str]=1000 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=1.0 , UpperCAmelCase_ : Optional[int]=recopy_gpta , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : Any="gpt2_finetuned.pt" , ): """simple docstring""" a :Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) a :Optional[Any] = RandomSampler(UpperCAmelCase_ ) a :Union[str, Any] = DataLoader(UpperCAmelCase_ , sampler=UpperCAmelCase_ ) a :List[str] = max_steps // (len(UpperCAmelCase_ )) + 1 a :Tuple = 0 a :int = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCAmelCase_ ) a , a , a :str = recopy_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase_ ) secondary_learner.eval() a :Optional[Any] = [] a :Union[str, Any] = 0 a :Optional[Any] = [] a :Tuple = [] # Compute the performance of the transformer model at the beginning a :Any = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) for epoch in range(int(UpperCAmelCase_ ) ): for step, example in enumerate(UpperCAmelCase_ ): torch.cuda.empty_cache() a :Tuple = random.randint(0 , example.size(2 ) - context_len - 1 ) a :Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a :Optional[int] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) a :int = True if secondary_learner is not None: a :Tuple = secondary_learner.forward( torch.tensor(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a :List[str] = -1 if predicted_q < threshold: a :Tuple = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a :Any = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a :Tuple = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , UpperCAmelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowerCamelCase ( ): """simple docstring""" a :Union[str, Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=UpperCAmelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=UpperCAmelCase_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=UpperCAmelCase_ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=UpperCAmelCase_ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=UpperCAmelCase_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=UpperCAmelCase_ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=UpperCAmelCase_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=UpperCAmelCase_ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=UpperCAmelCase_ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=UpperCAmelCase_ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=UpperCAmelCase_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=UpperCAmelCase_ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=UpperCAmelCase_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner a :Union[str, Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner a :Any = training_secondary_learner( UpperCAmelCase_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model a :Any = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a , a :Union[str, Any] = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=UpperCAmelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=UpperCAmelCase_ , secondary_learner=UpperCAmelCase_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
281
1
lowerCamelCase__ : List[str] = 8.314_4598 def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float ) -> float: if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowerCamelCase__ : str = 300 lowerCamelCase__ : Union[str, Any] = 28 lowerCamelCase__ : List[Any] = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
225
import re from filelock import FileLock try: import nltk lowerCamelCase__ : str = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: re.sub('<n>' , '' , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
225
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self : str , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _lowerCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _lowerCAmelCase : Tuple[int] = (64,) , _lowerCAmelCase : int = 1 , _lowerCAmelCase : str = "silu" , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 32 , _lowerCAmelCase : int = 256 , _lowerCAmelCase : int = 32 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : float = 0.1_8215 , _lowerCAmelCase : str = "group" , ): super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE_ = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE_ = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) SCREAMING_SNAKE_CASE_ = VectorQuantizer(_lowerCAmelCase , _lowerCAmelCase , beta=0.25 , remap=_lowerCAmelCase , sane_index_shape=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE_ = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , norm_type=_lowerCAmelCase , ) @apply_forward_hook def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ): SCREAMING_SNAKE_CASE_ = self.encoder(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.quant_conv(_lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCAmelCase ) @apply_forward_hook def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True ): # also go through quantization layer if not force_not_quantize: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.quantize(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = h SCREAMING_SNAKE_CASE_ = self.post_quant_conv(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.decoder(_lowerCAmelCase , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ): SCREAMING_SNAKE_CASE_ = sample SCREAMING_SNAKE_CASE_ = self.encode(_lowerCAmelCase ).latents SCREAMING_SNAKE_CASE_ = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
352
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def UpperCAmelCase_ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
210
0