code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _lowerCamelCase( a , a , a , a , a ): # Load configuration defined in the metadata file with open(a ) as metadata_file: __a = json.load(a ) __a = LukeConfig(use_entity_aware_attention=a , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __a = torch.load(a , map_location="cpu" )["module"] # Load the entity vocab file __a = load_original_entity_vocab(a ) # add an entry for [MASK2] __a = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __a = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __a = AddedToken("<ent>" , lstrip=a , rstrip=a ) __a = AddedToken("<ent2>" , lstrip=a , rstrip=a ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(a ) with open(os.path.join(a , "tokenizer_config.json" ) , "r" ) as f: __a = json.load(a ) __a = "MLukeTokenizer" with open(os.path.join(a , "tokenizer_config.json" ) , "w" ) as f: json.dump(a , a ) with open(os.path.join(a , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(a , a ) __a = MLukeTokenizer.from_pretrained(a ) # Initialize the embeddings of the special tokens __a = tokenizer.convert_tokens_to_ids(["@"] )[0] __a = tokenizer.convert_tokens_to_ids(["#"] )[0] __a = state_dict["embeddings.word_embeddings.weight"] __a = word_emb[ent_init_index].unsqueeze(0 ) __a = word_emb[enta_init_index].unsqueeze(0 ) __a = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __a = state_dict[bias_name] __a = decoder_bias[ent_init_index].unsqueeze(0 ) __a = decoder_bias[enta_init_index].unsqueeze(0 ) __a = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __a = F"encoder.layer.{layer_index}.attention.self." __a = state_dict[prefix + matrix_name] __a = state_dict[prefix + matrix_name] __a = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __a = state_dict["entity_embeddings.entity_embeddings.weight"] __a = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __a = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __a = state_dict["entity_predictions.bias"] __a = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __a = torch.cat([entity_prediction_bias, entity_mask_bias] ) __a = LukeForMaskedLM(config=a ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __a = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __a = state_dict[key] else: __a = state_dict[key] __a , __a = model.load_state_dict(a , strict=a ) if set(a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __a = MLukeTokenizer.from_pretrained(a , task="entity_classification" ) __a = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __a = (0, 9) __a = tokenizer(a , entity_spans=[span] , return_tensors="pt" ) __a = model(**a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __a = torch.Size((1, 3_3, 7_6_8) ) __a = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __a = torch.Size((1, 1, 7_6_8) ) __a = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __a = MLukeTokenizer.from_pretrained(a ) __a = "Tokyo is the capital of <mask>." __a = (2_4, 3_0) __a = tokenizer(a , entity_spans=[span] , return_tensors="pt" ) __a = model(**a ) __a = encoding["input_ids"][0].tolist() __a = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __a = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(a ) __a = outputs.entity_logits[0][0].argmax().item() __a = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(a ) ) model.save_pretrained(a ) def _lowerCamelCase( a ): __a = ["[MASK]", "[PAD]", "[UNK]"] __a = [json.loads(a ) for line in open(a )] __a = {} for entry in data: __a = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __a = entity_id break __a = F"{language}:{entity_name}" __a = entity_id return new_mapping if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) SCREAMING_SNAKE_CASE__:List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
261
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase( a ): return getitem, k def _lowerCamelCase( a , a ): return setitem, k, v def _lowerCamelCase( a ): return delitem, k def _lowerCamelCase( a , a , *a ): try: return fun(a , *a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE__:List[Any] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] SCREAMING_SNAKE_CASE__:Any = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] SCREAMING_SNAKE_CASE__:int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE__:Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase( a ): __a = HashMap(initial_block_size=4 ) __a = {} for _, (fun, *args) in enumerate(a ): __a , __a = _run_operation(a , a , *a ) __a , __a = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase( ): def is_public(a ) -> bool: return not name.startswith("_" ) __a = {name for name in dir({} ) if is_public(a )} __a = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
261
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : str = args.pruning_method lowercase_ : Dict = args.threshold lowercase_ : Tuple = args.model_name_or_path.rstrip('/' ) lowercase_ : Union[str, Any] = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) lowercase_ : Any = torch.load(os.path.join(__SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) lowercase_ : str = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase_ : int = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: lowercase_ : List[str] = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: lowercase_ : int = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": lowercase_ : List[str] = MagnitudeBinarizer.apply(inputs=__SCREAMING_SNAKE_CASE , threshold=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase_ : Tuple = name[:-6] lowercase_ : Any = model[F'''{prefix_}mask_scores'''] lowercase_ : int = TopKBinarizer.apply(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : int = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase_ : List[Any] = name[:-6] lowercase_ : Union[str, Any] = model[F'''{prefix_}mask_scores'''] lowercase_ : List[str] = ThresholdBinarizer.apply(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : int = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase_ : List[str] = name[:-6] lowercase_ : Dict = model[F'''{prefix_}mask_scores'''] lowercase_ : str = -0.1, 1.1 lowercase_ : Any = torch.sigmoid(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = s * (r - l) + l lowercase_ : Union[str, Any] = s_bar.clamp(min=0.0 , max=1.0 ) lowercase_ : List[Any] = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowercase_ : Dict = os.path.join( os.path.dirname(__SCREAMING_SNAKE_CASE ) , F'''bertarized_{os.path.basename(__SCREAMING_SNAKE_CASE )}''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): shutil.copytree(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __SCREAMING_SNAKE_CASE =parser.parse_args() main(args)
364
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
0
"""simple docstring""" from collections import defaultdict def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : str ) -> bool: _UpperCAmelCase : Optional[Any] = first_str.lower().strip() _UpperCAmelCase : Any = second_str.lower().strip() # Remove whitespace _UpperCAmelCase : str = first_str.replace(""" """, """""" ) _UpperCAmelCase : Tuple = second_str.replace(""" """, """""" ) # Strings of different lengths are not anagrams if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False # Default values for count should be 0 _UpperCAmelCase : defaultdict[str, int] = defaultdict(_lowerCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowerCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase__ : Optional[Any] = input('''Enter the first string ''').strip() lowerCamelCase__ : str = input('''Enter the second string ''').strip() lowerCamelCase__ : List[str] = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
246
"""simple docstring""" import random class _UpperCAmelCase : @staticmethod def __snake_case ( _A ) -> tuple[list[int], list[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = [ord(_A ) for i in text] _UpperCAmelCase : str = [] _UpperCAmelCase : int = [] for i in plain: _UpperCAmelCase : List[str] = random.randint(1 , 3_00 ) _UpperCAmelCase : Any = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def __snake_case ( _A , _A ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] for i in range(len(_A ) ): _UpperCAmelCase : List[Any] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ : List[Any] = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
246
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowerCAmelCase__ : int = str(bin(lowerCamelCase__ ) )[2:] # remove the leading "0b" lowerCAmelCase__ : Optional[Any] = str(bin(lowerCamelCase__ ) )[2:] lowerCAmelCase__ : Tuple = max(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase__ ) , b_binary.zfill(lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = 0 for ch in input_str: lowerCAmelCase__ : Any = ord(A_ ) lowerCAmelCase__ : Any = pow(2 , A_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A = None , __A = None , __A = None , __A = None , __A = False , __A = False , __A = None , **__A , ) -> List[str]: lowerCAmelCase_ :List[str] = path_or_paths lowerCAmelCase_ :int = split if split or isinstance(__A , __A ) else """train""" lowerCAmelCase_ :Tuple = features lowerCAmelCase_ :str = cache_dir lowerCAmelCase_ :int = keep_in_memory lowerCAmelCase_ :Tuple = streaming lowerCAmelCase_ :Optional[int] = num_proc lowerCAmelCase_ :Optional[int] = kwargs @abstractmethod def __lowerCAmelCase ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A = None , __A = None , __A = False , __A = False , __A = None , **__A , ) -> int: lowerCAmelCase_ :List[Any] = features lowerCAmelCase_ :str = cache_dir lowerCAmelCase_ :List[str] = keep_in_memory lowerCAmelCase_ :Union[str, Any] = streaming lowerCAmelCase_ :List[Any] = num_proc lowerCAmelCase_ :List[str] = kwargs @abstractmethod def __lowerCAmelCase ( self ) -> Union[Dataset, IterableDataset]: pass
84
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor a_ : Union[str, Any] = random.Random() def a_ ( __snake_case : int , __snake_case : int=1.0 , __snake_case : Tuple=None , __snake_case : Union[str, Any]=None ) -> str: """simple docstring""" if rng is None: lowerCamelCase_ =global_rng lowerCamelCase_ =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase, lowerCAmelCase=7, lowerCAmelCase=400, lowerCAmelCase=2_000, lowerCAmelCase=24, lowerCAmelCase=24, lowerCAmelCase=0.0, lowerCAmelCase=16_000, lowerCAmelCase=True, lowerCAmelCase=True, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =min_seq_length lowerCamelCase_ =max_seq_length lowerCamelCase_ =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ =feature_size lowerCamelCase_ =num_mel_bins lowerCamelCase_ =padding_value lowerCamelCase_ =sampling_rate lowerCamelCase_ =return_attention_mask lowerCamelCase_ =do_normalize def lowercase__ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self, lowerCAmelCase=False, lowerCAmelCase=False ): """simple docstring""" def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: lowerCamelCase_ =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowerCamelCase_ =[np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Any =SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" self.assertTrue(np.all(np.mean(lowerCAmelCase, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =[np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size lowerCamelCase_ =feature_extractor(lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase_ =feature_extractor(speech_inputs[0], return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(np_speech_inputs[0], return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) # Test batched lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase, lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase_ =[floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ =np.asarray(lowerCAmelCase ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase, lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase_ =[None, 16, None] for max_length, padding in zip(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_attention_mask=lowerCAmelCase ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =[np.sum(lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase_ =[None, 16, None] for max_length, padding in zip(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =feature_extractor( lowerCAmelCase, max_length=lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =[np.sum(lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''max_length''', max_length=4, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''longest''', max_length=4, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''longest''', max_length=16, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase__ ( self ): """simple docstring""" import torch lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =np.random.rand(100, 32 ).astype(np.floataa ) lowerCamelCase_ =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase_ =feature_extractor.pad([{'''input_features''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase_ =feature_extractor.pad([{'''input_features''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" from datasets import load_dataset lowerCamelCase_ =load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech lowerCamelCase_ =ds.sort('''id''' ).select(range(lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([ -1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1, -1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8, -1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5, ] ) # fmt: on lowerCamelCase_ =self._load_datasamples(1 ) lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], lowerCAmelCase, atol=1e-4 ) )
75
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _UpperCAmelCase : List[Any] = 2_5_0_0_0_4 _UpperCAmelCase : Union[str, Any] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = MBartTokenizer __UpperCamelCase : Union[str, Any] = MBartTokenizerFast __UpperCamelCase : int = True __UpperCamelCase : Tuple = True def _snake_case (self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = MBartTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = MBartTokenizer(__lowercase , keep_accents=__lowercase ) __lowerCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case (self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=True __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=False __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = 'facebook/mbart-large-en-ro' __UpperCamelCase : Tuple = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __UpperCamelCase : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __UpperCamelCase : str = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _snake_case (cls ): __lowerCAmelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __lowerCAmelCase = 1 return cls def _snake_case (self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) def _snake_case (self ): self.assertIn(__lowercase , self.tokenizer.all_special_ids ) __lowerCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __lowerCAmelCase = self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertNotIn(self.tokenizer.eos_token , __lowercase ) def _snake_case (self ): __lowerCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __lowercase ) __lowerCAmelCase = 10 __lowerCAmelCase = self.tokenizer(__lowercase , max_length=__lowercase , truncation=__lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowercase ) self.assertEqual(len(__lowercase ) , __lowercase ) def _snake_case (self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = MBartTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowercase ) @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowercase , return_tensors='''pt''' ) __lowerCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __lowerCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer(self.src_text , padding=__lowercase , truncation=__lowercase , max_length=3 , return_tensors='''pt''' ) __lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=10 , return_tensors='''pt''' ) __lowerCAmelCase = targets['''input_ids'''] __lowerCAmelCase = shift_tokens_right(__lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__lowercase ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' def _A ( snake_case , snake_case ) -> Dict: assert x is not None assert y is not None _lowercase : Dict = len(snake_case ) _lowercase : List[str] = len(snake_case ) # declaring the array for storing the dp values _lowercase : Optional[int] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowercase : Optional[Any] = 1 if x[i - 1] == y[j - 1] else 0 _lowercase : Optional[int] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowercase : Union[str, Any] = "" _lowercase , _lowercase : Union[str, Any] = m, n while i > 0 and j > 0: _lowercase : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowercase : Union[str, Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _snake_case = 'AGGTAB' _snake_case = 'GXTXAYB' _snake_case = 4 _snake_case = 'GTAB' _snake_case , _snake_case = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
250
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Dict = ['pixel_values'] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) _lowercase : Dict = size if size is not None else {"shortest_edge": 224} _lowercase : List[Any] = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) _lowercase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowercase : Tuple = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name="crop_size" ) _lowercase : List[str] = do_resize _lowercase : Dict = size _lowercase : Any = resample _lowercase : int = do_center_crop _lowercase : Optional[Any] = crop_size _lowercase : Tuple = do_rescale _lowercase : Any = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowercase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _lowercase : Optional[int] = do_convert_rgb def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowercase : List[str] = get_resize_output_image_size(_UpperCamelCase , size=size["shortest_edge"] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size["height"], size["width"]) , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): """simple docstring""" _lowercase : Tuple = do_resize if do_resize is not None else self.do_resize _lowercase : Union[str, Any] = size if size is not None else self.size _lowercase : Optional[int] = get_size_dict(_UpperCamelCase , param_name="size" , default_to_square=_UpperCamelCase ) _lowercase : List[Any] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _lowercase : Tuple = get_size_dict(_UpperCamelCase , param_name="crop_size" , default_to_square=_UpperCamelCase ) _lowercase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : Dict = image_std if image_std is not None else self.image_std _lowercase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowercase : str = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowercase : List[Any] = [convert_to_rgb(_UpperCamelCase ) for image in images] # All transformations expect numpy arrays. _lowercase : List[Any] = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _lowercase : Optional[Any] = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _lowercase : Optional[int] = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _lowercase : Any = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _lowercase : List[Any] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _lowercase : List[Any] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _lowercase : Dict = {"pixel_values": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
250
1
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = RobertaConfig __UpperCamelCase = "roberta" def __init__( self : List[str] , lowercase_ : Tuple): '''simple docstring''' super().__init__(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = RobertaEmbeddings(lowercase_) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = RobertaConfig __UpperCamelCase = "roberta" def __init__( self : Any , lowercase_ : List[str]): '''simple docstring''' super().__init__(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = config.num_labels SCREAMING_SNAKE_CASE_ : List[str] = config.num_hidden_layers SCREAMING_SNAKE_CASE_ : int = DeeRobertaModel(lowercase_) SCREAMING_SNAKE_CASE_ : Any = nn.Dropout(config.hidden_dropout_prob) SCREAMING_SNAKE_CASE_ : Tuple = nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Tuple=None , lowercase_ : Dict=None , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=-1 , lowercase_ : str=False , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.num_layers try: SCREAMING_SNAKE_CASE_ : Dict = self.roberta( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Dict = outputs[1] SCREAMING_SNAKE_CASE_ : List[str] = self.dropout(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.classifier(lowercase_) SCREAMING_SNAKE_CASE_ : int = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE_ : List[Any] = e.message SCREAMING_SNAKE_CASE_ : List[Any] = e.exit_layer SCREAMING_SNAKE_CASE_ : List[str] = outputs[0] if not self.training: SCREAMING_SNAKE_CASE_ : Dict = entropy(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Dict = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE_ : Optional[Any] = MSELoss() SCREAMING_SNAKE_CASE_ : Optional[int] = loss_fct(logits.view(-1) , labels.view(-1)) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits SCREAMING_SNAKE_CASE_ : Tuple = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE_ : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(lowercase_) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE_ : Optional[Any] = MSELoss() SCREAMING_SNAKE_CASE_ : List[Any] = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: SCREAMING_SNAKE_CASE_ : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ : Any = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(lowercase_) if train_highway: SCREAMING_SNAKE_CASE_ : Union[str, Any] = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE_ : Dict = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE_ : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE_ : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
318
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _A (__a ) -> Union[str, Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def _A (__a ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
318
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
182
'''simple docstring''' import math def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> float: if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
321
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) # TODO Update this lowercase__ = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """esm""" def __init__( self : Any , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=768 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : int=12 , UpperCamelCase__ : Optional[int]=3072 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Union[str, Any]=1026 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Tuple=1e-1_2 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : int=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : str=False , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : Dict , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , mask_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = vocab_size snake_case : Union[str, Any] = hidden_size snake_case : Optional[Any] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Any = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : Union[str, Any] = initializer_range snake_case : int = layer_norm_eps snake_case : Union[str, Any] = position_embedding_type snake_case : List[Any] = use_cache snake_case : int = emb_layer_norm_before snake_case : str = token_dropout snake_case : Optional[Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) snake_case : Tuple = EsmFoldConfig() elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case : List[Any] = EsmFoldConfig(**_SCREAMING_SNAKE_CASE ) snake_case : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) snake_case : Any = get_default_vocab_list() else: snake_case : str = vocab_list else: snake_case : List[Any] = None snake_case : List[str] = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , _SCREAMING_SNAKE_CASE ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" snake_case : Union[str, Any] = super().to_dict() if isinstance(self.esmfold_config , _SCREAMING_SNAKE_CASE ): snake_case : Tuple = self.esmfold_config.to_dict() return output @dataclass class snake_case__ : """simple docstring""" lowerCamelCase = None lowerCamelCase = True lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = 0 lowerCamelCase = True lowerCamelCase = False lowerCamelCase = 128 lowerCamelCase = None def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" if self.trunk is None: snake_case : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , _SCREAMING_SNAKE_CASE ): snake_case : Any = TrunkConfig(**self.trunk ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" snake_case : Any = asdict(self ) snake_case : int = self.trunk.to_dict() return output @dataclass class snake_case__ : """simple docstring""" lowerCamelCase = 48 lowerCamelCase = 1024 lowerCamelCase = 128 lowerCamelCase = 32 lowerCamelCase = 32 lowerCamelCase = 32 lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = False lowerCamelCase = 4 lowerCamelCase = 128 lowerCamelCase = None def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" if self.structure_module is None: snake_case : Any = StructureModuleConfig() elif isinstance(self.structure_module , _SCREAMING_SNAKE_CASE ): snake_case : Any = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) snake_case : Optional[Any] = self.sequence_state_dim // self.sequence_head_width snake_case : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case : List[Any] = asdict(self ) snake_case : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class snake_case__ : """simple docstring""" lowerCamelCase = 384 lowerCamelCase = 128 lowerCamelCase = 16 lowerCamelCase = 128 lowerCamelCase = 12 lowerCamelCase = 4 lowerCamelCase = 8 lowerCamelCase = 0.1 lowerCamelCase = 8 lowerCamelCase = 1 lowerCamelCase = 2 lowerCamelCase = 7 lowerCamelCase = 10 lowerCamelCase = 1E-8 lowerCamelCase = 1E5 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return asdict(self ) def _UpperCamelCase ( ) -> str: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
371
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> list: '''simple docstring''' snake_case : Any = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case : Optional[int] = collection[i] snake_case : str = 0 snake_case : List[Any] = i - 1 while low <= high: snake_case : List[Any] = (low + high) // 2 if val < collection[mid]: snake_case : List[str] = mid - 1 else: snake_case : Optional[int] = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case : Dict = collection[j - 1] snake_case : Union[str, Any] = val return collection if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
83
0
"""simple docstring""" lowercase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> str: assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __a = year // 100 __a = (5 * (century % 4) + 2) % 7 __a = year % 100 __a = centurian % 12 __a = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
45
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : str ,A_ : Dict=13 ,A_ : str=7 ,A_ : str=True ,A_ : Any=True ,A_ : Optional[Any]=True ,A_ : Any=True ,A_ : Optional[Any]=True ,A_ : Any=False ,A_ : str=False ,A_ : Tuple=False ,A_ : str=2 ,A_ : Optional[int]=99 ,A_ : Union[str, Any]=0 ,A_ : Optional[Any]=32 ,A_ : Optional[int]=5 ,A_ : Optional[int]=4 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=0.1 ,A_ : Union[str, Any]=512 ,A_ : Union[str, Any]=2 ,A_ : Any=0.02 ,A_ : List[str]=2 ,A_ : int=4 ,A_ : int="last" ,A_ : Dict=True ,A_ : Union[str, Any]=None ,A_ : Any=0 ,) -> List[Any]: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ,A_ : int ,A_ : Dict ,A_ : str ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Union[str, Any] ,A_ : int ,A_ : str ,) -> Any: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Any ,A_ : str ,A_ : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ,A_ : str ,A_ : Any ,A_ : str ,A_ : Dict ,) -> Dict: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[str] ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : Any ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Optional[Any] ,) -> int: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Optional[int] ,A_ : Any ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Tuple ,A_ : List[str] ,A_ : Optional[int] ,) -> List[Any]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Tuple ,A_ : int ,A_ : Optional[int] ,A_ : List[str] ,A_ : str ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ,) -> Optional[int]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ,A_ : str ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : Optional[int] ,A_ : Optional[int] ,) -> List[str]: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Optional[int] ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : Union[str, Any] ,A_ : Dict ,A_ : List[Any] ,) -> List[str]: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[int] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Optional[int] ,A_ : List[Any]=False ) -> int: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any] ,A_ : Any ,A_ : str ,A_ : Tuple ,A_ : Any ,A_ : Any=False ,A_ : Any=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Optional[int] ,A_ : str ,A_ : Optional[int] ,A_ : int ,A_ : Any ,A_ : str=False ,A_ : Any=1 ) -> Tuple: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
74
0
from collections import deque def UpperCamelCase__( UpperCamelCase__ : Optional[Any] )->str: A__ = len(UpperCamelCase__ ) A__ = deque() A__ = [False for _ in range(UpperCamelCase__ )] A__ = [-1 for _ in range(UpperCamelCase__ )] A__ = index_of[:] def strong_connect(UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): A__ = index # the number when this node is seen A__ = index # lowest rank node reachable from here index += 1 stack.append(UpperCamelCase__ ) A__ = True for w in g[v]: if index_of[w] == -1: A__ = strong_connect(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A__ = [] A__ = stack.pop() A__ = False component.append(UpperCamelCase__ ) while w != v: A__ = stack.pop() A__ = False component.append(UpperCamelCase__ ) components.append(UpperCamelCase__ ) return index A__ = [] for v in range(UpperCamelCase__ ): if index_of[v] == -1: strong_connect(UpperCamelCase__ , 0 , UpperCamelCase__ ) return components def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple )->Union[str, Any]: A__ = [[] for _ in range(UpperCamelCase__ )] for u, v in edges: g[u].append(UpperCamelCase__ ) return g if __name__ == "__main__": # Test a__: Optional[Any] = 7 a__: Dict = [0, 0, 1, 2, 3, 3, 4, 4, 6] a__: Optional[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5] a__: Any = [(u, v) for u, v in zip(source, target)] a__: List[Any] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
39
from __future__ import annotations import time import numpy as np a__: Optional[Any] = [8, 5, 9, 7] a__: Dict = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a__: List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): A__ = claim_vector A__ = allocated_resources_table A__ = maximum_claim_table def UpperCamelCase ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCamelCase ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCamelCase ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCamelCase ( self ): return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def UpperCamelCase ( self,**__lowerCamelCase ): A__ = self.__need() A__ = self.__allocated_resources_table A__ = self.__available_resources() A__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: A__ = False for each_need in need_list: A__ = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: A__ = False break if execution: A__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A__ = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack A__ = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def UpperCamelCase ( self ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[str] =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCAmelCase : str =2_5_0_0_0_4 __lowerCAmelCase : Any =2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = MBartTokenizer SCREAMING_SNAKE_CASE__ : str = MBartTokenizerFast SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Optional[int] = True def __magic_name__( self :List[str] ) -> str: super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE : Any = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __magic_name__( self :Dict ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE : Dict = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : str = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''facebook/mbart-large-en-ro''' SCREAMING_SNAKE_CASE__ : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] SCREAMING_SNAKE_CASE__ : Any = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] SCREAMING_SNAKE_CASE__ : Tuple = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __magic_name__( cls :str ) -> int: __SCREAMING_SNAKE_CASE : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __SCREAMING_SNAKE_CASE : List[Any] = 1 return cls def __magic_name__( self :Optional[Any] ) -> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250_020 ) def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Tuple: self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) __SCREAMING_SNAKE_CASE : int = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 10 __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250_026, 250_001] ) def __magic_name__( self :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __SCREAMING_SNAKE_CASE : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __magic_name__( self :Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = targets['''input_ids'''] __SCREAMING_SNAKE_CASE : Any = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__( self :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3_034, 2, 250_004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250_001, } , )
9
from importlib import import_module from .logging import get_logger __lowerCAmelCase : str =get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=None ) -> int: __SCREAMING_SNAKE_CASE : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] def __init__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = obj __SCREAMING_SNAKE_CASE : str = target __SCREAMING_SNAKE_CASE : Dict = new __SCREAMING_SNAKE_CASE : Union[str, Any] = target.split('''.''' )[0] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = attrs or [] def __enter__( self :int ) -> Dict: *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : Any = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __SCREAMING_SNAKE_CASE : int = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : List[str] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: __SCREAMING_SNAKE_CASE : Any = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __SCREAMING_SNAKE_CASE : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self :str , *lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __magic_name__( self :List[Any] ) -> List[Any]: self.__enter__() self._active_patches.append(self ) def __magic_name__( self :Optional[int] ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
1
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) A = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __A ( a_ :List[Any]) -> List[Any]: __a : List[Any] = {} state_dict.pop('''pixel_mean''' , a_) state_dict.pop('''pixel_std''' , a_) __a : List[Any] = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __a : int = key.replace(a_ , a_) if re.match(a_ , a_): __a : Optional[Any] = int(re.match(a_ , a_).group(2)) if layer_nb == 0: __a : Any = key.replace('''layers.0''' , '''proj_in''') elif layer_nb == 1: __a : Dict = key.replace('''layers.1''' , '''layers.0''') elif layer_nb == 2: __a : Optional[int] = key.replace('''layers.2''' , '''proj_out''') __a : int = value __a : Union[str, Any] = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __A ( a_ :Optional[int] , a_ :Optional[Any] , a_ :Dict , a_ :Optional[int]="ybelkada/segment-anything") -> Dict: __a : Dict = hf_hub_download(a_ , F"""checkpoints/{model_name}.pth""") if "sam_vit_b" in model_name: __a : List[str] = SamConfig() elif "sam_vit_l" in model_name: __a : List[Any] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __a : List[Any] = SamConfig( vision_config=a_ , ) elif "sam_vit_h" in model_name: __a : List[str] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __a : Optional[int] = SamConfig( vision_config=a_ , ) __a : int = torch.load(a_ , map_location='''cpu''') __a : Tuple = replace_keys(a_) __a : Optional[int] = SamImageProcessor() __a : Any = SamProcessor(image_processor=a_) __a : Any = SamModel(a_) hf_model.load_state_dict(a_) __a : Dict = hf_model.to('''cuda''') __a : Tuple = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __a : str = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') __a : Tuple = [[[4_00, 6_50]]] __a : Tuple = [[1]] __a : Tuple = processor(images=np.array(a_) , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : str = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 __a : Any = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Optional[int] = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 __a : str = ((75, 2_75, 17_25, 8_50),) __a : List[str] = processor(images=np.array(a_) , input_boxes=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Any = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. __a : int = [[[4_00, 6_50], [8_00, 6_50]]] __a : Dict = [[1, 1]] __a : Optional[Any] = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : int = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": A = argparse.ArgumentParser() A = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
367
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A = TypeVar('''T''') class __lowercase ( Generic[T] ): '''simple docstring''' __lowerCAmelCase = 42 # Cache store of keys __lowerCAmelCase = 42 # References of the keys in cache __lowerCAmelCase = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ): __a : Optional[int] = deque() __a : Dict = set() if not n: __a : List[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __a : str = n def _lowerCamelCase ( self , _UpperCAmelCase ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __a : int = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _lowerCamelCase ( self ): for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ): return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() A = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
188
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( _lowercase ): lowerCamelCase : str = ["image_processor", "tokenizer"] lowerCamelCase : Tuple = "LayoutLMv2ImageProcessor" lowerCamelCase : Dict = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__(self , A=None , A=None , **A ): if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A , ) lowerCamelCase_ : Any = kwargs.pop('''feature_extractor''' ) lowerCamelCase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(A , A ) def __call__(self , A , A = None , A = None , A = None , A = None , A = True , A = False , A = None , A = None , A = 0 , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ : Optional[int] = self.image_processor(images=A , return_tensors=A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A , A ): lowerCamelCase_ : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ : Dict = features['''words'''] lowerCamelCase_ : Dict = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel values lowerCamelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ : int = self.get_overflowing_images(A , encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ : Optional[int] = images return encoded_inputs def UpperCAmelCase__ (self , A , A ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase_ : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A ) != len(A ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(A )} and {len(A )}""" ) return images_with_overflow def UpperCAmelCase__ (self , *A , **A ): return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase__ (self , *A , **A ): return self.tokenizer.decode(*A , **A ) @property def UpperCAmelCase__ (self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ (self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , A , ) return self.image_processor_class @property def UpperCAmelCase__ (self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , A , ) return self.image_processor
318
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
1
import argparse import collections import json import os import re import string import sys import numpy as np __UpperCAmelCase = re.compile(R"\b(a|an|the)\b", re.UNICODE) __UpperCAmelCase = None def A__ ( ): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''', metavar='''data.json''', help='''Input data JSON file.''' ) parser.add_argument('''pred_file''', metavar='''pred.json''', help='''Model predictions.''' ) parser.add_argument( '''--out-file''', '''-o''', metavar='''eval.json''', help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''', '''-n''', metavar='''na_prob.json''', help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''', '''-t''', type=__lowerCamelCase, default=1.0, help='''Predict "" if no-answer probability exceeds this (default = 1.0).''', ) parser.add_argument( '''--out-image-dir''', '''-p''', metavar='''out_images''', default=__lowerCamelCase, help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''', '''-v''', action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE_ = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def A__ ( __lowerCamelCase ): def remove_articles(__lowerCamelCase ): return ARTICLES_REGEX.sub(''' ''', __lowerCamelCase ) def white_space_fix(__lowerCamelCase ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def A__ ( __lowerCamelCase ): if not s: return [] return normalize_answer(__lowerCamelCase ).split() def A__ ( __lowerCamelCase, __lowerCamelCase ): return int(normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) ) def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = get_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = get_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = collections.Counter(__lowerCamelCase ) & collections.Counter(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = sum(common.values() ) if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = (2 * precision * recall) / (precision + recall) return fa def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE_ = qa['''id'''] SCREAMING_SNAKE_CASE_ = [t for t in qa['''answers''']['''text'''] if normalize_answer(__lowerCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string SCREAMING_SNAKE_CASE_ = [''''''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue SCREAMING_SNAKE_CASE_ = preds[qid] # Take max over all gold answers SCREAMING_SNAKE_CASE_ = max(compute_exact(__lowerCamelCase, __lowerCamelCase ) for a in gold_answers ) SCREAMING_SNAKE_CASE_ = max(compute_fa(__lowerCamelCase, __lowerCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} for qid, s in scores.items(): SCREAMING_SNAKE_CASE_ = na_probs[qid] > na_prob_thresh if pred_na: SCREAMING_SNAKE_CASE_ = float(not qid_to_has_ans[qid] ) else: SCREAMING_SNAKE_CASE_ = s return new_scores def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): if not qid_list: SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_00.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for k in new_eval: SCREAMING_SNAKE_CASE_ = new_eval[k] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): plt.step(__lowerCamelCase, __lowerCamelCase, color='''b''', alpha=0.2, where='''post''' ) plt.fill_between(__lowerCamelCase, __lowerCamelCase, step='''post''', alpha=0.2, color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCamelCase ) plt.savefig(__lowerCamelCase ) plt.clf() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None ): SCREAMING_SNAKE_CASE_ = sorted(__lowerCamelCase, key=lambda __lowerCamelCase : na_probs[k] ) SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = 1.0 SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = [1.0] SCREAMING_SNAKE_CASE_ = [0.0] SCREAMING_SNAKE_CASE_ = 0.0 for i, qid in enumerate(__lowerCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] SCREAMING_SNAKE_CASE_ = true_pos / float(i + 1 ) SCREAMING_SNAKE_CASE_ = true_pos / float(__lowerCamelCase ) if i == len(__lowerCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCamelCase ) recalls.append(__lowerCamelCase ) if out_image: plot_pr_curve(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) return {"ap": 1_00.0 * avg_prec} def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if out_image_dir and not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return SCREAMING_SNAKE_CASE_ = make_precision_recall_eval( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, out_image=os.path.join(__lowerCamelCase, '''pr_exact.png''' ), title='''Precision-Recall curve for Exact Match score''', ) SCREAMING_SNAKE_CASE_ = make_precision_recall_eval( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, out_image=os.path.join(__lowerCamelCase, '''pr_f1.png''' ), title='''Precision-Recall curve for F1 score''', ) SCREAMING_SNAKE_CASE_ = {k: float(__lowerCamelCase ) for k, v in qid_to_has_ans.items()} SCREAMING_SNAKE_CASE_ = make_precision_recall_eval( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, out_image=os.path.join(__lowerCamelCase, '''pr_oracle.png''' ), title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''', ) merge_eval(__lowerCamelCase, __lowerCamelCase, '''pr_exact''' ) merge_eval(__lowerCamelCase, __lowerCamelCase, '''pr_f1''' ) merge_eval(__lowerCamelCase, __lowerCamelCase, '''pr_oracle''' ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if not qid_list: return SCREAMING_SNAKE_CASE_ = [na_probs[k] for k in qid_list] SCREAMING_SNAKE_CASE_ = np.ones_like(__lowerCamelCase ) / float(len(__lowerCamelCase ) ) plt.hist(__lowerCamelCase, weights=__lowerCamelCase, bins=20, range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCamelCase, F'''na_prob_hist_{name}.png''' ) ) plt.clf() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) SCREAMING_SNAKE_CASE_ = num_no_ans SCREAMING_SNAKE_CASE_ = cur_score SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = sorted(__lowerCamelCase, key=lambda __lowerCamelCase : na_probs[k] ) for i, qid in enumerate(__lowerCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: SCREAMING_SNAKE_CASE_ = scores[qid] else: if preds[qid]: SCREAMING_SNAKE_CASE_ = -1 else: SCREAMING_SNAKE_CASE_ = 0 cur_score += diff if cur_score > best_score: SCREAMING_SNAKE_CASE_ = cur_score SCREAMING_SNAKE_CASE_ = na_probs[qid] return 1_00.0 * best_score / len(__lowerCamelCase ), best_thresh def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = find_best_thresh(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = find_best_thresh(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = best_exact SCREAMING_SNAKE_CASE_ = exact_thresh SCREAMING_SNAKE_CASE_ = best_fa SCREAMING_SNAKE_CASE_ = fa_thresh def A__ ( ): with open(OPTS.data_file ) as f: SCREAMING_SNAKE_CASE_ = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = dataset_json['''data'''] with open(OPTS.pred_file ) as f: SCREAMING_SNAKE_CASE_ = json.load(__lowerCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: SCREAMING_SNAKE_CASE_ = json.load(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = {k: 0.0 for k in preds} SCREAMING_SNAKE_CASE_ = make_qid_to_has_ans(__lowerCamelCase ) # maps qid to True/False SCREAMING_SNAKE_CASE_ = [k for k, v in qid_to_has_ans.items() if v] SCREAMING_SNAKE_CASE_ = [k for k, v in qid_to_has_ans.items() if not v] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_raw_scores(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = apply_no_ans_threshold(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE_ = apply_no_ans_threshold(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE_ = make_eval_dict(__lowerCamelCase, __lowerCamelCase ) if has_ans_qids: SCREAMING_SNAKE_CASE_ = make_eval_dict(__lowerCamelCase, __lowerCamelCase, qid_list=__lowerCamelCase ) merge_eval(__lowerCamelCase, __lowerCamelCase, '''HasAns''' ) if no_ans_qids: SCREAMING_SNAKE_CASE_ = make_eval_dict(__lowerCamelCase, __lowerCamelCase, qid_list=__lowerCamelCase ) merge_eval(__lowerCamelCase, __lowerCamelCase, '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, OPTS.out_image_dir ) histogram_na_prob(__lowerCamelCase, __lowerCamelCase, OPTS.out_image_dir, '''hasAns''' ) histogram_na_prob(__lowerCamelCase, __lowerCamelCase, OPTS.out_image_dir, '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file, '''w''' ) as f: json.dump(__lowerCamelCase, __lowerCamelCase ) else: print(json.dumps(__lowerCamelCase, indent=2 ) ) if __name__ == "__main__": __UpperCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
257
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="unispeech-sat" def __init__( self , _A=32 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.1 , _A=0.1 , _A=0.02 , _A=1E-5 , _A="group" , _A="gelu" , _A=(512, 512, 512, 512, 512, 512, 512) , _A=(5, 2, 2, 2, 2, 2, 2) , _A=(10, 3, 3, 3, 3, 2, 2) , _A=False , _A=128 , _A=16 , _A=False , _A=True , _A=0.05 , _A=10 , _A=2 , _A=0.0 , _A=10 , _A=0 , _A=320 , _A=2 , _A=0.1 , _A=100 , _A=256 , _A=256 , _A=0.1 , _A="mean" , _A=False , _A=False , _A=256 , _A=(512, 512, 512, 512, 1500) , _A=(5, 3, 3, 1, 1) , _A=(1, 2, 3, 1, 1) , _A=512 , _A=0 , _A=1 , _A=2 , _A=504 , **_A , ) -> Tuple: super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = feat_extract_norm SCREAMING_SNAKE_CASE_ = feat_extract_activation SCREAMING_SNAKE_CASE_ = list(_A ) SCREAMING_SNAKE_CASE_ = list(_A ) SCREAMING_SNAKE_CASE_ = list(_A ) SCREAMING_SNAKE_CASE_ = conv_bias SCREAMING_SNAKE_CASE_ = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_ = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_ = len(self.conv_dim ) SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = feat_proj_dropout SCREAMING_SNAKE_CASE_ = final_dropout SCREAMING_SNAKE_CASE_ = layerdrop SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = num_clusters SCREAMING_SNAKE_CASE_ = do_stable_layer_norm SCREAMING_SNAKE_CASE_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ = apply_spec_augment SCREAMING_SNAKE_CASE_ = mask_time_prob SCREAMING_SNAKE_CASE_ = mask_time_length SCREAMING_SNAKE_CASE_ = mask_time_min_masks SCREAMING_SNAKE_CASE_ = mask_feature_prob SCREAMING_SNAKE_CASE_ = mask_feature_length SCREAMING_SNAKE_CASE_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE_ = num_codevectors_per_group SCREAMING_SNAKE_CASE_ = num_codevector_groups SCREAMING_SNAKE_CASE_ = contrastive_logits_temperature SCREAMING_SNAKE_CASE_ = feat_quantizer_dropout SCREAMING_SNAKE_CASE_ = num_negatives SCREAMING_SNAKE_CASE_ = codevector_dim SCREAMING_SNAKE_CASE_ = proj_codevector_dim SCREAMING_SNAKE_CASE_ = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE_ = ctc_loss_reduction SCREAMING_SNAKE_CASE_ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ = list(_A ) SCREAMING_SNAKE_CASE_ = list(_A ) SCREAMING_SNAKE_CASE_ = list(_A ) SCREAMING_SNAKE_CASE_ = xvector_output_dim @property def _UpperCamelCase ( self ) -> str: return functools.reduce(operator.mul , self.conv_stride , 1 )
257
1
'''simple docstring''' from ....utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __a : int , __a : Any=None , __a : Optional[int]=20_48 ): _a = config.__dict__ _a = modal_hidden_size if num_labels: _a = num_labels
63
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """The output directory where the model will be written."""} , ) lowercase__ = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) lowercase__ = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def A__ ( ): _UpperCamelCase : Optional[Any] = HfArgumentParser((ModelArguments,) ) ((_UpperCamelCase) , ) : Optional[int] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _UpperCamelCase : Any = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _UpperCamelCase : str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _UpperCamelCase : str = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _UpperCamelCase : List[Any] = True _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : str = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=UpperCAmelCase_ , decoder_config=UpperCAmelCase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _UpperCamelCase : str = decoder_config.decoder_start_token_id _UpperCamelCase : Optional[int] = decoder_config.pad_token_id if decoder_start_token_id is None: _UpperCamelCase : int = decoder_config.bos_token_id if pad_token_id is None: _UpperCamelCase : Dict = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _UpperCamelCase : List[Any] = decoder_config.eos_token_id _UpperCamelCase : Dict = decoder_start_token_id _UpperCamelCase : int = pad_token_id _UpperCamelCase : List[str] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _UpperCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
83
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' _a , _a = image.size _a , _a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) _a = np.array(UpperCamelCase ).astype(np.floataa ) / 255.0 _a = image[None].transpose(0 , 3 , 1 , 2 ) _a = torch.from_numpy(UpperCamelCase ) return 2.0 * image - 1.0 class A ( _a ): def __init__( self : Any , lowerCAmelCase_ : VQModel , lowerCAmelCase_ : UNetaDModel , lowerCAmelCase_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> int: """simple docstring""" super().__init__() self.register_modules(vqvae=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Tuple , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[int] = 1_00 , lowerCAmelCase_ : Optional[float] = 0.0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(lowerCAmelCase_ , PIL.Image.Image ): _a = 1 elif isinstance(lowerCAmelCase_ , torch.Tensor ): _a = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase_ )}' ) if isinstance(lowerCAmelCase_ , PIL.Image.Image ): _a = preprocess(lowerCAmelCase_ ) _a , _a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _a = (batch_size, self.unet.config.in_channels // 2, height, width) _a = next(self.unet.parameters() ).dtype _a = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) _a = image.to(device=self.device , dtype=lowerCAmelCase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase_ , device=self.device ) _a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta for t in self.progress_bar(lowerCAmelCase_ ): # concat latents and low resolution image in the channel dimension. _a = torch.cat([latents, image] , dim=1 ) _a = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual _a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample # decode the image latents with the VQVAE _a = self.vqvae.decode(lowerCAmelCase_ ).sample _a = torch.clamp(lowerCAmelCase_ , -1.0 , 1.0 ) _a = image / 2 + 0.5 _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
179
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
179
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=[] )-> Tuple: """simple docstring""" _UpperCAmelCase = size[0] - overlap_pixels * 2 _UpperCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _UpperCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _UpperCAmelCase = np.pad(__lowerCAmelCase , mode='linear_ramp' , pad_width=__lowerCAmelCase , end_values=0 ) if "l" in remove_borders: _UpperCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _UpperCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _UpperCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _UpperCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Any: """simple docstring""" return max(__lowerCAmelCase , min(__lowerCAmelCase , __lowerCAmelCase ) ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = list(__lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _UpperCAmelCase = clamp_rect(__lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: """simple docstring""" _UpperCAmelCase = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__lowerCAmelCase , (original_slice, 0) ) return result def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Any: """simple docstring""" _UpperCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _UpperCAmelCase = tile.crop(__lowerCAmelCase ) return tile def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = n % d return n - divisor class __lowerCamelCase ( snake_case__): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 350 , ): """simple docstring""" super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _UpperCAmelCase = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) _UpperCAmelCase = image.crop(UpperCAmelCase ) _UpperCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _UpperCAmelCase = translated_slice_x - (original_image_slice / 2) _UpperCAmelCase = max(0 , UpperCAmelCase ) _UpperCAmelCase = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = to_input.size _UpperCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _UpperCAmelCase = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] _UpperCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) _UpperCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 75 , UpperCAmelCase = 9.0 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 128 , UpperCAmelCase = 32 , UpperCAmelCase = 32 , ): """simple docstring""" _UpperCAmelCase = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) _UpperCAmelCase = math.ceil(image.size[0] / tile_size ) _UpperCAmelCase = math.ceil(image.size[1] / tile_size ) _UpperCAmelCase = tcx * tcy _UpperCAmelCase = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def __A ( )-> int: """simple docstring""" _UpperCAmelCase = 'stabilityai/stable-diffusion-x4-upscaler' _UpperCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(__lowerCAmelCase , revision='fp16' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to('cuda' ) _UpperCAmelCase = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(__lowerCAmelCase ): print(F"""progress: {obj["progress"]:.4f}""" ) obj["image"].save('diffusers_library_progress.jpg' ) _UpperCAmelCase = pipe(image=__lowerCAmelCase , prompt='Black font, white background, vector' , noise_level=40 , callback=__lowerCAmelCase ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
39
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "Pix2StructImageProcessor" UpperCamelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = False super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 2048 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , **UpperCAmelCase ) else: # add pixel_values and bbox _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , header_text=UpperCAmelCase , **UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if "attention_mask" in text_encoding: _UpperCAmelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _UpperCAmelCase = text_encoding.pop('input_ids' ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
1
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def lowerCamelCase__ ( *__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' pass @is_pipeline_test @require_vision class _UpperCAmelCase ( unittest.TestCase ): @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""",) __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = image_classifier(__SCREAMING_SNAKE_CASE,candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__SCREAMING_SNAKE_CASE ),[ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ],) __lowerCAmelCase = image_classifier([image] * 5,candidate_labels=["""A""", """B""", """C"""],batch_size=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], ],) @require_tf def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""",framework="""tf""" ) __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = image_classifier(__SCREAMING_SNAKE_CASE,candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],) __lowerCAmelCase = image_classifier([image] * 5,candidate_labels=["""A""", """B""", """C"""],batch_size=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], [ {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, {"""score""": 0.333, """label""": ANY(__SCREAMING_SNAKE_CASE )}, ], ],) @slow @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pipeline( task="""zero-shot-image-classification""",model="""openai/clip-vit-base-patch32""",) # This is an image of 2 cats with remotes and no planes __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = image_classifier(__SCREAMING_SNAKE_CASE,candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ],) __lowerCAmelCase = image_classifier([image] * 5,candidate_labels=["""cat""", """plane""", """remote"""],batch_size=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5,) @slow @require_tf def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pipeline( task="""zero-shot-image-classification""",model="""openai/clip-vit-base-patch32""",framework="""tf""" ) # This is an image of 2 cats with remotes and no planes __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = image_classifier(__SCREAMING_SNAKE_CASE,candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ],) __lowerCAmelCase = image_classifier([image] * 5,candidate_labels=["""cat""", """plane""", """remote"""],batch_size=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5,)
46
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def lowercase ( __magic_name__ , __magic_name__=1000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : Any = n - 1 UpperCAmelCase : Optional[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : str = 0 while count < prec: UpperCAmelCase : Optional[int] = random.randint(2 , n - 1 ) UpperCAmelCase : Optional[Any] = bin_exp_mod(_A , _A , _A ) if b != 1: UpperCAmelCase : List[Any] = True for _ in range(_A ): if b == n - 1: UpperCAmelCase : int = False break UpperCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a : Tuple = abs(int(input("Enter bound : ").strip())) print("Here\'s the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
311
import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_ ) -> List[str]: """simple docstring""" a__ =data a__ =[0X67452301, 0Xefcdab89, 0X98badcfe, 0X10325476, 0Xc3d2e1f0] @staticmethod def _UpperCAmelCase ( lowercase_, lowercase_ ) -> Union[str, Any]: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0Xffffffff def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) a__ =self.data + padding + struct.pack('''>Q''', 8 * len(self.data ) ) return padded_data def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 ) ] def _UpperCAmelCase ( self, lowercase_ ) -> List[Any]: """simple docstring""" a__ =list(struct.unpack('''>16L''', lowercase_ ) ) + [0] * 64 for i in range(16, 80 ): a__ =self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 ) return w def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.padding() a__ =self.split_blocks() for block in self.blocks: a__ =self.expand_block(lowercase_ ) a__, a__, a__, a__, a__ =self.h for i in range(0, 80 ): if 0 <= i < 20: a__ =(b & c) | ((~b) & d) a__ =0X5a827999 elif 20 <= i < 40: a__ =b ^ c ^ d a__ =0X6ed9eba1 elif 40 <= i < 60: a__ =(b & c) | (b & d) | (c & d) a__ =0X8f1bbcdc elif 60 <= i < 80: a__ =b ^ c ^ d a__ =0Xca62c1d6 a__, a__, a__, a__, a__ =( self.rotate(lowercase_, 5 ) + f + e + k + expanded_block[i] & 0Xffffffff, a, self.rotate(lowercase_, 30 ), c, d, ) a__ =( self.h[0] + a & 0Xffffffff, self.h[1] + b & 0Xffffffff, self.h[2] + c & 0Xffffffff, self.h[3] + d & 0Xffffffff, self.h[4] + e & 0Xffffffff, ) return ("{:08x}" * 5).format(*self.h ) def UpperCAmelCase__ ( ): '''simple docstring''' a__ =b'''Test String''' assert SHAaHash(_A ).final_hash() == hashlib.shaa(_A ).hexdigest() # noqa: S324 def UpperCAmelCase__ ( ): '''simple docstring''' a__ =argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) a__ =parser.parse_args() a__ =args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: a__ =f.read() else: a__ =bytes(_A , '''utf-8''' ) print(SHAaHash(_A ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
188
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __lowercase ( a__ ) -> Dict[str, torch.Tensor]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for rt in rc.restypes: __SCREAMING_SNAKE_CASE = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __SCREAMING_SNAKE_CASE = {name: i for i, name in enumerate(a__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) __SCREAMING_SNAKE_CASE = torch.tensor( a__ , dtype=torch.intaa , device=protein['aatype'].device , ) __SCREAMING_SNAKE_CASE = torch.tensor( a__ , dtype=torch.intaa , device=protein['aatype'].device , ) __SCREAMING_SNAKE_CASE = torch.tensor( a__ , dtype=torch.floataa , device=protein['aatype'].device , ) __SCREAMING_SNAKE_CASE = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __SCREAMING_SNAKE_CASE = restype_atomaa_to_atomaa[protein_aatype] __SCREAMING_SNAKE_CASE = restype_atomaa_mask[protein_aatype] __SCREAMING_SNAKE_CASE = residx_atomaa_mask __SCREAMING_SNAKE_CASE = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __SCREAMING_SNAKE_CASE = restype_atomaa_to_atomaa[protein_aatype] __SCREAMING_SNAKE_CASE = residx_atomaa_to_atomaa.long() # create the corresponding mask __SCREAMING_SNAKE_CASE = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): __SCREAMING_SNAKE_CASE = rc.restype_atoa[restype_letter] __SCREAMING_SNAKE_CASE = rc.residue_atoms[restype_name] for atom_name in atom_names: __SCREAMING_SNAKE_CASE = rc.atom_order[atom_name] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = restype_atomaa_mask[protein_aatype] __SCREAMING_SNAKE_CASE = residx_atomaa_mask return protein def __lowercase ( a__ ) -> Dict[str, np.ndarray]: __SCREAMING_SNAKE_CASE = tree_map(lambda a__ : torch.tensor(a__ , device=batch['aatype'].device ) , a__ , np.ndarray ) __SCREAMING_SNAKE_CASE = tensor_tree_map(lambda a__ : np.array(a__ ) , make_atomaa_masks(a__ ) ) return out
257
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase__ : List[Any] =input('''Enter image url: ''').strip() print(F'''Downloading image from {url} ...''') lowerCAmelCase__ : int =BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase__ : Union[str, Any] =soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] lowerCAmelCase__ : int =requests.get(image_url).content lowerCAmelCase__ : Optional[int] =F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
257
1
from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE :Any = 300 # TEMPERATURE (unit = K) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> float: """simple docstring""" if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
60
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ : def __init__( self , _lowercase , _lowercase=2 , _lowercase=32 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=True , _lowercase=32 , _lowercase=4 , _lowercase=[0, 1, 2, 3] , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=3 , _lowercase=[1, 384, 24, 24] , _lowercase=True , _lowercase=None , )-> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = backbone_out_indices UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = backbone_featmap_shape UpperCamelCase_ = scope UpperCamelCase_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_ = (image_size // patch_size) ** 2 UpperCamelCase_ = num_patches + 1 def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_lowercase , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Any: UpperCamelCase_ = DPTModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = self.num_labels UpperCamelCase_ = DPTForDepthEstimation(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> str: UpperCamelCase_ = self.num_labels UpperCamelCase_ = DPTForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ :Any = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ :List[Any] = False UpperCamelCase_ :Dict = False UpperCamelCase_ :Tuple = False def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = DPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = True if model_class in get_values(_lowercase ): continue UpperCamelCase_ = model_class(_lowercase ) model.to(_lowercase ) model.train() UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) UpperCamelCase_ = model(**_lowercase ).loss loss.backward() def UpperCAmelCase_ ( self )-> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = False UpperCamelCase_ = True if model_class in get_values(_lowercase ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase_ = model_class(_lowercase ) model.to(_lowercase ) model.gradient_checkpointing_enable() model.train() UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) UpperCamelCase_ = model(**_lowercase ).loss loss.backward() def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: UpperCamelCase_ = model_class(config=_lowercase ) # Skip the check for the backbone UpperCamelCase_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase_ = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase_ ( self )-> int: pass @slow def UpperCAmelCase_ ( self )-> List[Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase_ = DPTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase_ ( self )-> List[str]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = "add" with self.assertRaises(_lowercase ): UpperCamelCase_ = DPTForDepthEstimation(_lowercase ) def lowerCAmelCase( )-> Any: """simple docstring""" UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) UpperCamelCase_ = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(_lowercase ) UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_lowercase , return_tensors="pt" ).to(_lowercase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**_lowercase ) UpperCamelCase_ = outputs.predicted_depth # verify the predicted depth UpperCamelCase_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _lowercase ) UpperCamelCase_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _lowercase , atol=1e-4 ) )
60
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
179
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """bert""" def __init__( self , __lowerCamelCase=3_0522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : Dict = vocab_size __A : Any = hidden_size __A : str = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = hidden_act __A : List[Any] = intermediate_size __A : Tuple = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Optional[Any] = type_vocab_size __A : Optional[Any] = initializer_range __A : Dict = layer_norm_eps __A : Any = position_embedding_type __A : Optional[int] = use_cache __A : str = classifier_dropout class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "multiple-choice": __A : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
179
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger() @dataclass class _lowerCamelCase: lowercase_ : nn.Module lowercase_ : List[nn.Module] = field(default_factory=_a ) lowercase_ : list = field(default_factory=_a ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = len(list(m.modules())) == 1 or isinstance(lowerCamelCase, nn.Convad) or isinstance(lowerCamelCase, nn.BatchNormad) if has_not_submodules: self.traced.append(lowerCamelCase) def __call__( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(lowerCamelCase) [x.remove() for x in self.handles] return self @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return list(filter(lambda lowerCamelCase: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class _lowerCamelCase: lowercase_ : nn.Module lowercase_ : nn.Module lowercase_ : int = 0 lowercase_ : List = field(default_factory=_a ) lowercase_ : List = field(default_factory=_a ) def __call__( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Dict = Tracker(self.dest)(lowerCamelCase).parametrized _lowercase : List[Any] = Tracker(self.src)(lowerCamelCase).parametrized _lowercase : str = list(filter(lambda lowerCamelCase: type(lowerCamelCase) not in self.src_skip, lowerCamelCase)) _lowercase : str = list(filter(lambda lowerCamelCase: type(lowerCamelCase) not in self.dest_skip, lowerCamelCase)) if len(lowerCamelCase) != len(lowerCamelCase): raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase)} operations while''' F''' destination module has {len(lowerCamelCase)}.''') for dest_m, src_m in zip(lowerCamelCase, lowerCamelCase): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''') def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True ) -> Optional[Any]: print(F'''Converting {name}...''' ) with torch.no_grad(): _lowercase : int = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval() _lowercase : Tuple = ResNetForImageClassification(lowerCamelCase_ ).eval() _lowercase : Tuple = ModuleTransfer(src=lowerCamelCase_ , dest=lowerCamelCase_ ) _lowercase : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(lowerCamelCase_ ) assert torch.allclose(from_model(lowerCamelCase_ ) , our_model(lowerCamelCase_ ).logits ), "The model logits don't match the original one." _lowercase : Union[str, Any] = F'''resnet{"-".join(name.split("resnet" ) )}''' print(lowerCamelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) # we can use the convnext one _lowercase : Tuple = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) print(F'''Pushed {checkpoint_name}''' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = True ) -> List[str]: _lowercase : Optional[Any] = 'imagenet-1k-id2label.json' _lowercase : Dict = 1000 _lowercase : int = (1, num_labels) _lowercase : List[str] = 'huggingface/label-files' _lowercase : int = num_labels _lowercase : Tuple = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : Optional[int] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : Any = idalabel _lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} _lowercase : Union[str, Any] = partial(lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ ) _lowercase : str = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCamelCase_ , names_to_config[model_name] , lowerCamelCase_ , lowerCamelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
84
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Tuple = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
84
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'deformable_detr' _SCREAMING_SNAKE_CASE = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , lowercase=True , lowercase=None , lowercase=3 , lowercase=300 , lowercase=1_024 , lowercase=6 , lowercase=1_024 , lowercase=8 , lowercase=6 , lowercase=1_024 , lowercase=8 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=256 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , lowercase=True , lowercase=False , lowercase="sine" , lowercase="resnet50" , lowercase=True , lowercase=False , lowercase=4 , lowercase=4 , lowercase=4 , lowercase=False , lowercase=300 , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=1 , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=0.1 , lowercase=0.25 , lowercase=False , **lowercase , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase , lowercase ): lowerCAmelCase = backbone_config.get("""model_type""" ) lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase = config_class.from_dict(lowercase ) lowerCAmelCase = use_timm_backbone lowerCAmelCase = backbone_config lowerCAmelCase = num_channels lowerCAmelCase = num_queries lowerCAmelCase = max_position_embeddings lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = init_xavier_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = auxiliary_loss lowerCAmelCase = position_embedding_type lowerCAmelCase = backbone lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = dilation # deformable attributes lowerCAmelCase = num_feature_levels lowerCAmelCase = encoder_n_points lowerCAmelCase = decoder_n_points lowerCAmelCase = two_stage lowerCAmelCase = two_stage_num_proposals lowerCAmelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowerCAmelCase = class_cost lowerCAmelCase = bbox_cost lowerCAmelCase = giou_cost # Loss coefficients lowerCAmelCase = mask_loss_coefficient lowerCAmelCase = dice_loss_coefficient lowerCAmelCase = bbox_loss_coefficient lowerCAmelCase = giou_loss_coefficient lowerCAmelCase = eos_coefficient lowerCAmelCase = focal_alpha lowerCAmelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model def _snake_case ( self ) -> Tuple: lowerCAmelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
46
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } SCREAMING_SNAKE_CASE__ = { "google/pegasus-xsum": 512, } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<mask_2>" , lowercase="<mask_1>" , lowercase=None , lowercase=103 , lowercase = None , **lowercase , ) -> None: lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f'additional_special_tokens should be of type {type(lowercase )}, but is' f' {type(lowercase )}' ) lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowerCAmelCase = additional_special_tokens_extended else: lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , pad_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCAmelCase = mask_token_sent lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # add special tokens to encoder dict lowerCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.offset def _snake_case ( self ) -> Dict[str, int]: lowerCAmelCase = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , lowercase ) -> List[Any]: lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def _snake_case ( self , lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase = self.sp_model.piece_to_id(lowercase ) return sp_id + self.offset def _snake_case ( self , lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = [] lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowerCAmelCase = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def _snake_case ( self , lowercase=False ) -> Tuple: return 1 def _snake_case ( self , lowercase ) -> Tuple: lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase , lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
46
1
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase__ = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self , __a , __a = None , __a = None , __a = None , __a = True , ) -> List[Any]: UpperCamelCase = [file for file in os.listdir(__a ) if os.path.isfile(os.path.join(__a , __a ) )] if identifier is not None: UpperCamelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__a , __a ): for n_ in n_identifier: UpperCamelCase = [file for file in files if n_ not in file] else: UpperCamelCase = [file for file in files if n_identifier not in file] UpperCamelCase = ignore_files or [] ignore_files.append("__init__.py" ) UpperCamelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , __a ) if only_modules: UpperCamelCase = file.split("." )[0] try: UpperCamelCase = getattr(__a , __a ) UpperCamelCase = doctest.DocTestSuite(__a ) UpperCamelCase = unittest.TextTestRunner().run(__a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"{module_identifier} is not a module." ) else: UpperCamelCase = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = Path("src/transformers" ) UpperCamelCase = "modeling" UpperCamelCase = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(__a , identifier=__a , ignore_files=__a ) def snake_case_ (self ) -> Dict: UpperCamelCase = Path("src/transformers" ) UpperCamelCase = "tokenization" self.analyze_directory(__a , identifier=__a ) def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = Path("src/transformers" ) UpperCamelCase = "configuration" self.analyze_directory(__a , identifier=__a ) def snake_case_ (self ) -> int: UpperCamelCase = Path("src/transformers" ) UpperCamelCase = ["configuration", "modeling", "tokenization"] self.analyze_directory(__a , n_identifier=__a ) def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = Path("docs/source" ) UpperCamelCase = ["favicon.ico"] self.analyze_directory(__a , ignore_files=__a , only_modules=__a )
244
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.01 , _SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" UpperCamelCase = False UpperCamelCase = search_prob UpperCamelCase = start_temperate UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = None while not search_end: UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase = current_state scores.append(_SCREAMING_SNAKE_CASE ) iterations += 1 UpperCamelCase = None UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor UpperCamelCase = neighbors.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase = picked_neighbor else: UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase = picked_neighbor UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase = True else: UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (3 * x**2) - (6 * y) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
244
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Optional[Any] = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str | Literal[False]: _a : Optional[int] = list(lowerCAmelCase_ ) _a : Optional[Any] = list(lowerCAmelCase_ ) _a : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 _a : Optional[int] = '_' if count > 1: return False else: return "".join(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ ) -> list[str]: _a : Optional[int] = [] while True: _a : Any = ['$'] * len(lowerCAmelCase_ ) _a : List[str] = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): _a : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: _a : Optional[Any] = '*' _a : Optional[Any] = '*' temp.append('X' ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi _a : Any = list(set(lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : int = [] for minterm in minterms: _a : Optional[int] = '' for _ in range(lowerCAmelCase_ ): _a : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: _a : int = list(lowerCAmelCase_ ) _a : Union[str, Any] = list(lowerCAmelCase_ ) _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : List[Any] = [] _a : Optional[Any] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): _a : Union[str, Any] = 0 _a : int = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 _a : int = j if count == 1: _a : List[Any] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): _a : Any = 0 temp.append(prime_implicants[i] ) while True: _a : Union[str, Any] = 0 _a : List[Any] = -1 _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): _a : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _a : Any = count_n _a : int = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): _a : List[str] = 0 def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int]]: _a : int = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): _a : str = prime_implicants[i].count('_' ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): _a : Optional[Any] = 1 return chart def __lowerCamelCase ( ) -> None: _a : Optional[int] = int(input('Enter the no. of variables\n' ) ) _a : List[Any] = [ float(lowerCAmelCase_ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _a : List[str] = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Dict = check(lowerCAmelCase_ ) print('Prime Implicants are:' ) print(lowerCAmelCase_ ) _a : List[Any] = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print('Essential Prime Implicants are:' ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
89
0
from __future__ import annotations from collections.abc import Generator def __snake_case ( ): __a = {} __a = 2 while True: __a = factor_map.pop(_UpperCAmelCase , _UpperCAmelCase ) if factor: __a = factor + prime while x in factor_map: x += factor __a = factor else: __a = prime yield prime prime += 1 def __snake_case ( _UpperCAmelCase = 1E1_0 ): __a = sieve() __a = 1 while True: __a = next(_UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
131
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : str): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Any): '''simple docstring''' __a = 1 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__SCREAMING_SNAKE_CASE) return image @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' def extract(*__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Dict): class _A : def __init__( self : int): '''simple docstring''' __a = torch.ones([0]) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' self.pixel_values.to(__SCREAMING_SNAKE_CASE) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__SCREAMING_SNAKE_CASE) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) assert isinstance(pipe.scheduler , __SCREAMING_SNAKE_CASE) assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE) __a = StableDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE) # sanity check that the pipeline still works assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # put models in fp16 __a = unet.half() __a = vae.half() __a = bert.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __a = 4_003_660_346 __a = 7 # without safety guidance (sld_guidance_scale = 0) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''padme amidala taking a bath artwork, safe for work, no nudity''' __a = 2_734_971_755 __a = 7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : str): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''') __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __a = 1_044_355_234 __a = 12 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
131
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: snake_case__ : str = None snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Optional[int] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Dict = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } snake_case__ : Any = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } snake_case__ : Dict = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''token_type_ids'''] __UpperCamelCase = FNetTokenizer def __init__( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Tuple="<unk>" , UpperCamelCase_ : List[str]="[SEP]" , UpperCamelCase_ : List[Any]="<pad>" , UpperCamelCase_ : Union[str, Any]="[CLS]" , UpperCamelCase_ : int="[MASK]" , **UpperCamelCase_ : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase : int = ( AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ , normalized=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token ) super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = do_lower_case lowerCAmelCase : str = remove_space lowerCAmelCase : Any = keep_accents lowerCAmelCase : int = vocab_file lowerCAmelCase : List[str] = False if not self.vocab_file else True def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[int] = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : List[str] = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : str = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
60
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : int , UpperCamelCase_ : VQModel , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : DDIMScheduler ): super().__init__() self.register_modules(vqvae=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Optional[int] , ): lowerCAmelCase : Dict = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : List[str] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCAmelCase : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : List[str] = {} if accepts_eta: lowerCAmelCase : List[Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCAmelCase : List[str] = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) # predict the noise residual lowerCAmelCase : Tuple = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : Optional[Any] = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample # decode the image latents with the VAE lowerCAmelCase : Dict = self.vqvae.decode(UpperCamelCase_ ).sample lowerCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : List[str] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
60
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = 1.5 A__ = int(factor * num_class_images ) A__ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowerCAmelCase__ , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=lowerCAmelCase__ ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: A__ = client.query(text=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) >= factor * num_class_images or num_images > 1E4: break else: A__ = int(factor * num_images ) A__ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowerCAmelCase__ , aesthetic_weight=0.1 , ) A__ = 0 A__ = 0 A__ = tqdm(desc='downloading real regularization images' , total=lowerCAmelCase__ ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: A__ = class_images[count] count += 1 try: A__ = requests.get(images['url'] ) if img.status_code == 200: A__ = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase ( ): """simple docstring""" A__ = argparse.ArgumentParser('' , add_help=lowerCAmelCase__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=lowerCAmelCase__ , type=lowerCAmelCase__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=lowerCAmelCase__ , type=lowerCAmelCase__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=lowerCAmelCase__ ) return parser.parse_args() if __name__ == "__main__": __lowerCamelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
352
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Optional[int]: A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def snake_case__ ( self ) -> int: A__ = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() A__ = [sys.executable] + distributed_args execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() )
154
0
"""simple docstring""" def _snake_case ( lowercase__ : str , lowercase__ : str ) -> int: '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("""String lengths must match!""" ) lowerCAmelCase_ :Optional[int] = 0 for chara, chara in zip(lowercase__ , lowercase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
84
"""simple docstring""" def _snake_case ( lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Any ) -> int: '''simple docstring''' lowerCAmelCase_ :int = [False] * len(lowercase__ ) lowerCAmelCase_ :str = [] queue.append(lowercase__ ) lowerCAmelCase_ :Any = True while queue: lowerCAmelCase_ :Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = True lowerCAmelCase_ :int = u return visited[t] def _snake_case ( lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ :List[Any] = [-1] * (len(lowercase__ )) lowerCAmelCase_ :str = 0 while bfs(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lowerCAmelCase_ :List[str] = float("""Inf""" ) lowerCAmelCase_ :List[str] = sink while s != source: # Find the minimum value in select path lowerCAmelCase_ :Any = min(lowercase__ , graph[parent[s]][s] ) lowerCAmelCase_ :Union[str, Any] = parent[s] max_flow += path_flow lowerCAmelCase_ :Tuple = sink while v != source: lowerCAmelCase_ :List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase_ :Union[str, Any] = parent[v] return max_flow __UpperCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __UpperCAmelCase , __UpperCAmelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
84
1
import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = 0 A_ : Dict = n while left <= right: A_ : List[str] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A_ : Tuple = mid - 1 else: A_ : List[str] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
65
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )->Any: '''simple docstring''' A_ : List[Any] = parent A_ : int = batch_size A_ : str = seq_length A_ : int = is_training A_ : Any = use_token_type_ids A_ : Union[str, Any] = use_labels A_ : Any = vocab_size A_ : Dict = hidden_size A_ : Dict = num_hidden_layers A_ : int = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : Dict = hidden_act A_ : List[str] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : str = type_sequence_label_size A_ : Tuple = initializer_range A_ : Union[str, Any] = num_labels A_ : List[str] = num_choices A_ : Union[str, Any] = scope A_ : Any = self.vocab_size - 1 def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = None if self.use_token_type_ids: A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : str = None A_ : Union[str, Any] = None A_ : Optional[int] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : Optional[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : int = OpenAIGPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : int = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) A_ : Tuple = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) A_ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : int = OpenAIGPTLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Tuple = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : List[Any] = OpenAIGPTDoubleHeadsModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : str = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : Any = self.num_labels A_ : List[Any] = OpenAIGPTForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[int] = config_and_inputs A_ : int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )->Optional[int]: '''simple docstring''' A_ : Optional[Any] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) A_ : List[Any] = inputs_dict['''labels'''] A_ : Any = inputs_dict['''labels'''] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )->Any: '''simple docstring''' A_ : Any = OpenAIGPTModelTester(self ) A_ : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = OpenAIGPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president is A_ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : Dict = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , _SCREAMING_SNAKE_CASE )
65
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A: """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__lowerCamelCase )} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __A: """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) SCREAMING_SNAKE_CASE__ = field(default=__lowerCamelCase , metadata={"""help""": """Whether ot not to use whole word mask."""} ) SCREAMING_SNAKE_CASE__ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) SCREAMING_SNAKE_CASE__ = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) SCREAMING_SNAKE_CASE__ = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) SCREAMING_SNAKE_CASE__ = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __magic_name__ ( __a : DataTrainingArguments , __a : PreTrainedTokenizer , __a : bool = False , __a : Optional[str] = None , ): '''simple docstring''' def _dataset(__a : List[str] , __a : List[str]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=__a , file_path=__a , block_size=args.block_size , ref_path=__a , ) return LineByLineTextDataset(tokenizer=__a , file_path=__a , block_size=args.block_size ) else: return TextDataset( tokenizer=__a , file_path=__a , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__a , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__a ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCamelCase__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCamelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCamelCase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: UpperCamelCase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCamelCase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: UpperCamelCase__ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ = AutoModelWithLMHead.from_config(__a ) model.resize_token_embeddings(len(__a ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: UpperCamelCase__ = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCamelCase__ = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCamelCase__ = ( get_dataset(__a , tokenizer=__a , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCamelCase__ = ( get_dataset(__a , tokenizer=__a , evaluate=__a , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCamelCase__ = DataCollatorForPermutationLanguageModeling( tokenizer=__a , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCamelCase__ = DataCollatorForWholeWordMask( tokenizer=__a , mlm_probability=data_args.mlm_probability ) else: UpperCamelCase__ = DataCollatorForLanguageModeling( tokenizer=__a , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCamelCase__ = Trainer( model=__a , args=__a , data_collator=__a , train_dataset=__a , eval_dataset=__a , prediction_loss_only=__a , ) # Training if training_args.do_train: UpperCamelCase__ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__a ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase__ = trainer.evaluate() UpperCamelCase__ = math.exp(eval_output["""eval_loss"""] ) UpperCamelCase__ = {"""perplexity""": perplexity} UpperCamelCase__ = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(__a , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , __a , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(__a ) return results def __magic_name__ ( __a : List[str] ): '''simple docstring''' main() if __name__ == "__main__": main()
244
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCAmelCase_ (self ): UpperCamelCase__ = 10 UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps[0] UpperCamelCase__ = scheduler.timesteps[1] UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 1, 0] UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
244
1
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase : Union[str, Any] = MgpstrTokenizer lowercase : Any = False lowercase : List[Any] = {} lowercase : Optional[int] = False def a__ ( self :Dict ): super().setUp() # fmt: off snake_case_ : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case_ : Any = dict(zip(_SCREAMING_SNAKE_CASE ,range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + """\n""" ) def a__ ( self :Optional[Any] ,**_UpperCamelCase :Optional[int] ): return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Optional[int] ): snake_case_ : Any = "tester" snake_case_ : Optional[Any] = "tester" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def a__ ( self :List[str] ): pass def a__ ( self :List[Any] ): snake_case_ : str = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Optional[int] = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Dict = tokenizer.encode([special_token] ,add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,1 ) snake_case_ : str = tokenizer.decode(_SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertTrue(special_token not in decoded ) def a__ ( self :str ): snake_case_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : str = self.get_input_output_texts(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertNotEqual(len(_SCREAMING_SNAKE_CASE ) ,0 ) snake_case_ : Tuple = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(text_a.replace(""" """ ,"""""" ) ,_SCREAMING_SNAKE_CASE ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def a__ ( self :List[Any] ): pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def a__ ( self :Optional[int] ): pass
363
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,): snake_case_ : str = parent snake_case_ : int = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : List[Any] = is_training snake_case_ : Union[str, Any] = use_input_mask snake_case_ : List[str] = use_labels snake_case_ : int = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = projection_dim snake_case_ : Dict = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : int = dropout snake_case_ : int = attention_dropout snake_case_ : Dict = max_position_embeddings snake_case_ : Union[str, Any] = initializer_range snake_case_ : Dict = scope snake_case_ : Union[str, Any] = bos_token_id def a__ ( self :Any ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case_ : int = input_mask.numpy() snake_case_ , snake_case_ : Tuple = input_mask.shape snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): snake_case_ : Optional[int] = 1 snake_case_ : List[str] = 0 snake_case_ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def a__ ( self :str ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ): snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase ) snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () lowercase : int = False lowercase : List[Any] = False lowercase : Dict = False def a__ ( self :List[Any] ): snake_case_ : List[str] = BlipTextModelTester(self ) snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 ) def a__ ( self :Union[str, Any] ): self.config_tester.run_common_tests() def a__ ( self :Union[str, Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :Tuple ): pass def a__ ( self :Tuple ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def a__ ( self :Any ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :Tuple ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :List[Any] ): pass @slow def a__ ( self :Any ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
8
0
def lowerCamelCase_ ( _a , _a , _a , _a , _a , ): """simple docstring""" lowerCAmelCase__ : Any = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: lowerCAmelCase__ : List[Any] = 1 - (matter_density + radiation_density + dark_energy) lowerCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCamelCase = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
131
import unittest from transformers import DonutProcessor lowerCamelCase = '''naver-clova-ix/donut-base''' class _a ( unittest.TestCase): def UpperCAmelCase__( self : str )-> int: lowerCAmelCase__ : Any = DonutProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : Dict = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowerCAmelCase__ : Any = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowerCAmelCase__ : str = self.processor.tokenajson(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
131
1
def UpperCAmelCase_ (_lowerCAmelCase : Tuple = 60_08_51_47_51_43 ): try: __UpperCamelCase : int = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __UpperCamelCase : List[Any] = 1 __UpperCamelCase : List[Any] = 2 while i * i <= n: while n % i == 0: __UpperCamelCase : List[Any] = i n //= i i += 1 if n > 1: __UpperCamelCase : Optional[Any] = n return int(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(F"""{solution() = }""")
366
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ) -> Tuple: '''simple docstring''' __UpperCamelCase : Dict = parent __UpperCamelCase : List[str] = batch_size __UpperCamelCase : str = seq_length __UpperCamelCase : List[Any] = is_training __UpperCamelCase : str = use_input_mask __UpperCamelCase : int = use_token_type_ids __UpperCamelCase : str = use_labels __UpperCamelCase : List[str] = vocab_size __UpperCamelCase : List[str] = hidden_size __UpperCamelCase : List[Any] = num_hidden_layers __UpperCamelCase : Union[str, Any] = num_attention_heads __UpperCamelCase : Optional[Any] = intermediate_size __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[str] = hidden_dropout_prob __UpperCamelCase : List[Any] = attention_probs_dropout_prob __UpperCamelCase : List[str] = max_position_embeddings __UpperCamelCase : Union[str, Any] = type_vocab_size __UpperCamelCase : Optional[Any] = type_sequence_label_size __UpperCamelCase : Union[str, Any] = initializer_range __UpperCamelCase : Union[str, Any] = num_labels __UpperCamelCase : Any = num_choices __UpperCamelCase : Optional[Any] = scope def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Tuple = None if self.use_input_mask: __UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Optional[int] = None if self.use_token_type_ids: __UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : List[str] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : int = None if self.use_labels: __UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : Union[str, Any] = LlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) __UpperCamelCase : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[str]: '''simple docstring''' __UpperCamelCase : int = True __UpperCamelCase : Tuple = LlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Optional[int] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) __UpperCamelCase : Union[str, Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) __UpperCamelCase : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Any: '''simple docstring''' __UpperCamelCase : Optional[Any] = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Any = True __UpperCamelCase : Optional[Any] = True __UpperCamelCase : List[str] = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass __UpperCamelCase : Optional[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) __UpperCamelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] __UpperCamelCase : List[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] # select random slice __UpperCamelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[int] = config_and_inputs __UpperCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : List[str] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase : Dict = (LlamaForCausalLM,) if is_torch_available() else () lowercase : Tuple = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase : Tuple = False lowercase : List[Any] = False def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = LlamaModelTester(self ) __UpperCamelCase : List[str] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase : Tuple = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Optional[int] = 3 __UpperCamelCase : int = input_dict["input_ids"] __UpperCamelCase : Optional[Any] = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase : List[str] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : List[str] = 3 __UpperCamelCase : Any = "single_label_classification" __UpperCamelCase : List[str] = input_dict["input_ids"] __UpperCamelCase : Tuple = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase : Optional[int] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Dict = 3 __UpperCamelCase : Tuple = "multi_label_classification" __UpperCamelCase : Any = input_dict["input_ids"] __UpperCamelCase : str = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase : Optional[Any] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : int = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Any = ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Union[str, Any] = LlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() __UpperCamelCase : int = original_model(__UpperCamelCase ).last_hidden_state __UpperCamelCase : List[Any] = original_model(__UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Dict = {"type": scaling_type, "factor": 10.0} __UpperCamelCase : Optional[Any] = LlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() __UpperCamelCase : Optional[int] = scaled_model(__UpperCamelCase ).last_hidden_state __UpperCamelCase : Tuple = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Tuple = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) __UpperCamelCase : Tuple = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCamelCase : List[str] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Tuple = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Dict = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) __UpperCamelCase : str = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 __UpperCamelCase : int = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Any = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : List[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) __UpperCamelCase : Any = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 __UpperCamelCase : Any = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Union[str, Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Optional[int] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) __UpperCamelCase : Optional[Any] = model(torch.tensor(__UpperCamelCase ) ) __UpperCamelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCamelCase : Tuple = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def __lowerCamelCase ( self ) -> Any: '''simple docstring''' __UpperCamelCase : List[str] = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" __UpperCamelCase : List[str] = "Simply put, the theory of relativity states that " __UpperCamelCase : Optional[Any] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) __UpperCamelCase : Dict = tokenizer.encode(__UpperCamelCase , return_tensors="pt" ) __UpperCamelCase : Optional[Any] = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__UpperCamelCase ) # greedy generation outputs __UpperCamelCase : List[Any] = model.generate(__UpperCamelCase , max_new_tokens=64 , top_p=__UpperCamelCase , temperature=1 , do_sample=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
171
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[int]=None): if attention_mask is None: lowercase__ : List[str] = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id) , tf.inta) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case_ : __A : Union[str, Any] = OPTConfig __A : List[str] = {} __A : str = "gelu" def __init__( self : Any , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=13 , lowercase_ : List[str]=7 , lowercase_ : Tuple=True , lowercase_ : Dict=False , lowercase_ : Dict=99 , lowercase_ : int=16 , lowercase_ : Any=2 , lowercase_ : int=4 , lowercase_ : Optional[int]=4 , lowercase_ : Optional[Any]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Tuple=20 , lowercase_ : List[str]=2 , lowercase_ : Union[str, Any]=1 , lowercase_ : Optional[Any]=0 , lowercase_ : Union[str, Any]=16 , lowercase_ : Dict=16 , ) -> Any: lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = seq_length lowercase__ : Optional[int] = is_training lowercase__ : Union[str, Any] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : Dict = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : Optional[int] = eos_token_id lowercase__ : Optional[int] = pad_token_id lowercase__ : Dict = bos_token_id lowercase__ : List[str] = embed_dim lowercase__ : List[str] = word_embed_proj_dim lowercase__ : List[str] = False def __UpperCamelCase ( self : str ) -> List[Any]: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase__ : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase__ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase__ : Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowercase__ : Union[str, Any] = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Optional[Any] ) -> Tuple: lowercase__ : Tuple = TFOPTModel(config=lowercase_ ) lowercase__ : Optional[Any] = inputs_dict["input_ids"] lowercase__ : Optional[int] = input_ids[:1, :] lowercase__ : int = inputs_dict["attention_mask"][:1, :] lowercase__ : List[Any] = 1 # first forward pass lowercase__ : Any = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowercase__ , lowercase__ : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase__ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase__ : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase__ : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase__ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ )[0] lowercase__ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase__ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase__ : Dict = output_from_no_past[:, -3:, random_slice_idx] lowercase__ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 ) @require_tf class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : Any = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __A : str = (TFOPTForCausalLM,) if is_tf_available() else () __A : Tuple = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __A : Tuple = False __A : Union[str, Any] = False __A : int = False __A : Dict = 10 def __UpperCamelCase ( self : Dict ) -> List[Any]: lowercase__ : List[str] = TFOPTModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=lowercase_ ) def __UpperCamelCase ( self : Tuple ) -> Any: self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ : Tuple , lowercase_ : str ): if hasattr(lowercase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowercase__ : List[str] = model_class(config=lowercase_ ) lowercase__ : List[Any] = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowercase__ : List[Any] = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowercase__ : Optional[Any] = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowercase__ : Tuple = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowercase__ : Dict = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowercase__ : List[Any] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase__ : List[Any] = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowercase__ : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase__ : List[str] = False self.assertTrue(lowercase_ ) def lowercase_ ( _lowerCamelCase : int): return tf.constant(_lowerCamelCase , dtype=tf.intaa) @require_tf class snake_case_ ( unittest.TestCase ): __A : str = 99 def __UpperCamelCase ( self : str ) -> Dict: lowercase__ : Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowercase__ : Optional[Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowercase__ : int = input_ids.shape[0] lowercase__ : Any = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : Dict = TFOPTModel.from_pretrained("facebook/opt-350m" ) lowercase__ : Dict = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowercase__ : Tuple = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowercase__ : Union[str, Any] = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowercase__ : str = (1, 11, 5_12) self.assertEqual(output.shape , lowercase_ ) lowercase__ : str = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4E-3 ) ) lowercase__ : Union[str, Any] = tf.function(lowercase_ , jit_compile=lowercase_ ) lowercase__ : List[str] = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4E-2 ) ) @require_tf @slow class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ) -> Optional[int]: super().setUp() lowercase__ : str = "facebook/opt-350m" def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Dict = TFOPTForCausalLM.from_pretrained(self.path_model ) lowercase__ : Any = GPTaTokenizer.from_pretrained(self.path_model ) lowercase__ : List[str] = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowercase__ : Tuple = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ , add_special_tokens=lowercase_ ) lowercase__ : List[str] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowercase__ : Optional[Any] = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-4 ) ) lowercase__ : Dict = tf.function(lowercase_ , jit_compile=lowercase_ ) lowercase__ : Any = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-4 ) ) @require_tf @slow class snake_case_ ( unittest.TestCase ): @property def __UpperCamelCase ( self : int ) -> List[Any]: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: lowercase__ : List[Any] = "facebook/opt-125m" lowercase__ : Optional[Any] = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ ) lowercase__ : List[Any] = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowercase__ : Tuple = tokenizer(lowercase_ , return_tensors="tf" ).input_ids lowercase__ : Any = model.generate(lowercase_ , max_length=10 ) lowercase__ : Optional[int] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Dict = "facebook/opt-350m" lowercase__ : Optional[int] = GPTaTokenizer.from_pretrained(lowercase_ ) lowercase__ : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowercase__ : Tuple = "left" # use different length sentences to test batching lowercase__ : str = [ "Hello, my dog is a little", "Today, I", ] lowercase__ : List[str] = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ ) lowercase__ : Dict = inputs["input_ids"] lowercase__ : int = model.generate(input_ids=lowercase_ , attention_mask=inputs["attention_mask"] ) lowercase__ : Tuple = tokenizer(sentences[0] , return_tensors="tf" ).input_ids lowercase__ : Dict = model.generate(input_ids=lowercase_ ) lowercase__ : Union[str, Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) lowercase__ : Optional[Any] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids lowercase__ : List[str] = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowercase__ : List[str] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowercase__ : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowercase__ : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowercase__ : List[Any] = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: lowercase__ : Optional[int] = "facebook/opt-350m" lowercase__ : Union[str, Any] = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] lowercase__ : Optional[int] = [] lowercase__ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ ) lowercase__ : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowercase__ : List[str] = tokenizer(lowercase_ , return_tensors="tf" ).input_ids lowercase__ : Optional[Any] = model.generate(lowercase_ , max_length=10 ) lowercase__ : int = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : int = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) class __magic_name__ ( snake_case ): def __init__( self , *_lowercase , **_lowercase )-> None: warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
354
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE :Tuple = 16 SCREAMING_SNAKE_CASE :Optional[Any] = 32 def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1_6 , SCREAMING_SNAKE_CASE_ = "bert-base-cased" )-> Optional[int]: """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_ = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=SCREAMING_SNAKE_CASE_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" model.eval() UpperCamelCase_ = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase_ , UpperCamelCase_ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE_ ) - 1: UpperCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase_ = metric.compute() return eval_metric["accuracy"] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config["lr"] UpperCamelCase_ = int(config["num_epochs"] ) UpperCamelCase_ = int(config["seed"] ) UpperCamelCase_ = int(config["batch_size"] ) UpperCamelCase_ = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) # Instantiate optimizer UpperCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_ = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCamelCase_ = 1 UpperCamelCase_ = (len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE_ , ) else: UpperCamelCase_ = DummyScheduler(SCREAMING_SNAKE_CASE_ , total_num_steps=SCREAMING_SNAKE_CASE_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_ = 0 UpperCamelCase_ = evaluate.load("glue" , "mrpc" ) UpperCamelCase_ = num_epochs if args.partial_train_epoch is not None: UpperCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase_ = args.resume_from_checkpoint.split("epoch_" )[1] UpperCamelCase_ = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase_ = int(SCREAMING_SNAKE_CASE_ ) + 1 UpperCamelCase_ = evaluation_loop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.print("resumed checkpoint performance:" , SCREAMING_SNAKE_CASE_ ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , f"state_{starting_epoch-1}.json" ) , "r" ) as f: UpperCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase_ = {} for epoch in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = outputs.loss UpperCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase_ = f"epoch_{epoch}" UpperCamelCase_ = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = evaluation_loop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = accuracy UpperCamelCase_ = lr_scheduler.get_lr()[0] UpperCamelCase_ = optimizer.param_groups[0]["lr"] UpperCamelCase_ = epoch UpperCamelCase_ = overall_step accelerator.print(f"epoch {epoch}:" , SCREAMING_SNAKE_CASE_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"state_{epoch}.json" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=SCREAMING_SNAKE_CASE_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=SCREAMING_SNAKE_CASE_ , ) parser.add_argument( "--output_dir" , type=SCREAMING_SNAKE_CASE_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=SCREAMING_SNAKE_CASE_ , default=2 , help="Number of train epochs." , ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
60
0
def lowerCAmelCase_ ( __A, __A ) -> tuple[float, float]: '''simple docstring''' if not len(__A ) == len(__A ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = equationa UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = equationa # Calculate the determinants of the matrices UpperCAmelCase__ = aa * ba - aa * ba UpperCAmelCase__ = ca * ba - ca * ba UpperCAmelCase__ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCAmelCase__ = determinant_x / determinant UpperCAmelCase__ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
65
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } UpperCamelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } UpperCamelCase__ = '</w>' UpperCamelCase__ = '@@ ' def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs # Speech2Text2 has no max input length UpperCamelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['input_ids', 'attention_mask'] def __init__(self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict="<s>" , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : str=None , **__UpperCAmelCase : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__( unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = do_lower_case with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase__ = json.load(__UpperCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) UpperCAmelCase__ = None UpperCAmelCase__ = None else: with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ = [tuple(merge.split()[:2] ) for merge in merges] UpperCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCAmelCase__ = {} @property def lowercase_ (self : List[str] ) -> int: """simple docstring""" return len(self.decoder ) def lowercase_ (self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ (self : Dict , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCAmelCase__ = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: UpperCAmelCase__ = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(__UpperCAmelCase ): try: UpperCAmelCase__ = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(__UpperCAmelCase ) UpperCAmelCase__ = new_word if len(__UpperCAmelCase ) == 1: break else: UpperCAmelCase__ = get_pairs(__UpperCAmelCase ) UpperCAmelCase__ = " ".join(__UpperCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: UpperCAmelCase__ = "\n" + BPE_TOKEN_MERGES if word.endswith(__UpperCAmelCase ): UpperCAmelCase__ = word.replace(__UpperCAmelCase , "" ) UpperCAmelCase__ = word.replace(" " , __UpperCAmelCase ) UpperCAmelCase__ = word return word def lowercase_ (self : Tuple , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: UpperCAmelCase__ = text.lower() UpperCAmelCase__ = text.split() UpperCAmelCase__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(" " ) ) ) return split_tokens def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> int: """simple docstring""" return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase_ (self : Any , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = self.decoder.get(__UpperCAmelCase , self.unk_token ) return result def lowercase_ (self : Dict , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = " ".join(__UpperCAmelCase ) # make sure @@ tokens are concatenated UpperCAmelCase__ = "".join(string.split(__UpperCAmelCase ) ) return string def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) UpperCAmelCase__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase__ = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return (vocab_file, merges_file)
65
1
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowercase : list[int] , lowercase : int ) -> int: if len(lowercase ) < k or k < 0: raise ValueError("Invalid Input" ) _a = _a = sum(array[:k] ) for i in range(len(lowercase ) - k ): _a = current_sum - array[i] + array[i + k] _a = max(lowercase , lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase_ : int = [randint(-10_00, 10_00) for i in range(1_00)] lowerCAmelCase_ : List[str] = randint(0, 1_10) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
361
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : str = '▁' lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =BertGenerationTokenizer __a =False __a =True def UpperCamelCase__ ( self : Optional[Any] ): super().setUp() _a = BertGenerationTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Tuple ): _a = "<s>" _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ ( self : List[str] ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(__a ) , 10_02 ) def UpperCamelCase__ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def UpperCamelCase__ ( self : Tuple ): _a = BertGenerationTokenizer(__a , keep_accents=__a ) _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , ) _a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _a = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase__ ( self : Any ): return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def UpperCamelCase__ ( self : List[str] ): _a = "Hello World!" _a = [1_85_36, 22_60, 1_01] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ ( self : Optional[int] ): _a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _a = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def UpperCamelCase__ ( self : Tuple ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _a = list(self.big_tokenizer.get_vocab().keys() )[:10] _a = " ".join(__a ) _a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a ) _a = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a ) _a = BertGenerationConfig() _a = BertGenerationEncoder(__a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def UpperCamelCase__ ( self : Optional[int] ): # fmt: off _a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
346
0
import numpy as np def A ( _lowerCamelCase ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
36
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCAmelCase ( A_ ): A__ : Optional[int] = "" A__ : Optional[int] = "hf-legacy" # "hf://"" is reserved for hffs def __init__(self : Optional[Any] , snake_case__ : Optional[DatasetInfo] = None , snake_case__ : Optional[str] = None , **snake_case__ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__(self , **snake_case__ ) snake_case : List[Any] = repo_info snake_case : Any = token snake_case : int = None def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' if self.dir_cache is None: snake_case : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes snake_case : Optional[int] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(snake_case__ ): {"name": str(snake_case__ ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : str , snake_case__ : str = "rb" , **snake_case__ : str , ) -> Union[str, Any]: '''simple docstring''' if not isinstance(self.repo_info , snake_case__ ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) snake_case : List[str] = hf_hub_url(self.repo_info.id , snake_case__ , revision=self.repo_info.sha ) return fsspec.open( snake_case__ , mode=snake_case__ , headers=get_authentication_headers_for_url(snake_case__ , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Tuple , **snake_case__ : Dict ) -> List[str]: '''simple docstring''' self._get_dirs() snake_case : int = self._strip_protocol(snake_case__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple=False , **snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' self._get_dirs() snake_case : Dict = PurePosixPath(path.strip("/" ) ) snake_case : Dict = {} for p, f in self.dir_cache.items(): snake_case : str = PurePosixPath(p.strip("/" ) ) snake_case : Optional[Any] = p.parent if root == path: snake_case : Optional[int] = f snake_case : Optional[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
10
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
1
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCamelCase : '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = str(id_ ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = [] __lowerCAmelCase = {} # {vertex:distance} def __lt__( self , __a ): return self.key < other.key def __repr__( self ): return self.id def snake_case ( self , __a ): self.neighbors.append(__a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = weight def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] for u in graph: __lowerCAmelCase = math.inf __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = graph[:] while q: __lowerCAmelCase = min(_UpperCamelCase ) q.remove(_UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowerCAmelCase = u __lowerCAmelCase = u.edges[v.id] for i in range(1 , len(_UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for u in graph: __lowerCAmelCase = math.inf __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = list(_UpperCamelCase ) hq.heapify(_UpperCamelCase ) while h: __lowerCAmelCase = hq.heappop(_UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowerCAmelCase = u __lowerCAmelCase = u.edges[v.id] hq.heapify(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowerCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
57
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _A = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> List[Any]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a__ ( lowerCAmelCase ) -> List[Any]: UpperCAmelCase__ : Dict = _TestCommandArgs(dataset=lowerCAmelCase , all_configs=lowerCAmelCase , save_infos=lowerCAmelCase ) UpperCAmelCase__ : List[Any] = TestCommand(*lowerCAmelCase ) test_command.run() UpperCAmelCase__ : List[Any] = os.path.join(lowerCAmelCase , """README.md""" ) assert os.path.exists(lowerCAmelCase ) UpperCAmelCase__ : List[str] = DatasetInfosDict.from_directory(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_35_15_63, """num_examples""": 1_00_00, }, { """name""": """validation""", """num_bytes""": 23_84_18, """num_examples""": 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = getattr(dataset_infos["""default"""] , lowerCAmelCase ), getattr(expected_dataset_infos["""default"""] , lowerCAmelCase ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase , lowerCAmelCase ) elif key == "splits": assert list(lowerCAmelCase ) == list(lowerCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
171
0
_snake_case = 8.3_1_4_4_5_9_8 def _A ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
355
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) def _A ( snake_case=None , snake_case=None ) -> Any: return field(default_factory=lambda: default , metadata=snake_case ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=lowerCamelCase_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _SCREAMING_SNAKE_CASE : bool = field( default=lowerCamelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowerCamelCase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) _SCREAMING_SNAKE_CASE : List[str] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : WavaVecaProcessor _SCREAMING_SNAKE_CASE : Union[bool, str] = True _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = [{"input_values": feature["input_values"]} for feature in features] _lowercase : Dict = [{"input_ids": feature["labels"]} for feature in features] _lowercase : Any = self.processor.pad( _UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) _lowercase : Union[str, Any] = self.processor.pad( labels=_UpperCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly _lowercase : List[str] = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _lowercase : Optional[Any] = labels return batch class a__ ( lowerCamelCase_ ): def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" model.train() _lowercase : str = self._prepare_inputs(_UpperCamelCase ) if self.use_amp: with autocast(): _lowercase : Optional[int] = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) else: _lowercase : Tuple = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowercase : int = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowercase : Any = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: _lowercase : Optional[int] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase ) else: loss.backward() return loss.detach() def _A ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase : int = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowercase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowercase : Tuple = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) _lowercase : Any = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer _lowercase : Dict = F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(snake_case ): _lowercase : List[str] = re.sub(snake_case , "" , batch["sentence"] ).lower() + " " return batch _lowercase : int = train_dataset.map(snake_case , remove_columns=["sentence"] ) _lowercase : int = eval_dataset.map(snake_case , remove_columns=["sentence"] ) def extract_all_chars(snake_case ): _lowercase : Optional[int] = " ".join(batch["text"] ) _lowercase : int = list(set(snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowercase : Dict = train_dataset.map( snake_case , batched=snake_case , batch_size=-1 , keep_in_memory=snake_case , remove_columns=train_dataset.column_names , ) _lowercase : List[Any] = train_dataset.map( snake_case , batched=snake_case , batch_size=-1 , keep_in_memory=snake_case , remove_columns=eval_dataset.column_names , ) _lowercase : Dict = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) _lowercase : List[str] = {v: k for k, v in enumerate(snake_case )} _lowercase : Union[str, Any] = vocab_dict[" "] del vocab_dict[" "] _lowercase : Dict = len(snake_case ) _lowercase : Dict = len(snake_case ) with open("vocab.json" , "w" ) as vocab_file: json.dump(snake_case , snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : Dict = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) _lowercase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=snake_case , return_attention_mask=snake_case ) _lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=snake_case , tokenizer=snake_case ) _lowercase : int = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowercase : Optional[Any] = min(len(snake_case ) , data_args.max_train_samples ) _lowercase : Any = train_dataset.select(range(snake_case ) ) if data_args.max_val_samples is not None: _lowercase : Any = eval_dataset.select(range(data_args.max_val_samples ) ) _lowercase : Dict = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(snake_case ): _lowercase , _lowercase : List[str] = torchaudio.load(batch["path"] ) _lowercase : List[Any] = resampler(snake_case ).squeeze().numpy() _lowercase : str = 1_60_00 _lowercase : Optional[int] = batch["text"] return batch _lowercase : Dict = train_dataset.map( snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowercase : List[str] = eval_dataset.map( snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _lowercase : str = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(snake_case ) return batch _lowercase : Any = train_dataset.map( snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case , num_proc=data_args.preprocessing_num_workers , ) _lowercase : Dict = eval_dataset.map( snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowercase : Optional[int] = datasets.load_metric("wer" ) def compute_metrics(snake_case ): _lowercase : Dict = pred.predictions _lowercase : int = np.argmax(snake_case , axis=-1 ) _lowercase : str = processor.tokenizer.pad_token_id _lowercase : Optional[int] = processor.batch_decode(snake_case ) # we do not want to group tokens when computing the metrics _lowercase : int = processor.batch_decode(pred.label_ids , group_tokens=snake_case ) _lowercase : Optional[int] = wer_metric.compute(predictions=snake_case , references=snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowercase : str = DataCollatorCTCWithPadding(processor=snake_case , padding=snake_case ) # Initialize our Trainer _lowercase : List[str] = CTCTrainer( model=snake_case , data_collator=snake_case , args=snake_case , compute_metrics=snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowercase : Any = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowercase : Tuple = model_args.model_name_or_path else: _lowercase : Any = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowercase : str = trainer.train(resume_from_checkpoint=snake_case ) trainer.save_model() _lowercase : List[str] = train_result.metrics _lowercase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case ) ) _lowercase : Any = min(snake_case , len(snake_case ) ) trainer.log_metrics("train" , snake_case ) trainer.save_metrics("train" , snake_case ) trainer.save_state() # Evaluation _lowercase : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowercase : Optional[Any] = trainer.evaluate() _lowercase : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(snake_case ) _lowercase : Tuple = min(snake_case , len(snake_case ) ) trainer.log_metrics("eval" , snake_case ) trainer.save_metrics("eval" , snake_case ) return results if __name__ == "__main__": main()
199
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=False , lowercase=True , lowercase=False , lowercase=True , lowercase=33 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Optional[int] = seq_length _lowerCamelCase : Any = is_training _lowerCamelCase : Dict = use_input_mask _lowerCamelCase : Union[str, Any] = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : Dict = type_vocab_size _lowerCamelCase : Optional[Any] = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Tuple = num_labels _lowerCamelCase : Optional[int] = num_choices _lowerCamelCase : Dict = scope def A_ ( self ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Any = None if self.use_input_mask: _lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None _lowerCamelCase : str = None _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Dict = EsmModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowerCamelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) _lowerCamelCase : Dict = model(UpperCamelCase_ ) _lowerCamelCase : Union[str, Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = EsmForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowerCamelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : int = EsmForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowerCamelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self ): _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( _lowerCamelCase ) : List[str] = config_and_inputs _lowerCamelCase : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a__, a__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = False lowerCamelCase__ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = () lowerCamelCase__ = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def A_ ( self ): _lowerCamelCase : List[Any] = EsmModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : int = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def A_ ( self ): _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def A_ ( self ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = EsmModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()[0] _lowerCamelCase : Tuple = EsmEmbeddings(config=UpperCamelCase_ ) _lowerCamelCase : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _lowerCamelCase : Optional[int] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _lowerCamelCase : Any = create_position_ids_from_input_ids(UpperCamelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()[0] _lowerCamelCase : Tuple = EsmEmbeddings(config=UpperCamelCase_ ) _lowerCamelCase : Any = torch.empty(2 , 4 , 30 ) _lowerCamelCase : Union[str, Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _lowerCamelCase : Union[str, Any] = torch.as_tensor([expected_single_positions, expected_single_positions] ) _lowerCamelCase : Tuple = embeddings.create_position_ids_from_inputs_embeds(UpperCamelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def A_ ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def A_ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A_ ( self ): pass @require_torch class lowerCAmelCase__ ( a__ ): '''simple docstring''' @slow def A_ ( self ): with torch.no_grad(): _lowerCamelCase : int = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() _lowerCamelCase : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase : Any = model(UpperCamelCase_ )[0] _lowerCamelCase : Any = 33 _lowerCamelCase : str = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase_ ) _lowerCamelCase : int = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def A_ ( self ): with torch.no_grad(): _lowerCamelCase : Optional[Any] = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() _lowerCamelCase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCamelCase : int = model(UpperCamelCase_ )[0] # compare the actual values for a slice. _lowerCamelCase : Optional[Any] = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
96
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : List[Any] = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class snake_case_: __UpperCamelCase = PegasusConfig __UpperCamelCase = {} __UpperCamelCase = '''gelu''' def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any=1_3 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Optional[Any]=9_9 , UpperCamelCase_ : Any=3_2 , UpperCamelCase_ : List[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : str=3_7 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=2_0 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : Any=0 , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Any = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = eos_token_id lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase : Dict = prepare_pegasus_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ): lowerCAmelCase : Any = 2_0 lowerCAmelCase : Any = model_class_name(UpperCamelCase_ ) lowerCAmelCase : List[str] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : Any = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : int = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ): lowerCAmelCase : Dict = 2_0 lowerCAmelCase : Union[str, Any] = model_class_name(UpperCamelCase_ ) lowerCAmelCase : Any = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase, lowerCAmelCase : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any]=None , _snake_case : Dict=None , ): if attention_mask is None: lowerCAmelCase : Tuple = np.not_equal(_snake_case , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = FlaxPegasusModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Dict ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase, lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : str = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Tuple ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : Tuple = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Dict = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[int] = model_class(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase : Any = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : Optional[Any] = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Any = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase : int = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : List[Any] = np.ones((1, 1) ) lowerCAmelCase : str = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) lowerCAmelCase : List[Any] = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) lowerCAmelCase : int = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] lowerCAmelCase : str = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] lowerCAmelCase : Optional[Any] = tokenizer(UpperCamelCase_ , return_tensors='''np''' , truncation=UpperCamelCase_ , max_length=5_1_2 , padding=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model.generate(**UpperCamelCase_ , num_beams=2 ).sequences lowerCAmelCase : Tuple = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) assert tgt_text == decoded
60
0
from collections import deque class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' lowercase__: List[str] = process_name # process name lowercase__: int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__: Optional[Any] = arrival_time lowercase__: str = burst_time # remaining burst time lowercase__: Optional[Any] = 0 # total time of the process wait in ready queue lowercase__: Any = 0 # time from arrival time to completion time class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> None: '''simple docstring''' # total number of mlfq's queues lowercase__: Tuple = number_of_queues # time slice of queues that round robin algorithm applied lowercase__: Union[str, Any] = time_slices # unfinished process is in this ready_queue lowercase__: Optional[int] = queue # current time lowercase__: Optional[Any] = current_time # finished process is in this sequence queue lowercase__: deque[Process] = deque() def SCREAMING_SNAKE_CASE__ ( self ) -> list[str]: '''simple docstring''' lowercase__: Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> list[int]: '''simple docstring''' lowercase__: Optional[int] = [] for i in range(len(lowerCAmelCase__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> list[int]: '''simple docstring''' lowercase__: Any = [] for i in range(len(lowerCAmelCase__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> list[int]: '''simple docstring''' lowercase__: Union[str, Any] = [] for i in range(len(lowerCAmelCase__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> deque[Process]: '''simple docstring''' lowercase__: deque[Process] = deque() # sequence deque of finished process while len(lowerCAmelCase__ ) != 0: lowercase__: str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowerCAmelCase__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__: Any = 0 # set the process's turnaround time because it is finished lowercase__: int = self.current_time - cp.arrival_time # set the completion time lowercase__: Optional[Any] = self.current_time # add the process to queue that has finished queue finished.append(lowerCAmelCase__ ) self.finish_queue.extend(lowerCAmelCase__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' lowercase__: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowerCAmelCase__ ) ): lowercase__: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowerCAmelCase__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__: List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowerCAmelCase__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__: Optional[Any] = 0 # set the finish time lowercase__: int = self.current_time # update the process' turnaround time because it is finished lowercase__: Any = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowerCAmelCase__ ) self.finish_queue.extend(lowerCAmelCase__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def SCREAMING_SNAKE_CASE__ ( self ) -> deque[Process]: '''simple docstring''' # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__: str = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __lowerCAmelCase = Process('''P1''', 0, 53) __lowerCAmelCase = Process('''P2''', 0, 17) __lowerCAmelCase = Process('''P3''', 0, 68) __lowerCAmelCase = Process('''P4''', 0, 24) __lowerCAmelCase = 3 __lowerCAmelCase = [17, 25] __lowerCAmelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) __lowerCAmelCase = Process('''P1''', 0, 53) __lowerCAmelCase = Process('''P2''', 0, 17) __lowerCAmelCase = Process('''P3''', 0, 68) __lowerCAmelCase = Process('''P4''', 0, 24) __lowerCAmelCase = 3 __lowerCAmelCase = [17, 25] __lowerCAmelCase = deque([Pa, Pa, Pa, Pa]) __lowerCAmelCase = MLFQ(number_of_queues, time_slices, queue, 0) __lowerCAmelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
288
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '''▁''' __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} __lowerCAmelCase = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } __lowerCAmelCase = {'''vinai/bartpho-syllable''': 10_24} class __a ( __UpperCamelCase ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__: List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowercase__: Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowercase__: Dict = vocab_file lowercase__: str = monolingual_vocab_file lowercase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__: List[Any] = {} lowercase__: Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: str = cnt cnt += 1 with open(lowerCAmelCase__ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): lowercase__: Optional[Any] = line.strip().split()[0] lowercase__: Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: Optional[int] = len(self.fairseq_tokens_to_ids ) lowercase__: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = self.__dict__.copy() lowercase__: Tuple = None lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__: Union[str, Any] = {} lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] lowercase__: Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Dict = [self.sep_token_id] lowercase__: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = ''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: int = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(lowerCAmelCase__ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
288
1
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowercase_ (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = BertGenerationTokenizer SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = True def SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() __lowercase = BertGenerationTokenizer(_UpperCAmelCase ,keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = '''<s>''' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) ,_UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<unk>''' ) self.assertEqual(vocab_keys[1] ,'''<s>''' ) self.assertEqual(vocab_keys[-1] ,'''<pad>''' ) self.assertEqual(len(_UpperCAmelCase ) ,1_0_0_2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_0 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = BertGenerationTokenizer(_UpperCAmelCase ,keep_accents=_UpperCAmelCase ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ,) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase ,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ,) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = '''Hello World!''' __lowercase = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(_UpperCAmelCase ,self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __lowercase = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(_UpperCAmelCase ,self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowercase = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __lowercase = ''' '''.join(_UpperCAmelCase ) __lowercase = self.big_tokenizer.encode_plus(_UpperCAmelCase ,return_tensors='''pt''' ,return_token_type_ids=_UpperCAmelCase ) __lowercase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] ,return_tensors='''pt''' ,return_token_type_ids=_UpperCAmelCase ) __lowercase = BertGenerationConfig() __lowercase = BertGenerationEncoder(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = {'''input_ids''': [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase ,model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' ,revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' ,)
104
'''simple docstring''' from timeit import timeit UpperCAmelCase_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 500000 UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
346
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def A_ ( ) -> List[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_snake_case ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def A_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def A_ ( ) -> List[Any]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_snake_case ): http_head('https://huggingface.co' )
352
import enum import shutil import sys lowercase , lowercase : List[Any] = shutil.get_terminal_size() lowercase : Union[str, Any] = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class A__ ( enum.Enum ): """simple docstring""" __A : List[str] = 0 __A : str = 1 def A_ ( A__ , A__="" ) -> int: sys.stdout.write(str(A__ ) + end ) sys.stdout.flush() def A_ ( A__ , A__ , A__="" ) -> int: forceWrite(F'\u001b[{color}m{content}\u001b[0m' , A__ ) def A_ ( ) -> Any: forceWrite('\r' ) def A_ ( A__ , A__ ) -> List[str]: forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def A_ ( ) -> Any: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def A_ ( ) -> Any: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
225
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "" lowercase_ = "hf-legacy" # "hf://"" is reserved for hffs def __init__(self : List[str] , UpperCAmelCase_ : Optional[DatasetInfo] = None , UpperCAmelCase_ : Optional[str] = None , **UpperCAmelCase_ : Optional[Any] , ) ->int: '''simple docstring''' super().__init__(self , **UpperCAmelCase_) lowerCamelCase__: List[str] =repo_info lowerCamelCase__: Optional[Any] =token lowerCamelCase__: Optional[Any] =None def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' if self.dir_cache is None: lowerCamelCase__: Any ={} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowerCamelCase__: int ={ "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(UpperCAmelCase_): {"name": str(UpperCAmelCase_), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , **UpperCAmelCase_ : int , ) ->Optional[int]: '''simple docstring''' if not isinstance(self.repo_info , UpperCAmelCase_): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""") lowerCamelCase__: Any =hf_hub_url(self.repo_info.id , UpperCAmelCase_ , revision=self.repo_info.sha) return fsspec.open( UpperCAmelCase_ , mode=UpperCAmelCase_ , headers=get_authentication_headers_for_url(UpperCAmelCase_ , use_auth_token=self.token) , client_kwargs={"trust_env": True} , ).open() def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' self._get_dirs() lowerCamelCase__: List[str] =self._strip_protocol(UpperCAmelCase_) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' self._get_dirs() lowerCamelCase__: List[str] =PurePosixPath(path.strip("/")) lowerCamelCase__: Union[str, Any] ={} for p, f in self.dir_cache.items(): lowerCamelCase__: List[str] =PurePosixPath(p.strip("/")) lowerCamelCase__: List[Any] =p.parent if root == path: lowerCamelCase__: Tuple =f lowerCamelCase__: int =list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
from __future__ import annotations import math def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : float ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(UpperCAmelCase__ ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] SCREAMING_SNAKE_CASE = math.log(len(UpperCAmelCase__ ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
363
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : List[Any] = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : Any = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names} _lowerCamelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {'''do_lower_case''': True} for name in _model_names} class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = FunnelTokenizer lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : int = 2 def __init__( self : str , _UpperCamelCase : str=None , _UpperCamelCase : str=None , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : str="<unk>" , _UpperCamelCase : Optional[Any]="<sep>" , _UpperCamelCase : Optional[int]="<pad>" , _UpperCamelCase : int="<cls>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : Union[str, Any]="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Any=None , _UpperCamelCase : Dict="##" , **_UpperCamelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , clean_text=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , wordpieces_prefix=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
206
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __A = logging.get_logger(__name__) class _snake_case : def __init__( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict ): __lowerCamelCase : int = question_encoder __lowerCamelCase : Optional[int] = generator __lowerCamelCase : int = self.question_encoder def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Optional[Any] ): if os.path.isfile(lowercase_ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) __lowerCamelCase : Dict = os.path.join(lowercase_ , "question_encoder_tokenizer" ) __lowerCamelCase : Dict = os.path.join(lowercase_ , "generator_tokenizer" ) self.question_encoder.save_pretrained(lowercase_ ) self.generator.save_pretrained(lowercase_ ) @classmethod def lowerCamelCase__ ( cls : List[str] , UpperCAmelCase : Tuple , **UpperCAmelCase : List[str] ): from ..auto.tokenization_auto import AutoTokenizer __lowerCamelCase : Any = kwargs.pop("config" , lowercase_ ) if config is None: __lowerCamelCase : Optional[Any] = RagConfig.from_pretrained(lowercase_ ) __lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=lowercase_ , generator=lowercase_ ) def __call__( self : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): return self.current_tokenizer(*lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ): return self.generator.batch_decode(*lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : Any , *UpperCAmelCase : str , **UpperCAmelCase : Any ): return self.generator.decode(*lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Optional[Any] = self.question_encoder def lowerCamelCase__ ( self : Any ): __lowerCamelCase : List[Any] = self.generator def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = "longest" , UpperCAmelCase : str = None , UpperCAmelCase : bool = True , **UpperCAmelCase : int , ): warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , lowercase_ , ) if max_length is None: __lowerCamelCase : List[Any] = self.current_tokenizer.model_max_length __lowerCamelCase : Dict = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowerCamelCase : Optional[int] = self.current_tokenizer.model_max_length __lowerCamelCase : int = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) __lowerCamelCase : Optional[Any] = labels['input_ids'] return model_inputs
135
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCamelCase = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class A ( unittest.TestCase ): def lowerCamelCase ( self : Dict , lowercase_ : Path , lowercase_ : Union[str, None] = None , lowercase_ : Union[List[str], None] = None , lowercase_ : Union[str, List[str], None] = None , lowercase_ : bool = True , ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] =[file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: _lowerCamelCase : Any =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: _lowerCamelCase : Any =[file for file in files if n_ not in file] else: _lowerCamelCase : List[Any] =[file for file in files if n_identifier not in file] _lowerCamelCase : List[Any] =ignore_files or [] ignore_files.append('__init__.py' ) _lowerCamelCase : List[Any] =[file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_ ) if only_modules: _lowerCamelCase : Optional[int] =file.split('.' )[0] try: _lowerCamelCase : Any =getattr(lowercase_ , lowercase_ ) _lowerCamelCase : Optional[int] =doctest.DocTestSuite(lowercase_ ) _lowerCamelCase : List[Any] =unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: _lowerCamelCase : int =doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" _lowerCamelCase : int =Path('src/transformers' ) _lowerCamelCase : Optional[Any] ='modeling' _lowerCamelCase : List[str] =[ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[int] =Path('src/transformers' ) _lowerCamelCase : Union[str, Any] ='tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_ ) def lowerCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _lowerCamelCase : str =Path('src/transformers' ) _lowerCamelCase : Any ='configuration' self.analyze_directory(lowercase_ , identifier=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" _lowerCamelCase : Union[str, Any] =Path('src/transformers' ) _lowerCamelCase : int =['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _lowerCamelCase : str =Path('docs/source' ) _lowerCamelCase : Dict =['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
199
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = checkpoints.load_tax_checkpoint(snake_case_ ) _A : Any = flatten_dict(snake_case_ ) return flax_params def lowerCAmelCase_ ( snake_case_ ): _A : Dict = {} _A : Union[str, Any] = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } _A : str = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _A : Union[str, Any] = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _A : Tuple = new_key.replace(snake_case_,snake_case_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _A : Union[str, Any] = new_key.replace(snake_case_,snake_case_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _A : Dict = re.sub(r"""layers_(\d+)""",r"""layer.\1""",snake_case_ ) _A : Union[str, Any] = new_key.replace("""encoder""","""encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _A : Tuple = re.sub(r"""layers_(\d+)""",r"""layer.\1""",snake_case_ ) _A : Dict = flax_dict[key] _A : List[Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _A : Optional[int] = torch.from_numpy(converted_dict[key].T ) else: _A : str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=False,snake_case_=False ): _A : List[str] = get_flax_param(snake_case_ ) if not use_large: _A : List[Any] = PixaStructVisionConfig() _A : str = PixaStructTextConfig() else: _A : str = PixaStructVisionConfig( hidden_size=1536,d_ff=3968,num_attention_heads=24,num_hidden_layers=18 ) _A : Tuple = PixaStructTextConfig(hidden_size=1536,d_ff=3968,num_heads=24,num_layers=18 ) _A : Any = PixaStructConfig( vision_config=encoder_config.to_dict(),text_config=decoder_config.to_dict(),is_vqa=snake_case_ ) _A : Optional[Any] = PixaStructForConditionalGeneration(snake_case_ ) _A : Dict = rename_and_convert_flax_params(snake_case_ ) model.load_state_dict(snake_case_ ) _A : int = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) _A : List[str] = PixaStructImageProcessor() _A : int = PixaStructProcessor(image_processor=snake_case_,tokenizer=snake_case_ ) if use_large: _A : Dict = 4096 _A : List[str] = True # mkdir if needed os.makedirs(snake_case_,exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) print("""Model saved in {}""".format(snake_case_ ) ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _snake_case = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
343
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): __a = 10000 __a = None __a = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): __a = ParquetConfig def lowercase ( self : int ): return datasets.DatasetInfo(features=self.config.features ) def lowercase ( self : Any , _lowerCamelCase : Union[str, Any] ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _snake_case = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): _snake_case = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _snake_case = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _snake_case = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _snake_case = [dl_manager.iter_files(_lowerCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCamelCase ): with open(_lowerCamelCase , '''rb''' ) as f: _snake_case = datasets.Features.from_arrow_schema(pq.read_schema(_lowerCamelCase ) ) break splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def lowercase ( self : Union[str, Any] , _lowerCamelCase : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _snake_case = table_cast(_lowerCamelCase , self.info.features.arrow_schema ) return pa_table def lowercase ( self : Dict , _lowerCamelCase : Tuple ): _snake_case = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): with open(_lowerCamelCase , '''rb''' ) as f: _snake_case = pq.ParquetFile(_lowerCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _snake_case = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
288
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) class lowerCAmelCase__ ( A_ ): __a = """masked_bert""" def __init__( self : Union[str, Any] , _lowerCamelCase : Any=30522 , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Tuple=12 , _lowerCamelCase : Any=12 , _lowerCamelCase : str=3072 , _lowerCamelCase : str="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : int=0.0_2 , _lowerCamelCase : Union[str, Any]=1e-12 , _lowerCamelCase : Union[str, Any]=0 , _lowerCamelCase : List[str]="topK" , _lowerCamelCase : Optional[Any]="constant" , _lowerCamelCase : Optional[Any]=0.0 , **_lowerCamelCase : str , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = pruning_method _snake_case = mask_init _snake_case = mask_scale
288
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "BlipImageProcessor" snake_case_ = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict ,A : List[str] ,A : Optional[Any] ): __A = False super().__init__(A ,A ) __A = self.image_processor def __call__( self : Any ,A : ImageInput = None ,A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,A : bool = True ,A : Union[bool, str, PaddingStrategy] = False ,A : Union[bool, str, TruncationStrategy] = None ,A : Optional[int] = None ,A : int = 0 ,A : Optional[int] = None ,A : Optional[bool] = None ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = True ,A : Optional[Union[str, TensorType]] = None ,**A : Optional[Any] ,): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __A = self.tokenizer __A = self.tokenizer( text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_token_type_ids=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,) return text_encoding # add pixel_values __A = self.image_processor(A ,return_tensors=A ) if text is not None: __A = self.tokenizer( text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_token_type_ids=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,) else: __A = None if text_encoding is not None: encoding_image_processor.update(A ) return encoding_image_processor def UpperCamelCase_ ( self : Tuple ,*A : Optional[int] ,**A : Union[str, Any] ): return self.tokenizer.batch_decode(*A ,**A ) def UpperCamelCase_ ( self : Tuple ,*A : int ,**A : Dict ): return self.tokenizer.decode(*A ,**A ) @property def UpperCamelCase_ ( self : Any ): __A = self.tokenizer.model_input_names __A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
353
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,*A : Dict ,**A : Dict ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." ,A ,) super().__init__(*A ,**A )
124
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'MCTCTFeatureExtractor' lowerCAmelCase__ = 'AutoTokenizer' def __init__( self , lowercase , lowercase ) -> str: super().__init__(lowercase , lowercase ) lowerCamelCase_ = self.feature_extractor lowerCamelCase_ = False def __call__( self , *lowercase , **lowercase ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCamelCase_ = kwargs.pop("raw_speech" ) else: lowerCamelCase_ = kwargs.pop("audio" , lowercase ) lowerCamelCase_ = kwargs.pop("sampling_rate" , lowercase ) lowerCamelCase_ = kwargs.pop("text" , lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = args[0] lowerCamelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCamelCase_ = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase ) if text is not None: lowerCamelCase_ = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase_ = encodings["input_ids"] return inputs def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> List[Any]: return self.tokenizer.batch_decode(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase ) lowerCamelCase_ = kwargs.pop("input_features" , lowercase ) lowerCamelCase_ = kwargs.pop("labels" , lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = args[0] lowerCamelCase_ = args[1:] if input_features is not None: lowerCamelCase_ = self.feature_extractor.pad(lowercase , *lowercase , **lowercase ) if labels is not None: lowerCamelCase_ = self.tokenizer.pad(lowercase , **lowercase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase_ = labels["input_ids"] return input_features def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> int: return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def SCREAMING_SNAKE_CASE_( self ) -> str: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer yield lowerCamelCase_ = self.feature_extractor lowerCamelCase_ = False
19
class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Dict ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
225
0
import os from collections.abc import Iterator def __lowerCamelCase ( a_ : str = "." ) -> Union[str, Any]: for dir_path, dir_names, filenames in os.walk(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Any = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(SCREAMING_SNAKE_CASE__ )[1] in (".py", ".ipynb"): yield os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).lstrip('''./''' ) def __lowerCamelCase ( a_ : Dict ) -> str: return f'''{i * " "}*''' if i else "\n##" def __lowerCamelCase ( a_ : str , a_ : str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :List[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(SCREAMING_SNAKE_CASE__ ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(SCREAMING_SNAKE_CASE__ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def __lowerCamelCase ( a_ : str = "." ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :Optional[int] = '''''' for filepath in sorted(good_file_paths(SCREAMING_SNAKE_CASE__ ) ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = os.path.split(SCREAMING_SNAKE_CASE__ ) if filepath != old_path: __SCREAMING_SNAKE_CASE :Union[str, Any] = print_path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = (filepath.count(os.sep ) + 1) if filepath else 0 __SCREAMING_SNAKE_CASE :Any = f'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' ) __SCREAMING_SNAKE_CASE :int = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'''{md_prefix(SCREAMING_SNAKE_CASE__ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
367
"""simple docstring""" import math import unittest def __lowerCamelCase ( a_ : int ) -> bool: assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) ,'''Zero doesn\'t have any positive factors, primes must have exactly two.''' ,) self.assertFalse( is_prime(1 ) ,'''One only has 1 positive factor, primes must have exactly two.''' ,) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
239
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase__ : Any = logging.getLogger(__name__) def UpperCamelCase_ ( ) -> Any: """simple docstring""" lowerCAmelCase_ : List[Any] = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=lowerCamelCase__ , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=lowerCamelCase__ , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=lowerCamelCase__ , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=lowerCamelCase__ , default='data/dump' , help='The dump file prefix.' ) lowerCAmelCase_ : int = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": lowerCAmelCase_ : Tuple = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : Union[str, Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` lowerCAmelCase_ : Optional[Any] = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase_ : Any = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` lowerCAmelCase_ : Optional[int] = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase_ : Any = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : Tuple = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` lowerCAmelCase_ : List[str] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCAmelCase_ : List[Any] = fp.readlines() logger.info('Start encoding' ) logger.info(f"{len(lowerCamelCase__ )} examples to process." ) lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Optional[Any] = 1_0000 lowerCAmelCase_ : Optional[Any] = time.time() for text in data: lowerCAmelCase_ : Tuple = f"{bos} {text.strip()} {sep}" lowerCAmelCase_ : int = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) rslt.append(lowerCamelCase__ ) iter += 1 if iter % interval == 0: lowerCAmelCase_ : Optional[int] = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) lowerCAmelCase_ : Tuple = time.time() logger.info('Finished binarization' ) logger.info(f"{len(lowerCamelCase__ )} examples processed." ) lowerCAmelCase_ : Union[str, Any] = f"{args.dump_file}.{args.tokenizer_name}.pickle" lowerCAmelCase_ : Optional[int] = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase_ : Union[str, Any] = [np.uintaa(lowerCamelCase__ ) for d in rslt] else: lowerCAmelCase_ : Dict = [np.intaa(lowerCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(lowerCamelCase__ , 'wb' ) as handle: pickle.dump(rslt_ , lowerCamelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
224
'''simple docstring''' import argparse import struct import unittest class _lowerCAmelCase : def __init__(self , lowercase ): A_ : List[str] = data # Initialize hash values A_ : Tuple = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants A_ : List[Any] = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] A_ : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def _a (lowercase ): A_ : Any = b"""\x80""" + (b"""\x00""" * (63 - (len(lowercase ) + 8) % 64)) A_ : Optional[Any] = struct.pack(""">Q""" , (len(lowercase ) * 8) ) return data + padding + big_endian_integer def _a (self ): # Convert into blocks of 64 bytes A_ : str = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A_ : Tuple = list(struct.unpack(""">16L""" , lowercase ) ) # add 48 0-ed integers words += [0] * 48 A_, A_, A_, A_, A_, A_, A_, A_ : Dict = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A_ : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A_ : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A_ : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression A_ : Union[str, Any] = self.ror(lowercase , 6 ) ^ self.ror(lowercase , 11 ) ^ self.ror(lowercase , 25 ) A_ : List[Any] = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) A_ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 A_ : List[str] = self.ror(lowercase , 2 ) ^ self.ror(lowercase , 13 ) ^ self.ror(lowercase , 22 ) A_ : str = (a & b) ^ (a & c) ^ (b & c) A_ : int = (sa + maj) % 0X1_0000_0000 A_, A_, A_, A_, A_, A_, A_, A_ : List[Any] = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) A_ : int = [a, b, c, d, e, f, g, h] # Modify final values A_ : Dict = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] A_ : Any = """""".join([hex(lowercase )[2:].zfill(8 ) for value in self.hashes] ) def _a (self , lowercase , lowercase ): return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): import hashlib A_ : Optional[Any] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowercase ).hash , hashlib.shaaaa(lowercase ).hexdigest() ) def a ( ): '''simple docstring''' import doctest doctest.testmod() A_ : Any = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) A_ : List[str] = parser.parse_args() A_ : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: A_ : Union[str, Any] = f.read() else: A_ : Optional[Any] = bytes(lowerCamelCase__ , """utf-8""" ) print(SHAaaa(lowerCamelCase__ ).hash ) if __name__ == "__main__": main()
206
0
'''simple docstring''' def A_( A : int = 10 , A : int = 22): UpperCamelCase = range(1 , A) UpperCamelCase = range(1 , A) return sum( 1 for power in powers for base in bases if len(str(base**power)) == power) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
251
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """openai-gpt""" lowerCAmelCase_ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A_=40478 , A_=512 , A_=768 , A_=12 , A_=12 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=1e-5 , A_=0.02 , A_="cls_index" , A_=True , A_=None , A_=True , A_=0.1 , **A_ , )-> List[str]: '''simple docstring''' UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_embd UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = afn UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = summary_type UpperCamelCase = summary_use_proj UpperCamelCase = summary_activation UpperCamelCase = summary_first_dropout UpperCamelCase = summary_proj_to_labels super().__init__(**A_ )
251
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __A ( )-> str: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowerCAmelCase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def __A ( )-> List[str]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def __A ( )-> Tuple: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowerCAmelCase ): http_head('https://huggingface.co' )
39
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __SCREAMING_SNAKE_CASE : int = sys.version_info >= (3, 10) def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class __A : '''simple docstring''' __lowercase: int __lowercase: float __lowercase: str __lowercase: bool @dataclass class __A : '''simple docstring''' __lowercase: int = 42 __lowercase: str = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class __A : '''simple docstring''' __lowercase: bool = False __lowercase: bool = True __lowercase: Optional[bool] = None class __A (snake_case__): '''simple docstring''' __lowercase: str = """titi""" __lowercase: Any = """toto""" class __A (snake_case__): '''simple docstring''' __lowercase: int = """titi""" __lowercase: Optional[Any] = """toto""" __lowercase: List[Any] = 42 @dataclass class __A : '''simple docstring''' __lowercase: BasicEnum = "toto" def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" snake_case_ = BasicEnum(self.foo ) @dataclass class __A : '''simple docstring''' __lowercase: MixedTypeEnum = "toto" def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ = MixedTypeEnum(self.foo ) @dataclass class __A : '''simple docstring''' __lowercase: Optional[int] = None __lowercase: Optional[float] = field(default=snake_case__ , metadata={"""help""": """help message"""}) __lowercase: Optional[str] = None __lowercase: Optional[List[str]] = list_field(default=[]) __lowercase: Optional[List[int]] = list_field(default=[]) @dataclass class __A : '''simple docstring''' __lowercase: List[int] = list_field(default=[]) __lowercase: List[int] = list_field(default=[1, 2, 3]) __lowercase: List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) __lowercase: List[float] = list_field(default=[0.1, 0.2, 0.3]) @dataclass class __A : '''simple docstring''' __lowercase: List[int] = field() __lowercase: str = field() __lowercase: BasicEnum = field() def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" snake_case_ = BasicEnum(self.required_enum ) @dataclass class __A : '''simple docstring''' __lowercase: int __lowercase: "BasicEnum" = field() __lowercase: "Optional[bool]" = None __lowercase: "str" = field(default="""toto""" , metadata={"""help""": """help message"""}) __lowercase: "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class __A : '''simple docstring''' __lowercase: bool = False __lowercase: bool = True __lowercase: bool | None = None @dataclass class __A : '''simple docstring''' __lowercase: int | None = None __lowercase: float | None = field(default=snake_case__ , metadata={"""help""": """help message"""}) __lowercase: str | None = None __lowercase: list[str] | None = list_field(default=[]) __lowercase: list[int] | None = list_field(default=[]) class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : argparse.ArgumentParser , UpperCAmelCase_ : argparse.ArgumentParser ) ->Optional[int]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k != """container"""} snake_case_ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , UpperCAmelCase_ ) and yy.get("""choices""" , UpperCAmelCase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](UpperCAmelCase_ ) , yy["""type"""](UpperCAmelCase_ ) ) del xx["type"], yy["type"] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--bar""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--baz""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--flag""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((snake_case_) , ) = parser.parse_args_into_dataclasses(UpperCAmelCase_ , look_for_args_file=UpperCAmelCase_ ) self.assertFalse(example.flag ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=UpperCAmelCase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=UpperCAmelCase_ , help="""help message""" ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) expected.add_argument("""--baz""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=UpperCAmelCase_ , dest="""baz""" ) expected.add_argument("""--opt""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase_ ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) snake_case_ = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) snake_case_ = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) snake_case_ = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) snake_case_ = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) snake_case_ = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" @dataclass class __A : '''simple docstring''' __lowercase: Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=UpperCAmelCase_ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=UpperCAmelCase_ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual( UpperCAmelCase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(UpperCAmelCase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ ) expected.add_argument("""--bar""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""help message""" ) expected.add_argument("""--baz""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase_ ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , bar=UpperCAmelCase_ , baz=UpperCAmelCase_ , ces=[] , des=[] ) ) snake_case_ = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--required_str""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=UpperCAmelCase_ , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=UpperCAmelCase_ , ) expected.add_argument("""--opt""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=UpperCAmelCase_ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } snake_case_ = parser.parse_dict(UpperCAmelCase_ )[0] snake_case_ = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(UpperCAmelCase_ , parser.parse_dict , UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(UpperCAmelCase_ , """temp_json""" ) os.mkdir(UpperCAmelCase_ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] snake_case_ = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(UpperCAmelCase_ , """temp_yaml""" ) os.mkdir(UpperCAmelCase_ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] snake_case_ = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ )
347
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCamelCase ( __snake_case : np.ndarray, __snake_case : np.ndarray ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b, 2 ) for a, b in zip(__snake_case, __snake_case ) ) ) def __lowerCamelCase ( __snake_case : np.ndarray, __snake_case : np.ndarray ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: A__ : Optional[int] =( """Wrong input data's dimensions... """ f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: A__ : Tuple =( """Wrong input data's shape... """ f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: A__ : int =( """Input data have different datatype... """ f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(__snake_case ) A__ : Tuple =[] for value in value_array: A__ : List[Any] =euclidean(__snake_case, dataset[0] ) A__ : List[str] =dataset[0].tolist() for dataset_value in dataset[1:]: A__ : Optional[int] =euclidean(__snake_case, __snake_case ) if dist > temp_dist: A__ : Optional[int] =temp_dist A__ : Any =dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCamelCase ( __snake_case : np.ndarray, __snake_case : np.ndarray ) -> float: """simple docstring""" return np.dot(__snake_case, __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
136
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" A__ : List[Any] =prime_factors(__snake_case ) if is_square_free(__snake_case ): return -1 if len(__snake_case ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
136
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class a__ : def __init__( self : Dict , a : Optional[Any] , a : List[Any]=13 , a : Union[str, Any]=7 , a : Any=True , a : Optional[Any]=True , a : Dict=True , a : str=True , a : List[str]=99 , a : str=[1, 1, 2] , a : int=1 , a : List[str]=32 , a : str=4 , a : Union[str, Any]=8 , a : Optional[int]=37 , a : Any="gelu_new" , a : Tuple=0.1 , a : Optional[Any]=0.1 , a : Tuple=0.0 , a : Union[str, Any]=5_12 , a : Dict=3 , a : str=0.02 , a : Union[str, Any]=3 , a : str=4 , a : Dict=None , a : List[str]=False , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = block_sizes __lowerCamelCase = num_decoder_layers __lowerCamelCase = d_model __lowerCamelCase = n_head __lowerCamelCase = d_head __lowerCamelCase = d_inner __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = 2 __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = initializer_std # Used in the tests to check the size of the first attention layer __lowerCamelCase = n_head # Used in the tests to check the size of the first hidden state __lowerCamelCase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowerCamelCase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowerCamelCase = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : List[str] , a : Tuple , a : Dict , a : Any , a : List[str] , a : Dict , a : int , ): """simple docstring""" __lowerCamelCase = TFFunnelModel(config=a ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = model(a ) __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowerCamelCase = False __lowerCamelCase = TFFunnelModel(config=a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowerCamelCase = False __lowerCamelCase = TFFunnelModel(config=a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : List[str] , a : Optional[Any] , a : Optional[Any] , a : int , a : List[str] , a : int , a : Any , ): """simple docstring""" __lowerCamelCase = TFFunnelBaseModel(config=a ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = model(a ) __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __lowerCamelCase = False __lowerCamelCase = TFFunnelBaseModel(config=a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __lowerCamelCase = False __lowerCamelCase = TFFunnelBaseModel(config=a ) __lowerCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Dict , a : Optional[Any] , a : Optional[Any] , a : List[Any] , a : Optional[int] , a : str , a : Union[str, Any] , ): """simple docstring""" __lowerCamelCase = TFFunnelForPreTraining(config=a ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int , a : List[Any] , a : str , a : int , a : Tuple , a : Any , a : int , ): """simple docstring""" __lowerCamelCase = TFFunnelForMaskedLM(config=a ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Any , a : Tuple , a : str , a : List[Any] , a : Any , a : List[Any] , a : Any , ): """simple docstring""" __lowerCamelCase = self.num_labels __lowerCamelCase = TFFunnelForSequenceClassification(config=a ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : List[str] , a : str , a : Tuple , a : Tuple , a : str , a : Optional[Any] , a : List[str] , ): """simple docstring""" __lowerCamelCase = self.num_choices __lowerCamelCase = TFFunnelForMultipleChoice(config=a ) __lowerCamelCase = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowerCamelCase = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : int , a : Optional[int] , a : Optional[Any] , a : int , a : str , a : Optional[Any] , a : int , a : int , ): """simple docstring""" __lowerCamelCase = self.num_labels __lowerCamelCase = TFFunnelForTokenClassification(config=a ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Optional[Any] , a : str , a : str , a : List[Any] , a : Dict , a : Optional[int] , a : Dict , ): """simple docstring""" __lowerCamelCase = TFFunnelForQuestionAnswering(config=a ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() ( __lowerCamelCase ) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase : Dict =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase : List[str] =( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase : Tuple =False lowerCamelCase : str =False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = TFFunnelModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) @require_tf class a__ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase : Union[str, Any] =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowerCamelCase : Union[str, Any] =False lowerCamelCase : str =False def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = TFFunnelModelTester(self , base=a ) __lowerCamelCase = ConfigTester(self , config_class=a ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a )
67
from jiwer import compute_measures import datasets lowerCamelCase : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCamelCase : int = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCamelCase : str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def UpperCAmelCase ( self , A=None , A=None , A=False ) -> List[Any]: if concatenate_texts: return compute_measures(A , A )["wer"] else: snake_case : Any = 0 snake_case : Any = 0 for prediction, reference in zip(A , A ): snake_case : Tuple = compute_measures(A , A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
124
0
import math from datetime import datetime, timedelta def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100 ) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase__ , 4 , 18 ) else: return datetime(lowerCAmelCase__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): _UpperCAmelCase = "will be" if year > datetime.now().year else "was" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
359
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
0
'''simple docstring''' def __snake_case ( ): lowerCamelCase_ = [] lowerCamelCase_ = 1 while len(UpperCAmelCase_ ) < 1E6: constant.append(str(UpperCAmelCase_ ) ) i += 1 lowerCamelCase_ = "".join(UpperCAmelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
55
'''simple docstring''' import operator as op def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> int: lowercase_ : Optional[Any] = [] lowercase_ : str = lambda UpperCAmelCase__ , UpperCAmelCase__ : int(x / y ) # noqa: E731 integer division operation lowercase_ : Optional[Any] = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(UpperCAmelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(UpperCAmelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(UpperCAmelCase__ ) , sep=""" | """ ) else: lowercase_ : str = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(UpperCAmelCase__ ) , sep=""" | """ ) lowercase_ : Optional[int] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(UpperCAmelCase__ ) , sep=""" | """ ) stack.append( str(opr[x](int(UpperCAmelCase__ ) , int(UpperCAmelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(UpperCAmelCase__ ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": _lowercase : Tuple = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
239
0
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase ( snake_case_ , snake_case_ , snake_case_ ): UpperCamelCase : List[Any] = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 50257 , UpperCAmelCase__ : int = 1024 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : str = "gelu_new" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 1E-5 , UpperCAmelCase__ : float = 0.0_2 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , ) -> List[Any]: super().__init__() _a : Any = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) _a : str = prefix_inner_dim _a : int = prefix_hidden_dim _a : int = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _a : List[str] = ( nn.Linear(self.prefix_hidden_dim , UpperCAmelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) _a : Dict = GPTaConfig( vocab_size=UpperCAmelCase__ , n_positions=UpperCAmelCase__ , n_embd=UpperCAmelCase__ , n_layer=UpperCAmelCase__ , n_head=UpperCAmelCase__ , n_inner=UpperCAmelCase__ , activation_function=UpperCAmelCase__ , resid_pdrop=UpperCAmelCase__ , embd_pdrop=UpperCAmelCase__ , attn_pdrop=UpperCAmelCase__ , layer_norm_epsilon=UpperCAmelCase__ , initializer_range=UpperCAmelCase__ , scale_attn_weights=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , scale_attn_by_inverse_layer_idx=UpperCAmelCase__ , reorder_and_upcast_attn=UpperCAmelCase__ , ) _a : Optional[Any] = GPTaLMHeadModel(UpperCAmelCase__ ) def _lowercase ( self : str , UpperCAmelCase__ : torch.Tensor , UpperCAmelCase__ : torch.Tensor , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[torch.Tensor] = None , ) -> Tuple: _a : Union[str, Any] = self.transformer.transformer.wte(UpperCAmelCase__ ) _a : List[Any] = self.encode_prefix(UpperCAmelCase__ ) _a : Dict = self.decode_prefix(UpperCAmelCase__ ) _a : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _a : Optional[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _a : Any = torch.cat((dummy_token, input_ids) , dim=1 ) _a : Union[str, Any] = self.transformer(inputs_embeds=UpperCAmelCase__ , labels=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _lowercase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : torch.device ) -> torch.Tensor: return torch.zeros(UpperCAmelCase__ , self.prefix_length , dtype=torch.intaa , device=UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : List[str] ) -> Optional[Any]: return self.encode_prefix(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] ) -> Dict: _a : Dict = torch.split(UpperCAmelCase__ , 1 , dim=0 ) _a : Dict = [] _a : Optional[int] = [] for feature in features: _a : List[str] = self.decode_prefix(feature.to(UpperCAmelCase__ ) ) # back to the clip feature # Only support beam search for now _a , _a : Optional[int] = self.generate_beam( input_embeds=UpperCAmelCase__ , device=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _a : List[str] = torch.stack(UpperCAmelCase__ ) _a : int = torch.stack(UpperCAmelCase__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _lowercase ( self : Any , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : int = 5 , UpperCAmelCase__ : int = 67 , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : Optional[int] = None , ) -> List[str]: _a : Dict = eos_token_id _a : Tuple = None _a : Tuple = None _a : str = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=torch.int ) _a : List[Any] = torch.zeros(UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=torch.bool ) if input_embeds is not None: _a : List[Any] = input_embeds else: _a : List[str] = self.transformer.transformer.wte(UpperCAmelCase__ ) for i in range(UpperCAmelCase__ ): _a : Optional[Any] = self.transformer(inputs_embeds=UpperCAmelCase__ ) _a : Tuple = outputs.logits _a : List[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _a : Dict = logits.softmax(-1 ).log() if scores is None: _a , _a : Any = logits.topk(UpperCAmelCase__ , -1 ) _a : str = generated.expand(UpperCAmelCase__ , *generated.shape[1:] ) _a , _a : Union[str, Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _a : List[str] = next_tokens else: _a : Optional[Any] = tokens.expand(UpperCAmelCase__ , *tokens.shape[1:] ) _a : Optional[int] = torch.cat((tokens, next_tokens) , dim=1 ) else: _a : Optional[int] = -float(np.inf ) _a : List[Any] = 0 _a : List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _a : Optional[Any] = scores_sum / seq_lengths[:, None] _a , _a : Optional[int] = scores_sum_average.view(-1 ).topk(UpperCAmelCase__ , -1 ) _a : Optional[int] = next_tokens // scores_sum.shape[1] _a : Tuple = seq_lengths[next_tokens_source] _a : Dict = next_tokens % scores_sum.shape[1] _a : int = next_tokens.unsqueeze(1 ) _a : Optional[Any] = tokens[next_tokens_source] _a : str = torch.cat((tokens, next_tokens) , dim=1 ) _a : int = generated[next_tokens_source] _a : List[str] = scores_sum_average * seq_lengths _a : Tuple = is_stopped[next_tokens_source] _a : Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _a : Tuple = torch.cat((generated, next_token_embed) , dim=1 ) _a : Optional[int] = is_stopped + next_tokens.eq(UpperCAmelCase__ ).squeeze() if is_stopped.all(): break _a : Tuple = scores / seq_lengths _a : Any = scores.argsort(descending=UpperCAmelCase__ ) # tokens tensors are already padded to max_seq_length _a : Union[str, Any] = [tokens[i] for i in order] _a : int = torch.stack(UpperCAmelCase__ , dim=0 ) _a : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
324
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
1
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class _a ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self, A, A, A, A, A=1, A=False, **A ): '''simple docstring''' super().__init__(**A ) SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = d_embed SCREAMING_SNAKE_CASE : List[str] = d_proj SCREAMING_SNAKE_CASE : List[str] = cutoffs + [vocab_size] SCREAMING_SNAKE_CASE : int = [0] + self.cutoffs SCREAMING_SNAKE_CASE : Dict = div_val SCREAMING_SNAKE_CASE : Tuple = self.cutoffs[0] SCREAMING_SNAKE_CASE : Optional[Any] = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE : int = self.shortlist_size + self.n_clusters SCREAMING_SNAKE_CASE : Optional[Any] = keep_order SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Any = [] def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.n_clusters > 0: SCREAMING_SNAKE_CASE : Dict = self.add_weight( shape=(self.n_clusters, self.d_embed), initializer='zeros', trainable=A, name='cluster_weight' ) SCREAMING_SNAKE_CASE : Optional[int] = self.add_weight( shape=(self.n_clusters,), initializer='zeros', trainable=A, name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: SCREAMING_SNAKE_CASE : List[Any] = self.add_weight( shape=(self.d_embed, self.d_proj), initializer='zeros', trainable=A, name=F"out_projs_._{i}", ) self.out_projs.append(A ) else: self.out_projs.append(A ) SCREAMING_SNAKE_CASE : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed), initializer='zeros', trainable=A, name=F"out_layers_._{i}_._weight", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.add_weight( shape=(self.vocab_size,), initializer='zeros', trainable=A, name=F"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : List[str] = self.d_embed // (self.div_val**i) SCREAMING_SNAKE_CASE : int = self.add_weight( shape=(d_emb_i, self.d_proj), initializer='zeros', trainable=A, name=F"out_projs_._{i}" ) self.out_projs.append(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.add_weight( shape=(r_idx - l_idx, d_emb_i), initializer='zeros', trainable=A, name=F"out_layers_._{i}_._weight", ) SCREAMING_SNAKE_CASE : List[Any] = self.add_weight( shape=(r_idx - l_idx,), initializer='zeros', trainable=A, name=F"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias) ) super().build(A ) @staticmethod def UpperCamelCase_ ( A, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x if proj is not None: SCREAMING_SNAKE_CASE : Tuple = tf.einsum('ibd,ed->ibe', A, A ) return tf.einsum('ibd,nd->ibn', A, A ) + b @staticmethod def UpperCamelCase_ ( A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = shape_list(A ) SCREAMING_SNAKE_CASE : int = tf.range(lp_size[0], dtype=target.dtype ) SCREAMING_SNAKE_CASE : List[str] = tf.stack([r, target], 1 ) return tf.gather_nd(A, A ) def UpperCamelCase_ ( self, A, A, A=True, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 0 if self.n_clusters == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self._logit(A, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0] ) if target is not None: SCREAMING_SNAKE_CASE : List[Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=A, logits=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.nn.log_softmax(A, axis=-1 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = shape_list(A ) SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Tuple = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: SCREAMING_SNAKE_CASE : Dict = (target >= l_idx) & (target < r_idx) SCREAMING_SNAKE_CASE : Any = tf.where(A ) SCREAMING_SNAKE_CASE : List[Any] = tf.boolean_mask(A, A ) - l_idx if self.div_val == 1: SCREAMING_SNAKE_CASE : int = self.out_layers[0][0][l_idx:r_idx] SCREAMING_SNAKE_CASE : str = self.out_layers[0][1][l_idx:r_idx] else: SCREAMING_SNAKE_CASE : int = self.out_layers[i][0] SCREAMING_SNAKE_CASE : Any = self.out_layers[i][1] if i == 0: SCREAMING_SNAKE_CASE : Optional[Any] = tf.concat([cur_W, self.cluster_weight], 0 ) SCREAMING_SNAKE_CASE : int = tf.concat([cur_b, self.cluster_bias], 0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._logit(A, A, A, self.out_projs[0] ) SCREAMING_SNAKE_CASE : Tuple = tf.nn.log_softmax(A ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: SCREAMING_SNAKE_CASE : Optional[Any] = tf.boolean_mask(A, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._gather_logprob(A, A ) else: SCREAMING_SNAKE_CASE : Any = self._logit(A, A, A, self.out_projs[i] ) SCREAMING_SNAKE_CASE : List[str] = tf.nn.log_softmax(A ) SCREAMING_SNAKE_CASE : Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster SCREAMING_SNAKE_CASE : List[str] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(A ) if target is not None: SCREAMING_SNAKE_CASE : Tuple = tf.boolean_mask(A, A ) SCREAMING_SNAKE_CASE : Tuple = tf.boolean_mask(A, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._gather_logprob(A, A ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(A, -cur_logprob, shape_list(A ) ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.concat(A, axis=-1 ) if target is not None: if return_mean: SCREAMING_SNAKE_CASE : str = tf.reduce_mean(A ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(A ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(A, name=self.name, aggregation='mean' if return_mean else '' ) return out
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "xmod" def __init__( self : List[str] , __A : List[str]=3_0_5_2_2 , __A : Tuple=7_6_8 , __A : str=1_2 , __A : List[Any]=1_2 , __A : List[str]=3_0_7_2 , __A : List[str]="gelu" , __A : List[Any]=0.1 , __A : Tuple=0.1 , __A : str=5_1_2 , __A : Union[str, Any]=2 , __A : List[Any]=0.0_2 , __A : List[str]=1e-1_2 , __A : Tuple=1 , __A : List[Any]=0 , __A : Optional[Any]=2 , __A : Optional[int]="absolute" , __A : Optional[int]=True , __A : Dict=None , __A : Optional[int]=False , __A : Dict=2 , __A : List[str]=False , __A : Dict=True , __A : Union[str, Any]=True , __A : Tuple=("en_XX",) , __A : Optional[Any]=None , **__A : Tuple , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : List[str] = use_cache snake_case__ : Tuple = classifier_dropout snake_case__ : Any = pre_norm snake_case__ : List[str] = adapter_reduction_factor snake_case__ : List[Any] = adapter_layer_norm snake_case__ : str = adapter_reuse_layer_norm snake_case__ : Union[str, Any] = ln_before_adapter snake_case__ : Tuple = list(__A ) snake_case__ : int = default_language class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : int ): if self.task == "multiple-choice": snake_case__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
369
import sys __lowerCamelCase : List[str] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str = N ): snake_case__ : Any = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): snake_case__ : Tuple = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ : Dict = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
286
0
"""simple docstring""" import torch def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' if torch.cuda.is_available(): lowercase_ = torch.cuda.device_count() else: lowercase_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
136
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : Union[str, Any] = TypeVar("T") UpperCAmelCase : Dict = Union[List[T], Tuple[T, ...]] UpperCAmelCase : int = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Tuple = Union[str, bytes, os.PathLike]
136
1
def __lowercase ( lowerCamelCase : Any = 1000 ): UpperCamelCase_ : Dict = 2**power UpperCamelCase_ : List[str] = str(lowerCamelCase_ ) UpperCamelCase_ : Optional[Any] = list(lowerCamelCase_ ) UpperCamelCase_ : Optional[int] = 0 for i in list_num: sum_of_num += int(lowerCamelCase_ ) return sum_of_num if __name__ == "__main__": a_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) a_ = solution(power) print('Sum of the digits is: ', result)
367
from __future__ import annotations import numpy as np def __lowercase ( lowerCamelCase : list[float] ): return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
50
0
'''simple docstring''' __lowerCAmelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __lowerCamelCase ( ) -> None: _a : List[Any] = input('Enter message: ' ) _a : Optional[int] = input('Enter key [alphanumeric]: ' ) _a : Union[str, Any] = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): _a : Dict = 'encrypt' _a : Tuple = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith('d' ): _a : List[Any] = 'decrypt' _a : List[Any] = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""\n{mode.title()}ed message:""" ) print(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , 'encrypt' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , 'decrypt' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _a : Optional[Any] = [] _a : List[str] = 0 _a : Union[str, Any] = key.upper() for symbol in message: _a : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase_ ): _a : List[str] = 0 else: translated.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": main()
89
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
0
import torch from torch import nn class A ( nn.Module ): """simple docstring""" def __init__( self : List[str],lowercase_ : int,lowercase_ : Tuple,lowercase_ : List[str],lowercase_ : int,lowercase_ : int=1,lowercase_ : List[Any]=False )-> List[str]: '''simple docstring''' super().__init__() A__ = n_token A__ = d_embed A__ = d_proj A__ = cutoffs + [n_token] A__ = [0] + self.cutoffs A__ = div_val A__ = self.cutoffs[0] A__ = len(self.cutoffs ) - 1 A__ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: A__ = nn.Parameter(torch.zeros(self.n_clusters,self.d_embed ) ) A__ = nn.Parameter(torch.zeros(self.n_clusters ) ) A__ = nn.ModuleList() A__ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase_,lowercase_ ) ) ) else: self.out_projs.append(lowercase_ ) self.out_layers.append(nn.Linear(lowercase_,lowercase_ ) ) else: for i in range(len(self.cutoffs ) ): A__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase_,lowercase_ ) ) ) self.out_layers.append(nn.Linear(lowercase_,r_idx - l_idx ) ) A__ = keep_order def snake_case__ ( self : Union[str, Any],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : List[str],lowercase_ : Dict )-> str: '''simple docstring''' if proj is None: A__ = nn.functional.linear(lowercase_,lowercase_,bias=lowercase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: A__ = nn.functional.linear(lowercase_,proj.t().contiguous() ) A__ = nn.functional.linear(lowercase_,lowercase_,bias=lowercase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case__ ( self : Tuple,lowercase_ : Dict,lowercase_ : Tuple=None,lowercase_ : Any=False )-> str: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n A__ = hidden[..., :-1, :].contiguous() A__ = labels[..., 1:].contiguous() A__ = hidden.view(-1,hidden.size(-1 ) ) A__ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: A__ = hidden.view(-1,hidden.size(-1 ) ) if self.n_clusters == 0: A__ = self._compute_logit(lowercase_,self.out_layers[0].weight,self.out_layers[0].bias,self.out_projs[0] ) if labels is not None: A__ = labels != -1_0_0 A__ = torch.zeros_like(lowercase_,dtype=hidden.dtype,device=hidden.device ) A__ = ( -nn.functional.log_softmax(lowercase_,dim=-1 )[mask].gather(1,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: A__ = nn.functional.log_softmax(lowercase_,dim=-1 ) else: # construct weights and biases A__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ = self.out_layers[0].weight[l_idx:r_idx] A__ = self.out_layers[0].bias[l_idx:r_idx] else: A__ = self.out_layers[i].weight A__ = self.out_layers[i].bias if i == 0: A__ = torch.cat([weight_i, self.cluster_weight],dim=0 ) A__ = torch.cat([bias_i, self.cluster_bias],dim=0 ) weights.append(lowercase_ ) biases.append(lowercase_ ) A__ = weights[0], biases[0], self.out_projs[0] A__ = self._compute_logit(lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = nn.functional.log_softmax(lowercase_,dim=1 ) if labels is None: A__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: A__ = torch.zeros_like(lowercase_,dtype=hidden.dtype,device=hidden.device ) A__ = 0 A__ = [0] + self.cutoffs for i in range(len(lowercase_ ) - 1 ): A__ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: A__ = (labels >= l_idx) & (labels < r_idx) A__ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue A__ = labels.index_select(0,lowercase_ ) - l_idx A__ = head_logprob.index_select(0,lowercase_ ) A__ = hidden.index_select(0,lowercase_ ) else: A__ = hidden if i == 0: if labels is not None: A__ = head_logprob_i.gather(1,target_i[:, None] ).squeeze(1 ) else: A__ = head_logprob[:, : self.cutoffs[0]] else: A__ = weights[i], biases[i], self.out_projs[i] A__ = self._compute_logit(lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = nn.functional.log_softmax(lowercase_,dim=1 ) A__ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: A__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1,target_i[:, None] ).squeeze(1 ) else: A__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i A__ = logprob_i if labels is not None: if (hasattr(self,'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0,lowercase_,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def snake_case__ ( self : Union[str, Any],lowercase_ : Union[str, Any] )-> Optional[Any]: '''simple docstring''' if self.n_clusters == 0: A__ = self._compute_logit(lowercase_,self.out_layers[0].weight,self.out_layers[0].bias,self.out_projs[0] ) return nn.functional.log_softmax(lowercase_,dim=-1 ) else: # construct weights and biases A__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ = self.out_layers[0].weight[l_idx:r_idx] A__ = self.out_layers[0].bias[l_idx:r_idx] else: A__ = self.out_layers[i].weight A__ = self.out_layers[i].bias if i == 0: A__ = torch.cat([weight_i, self.cluster_weight],dim=0 ) A__ = torch.cat([bias_i, self.cluster_bias],dim=0 ) weights.append(lowercase_ ) biases.append(lowercase_ ) A__ = weights[0], biases[0], self.out_projs[0] A__ = self._compute_logit(lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) A__ = nn.functional.log_softmax(lowercase_,dim=1 ) A__ = [0] + self.cutoffs for i in range(len(lowercase_ ) - 1 ): A__ = cutoff_values[i], cutoff_values[i + 1] if i == 0: A__ = head_logprob[:, : self.cutoffs[0]] else: A__ = weights[i], biases[i], self.out_projs[i] A__ = self._compute_logit(lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = nn.functional.log_softmax(lowercase_,dim=1 ) A__ = head_logprob[:, -i] + tail_logprob_i A__ = logprob_i return out
352
from jiwer import compute_measures import datasets lowercase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowercase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowercase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Any )-> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/jitsi/jiwer/'],reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ],) def snake_case__ ( self : int,lowercase_ : Any=None,lowercase_ : List[str]=None,lowercase_ : Dict=False )-> Optional[int]: '''simple docstring''' if concatenate_texts: return compute_measures(lowercase_,lowercase_ )["wer"] else: A__ = 0 A__ = 0 for prediction, reference in zip(lowercase_,lowercase_ ): A__ = compute_measures(lowercase_,lowercase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
282
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : List[Any] = 25_00_04 lowercase__ : str = 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = MBartTokenizer _snake_case : Tuple = MBartTokenizerFast _snake_case : List[str] = True _snake_case : Optional[Any] = True def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Dict = 'facebook/mbart-large-en-ro' _snake_case : Dict = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _snake_case : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case__ ( cls : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _UpperCamelCase = 1 return cls def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) _UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) _UpperCamelCase = 10 _UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) _UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) _UpperCamelCase = targets['''input_ids'''] _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
324
'''simple docstring''' import math def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list: """simple docstring""" _UpperCamelCase = end or len(lowercase ) for i in range(lowercase, lowercase ): _UpperCamelCase = i _UpperCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCamelCase = array[temp_index - 1] temp_index -= 1 _UpperCamelCase = temp_index_value return array def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap """simple docstring""" _UpperCamelCase = index _UpperCamelCase = 2 * index + 1 # Left Node _UpperCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCamelCase = right_index if largest != index: _UpperCamelCase , _UpperCamelCase = array[largest], array[index] heapify(lowercase, lowercase, lowercase ) def a__ ( lowercase : list ) -> list: """simple docstring""" _UpperCamelCase = len(lowercase ) for i in range(n // 2, -1, -1 ): heapify(lowercase, lowercase, lowercase ) for i in range(n - 1, 0, -1 ): _UpperCamelCase , _UpperCamelCase = array[0], array[i] heapify(lowercase, 0, lowercase ) return array def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = low _UpperCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCamelCase , _UpperCamelCase = array[j], array[i] i += 1 def a__ ( lowercase : list ) -> list: """simple docstring""" if len(lowercase ) == 0: return array _UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) ) _UpperCamelCase = 16 return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase ) def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 _UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 ) _UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase ) intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase ) _UpperCamelCase = p return insertion_sort(lowercase, lowercase, lowercase ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Any = input('Enter numbers separated by a comma : ').strip() lowercase__ : Any = [float(item) for item in user_input.split(',')] print(sort(unsorted))
324
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _A = logging.get_logger(__name__) _A = TypeVar('''DatasetType''', Dataset, IterableDataset) def __UpperCamelCase ( _A , _A = None , _A = None , _A = None , _A = None , _A = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(_A )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_A ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}." ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) else: return _interleave_iterable_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) def __UpperCamelCase ( _A , _A = None , _A = None , _A = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(_A )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_A ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}." ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_A , info=_A , split=_A , axis=_A ) else: return _concatenate_iterable_datasets(_A , info=_A , split=_A , axis=_A )
167
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE_ : Tuple = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class a ( UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase = 42 class a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self: Dict , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any , ): """simple docstring""" super().__init__() self.register_modules( prior=snake_case_ , image_encoder=snake_case_ , image_processor=snake_case_ , scheduler=snake_case_ , renderer=snake_case_ , ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: int ): """simple docstring""" if latents is None: A__ = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) A__ = latents.to(snake_case_ ) A__ = latents * scheduler.init_noise_sigma return latents def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A__ = torch.device(f"""cuda:{gpu_id}""" ) A__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case_ , snake_case_ ) @property def UpperCamelCase ( self: Any ): """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(snake_case_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCamelCase ( self: Dict , UpperCamelCase: List[Any] , UpperCamelCase: int , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , torch.Tensor ): A__ = torch.cat(snake_case_ , axis=0 ) if image[0].ndim == 4 else torch.stack(snake_case_ , axis=0 ) if not isinstance(snake_case_ , torch.Tensor ): A__ = self.image_processor(snake_case_ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) A__ = image.to(dtype=self.image_encoder.dtype , device=snake_case_ ) A__ = self.image_encoder(snake_case_ )['last_hidden_state'] A__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A__ = image_embeds.repeat_interleave(snake_case_ , dim=0 ) if do_classifier_free_guidance: A__ = torch.zeros_like(snake_case_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(snake_case_ ) def __call__( self: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Dict = 1 , UpperCamelCase: List[str] = 25 , UpperCamelCase: Tuple = None , UpperCamelCase: int = None , UpperCamelCase: Optional[Any] = 4.0 , UpperCamelCase: Union[str, Any] = 64 , UpperCamelCase: Dict = "pil" , UpperCamelCase: List[str] = True , ): """simple docstring""" if isinstance(snake_case_ , PIL.Image.Image ): A__ = 1 elif isinstance(snake_case_ , torch.Tensor ): A__ = image.shape[0] elif isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A__ = len(snake_case_ ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(snake_case_ )}""" ) A__ = self._execution_device A__ = batch_size * num_images_per_prompt A__ = guidance_scale > 1.0 A__ = self._encode_image(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # prior self.scheduler.set_timesteps(snake_case_ , device=snake_case_ ) A__ = self.scheduler.timesteps A__ = self.prior.config.num_embeddings A__ = self.prior.config.embedding_dim A__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A__ = latents.reshape(latents.shape[0] , snake_case_ , snake_case_ ) for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) A__ = self.prior( snake_case_ , timestep=snake_case_ , proj_embedding=snake_case_ , ).predicted_image_embedding # remove the variance A__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A__ = self.scheduler.step( snake_case_ , timestep=snake_case_ , sample=snake_case_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=snake_case_ ) A__ = [] for i, latent in enumerate(snake_case_ ): print() A__ = self.renderer.decode( latent[None, :] , snake_case_ , size=snake_case_ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(snake_case_ ) A__ = torch.stack(snake_case_ ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) A__ = images.cpu().numpy() if output_type == "pil": A__ = [self.numpy_to_pil(snake_case_ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=snake_case_ )
335
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Any = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Tuple = """xmod""" def __init__( self , snake_case_=3_0_5_2_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=True , snake_case_=None , snake_case_=False , snake_case_=2 , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_=("en_XX",) , snake_case_=None , **snake_case_ , ): """simple docstring""" super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) A_ : Union[str, Any] = vocab_size A_ : Any = hidden_size A_ : List[str] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : int = hidden_act A_ : Any = intermediate_size A_ : Any = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : List[str] = initializer_range A_ : Any = layer_norm_eps A_ : Optional[Any] = position_embedding_type A_ : int = use_cache A_ : Dict = classifier_dropout A_ : int = pre_norm A_ : Optional[Any] = adapter_reduction_factor A_ : List[Any] = adapter_layer_norm A_ : int = adapter_reuse_layer_norm A_ : Dict = ln_before_adapter A_ : List[str] = list(snake_case_ ) A_ : Union[str, Any] = default_language class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": A_ : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
286
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self :Optional[int] , _lowercase :Any , _lowercase :List[Any]=3 , _lowercase :Any=32 , _lowercase :str=3 , _lowercase :Union[str, Any]=10 , _lowercase :List[Any]=[10, 20, 30, 40] , _lowercase :str=[1, 1, 2, 1] , _lowercase :List[str]=True , _lowercase :Dict=True , _lowercase :Any="relu" , _lowercase :List[Any]=3 , _lowercase :Optional[Any]=None , ) -> int: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_lowercase) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self :List[Any]) -> Optional[int]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __a ( self :Union[str, Any] , _lowercase :List[Any] , _lowercase :List[str] , _lowercase :Any) -> List[Any]: UpperCAmelCase_ = TFResNetModel(config=_lowercase) UpperCAmelCase_ = model(_lowercase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self :int , _lowercase :Dict , _lowercase :Optional[int] , _lowercase :List[str]) -> Any: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFResNetForImageClassification(_lowercase) UpperCAmelCase_ = model(_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __a ( self :List[str]) -> str: UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class a_ ( a_ , a_ , unittest.TestCase ): UpperCamelCase__ : Tuple =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ : str =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ : List[Any] =False UpperCamelCase__ : Union[str, Any] =False UpperCamelCase__ : int =False UpperCamelCase__ : Any =False UpperCamelCase__ : List[str] =False def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = TFResNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase) def __a ( self :List[Any]) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self :List[str]) -> int: return @unittest.skip(reason='''ResNet does not use inputs_embeds''') def __a ( self :int) -> Any: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''') def __a ( self :int) -> int: pass def __a ( self :Optional[Any]) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __a ( self :str) -> Optional[int]: def check_hidden_states_output(_lowercase :str , _lowercase :Tuple , _lowercase :List[Any]): UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_lowercase) , expected_num_stages + 1) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ = layer_type UpperCAmelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) def __a ( self :Dict) -> str: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase) @slow def __a ( self :Dict) -> str: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFResNetModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def A ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def __a ( self :Optional[int]) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_lowercase , return_tensors='''tf''') # forward pass UpperCAmelCase_ = model(**_lowercase) # verify the logits UpperCAmelCase_ = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , _lowercase) UpperCAmelCase_ = tf.constant([-11.1_069, -9.7_877, -8.3_777]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowercase , atol=1E-4))
350
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
0
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _lowerCAmelCase = remove_duplicates(key.upper() ) _lowerCAmelCase = len(snake_case ) # First fill cipher with key characters _lowerCAmelCase = {alphabet[i]: char for i, char in enumerate(snake_case )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(snake_case ) , 26 ): _lowerCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowerCAmelCase = alphabet[i - offset] _lowerCAmelCase = char return cipher_alphabet def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" return "".join(cipher_map.get(snake_case , snake_case ) for ch in message.upper() ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(snake_case , snake_case ) for ch in message.upper() ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = input("""Enter message to encode or decode: """ ).strip() _lowerCAmelCase = input("""Enter keyword: """ ).strip() _lowerCAmelCase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: _lowerCAmelCase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) _lowerCAmelCase = create_cipher_map(snake_case ) print(func(snake_case , snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
82
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Optional[int] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[str] = '''roberta-prelayernorm''' def __init__( self : Union[str, Any] , __lowerCAmelCase : List[str]=5_02_65 , __lowerCAmelCase : List[str]=7_68 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : Optional[Any]=12 , __lowerCAmelCase : Any=30_72 , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : List[str]=1e-12 , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Dict="absolute" , __lowerCAmelCase : Any=True , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Dict , ) -> int: """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
363
from typing import TYPE_CHECKING from ...utils import _LazyModule A : Optional[Any] = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
0
"""simple docstring""" # Imports import numpy as np class A_ : '''simple docstring''' def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" if red is not None: UpperCAmelCase_ : Union[str, Any] = red if green is not None: UpperCAmelCase_ : Dict = green if blue is not None: UpperCAmelCase_ : Optional[int] = blue if red_edge is not None: UpperCAmelCase_ : Optional[int] = red_edge if nir is not None: UpperCAmelCase_ : str = nir return True def UpperCamelCase__ ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) UpperCAmelCase_ : str = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def UpperCamelCase__ ( self ): """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCamelCase__ ( self ): """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCamelCase__ ( self ): """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCamelCase__ ( self , lowercase_=0.08 , lowercase_=1.22 , lowercase_=0.03 ): """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCamelCase__ ( self ): """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / self.green) - 1 def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCamelCase__ ( self ): """simple docstring""" return (self.red - self.blue) / self.red def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir - self.green def UpperCamelCase__ ( self ): """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCamelCase__ ( self , lowercase_=0.16 ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCamelCase__ ( self , lowercase_=0.5 ): """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCamelCase__ ( self ): """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None ): """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCamelCase__ ( self ): """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / self.red def UpperCamelCase__ ( self ): """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCamelCase__ ( self ): """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCamelCase__ ( self ): """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase_ : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCamelCase__ ( self ): """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / self.red def UpperCamelCase__ ( self ): """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
61
_lowerCamelCase : int = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCamelCase : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCamelCase : List[str] = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def a_ ( __lowercase : int , __lowercase : int , __lowercase : int ) -> str: assert len(str(__lowercase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case = year // 100 _snake_case = (5 * (century % 4) + 2) % 7 _snake_case = year % 100 _snake_case = centurian % 12 _snake_case = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
282
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split SCREAMING_SNAKE_CASE :Tuple = datasets.load_iris() SCREAMING_SNAKE_CASE :Dict = np.array(data['data']) SCREAMING_SNAKE_CASE :Optional[int] = np.array(data['target']) SCREAMING_SNAKE_CASE :List[str] = data['target_names'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = train_test_split(X, y) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(a_ ) - np.array(a_ ) ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_=5 ) -> Dict: """simple docstring""" __A = zip(a_ , a_ ) # List of distances of all points from the point to be classified __A = [] for data_point in data: __A = euclidean_distance(data_point[0] , a_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __A = [i[1] for i in sorted(a_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __A = Counter(a_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
124
0
'''simple docstring''' import os import numpy import onnx def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> int: UpperCAmelCase : Tuple = a.name UpperCAmelCase : Optional[Any] = b.name UpperCAmelCase : List[str] = '''''' UpperCAmelCase : int = '''''' UpperCAmelCase : Optional[Any] = a == b UpperCAmelCase : Any = name_a UpperCAmelCase : List[str] = name_b return res def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ) -> Any: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCAmelCase , _lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCAmelCase , _lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> Any: for n in graph_proto.node: _node_replace_input_with(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ) -> int: UpperCAmelCase : Any = list(model.graph.initializer ) UpperCAmelCase : Union[str, Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase : Union[str, Any] = inits[i].name UpperCAmelCase : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int ) -> Tuple: UpperCAmelCase : List[str] = os.path.dirname(_lowerCAmelCase ) UpperCAmelCase : List[str] = os.path.basename(_lowerCAmelCase ) UpperCAmelCase : int = onnx.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : List[str] = list(model.graph.initializer ) UpperCAmelCase : Dict = set() UpperCAmelCase : Tuple = {} UpperCAmelCase : Tuple = [] UpperCAmelCase : Dict = 0 for i in range(len(_lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCAmelCase ) dup_set.add(_lowerCAmelCase ) UpperCAmelCase : int = inits[j].data_type UpperCAmelCase : Union[str, Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , _lowerCAmelCase ) total_reduced_size += mem_size UpperCAmelCase : List[str] = inits[i].name UpperCAmelCase : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) UpperCAmelCase : Union[str, Any] = sorted(_lowerCAmelCase ) _remove_dup_initializers_from_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : List[Any] = '''optimized_''' + model_file_name UpperCAmelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) onnx.save(_lowerCAmelCase , _lowerCAmelCase ) return new_model
23
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar _lowerCamelCase : Any = TypeVar('T') class lowercase ( Generic[T]): def __init__( self : Tuple , _lowerCamelCase : T ): """simple docstring""" A_ : Union[str, Any] = data A_ : List[Any] = self A_ : Optional[Any] = 0 class lowercase ( Generic[T]): def __init__( self : int ): """simple docstring""" A_ : dict[T, DisjointSetTreeNode[T]] = {} def a_ ( self : List[str] , _lowerCamelCase : T ): """simple docstring""" A_ : List[str] = DisjointSetTreeNode(_lowerCamelCase ) def a_ ( self : Dict , _lowerCamelCase : T ): """simple docstring""" A_ : Any = self.map[data] if elem_ref != elem_ref.parent: A_ : Any = self.find_set(elem_ref.parent.data ) return elem_ref.parent def a_ ( self : Union[str, Any] , _lowerCamelCase : DisjointSetTreeNode[T] , _lowerCamelCase : DisjointSetTreeNode[T] ): """simple docstring""" if nodea.rank > nodea.rank: A_ : List[str] = nodea else: A_ : Optional[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def a_ ( self : Optional[Any] , _lowerCamelCase : T , _lowerCamelCase : T ): """simple docstring""" self.link(self.find_set(_lowerCamelCase ) , self.find_set(_lowerCamelCase ) ) class lowercase ( Generic[T]): def __init__( self : Tuple ): """simple docstring""" A_ : dict[T, dict[T, int]] = {} def a_ ( self : List[Any] , _lowerCamelCase : T ): """simple docstring""" if node not in self.connections: A_ : Tuple = {} def a_ ( self : Optional[Any] , _lowerCamelCase : T , _lowerCamelCase : T , _lowerCamelCase : int ): """simple docstring""" self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) A_ : int = weight A_ : Dict = weight def a_ ( self : Any ): """simple docstring""" A_ : Tuple = [] A_ : Tuple = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _lowerCamelCase : x[2] ) # creating the disjoint set A_ : Optional[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_lowerCamelCase ) # MST generation A_ : Any = 0 A_ : Optional[int] = 0 A_ : Union[str, Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: A_ , A_ , A_ : int = edges[index] index += 1 A_ : Tuple = disjoint_set.find_set(_lowerCamelCase ) A_ : int = disjoint_set.find_set(_lowerCamelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) disjoint_set.union(_lowerCamelCase , _lowerCamelCase ) return graph
167
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = XLNetTokenizer lowercase__ = XLNetTokenizerFast lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : Dict = XLNetTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = '<s>' _UpperCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'<eod>' ) self.assertEqual(len(lowerCamelCase__ ) ,1006 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Dict = XLNetTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) _UpperCamelCase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[285, 46, 10, 170, 382] ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _UpperCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = XLNetTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] ,) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['▁he', 'll', 'o'] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : int = XLNetTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ) _UpperCamelCase : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] ,) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) _UpperCamelCase : str = tokenizer.encode('sequence builders' ,add_special_tokens=lowerCamelCase__ ) _UpperCamelCase : List[Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=lowerCamelCase__ ) _UpperCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) _UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' # fmt: off _UpperCamelCase : Tuple = {'input_ids': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='xlnet-base-cased' ,revision='c841166438c31ec7ca9a106dee7bb312b73ae511' ,)
236
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: snake_case_ : List[Any] = None snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Dict = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ : List[str] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } snake_case_ : str = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off snake_case_ : Optional[Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = NllbTokenizer lowercase__ = [] lowercase__ = [] def __init__( self : List[Any] ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Dict=None ,lowerCamelCase__ : List[Any]="<s>" ,lowerCamelCase__ : Dict="</s>" ,lowerCamelCase__ : List[Any]="</s>" ,lowerCamelCase__ : Union[str, Any]="<s>" ,lowerCamelCase__ : List[Any]="<unk>" ,lowerCamelCase__ : Any="<pad>" ,lowerCamelCase__ : Optional[Any]="<mask>" ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : Union[str, Any]=False ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Optional[int] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token _UpperCamelCase : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,src_lang=lowerCamelCase__ ,tgt_lang=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,legacy_behaviour=lowerCamelCase__ ,**lowerCamelCase__ ,) _UpperCamelCase : int = vocab_file _UpperCamelCase : int = False if not self.vocab_file else True _UpperCamelCase : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _UpperCamelCase : List[str] = { lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _UpperCamelCase : List[str] = src_lang if src_lang is not None else 'eng_Latn' _UpperCamelCase : int = self.convert_tokens_to_ids(self._src_lang ) _UpperCamelCase : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Dict = [self.sep_token_id] _UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] ,lowerCamelCase__ : Optional[str] ,**lowerCamelCase__ : Dict ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _UpperCamelCase : Tuple = src_lang _UpperCamelCase : Optional[Any] = self(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Tuple = self.convert_tokens_to_ids(lowerCamelCase__ ) _UpperCamelCase : str = tgt_lang_id return inputs def UpperCamelCase_ ( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str = "eng_Latn" ,lowerCamelCase__ : Optional[List[str]] = None ,lowerCamelCase__ : str = "fra_Latn" ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : Tuple = src_lang _UpperCamelCase : List[str] = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : int = self.convert_tokens_to_ids(lowerCamelCase__ ) if self.legacy_behaviour: _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : int = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase : List[Any] = [self.cur_lang_code] _UpperCamelCase : List[Any] = [self.eos_token_id] _UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCamelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Any = self.convert_tokens_to_ids(lowerCamelCase__ ) if self.legacy_behaviour: _UpperCamelCase : Tuple = [] _UpperCamelCase : str = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase : Tuple = [self.cur_lang_code] _UpperCamelCase : Optional[Any] = [self.eos_token_id] _UpperCamelCase : int = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCamelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _UpperCamelCase : List[Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file ,lowerCamelCase__ ) return (out_vocab_file,)
236
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self: Optional[int] ) -> int: snake_case_ :Optional[int] = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ :List[Any] = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) snake_case_ :Dict = """The dog is cute and lives in the garden house""" snake_case_ :Dict = jnp.array([tokenizer.encode(snake_case )] ) snake_case_ :Optional[Any] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim snake_case_ :Optional[Any] = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) snake_case_ :List[Any] = model(snake_case )["""last_hidden_state"""] self.assertEqual(output.shape , snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case , atol=1E-3 ) )
66
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
import math import qiskit def __UpperCamelCase ( lowercase__ : int = 1 , lowercase__ : int = 1 , lowercase__ : int = 1 ) -> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(lowercase__ , lowercase__ ) or isinstance(lowercase__ , lowercase__ ) or isinstance(lowercase__ , lowercase__ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(lowercase__ ) != input_a) or (math.floor(lowercase__ ) != input_a) or (math.floor(lowercase__ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers lowerCAmelCase_ : Union[str, Any] = qiskit.QuantumRegister(4 , """qr""" ) lowerCAmelCase_ : Optional[Any] = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries lowerCAmelCase_ : str = [input_a, input_a, carry_in] lowerCAmelCase_ : Optional[Any] = qiskit.QuantumCircuit(lowercase__ , lowercase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowercase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowercase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowercase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowercase__ ) # measure the last two qbits lowerCAmelCase_ : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) lowerCAmelCase_ : Optional[Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1000 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
28
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = BloomTokenizerFast _SCREAMING_SNAKE_CASE = BloomTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = """tokenizer_file""" _SCREAMING_SNAKE_CASE = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def A ( self : List[str] ): """simple docstring""" super().setUp() UpperCamelCase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : List[str] , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] UpperCamelCase = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] UpperCamelCase = tokenizer.batch_encode_plus(UpperCamelCase__ )['input_ids'] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : int , UpperCamelCase__ : Tuple=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input UpperCamelCase = 'This is a simple input' UpperCamelCase = ['This is a simple input 1', 'This is a simple input 2'] UpperCamelCase = ('This is a simple input', 'This is a pair') UpperCamelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__ ) tokenizer_r.encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__ ) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__ ) tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__ ) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__ ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) UpperCamelCase = None # Hotfixing padding = None self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' , ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=UpperCamelCase__ ) UpperCamelCase = next(iter(UpperCamelCase__ ) )['premise'] # pick up one data UpperCamelCase = list(sample_data.values() ) UpperCamelCase = list(map(tokenizer.encode , UpperCamelCase__ ) ) UpperCamelCase = [tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) for x in output_tokens] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
28
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A__: Union[str, Any] = input('''Enter image url: ''').strip() print(F"Downloading image from {url} ...") A__: Tuple = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image A__: Union[str, Any] = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] A__: List[Any] = requests.get(image_url).content A__: List[str] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
276
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: return number | (1 << position) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: return number & ~(1 << position) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: return number ^ (1 << position) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: return ((number >> position) & 1) == 1 def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
230
"""simple docstring""" SCREAMING_SNAKE_CASE = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] SCREAMING_SNAKE_CASE = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] SCREAMING_SNAKE_CASE = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] SCREAMING_SNAKE_CASE = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] SCREAMING_SNAKE_CASE = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] SCREAMING_SNAKE_CASE = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] SCREAMING_SNAKE_CASE = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] SCREAMING_SNAKE_CASE = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
230
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : int =get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class _A ( UpperCamelCase__ , unittest.TestCase ): snake_case__ : Any = PegasusTokenizer snake_case__ : Optional[int] = PegasusTokenizerFast snake_case__ : str = True snake_case__ : Tuple = True def A__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase = PegasusTokenizer(__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return ("This is a test", "This is a test") def A__ ( self ): """simple docstring""" lowercase = """</s>""" lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(__lowerCAmelCase ) , 1103 ) def A__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def A__ ( self ): """simple docstring""" lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase = rust_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] lowercase = py_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase = tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase = """To ensure a smooth flow of bank resolutions.""" lowercase = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase = tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def A__ ( self ): """simple docstring""" lowercase = ["""This is going to be way too long.""" * 150, """short example"""] lowercase = ["""not super long but more than 5 tokens""", """tiny"""] lowercase = self._large_tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" ) lowercase = self._large_tokenizer( text_target=__lowerCAmelCase , max_length=5 , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def A__ ( self ): """simple docstring""" lowercase = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class _A ( UpperCamelCase__ , unittest.TestCase ): snake_case__ : List[Any] = PegasusTokenizer snake_case__ : Dict = PegasusTokenizerFast snake_case__ : Optional[int] = True snake_case__ : List[str] = True def A__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase = PegasusTokenizer(__lowerCAmelCase , offset=0 , mask_token_sent=__lowerCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return ("This is a test", "This is a test") def A__ ( self ): """simple docstring""" lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase = rust_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] lowercase = py_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_torch def A__ ( self ): """simple docstring""" lowercase = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase = ["""not super long but more than 5 tokens""", """tiny"""] lowercase = self._large_tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" ) lowercase = self._large_tokenizer( text_target=__lowerCAmelCase , max_length=5 , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCAmelCase ) == 2 # input_ids, attention_mask. def A__ ( self ): """simple docstring""" lowercase = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase = self._large_tokenizer(__lowerCAmelCase ).input_ids self.assertListEqual( __lowerCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
197
def SCREAMING_SNAKE_CASE__ ( ) -> list[list[int]]: return [list(range(1000 - i ,-1000 - i ,-1 ) ) for i in range(1000 )] lowerCamelCase : List[Any] = generate_large_matrix() lowerCamelCase : Optional[int] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: assert all(row == sorted(lowercase ,reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase ,reverse=lowercase ) for col in zip(*lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Tuple = 0 snake_case : List[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case : Tuple = (left + right) // 2 snake_case : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case : List[Any] = mid + 1 else: snake_case : str = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Union[str, Any] = 0 snake_case : Dict = len(grid[0] ) for i in range(len(lowercase ) ): snake_case : Tuple = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def SCREAMING_SNAKE_CASE__ ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) snake_case : List[Any] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case : int = timeit(f"""{func}(grid=grid)""" ,setup=lowercase ,number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class A__ ( lowerCamelCase__): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
362
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class A__ ( _lowerCamelCase): A_ : str = 'nllb-moe' A_ : Optional[Any] = ['past_key_values'] A_ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=12_81_12 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_28 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : int = vocab_size __lowerCAmelCase : str = max_position_embeddings __lowerCAmelCase : Dict = d_model __lowerCAmelCase : Tuple = encoder_ffn_dim __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Any = encoder_attention_heads __lowerCAmelCase : Tuple = decoder_ffn_dim __lowerCAmelCase : Dict = decoder_layers __lowerCAmelCase : str = decoder_attention_heads __lowerCAmelCase : str = dropout __lowerCAmelCase : List[str] = attention_dropout __lowerCAmelCase : Optional[int] = activation_dropout __lowerCAmelCase : List[Any] = activation_function __lowerCAmelCase : List[str] = init_std __lowerCAmelCase : Union[str, Any] = encoder_layerdrop __lowerCAmelCase : List[Any] = decoder_layerdrop __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : Union[str, Any] = router_z_loss_coef __lowerCAmelCase : Optional[Any] = router_aux_loss_coef __lowerCAmelCase : int = decoder_sparse_step __lowerCAmelCase : str = encoder_sparse_step __lowerCAmelCase : Tuple = num_experts __lowerCAmelCase : Dict = expert_capacity __lowerCAmelCase : Union[str, Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowerCAmelCase : Union[str, Any] = router_dtype __lowerCAmelCase : Any = router_ignore_padding_tokens __lowerCAmelCase : str = batch_prioritized_routing __lowerCAmelCase : Tuple = second_expert_policy __lowerCAmelCase : List[str] = normalize_router_prob_before_dropping __lowerCAmelCase : Dict = moe_eval_capacity_token_fraction __lowerCAmelCase : Union[str, Any] = moe_token_dropout __lowerCAmelCase : List[Any] = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
182
0
import unittest from transformers import DonutProcessor _UpperCAmelCase : Optional[int] = "naver-clova-ix/donut-base" class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: int ): lowercase :List[str] = DonutProcessor.from_pretrained(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :str = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } lowercase :Any = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) lowercase :Any = self.processor.tokenajson(_lowerCAmelCase ) self.assertDictEqual(_lowerCAmelCase , _lowerCAmelCase )
236
import os from math import logaa def UpperCAmelCase__ ( lowerCamelCase = "base_exp.txt" ): lowercase :float = 0 lowercase :str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase ), lowerCamelCase ) ) ): lowercase , lowercase :str = list(map(lowerCamelCase, line.split("," ) ) ) if x * logaa(lowerCamelCase ) > largest: lowercase :Optional[Any] = x * logaa(lowerCamelCase ) lowercase :Any = i + 1 return result if __name__ == "__main__": print(solution())
236
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase_ = TypeVar("T") def lowercase ( lowerCAmelCase__ : int ) -> int: return (position - 1) // 2 def lowercase ( lowerCAmelCase__ : int ) -> int: return (2 * position) + 1 def lowercase ( lowerCAmelCase__ : int ) -> int: return (2 * position) + 2 class __lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): __a = [] __a = {} __a = 0 def __len__( self ): return self.elements def __repr__( self ): return str(self.heap ) def __UpperCAmelCase ( self ): # Check if the priority queue is empty return self.elements == 0 def __UpperCAmelCase ( self , _a , _a ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) __a = self.elements self.elements += 1 self._bubble_up(_a ) def __UpperCAmelCase ( self ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __a , __a = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __a , __a = self.heap[0] self._bubble_down(_a ) return elem def __UpperCAmelCase ( self , _a , _a ): # Update the weight of the given key __a = self.position_map[elem] __a = (elem, weight) if position > 0: __a = get_parent_position(_a ) __a , __a = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_a ) else: self._bubble_down(_a ) else: self._bubble_down(_a ) def __UpperCAmelCase ( self , _a ): # Place a node at the proper position (upward movement) [to be used internally # only] __a = self.position_map[elem] if curr_pos == 0: return None __a = get_parent_position(_a ) __a , __a = self.heap[curr_pos] __a , __a = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_a , _a ) return self._bubble_up(_a ) return None def __UpperCAmelCase ( self , _a ): # Place a node at the proper position (downward movement) [to be used # internally only] __a = self.position_map[elem] __a , __a = self.heap[curr_pos] __a = get_child_left_position(_a ) __a = get_child_right_position(_a ) if child_left_position < self.elements and child_right_position < self.elements: __a , __a = self.heap[child_left_position] __a , __a = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) if child_left_position < self.elements: __a , __a = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) else: return None if child_right_position < self.elements: __a , __a = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) return None def __UpperCAmelCase ( self , _a , _a ): # Swap the nodes at the given positions __a = self.heap[nodea_pos][0] __a = self.heap[nodea_pos][0] __a , __a = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __a = nodea_pos __a = nodea_pos class __lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): __a = {} __a = 0 def __repr__( self ): return str(self.connections ) def __len__( self ): return self.nodes def __UpperCAmelCase ( self , _a ): # Add a node in the graph if it is not in the graph if node not in self.connections: __a = {} self.nodes += 1 def __UpperCAmelCase ( self , _a , _a , _a ): # Add an edge between 2 nodes in the graph self.add_node(_a ) self.add_node(_a ) __a = weight __a = weight def lowercase ( lowerCAmelCase__ : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: __a = {node: maxsize for node in graph.connections} __a = {node: None for node in graph.connections} __a = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization __a = priority_queue.extract_min() __a = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) __a = node # running prim's algorithm while not priority_queue.is_empty(): __a = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) __a = node return dist, parent
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """deta""" _SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=9_0_0 , UpperCamelCase__ : str=2_0_4_8 , UpperCamelCase__ : int=6 , UpperCamelCase__ : List[Any]=2_0_4_8 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : Optional[int]=6 , UpperCamelCase__ : Optional[int]=1_0_2_4 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any="relu" , UpperCamelCase__ : Tuple=2_5_6 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Tuple=0.0_2 , UpperCamelCase__ : Optional[Any]=1.0 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : int="sine" , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=3_0_0 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : str=5 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : int=1 , UpperCamelCase__ : List[Any]=5 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Union[str, Any]=0.2_5 , **UpperCamelCase__ : int , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = backbone_config.pop('model_type' ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(UpperCamelCase__ ) UpperCamelCase = backbone_config UpperCamelCase = num_queries UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type # deformable attributes UpperCamelCase = num_feature_levels UpperCamelCase = encoder_n_points UpperCamelCase = decoder_n_points UpperCamelCase = two_stage UpperCamelCase = two_stage_num_proposals UpperCamelCase = with_box_refine UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def A ( self : List[str] ): """simple docstring""" return self.encoder_attention_heads @property def A ( self : Tuple ): """simple docstring""" return self.d_model def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
28
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Dict: """simple docstring""" UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" UpperCamelCase = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase = in_proj_weight_cross_attn[:256, :] UpperCamelCase = in_proj_bias_cross_attn[:256] UpperCamelCase = in_proj_weight_cross_attn[256:512, :] UpperCamelCase = in_proj_bias_cross_attn[256:512] UpperCamelCase = in_proj_weight_cross_attn[-256:, :] UpperCamelCase = in_proj_bias_cross_attn[-256:] def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = image.size UpperCamelCase = max(A__ , A__ ) UpperCamelCase = 800 if 'detection' in checkpoint_url else 1_000 UpperCamelCase = target_max_size / current_max_size UpperCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = F.to_tensor(A__ ) UpperCamelCase = F.normalize(A__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" logger.info('Converting model...' ) # load original state dict UpperCamelCase = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) UpperCamelCase = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val # create HuggingFace model and load state dict UpperCamelCase = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCamelCase = 15 UpperCamelCase = 2 UpperCamelCase = {0: 'table', 1: 'table rotated'} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} else: UpperCamelCase = 125 UpperCamelCase = 6 UpperCamelCase = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1_000 ) UpperCamelCase = TableTransformerForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() # verify our conversion UpperCamelCase = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' UpperCamelCase = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=A__ ) UpperCamelCase = Image.open(A__ ).convert('RGB' ) UpperCamelCase = normalize(resize(A__ , A__ ) ).unsqueeze(0 ) UpperCamelCase = model(A__ ) if "detection" in checkpoint_url: UpperCamelCase = (1, 15, 3) UpperCamelCase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCamelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCamelCase = (1, 125, 7) UpperCamelCase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCamelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) UpperCamelCase = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(A__ ) image_processor.push_to_hub(A__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCamelCase : int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
28
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase_ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ = logging.getLogger() def snake_case ( ): UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : int = parser.parse_args() return args.f def snake_case ( A__ ,A__="eval" ): UpperCAmelCase_ : Any = os.path.join(__lowerCAmelCase ,F"""{split}_results.json""" ) if os.path.exists(__lowerCAmelCase ): with open(__lowerCAmelCase ,"r" ) as f: return json.load(__lowerCAmelCase ) raise ValueError(F"""can\'t find {path}""" ) lowerCamelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase_ (A__ ): def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : List[Any] = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(__snake_case , "argv" , __snake_case ): run_flax_glue.main() UpperCAmelCase_ : str = get_results(__snake_case ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : Tuple = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(__snake_case , "argv" , __snake_case ): run_clm_flax.main() UpperCAmelCase_ : Optional[int] = get_results(__snake_case ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : Any = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : Union[str, Any] = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(__snake_case , "argv" , __snake_case ): run_summarization_flax.main() UpperCAmelCase_ : Optional[Any] = get_results(__snake_case , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : Dict = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(__snake_case , "argv" , __snake_case ): run_mlm_flax.main() UpperCAmelCase_ : int = get_results(__snake_case ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_ : Tuple = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : Any = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(__snake_case , "argv" , __snake_case ): run_ta_mlm_flax.main() UpperCAmelCase_ : Dict = get_results(__snake_case ) self.assertGreaterEqual(result["eval_accuracy"] , 0.4_2 ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCAmelCase_ : Dict = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase_ : List[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : Optional[int] = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(__snake_case , "argv" , __snake_case ): run_flax_ner.main() UpperCAmelCase_ : Optional[Any] = get_results(__snake_case ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: UpperCAmelCase_ : Tuple = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : Tuple = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(__snake_case , "argv" , __snake_case ): run_qa.main() UpperCAmelCase_ : int = get_results(__snake_case ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
353
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (__A ): __magic_name__ = ['''pixel_values'''] def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 255 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : Any = size if size is not None else {"shortest_edge": 256} UpperCAmelCase_ : List[str] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase_ , param_name="crop_size" ) UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : int = size UpperCAmelCase_ : Optional[int] = resample UpperCAmelCase_ : Tuple = do_center_crop UpperCAmelCase_ : Any = crop_size UpperCAmelCase_ : List[str] = do_rescale UpperCAmelCase_ : Dict = rescale_factor UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Any , ) -> np.ndarray: UpperCAmelCase_ : Any = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase_ : List[Any] = get_resize_output_image_size(lowerCAmelCase_ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray: UpperCAmelCase_ : List[str] = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Tuple , ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : Optional[int] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : List[Any] = get_size_dict(lowerCAmelCase_ , param_name="crop_size" ) UpperCAmelCase_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : List[str] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Optional[Any] = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Optional[Any] = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: UpperCAmelCase_ : Union[str, Any] = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Tuple = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ : Union[str, Any] = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ : Any = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] UpperCAmelCase_ : Any = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] UpperCAmelCase_ : int = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Tuple] = None ) -> Optional[int]: UpperCAmelCase_ : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = target_sizes.numpy() UpperCAmelCase_ : Dict = [] for idx in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCAmelCase_ ) UpperCAmelCase_ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase_ ) else: UpperCAmelCase_ : Tuple = logits.argmax(dim=1 ) UpperCAmelCase_ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
253
0
def _lowerCAmelCase ( __lowerCAmelCase = 10**12 ) -> int: """simple docstring""" snake_case__ : List[str] = 1 snake_case__ : Optional[Any] = 0 snake_case__ : Union[str, Any] = 1 snake_case__ : Union[str, Any] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"""{solution() = }""")
230
A__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" assert len(str(__lowerCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: snake_case__ : Optional[int] = year // 100 snake_case__ : List[str] = (5 * (century % 4) + 2) % 7 snake_case__ : Dict = year % 100 snake_case__ : Union[str, Any] = centurian % 12 snake_case__ : List[Any] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 snake_case__ : List[str] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) snake_case__ : List[str] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
230
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ = TypeVar('''KEY''') A_ = TypeVar('''VAL''') @dataclass(frozen=UpperCamelCase , slots=UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): snake_case_ = 42 snake_case_ = 42 class __SCREAMING_SNAKE_CASE ( _Item ): def __init__( self : Optional[Any] ): '''simple docstring''' super().__init__(snake_case , snake_case ) def __bool__( self : str ): '''simple docstring''' return False A_ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): def __init__( self : Any , snake_case : int = 8 , snake_case : float = 0.75 ): '''simple docstring''' A__ : List[Any] = initial_block_size A__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 A__ : Dict = capacity_factor A__ : Dict = 0 def _UpperCamelCase ( self : Optional[int] , snake_case : KEY ): '''simple docstring''' return hash(snake_case ) % len(self._buckets ) def _UpperCamelCase ( self : Tuple , snake_case : int ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Any , snake_case : int , snake_case : KEY , snake_case : VAL ): '''simple docstring''' A__ : int = self._buckets[ind] if not stored: A__ : Optional[Any] = _Item(snake_case , snake_case ) self._len += 1 return True elif stored.key == key: A__ : int = _Item(snake_case , snake_case ) return True else: return False def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False A__ : List[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : Any , snake_case : int ): '''simple docstring''' A__ : int = self._buckets A__ : Dict = [None] * new_size A__ : Union[str, Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : Any ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : Optional[Any] , snake_case : KEY ): '''simple docstring''' A__ : Optional[Any] = self._get_bucket_index(snake_case ) for _ in range(len(self._buckets ) ): yield ind A__ : Tuple = self._get_next_ind(snake_case ) def _UpperCamelCase ( self : Dict , snake_case : KEY , snake_case : VAL ): '''simple docstring''' for ind in self._iterate_buckets(snake_case ): if self._try_set(snake_case , snake_case , snake_case ): break def __setitem__( self : str , snake_case : KEY , snake_case : VAL ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(snake_case , snake_case ) def __delitem__( self : Optional[int] , snake_case : KEY ): '''simple docstring''' for ind in self._iterate_buckets(snake_case ): A__ : List[str] = self._buckets[ind] if item is None: raise KeyError(snake_case ) if item is _deleted: continue if item.key == key: A__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , snake_case : KEY ): '''simple docstring''' for ind in self._iterate_buckets(snake_case ): A__ : List[str] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(snake_case ) def __len__( self : Any ): '''simple docstring''' return self._len def __iter__( self : Tuple ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self : Union[str, Any] ): '''simple docstring''' A__ : int = """ ,""".join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
296
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } A_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) A_ = 0 A_ = 1 A_ = 2 A_ = 3 A_ = 4 class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 'left' def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ): '''simple docstring''' A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) A__ : str = 3 A__ : str = do_lower_case A__ : Optional[Any] = remove_space A__ : List[Any] = keep_accents A__ : Union[str, Any] = vocab_file A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): '''simple docstring''' A__ : int = self.__dict__.copy() A__ : int = None return state def __setstate__( self : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Optional[int] = {} A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ): '''simple docstring''' if self.remove_space: A__ : Optional[Any] = """ """.join(inputs.strip().split() ) else: A__ : Dict = inputs A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A__ : Any = unicodedata.normalize("""NFKD""" , snake_case ) A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: A__ : Any = outputs.lower() return outputs def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ): '''simple docstring''' A__ : Dict = self.preprocess_text(snake_case ) A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case ) A__ : Optional[int] = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ : int = cur_pieces[1:] else: A__ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _UpperCamelCase ( self : List[str] , snake_case : Tuple ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _UpperCamelCase ( self : List[str] , snake_case : Any ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip() return out_string def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ): '''simple docstring''' A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case ) A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ : Any = [] A__ : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) A__ : str = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A__ : Dict = """""".join(snake_case ) A__ : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ : Tuple = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Tuple = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Any = [self.sep_token_id] A__ : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ : List[Any] = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , """wb""" ) as fi: A__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
296
1
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : str , snake_case__ : str ): A = RobertaPreLayerNormConfig.from_pretrained( snake_case__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict A = torch.load(hf_hub_download(repo_id=snake_case__ , filename='pytorch_model.bin' ) ) A = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): A = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue A = tensor_value A = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case__ , config=snake_case__ , state_dict=snake_case__ ) model.save_pretrained(snake_case__ ) # convert tokenizer A = AutoTokenizer.from_pretrained(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
74
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A ( _lowercase ): if "model" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: SCREAMING_SNAKE_CASE : Tuple = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.split('''.''' )[0].split('''_''' )[-1] SCREAMING_SNAKE_CASE : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: SCREAMING_SNAKE_CASE : Dict = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE : List[str] = '''yoso.''' + orig_key return orig_key def A ( _lowercase , _lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(_lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE : Union[str, Any] = val SCREAMING_SNAKE_CASE : List[str] = orig_state_dict['''cls.predictions.decoder.bias'''] SCREAMING_SNAKE_CASE : Dict = torch.arange(_lowercase ).expand((1, -1) ) + 2 return orig_state_dict def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowercase , map_location='''cpu''' )['''model_state_dict'''] SCREAMING_SNAKE_CASE : List[Any] = YosoConfig.from_json_file(_lowercase ) SCREAMING_SNAKE_CASE : str = YosoForMaskedLM(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = convert_checkpoint_helper(config.max_position_embeddings , _lowercase ) print(model.load_state_dict(_lowercase ) ) model.eval() model.save_pretrained(_lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
182
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str, lowerCamelCase : int, lowerCamelCase : Tuple=13, lowerCamelCase : Any=7, lowerCamelCase : Dict=True, lowerCamelCase : Optional[int]=True, lowerCamelCase : List[Any]=False, lowerCamelCase : Dict=True, lowerCamelCase : int=99, lowerCamelCase : Optional[int]=32, lowerCamelCase : int=5, lowerCamelCase : List[str]=4, lowerCamelCase : int=37, lowerCamelCase : int="gelu", lowerCamelCase : int=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : Optional[int]=512, lowerCamelCase : Dict=16, lowerCamelCase : List[Any]=2, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : List[Any]=3, lowerCamelCase : Any=4, lowerCamelCase : Union[str, Any]=None, )-> Dict: lowerCamelCase__ : Optional[Any] =parent lowerCamelCase__ : Optional[int] =batch_size lowerCamelCase__ : Optional[int] =seq_length lowerCamelCase__ : str =is_training lowerCamelCase__ : int =use_input_mask lowerCamelCase__ : Dict =use_token_type_ids lowerCamelCase__ : Optional[int] =use_labels lowerCamelCase__ : Tuple =vocab_size lowerCamelCase__ : str =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Union[str, Any] =num_attention_heads lowerCamelCase__ : Optional[Any] =intermediate_size lowerCamelCase__ : Optional[int] =hidden_act lowerCamelCase__ : Tuple =hidden_dropout_prob lowerCamelCase__ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] =max_position_embeddings lowerCamelCase__ : Union[str, Any] =type_vocab_size lowerCamelCase__ : Union[str, Any] =type_sequence_label_size lowerCamelCase__ : Union[str, Any] =initializer_range lowerCamelCase__ : List[Any] =num_labels lowerCamelCase__ : Dict =num_choices lowerCamelCase__ : Tuple =scope def snake_case ( self : Optional[Any] )-> Optional[int]: lowerCamelCase__ : Dict =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : str =None if self.use_input_mask: lowerCamelCase__ : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Dict =None if self.use_token_type_ids: lowerCamelCase__ : int =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Any =None lowerCamelCase__ : Dict =None lowerCamelCase__ : Tuple =None if self.use_labels: lowerCamelCase__ : Optional[Any] =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Any =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : Any =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : Union[str, Any] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Dict )-> Optional[Any]: return BioGptConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase__, initializer_range=self.initializer_range, ) def snake_case ( self : Dict, lowerCamelCase : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Optional[int], lowerCamelCase : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Optional[int] )-> Optional[Any]: lowerCamelCase__ : Optional[int] =BioGptModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase__ : str =model(lowerCamelCase__, attention_mask=lowerCamelCase__ ) lowerCamelCase__ : Dict =model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : int, lowerCamelCase : Dict, lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Dict, lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], )-> List[str]: lowerCamelCase__ : Tuple =BioGptForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase__ : Optional[int] =model(lowerCamelCase__, attention_mask=lowerCamelCase__, token_type_ids=lowerCamelCase__, labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Tuple, *lowerCamelCase : Optional[Any] )-> Optional[int]: lowerCamelCase__ : int =BioGptModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # create attention mask lowerCamelCase__ : Union[str, Any] =torch.ones(input_ids.shape, dtype=torch.long, device=lowerCamelCase__ ) lowerCamelCase__ : str =self.seq_length // 2 lowerCamelCase__ : Dict =0 # first forward pass lowerCamelCase__ : List[str] =model(lowerCamelCase__, attention_mask=lowerCamelCase__ ).to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Union[str, Any] =ids_tensor((self.batch_size, 1), config.vocab_size ) # change a random masked slice from input_ids lowerCamelCase__ : List[Any] =ids_tensor((1,), lowerCamelCase__ ).item() + 1 lowerCamelCase__ : List[Any] =ids_tensor((self.batch_size, 1), config.vocab_size ).squeeze(-1 ) lowerCamelCase__ : Dict =random_other_next_tokens # append to next input_ids and attn_mask lowerCamelCase__ : List[str] =torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : str =torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=lowerCamelCase__ )], dim=1, ) # get two different outputs lowerCamelCase__ : Tuple =model(lowerCamelCase__, attention_mask=lowerCamelCase__ )['''last_hidden_state'''] lowerCamelCase__ : Optional[int] =model(lowerCamelCase__, past_key_values=lowerCamelCase__, attention_mask=lowerCamelCase__ )['''last_hidden_state'''] # select random slice lowerCamelCase__ : Union[str, Any] =ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : int =output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1E-3 ) ) def snake_case ( self : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Dict, *lowerCamelCase : str )-> int: lowerCamelCase__ : Optional[int] =BioGptModel(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() lowerCamelCase__ : Any =torch.ones(input_ids.shape, dtype=torch.long, device=lowerCamelCase__ ) # first forward pass lowerCamelCase__ : str =model(lowerCamelCase__, attention_mask=lowerCamelCase__, use_cache=lowerCamelCase__ ) lowerCamelCase__ : List[str] =outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : int =ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : Optional[Any] =ids_tensor((self.batch_size, 3), 2 ) # append to next input_ids and lowerCamelCase__ : str =torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Any =torch.cat([attention_mask, next_attn_mask], dim=-1 ) lowerCamelCase__ : int =model(lowerCamelCase__, attention_mask=lowerCamelCase__ )['''last_hidden_state'''] lowerCamelCase__ : int =model(lowerCamelCase__, attention_mask=lowerCamelCase__, past_key_values=lowerCamelCase__ )[ '''last_hidden_state''' ] # select random slice lowerCamelCase__ : int =ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Any =output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : List[str] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1E-3 ) ) def snake_case ( self : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Tuple, lowerCamelCase : Dict, lowerCamelCase : Any, *lowerCamelCase : List[str], lowerCamelCase : Tuple=False )-> Optional[Any]: lowerCamelCase__ : List[str] =BioGptForCausalLM(lowerCamelCase__ ) model.to(lowerCamelCase__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() lowerCamelCase__ : List[str] =model(lowerCamelCase__, labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case ( self : List[str], lowerCamelCase : Any, *lowerCamelCase : List[Any] )-> str: lowerCamelCase__ : Tuple =BioGptModel(lowerCamelCase__ ) lowerCamelCase__ : List[Any] =model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ), 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ), 0.01 ) def snake_case ( self : Tuple, lowerCamelCase : int, lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : str, *lowerCamelCase : Optional[Any] )-> int: lowerCamelCase__ : List[str] =self.num_labels lowerCamelCase__ : List[Any] =BioGptForTokenClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase__ : str =model(lowerCamelCase__, attention_mask=lowerCamelCase__, token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Any )-> Optional[Any]: lowerCamelCase__ : str =self.prepare_config_and_inputs() ( lowerCamelCase__ ) : int =config_and_inputs lowerCamelCase__ : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _a = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _a = (BioGptForCausalLM,) if is_torch_available() else () _a = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) _a = False def snake_case ( self : int )-> List[Any]: lowerCamelCase__ : Optional[int] =BioGptModelTester(self ) lowerCamelCase__ : Any =ConfigTester(self, config_class=lowerCamelCase__, hidden_size=37 ) def snake_case ( self : Tuple )-> str: self.config_tester.run_common_tests() def snake_case ( self : Union[str, Any] )-> Tuple: lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case ( self : List[str] )-> Dict: lowerCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Optional[int] =type self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case ( self : Optional[int] )-> List[str]: lowerCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCamelCase__ ) def snake_case ( self : Any )-> List[Any]: lowerCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCamelCase__, gradient_checkpointing=lowerCamelCase__ ) def snake_case ( self : Union[str, Any] )-> Tuple: lowerCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCamelCase__ ) def snake_case ( self : int )-> Optional[int]: lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCamelCase__ ) def snake_case ( self : Optional[Any] )-> List[Any]: lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCamelCase__ ) @slow def snake_case ( self : str )-> int: lowerCamelCase__ : Any =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(lowerCamelCase__ ) lowerCamelCase__ : List[str] =BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowerCamelCase__ : int ='''left''' # Define PAD Token = EOS Token = 50256 lowerCamelCase__ : Tuple =tokenizer.eos_token lowerCamelCase__ : Optional[Any] =model.config.eos_token_id # use different length sentences to test batching lowerCamelCase__ : str =[ '''Hello, my dog is a little''', '''Today, I''', ] lowerCamelCase__ : Union[str, Any] =tokenizer(lowerCamelCase__, return_tensors='''pt''', padding=lowerCamelCase__ ) lowerCamelCase__ : Any =inputs['''input_ids'''].to(lowerCamelCase__ ) lowerCamelCase__ : List[str] =model.generate( input_ids=lowerCamelCase__, attention_mask=inputs['''attention_mask'''].to(lowerCamelCase__ ), ) lowerCamelCase__ : int =tokenizer(sentences[0], return_tensors='''pt''' ).input_ids.to(lowerCamelCase__ ) lowerCamelCase__ : Union[str, Any] =model.generate(input_ids=lowerCamelCase__ ) lowerCamelCase__ : List[str] =inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() lowerCamelCase__ : Optional[Any] =tokenizer(sentences[1], return_tensors='''pt''' ).input_ids.to(lowerCamelCase__ ) lowerCamelCase__ : Optional[Any] =model.generate(input_ids=lowerCamelCase__, max_length=model.config.max_length - num_paddings ) lowerCamelCase__ : Dict =tokenizer.batch_decode(lowerCamelCase__, skip_special_tokens=lowerCamelCase__ ) lowerCamelCase__ : Dict =tokenizer.decode(output_non_padded[0], skip_special_tokens=lowerCamelCase__ ) lowerCamelCase__ : int =tokenizer.decode(output_padded[0], skip_special_tokens=lowerCamelCase__ ) lowerCamelCase__ : str =[ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, [non_padded_sentence, padded_sentence] ) @slow def snake_case ( self : Union[str, Any] )-> int: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : str =BioGptModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def snake_case ( self : str )-> str: lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] =3 lowerCamelCase__ : int =input_dict['''input_ids'''] lowerCamelCase__ : int =input_ids.ne(1 ).to(lowerCamelCase__ ) lowerCamelCase__ : List[str] =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) lowerCamelCase__ : Tuple =BioGptForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase__ : Optional[int] =model(lowerCamelCase__, attention_mask=lowerCamelCase__, labels=lowerCamelCase__ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self : List[str] )-> List[Any]: lowerCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Dict =3 lowerCamelCase__ : Tuple ='''multi_label_classification''' lowerCamelCase__ : int =input_dict['''input_ids'''] lowerCamelCase__ : List[str] =input_ids.ne(1 ).to(lowerCamelCase__ ) lowerCamelCase__ : int =ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase__ : Any =BioGptForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase__, attention_mask=lowerCamelCase__, labels=lowerCamelCase__ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def snake_case ( self : Optional[int] )-> List[str]: lowerCamelCase__ : Dict =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) lowerCamelCase__ : Any =torch.tensor([[2, 4805, 9, 656, 21]] ) lowerCamelCase__ : List[Any] =model(lowerCamelCase__ )[0] lowerCamelCase__ : Any =4_2384 lowerCamelCase__ : Dict =torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape, lowerCamelCase__ ) lowerCamelCase__ : Dict =torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCamelCase__, atol=1E-4 ) ) @slow def snake_case ( self : Tuple )-> str: lowerCamelCase__ : Union[str, Any] =BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowerCamelCase__ : Any =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(lowerCamelCase__ ) torch.manual_seed(0 ) lowerCamelCase__ : int =tokenizer('''COVID-19 is''', return_tensors='''pt''' ).to(lowerCamelCase__ ) lowerCamelCase__ : int =model.generate( **lowerCamelCase__, min_length=100, max_length=1024, num_beams=5, early_stopping=lowerCamelCase__, ) lowerCamelCase__ : str =tokenizer.decode(output_ids[0], skip_special_tokens=lowerCamelCase__ ) lowerCamelCase__ : List[str] =( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowerCamelCase__, lowerCamelCase__ )
357
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
272
0
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = tokenizer("""This is me""" , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : str = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ : int = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE__ : Any = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ : int = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
132
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """donut-swin""" lowerCAmelCase__ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self :Optional[int] , _UpperCamelCase :int=224 , _UpperCamelCase :int=4 , _UpperCamelCase :Any=3 , _UpperCamelCase :List[Any]=96 , _UpperCamelCase :Any=[2, 2, 6, 2] , _UpperCamelCase :Optional[int]=[3, 6, 12, 24] , _UpperCamelCase :int=7 , _UpperCamelCase :Optional[int]=4.0 , _UpperCamelCase :str=True , _UpperCamelCase :str=0.0 , _UpperCamelCase :str=0.0 , _UpperCamelCase :Optional[Any]=0.1 , _UpperCamelCase :Optional[Any]="gelu" , _UpperCamelCase :Dict=False , _UpperCamelCase :Optional[int]=0.0_2 , _UpperCamelCase :Tuple=1e-5 , **_UpperCamelCase :Any , )-> List[Any]: super().__init__(**_UpperCamelCase ) __A = image_size __A = patch_size __A = num_channels __A = embed_dim __A = depths __A = len(_UpperCamelCase ) __A = num_heads __A = window_size __A = mlp_ratio __A = qkv_bias __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = drop_path_rate __A = hidden_act __A = use_absolute_embeddings __A = layer_norm_eps __A = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A = int(embed_dim * 2 ** (len(_UpperCamelCase ) - 1) )
352
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _a ( lowerCamelCase: List[str] ) -> Tuple: '''simple docstring''' __A = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __A = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __A = 4 __A = 48 __A = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __A = [6, 6, 6, 6] __A = 60 __A = [6, 6, 6, 6] __A = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __A = 4 __A = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __A = 1 __A = 1 __A = 1_26 __A = 7 __A = 255.0 __A = '''''' return config def _a ( lowerCamelCase: List[Any] , lowerCamelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __A = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: __A = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: __A = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: __A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __A = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __A = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __A = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: __A = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: __A = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: __A = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: __A = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: __A = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": __A = '''layernorm.weight''' if name == "norm.bias": __A = '''layernorm.bias''' if "conv_first" in name: __A = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __A = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __A = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: __A = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: __A = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) __A = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": __A = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) __A = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: __A = '''swin2sr.''' + name return name def _a ( lowerCamelCase: int , lowerCamelCase: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(lowerCamelCase ) if "qkv" in key: __A = key.split('''.''' ) __A = int(key_split[1] ) __A = int(key_split[4] ) __A = config.embed_dim if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] else: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] pass else: __A = val return orig_state_dict def _a ( lowerCamelCase: List[Any] , lowerCamelCase: int , lowerCamelCase: Optional[int] ) -> List[Any]: '''simple docstring''' __A = get_config(lowerCamelCase ) __A = SwinaSRForImageSuperResolution(lowerCamelCase ) model.eval() __A = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location='''cpu''' ) __A = convert_state_dict(lowerCamelCase , lowerCamelCase ) __A , __A = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if len(lowerCamelCase ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(lowerCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values __A = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' __A = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert('''RGB''' ) __A = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __A = 1_26 if '''Jpeg''' in checkpoint_url else 2_56 __A = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __A = transforms(lowerCamelCase ).unsqueeze(0 ) if config.num_channels == 1: __A = pixel_values[:, 0, :, :].unsqueeze(1 ) __A = model(lowerCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __A = torch.Size([1, 3, 5_12, 5_12] ) __A = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __A = torch.Size([1, 3, 10_24, 10_24] ) __A = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __A = torch.Size([1, 3, 10_24, 10_24] ) __A = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __A = torch.Size([1, 3, 5_12, 5_12] ) __A = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __A = torch.Size([1, 3, 10_24, 10_24] ) __A = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCamelCase , atol=1e-3 ) print('''Looks ok!''' ) __A = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } __A = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') snake_case__ : str = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
250
0
def A_ ( a ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCAmelCase : Dict = int(input('Enter number: ').strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
253
from jiwer import compute_measures import datasets lowerCAmelCase : Tuple = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCAmelCase : List[Any] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCAmelCase : Dict = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _A ( datasets.Metric): def UpperCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" if concatenate_texts: return compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["wer"] else: SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
253
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = old_name if "patch_embed" in old_name: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = old_name.split('''.''' ) if layer == "0": UpperCamelCase__ = old_name.replace('''0''', '''convolution1''' ) elif layer == "1": UpperCamelCase__ = old_name.replace('''1''', '''batchnorm_before''' ) elif layer == "3": UpperCamelCase__ = old_name.replace('''3''', '''convolution2''' ) else: UpperCamelCase__ = old_name.replace('''4''', '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''', UpperCamelCase__ ): UpperCamelCase__ = r'''\b\d{2}\b''' if bool(re.search(UpperCamelCase__, UpperCamelCase__ ) ): UpperCamelCase__ = re.search(r'''\d\.\d\d.''', UpperCamelCase__ ).group() else: UpperCamelCase__ = re.search(r'''\d\.\d.''', UpperCamelCase__ ).group() if int(match[0] ) < 6: UpperCamelCase__ = old_name.replace(UpperCamelCase__, '''''' ) UpperCamelCase__ = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) UpperCamelCase__ = '''intermediate_stages.''' + trimmed_name else: UpperCamelCase__ = old_name.replace(UpperCamelCase__, '''''' ) if int(match[2] ) < num_meta4D_last_stage: UpperCamelCase__ = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2] ) else: UpperCamelCase__ = str(int(match[2] ) - num_meta4D_last_stage ) UpperCamelCase__ = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: UpperCamelCase__ = trimmed_name.replace('''norm1''', '''layernorm1''' ) elif "norm2" in old_name: UpperCamelCase__ = trimmed_name.replace('''norm2''', '''layernorm2''' ) elif "fc1" in old_name: UpperCamelCase__ = trimmed_name.replace('''fc1''', '''linear_in''' ) elif "fc2" in old_name: UpperCamelCase__ = trimmed_name.replace('''fc2''', '''linear_out''' ) UpperCamelCase__ = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', UpperCamelCase__ ): UpperCamelCase__ = old_name.replace('''network''', '''intermediate_stages''' ) if "fc" in new_name: UpperCamelCase__ = new_name.replace('''fc''', '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCamelCase__ = new_name.replace('''norm1''', '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCamelCase__ = new_name.replace('''norm2''', '''batchnorm_after''' ) if "proj" in new_name: UpperCamelCase__ = new_name.replace('''proj''', '''projection''' ) if "dist_head" in new_name: UpperCamelCase__ = new_name.replace('''dist_head''', '''distillation_classifier''' ) elif "head" in new_name: UpperCamelCase__ = new_name.replace('''head''', '''classifier''' ) elif "patch_embed" in new_name: UpperCamelCase__ = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCamelCase__ = new_name.replace('''norm''', '''layernorm''' ) UpperCamelCase__ = '''efficientformer.''' + new_name else: UpperCamelCase__ = '''efficientformer.encoder.''' + new_name return new_name def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Dict ): '''simple docstring''' for key in checkpoint.copy().keys(): UpperCamelCase__ = checkpoint.pop(UpperCamelCase__ ) UpperCamelCase__ = val return checkpoint def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ = Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) return image def lowerCamelCase_ ( UpperCamelCase__ : Path, UpperCamelCase__ : Path, UpperCamelCase__ : Path, UpperCamelCase__ : bool ): '''simple docstring''' UpperCamelCase__ = torch.load(UpperCamelCase__, map_location='''cpu''' )['''model'''] UpperCamelCase__ = EfficientFormerConfig.from_json_file(UpperCamelCase__ ) UpperCamelCase__ = EfficientFormerForImageClassificationWithTeacher(UpperCamelCase__ ) UpperCamelCase__ = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) UpperCamelCase__ = config.depths[-1] - config.num_metaad_blocks + 1 UpperCamelCase__ = convert_torch_checkpoint(UpperCamelCase__, UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() UpperCamelCase__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image UpperCamelCase__ = prepare_img() UpperCamelCase__ = 256 UpperCamelCase__ = 224 UpperCamelCase__ = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) UpperCamelCase__ = processor(images=UpperCamelCase__, return_tensors='''pt''' ).pixel_values # original processing pipeline UpperCamelCase__ = Compose( [ Resize(UpperCamelCase__, interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(UpperCamelCase__ ), ToTensor(), Normalize(UpperCamelCase__, UpperCamelCase__ ), ] ) UpperCamelCase__ = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) assert torch.allclose(UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = model(UpperCamelCase__ ) UpperCamelCase__ = outputs.logits UpperCamelCase__ = (1, 1000) if "l1" in model_name: UpperCamelCase__ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10], UpperCamelCase__, atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCamelCase__ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10], UpperCamelCase__, atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCamelCase__ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(UpperCamelCase__ ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=UpperCamelCase__, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=UpperCamelCase__, ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) lowercase = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
0