code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() SCREAMING_SNAKE_CASE = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) SCREAMING_SNAKE_CASE = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } SCREAMING_SNAKE_CASE = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,lowerCamelCase__ ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) with open(self.feature_extraction_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) # load decoder from hub SCREAMING_SNAKE_CASE = """hf-internal-testing/ngram-beam-search-decoder""" def SCREAMING_SNAKE_CASE__ ( self : int ,**lowerCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCamelCase__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ,**lowerCamelCase__ : int ) -> Dict: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,**lowerCamelCase__ : List[Any] ) -> Any: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_decoder() SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,decoder=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowerCamelCase__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,lowerCamelCase__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(lowerCamelCase__ ,"""include""" ): WavaVecaProcessorWithLM( tokenizer=lowerCamelCase__ ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_decoder() SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,decoder=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = floats_list((3, 1000) ) SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ) SCREAMING_SNAKE_CASE = processor(lowerCamelCase__ ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_decoder() SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,decoder=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """This is a test string""" SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Tuple=(2, 10, 16) ,lowerCamelCase__ : List[Any]=77 ) -> Union[str, Any]: '''simple docstring''' np.random.seed(lowerCamelCase__ ) return np.random.rand(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_decoder() SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,decoder=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) SCREAMING_SNAKE_CASE = processor.decode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = decoder.decode_beams(lowerCamelCase__ )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_decoder() SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,decoder=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCamelCase__ ) else: with get_context(lowerCamelCase__ ).Pool() as pool: SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = list(lowerCamelCase__ ) with get_context("""fork""" ).Pool() as p: SCREAMING_SNAKE_CASE = decoder.decode_beams_batch(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCamelCase__ ,decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] ,decoded_processor.text ) self.assertListEqual(lowerCamelCase__ ,decoded_processor.logit_score ) self.assertListEqual(lowerCamelCase__ ,decoded_processor.lm_score ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_decoder() SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,decoder=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self._get_dummy_logits() SCREAMING_SNAKE_CASE = 15 SCREAMING_SNAKE_CASE = -20.0 SCREAMING_SNAKE_CASE = -4.0 SCREAMING_SNAKE_CASE = processor.batch_decode( lowerCamelCase__ ,beam_width=lowerCamelCase__ ,beam_prune_logp=lowerCamelCase__ ,token_min_logp=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = decoded_processor_out.text SCREAMING_SNAKE_CASE = list(lowerCamelCase__ ) with get_context("""fork""" ).Pool() as pool: SCREAMING_SNAKE_CASE = decoder.decode_beams_batch( lowerCamelCase__ ,lowerCamelCase__ ,beam_width=lowerCamelCase__ ,beam_prune_logp=lowerCamelCase__ ,token_min_logp=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = [d[0][0] for d in decoded_decoder_out] SCREAMING_SNAKE_CASE = [d[0][2] for d in decoded_decoder_out] SCREAMING_SNAKE_CASE = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] ,lowerCamelCase__ ) self.assertTrue(np.array_equal(lowerCamelCase__ ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] ,lowerCamelCase__ ,atol=1e-3 ) ) self.assertTrue(np.array_equal(lowerCamelCase__ ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] ,lowerCamelCase__ ,atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_decoder() SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,decoder=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self._get_dummy_logits() SCREAMING_SNAKE_CASE = 2.0 SCREAMING_SNAKE_CASE = 5.0 SCREAMING_SNAKE_CASE = -20.0 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = processor.batch_decode( lowerCamelCase__ ,alpha=lowerCamelCase__ ,beta=lowerCamelCase__ ,unk_score_offset=lowerCamelCase__ ,lm_score_boundary=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = decoded_processor_out.text SCREAMING_SNAKE_CASE = list(lowerCamelCase__ ) decoder.reset_params( alpha=lowerCamelCase__ ,beta=lowerCamelCase__ ,unk_score_offset=lowerCamelCase__ ,lm_score_boundary=lowerCamelCase__ ,) with get_context("""fork""" ).Pool() as pool: SCREAMING_SNAKE_CASE = decoder.decode_beams_batch( lowerCamelCase__ ,lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-20.0 ) self.assertEqual(lm_model.score_boundary ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE = processor.decoder.model_container[processor.decoder._model_key] SCREAMING_SNAKE_CASE = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() SCREAMING_SNAKE_CASE = os.listdir(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = snapshot_download("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = processor.decoder.model_container[processor.decoder._model_key] SCREAMING_SNAKE_CASE = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() SCREAMING_SNAKE_CASE = os.listdir(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = os.listdir(lowerCamelCase__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE = floats_list((3, 1000) ) SCREAMING_SNAKE_CASE = processor_wavaveca(lowerCamelCase__ ,return_tensors="""np""" ) SCREAMING_SNAKE_CASE = processor_auto(lowerCamelCase__ ,return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1e-2 ) SCREAMING_SNAKE_CASE = self._get_dummy_logits() SCREAMING_SNAKE_CASE = processor_wavaveca.batch_decode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = processor_auto.batch_decode(lowerCamelCase__ ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_decoder() SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,decoder=lowerCamelCase__ ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg="""`processor` and `feature_extractor` model input names do not match""" ,) @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : Tuple ,lowerCamelCase__ : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE = self._get_dummy_logits()[0] SCREAMING_SNAKE_CASE = processor.decode(lowerCamelCase__ ,output_word_offsets=lowerCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""end_offset""" ) ,[1, 3, 5] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) SCREAMING_SNAKE_CASE = self._get_dummy_logits() SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCamelCase__ ,output_word_offsets=lowerCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(lowerCamelCase__ ,"""word""" ) ) for o in outputs["""word_offsets"""]] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""end_offset""" ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' import torch SCREAMING_SNAKE_CASE = load_dataset("""common_voice""" ,"""en""" ,split="""train""" ,streaming=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ds.cast_column("""audio""" ,datasets.Audio(sampling_rate=16000 ) ) SCREAMING_SNAKE_CASE = iter(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = next(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) SCREAMING_SNAKE_CASE = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train SCREAMING_SNAKE_CASE = processor(sample["""audio"""]["""array"""] ,return_tensors="""pt""" ).input_values with torch.no_grad(): SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ).logits.cpu().numpy() SCREAMING_SNAKE_CASE = processor.decode(logits[0] ,output_word_offsets=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate SCREAMING_SNAKE_CASE = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] SCREAMING_SNAKE_CASE = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(lowerCamelCase__ ,"""word""" ) ) ,lowerCamelCase__ ) self.assertEqual(""" """.join(self.get_from_offsets(lowerCamelCase__ ,"""word""" ) ) ,output.text ) # output times SCREAMING_SNAKE_CASE = torch.tensor(self.get_from_offsets(lowerCamelCase__ ,"""start_time""" ) ) SCREAMING_SNAKE_CASE = torch.tensor(self.get_from_offsets(lowerCamelCase__ ,"""end_time""" ) ) # fmt: off SCREAMING_SNAKE_CASE = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) SCREAMING_SNAKE_CASE = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=0.01 ) )
296
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""fake-roberta""" ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ ,"""config.json""" ) ,"""w""" ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(type(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' try: AutoConfig.register("""custom""" ,lowerCamelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""model""" ,lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""bert""" ,lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" ,): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ ,"""NewModelConfig""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "new-model" try: AutoConfig.register("""new-model""" ,lowerCamelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
296
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''', _A, ) super().__init__(*_A, **_A )
357
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) lowerCAmelCase_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) lowerCAmelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase_ = os.path.join(self.tmpdirname, UpperCamelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(UpperCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCamelCase__ ) lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowerCAmelCase_ = self.get_image_processor(do_normalize=UpperCamelCase__, padding_value=1.0 ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=UpperCamelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = processor(text=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(images=UpperCamelCase__, visual_prompt=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ )
167
0
"""simple docstring""" from manim import * class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : str = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase : Tuple = Rectangle(height=0.2_5 , width=0.2_5 ) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Dict = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : str = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : str = Text("""CPU""" , font_size=24 ) _lowerCAmelCase : str = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(4 )] _lowerCAmelCase : str = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : str = Text("""GPU""" , font_size=24 ) _lowerCAmelCase : str = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""Model""" , font_size=24 ) _lowerCAmelCase : int = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : str = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : int = fill.copy().set_fill(a__ , opacity=0.8 ) target.move_to(a__ ) model_arr.append(a__ ) _lowerCAmelCase : Dict = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) _lowerCAmelCase : str = [meta_mem.copy() for i in range(6 )] _lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Dict = Text("""Disk""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4, -1.2_5, 0] ) self.add(a__ , a__ ) _lowerCAmelCase : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase : Dict = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCAmelCase : List[str] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) _lowerCAmelCase : List[str] = MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) ) _lowerCAmelCase : Union[str, Any] = Square(0.3 ) input.set_fill(a__ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , a__ , buff=0.5 ) self.play(Write(a__ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=a__ , buff=0.0_2 ) self.play(MoveToTarget(a__ ) ) self.play(FadeOut(a__ ) ) _lowerCAmelCase : Dict = Arrow(start=a__ , end=a__ , color=a__ , buff=0.5 ) a.next_to(model_arr[0].get_left() , a__ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _lowerCAmelCase : Optional[Any] = MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) _lowerCAmelCase : Optional[int] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.0_2} self.play( Write(a__ ) , Circumscribe(model_arr[0] , color=a__ , **a__ ) , Circumscribe(model_cpu_arr[0] , color=a__ , **a__ ) , Circumscribe(gpu_rect[0] , color=a__ , **a__ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , a__ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) _lowerCAmelCase : Union[str, Any] = AnimationGroup( FadeOut(a__ , run_time=0.5 ) , MoveToTarget(a__ , run_time=0.5 ) , FadeIn(a__ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(a__ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _lowerCAmelCase : int = 0.7 self.play( Circumscribe(model_arr[i] , **a__ ) , Circumscribe(cpu_left_col_base[i] , **a__ ) , Circumscribe(cpu_left_col_base[i + 1] , color=a__ , **a__ ) , Circumscribe(gpu_rect[0] , color=a__ , **a__ ) , Circumscribe(model_arr[i + 1] , color=a__ , **a__ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=a__ , **a__ ) , Circumscribe(cpu_left_col_base[-1] , color=a__ , **a__ ) , Circumscribe(gpu_rect[0] , color=a__ , **a__ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _lowerCAmelCase : Any = a_c _lowerCAmelCase : Any = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(a__ ) , FadeOut(a__ , run_time=0.5 ) , ) _lowerCAmelCase : List[str] = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) , MoveToTarget(a__ ) ) self.wait()
44
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ['''input_features'''] def __init__( self , __lowerCAmelCase=80 , __lowerCAmelCase=16000 , __lowerCAmelCase=160 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=0.0 , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase = n_fft lowerCAmelCase = hop_length lowerCAmelCase = chunk_length lowerCAmelCase = chunk_length * sampling_rate lowerCAmelCase = self.n_samples // hop_length lowerCAmelCase = sampling_rate lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = spectrogram( __lowerCAmelCase , window_function(self.n_fft , """hann""") , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = np.maximum(__lowerCAmelCase , log_spec.max() - 8.0) lowerCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0): """simple docstring""" if attention_mask is not None: lowerCAmelCase = np.array(__lowerCAmelCase , np.intaa) lowerCAmelCase = [] for vector, length in zip(__lowerCAmelCase , attention_mask.sum(-1)): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(__lowerCAmelCase) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7) for x in input_values] return normed_input_values def __call__( self , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "max_length" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") lowerCAmelCase = isinstance(__lowerCAmelCase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") lowerCAmelCase = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray): lowerCAmelCase = np.asarray(__lowerCAmelCase , dtype=np.floataa) elif isinstance(__lowerCAmelCase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowerCAmelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech]).T] lowerCAmelCase = BatchFeature({"""input_features""": raw_speech}) # convert into correct format for padding lowerCAmelCase = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCAmelCase = np.stack(padded_inputs["""input_features"""] , axis=0) # make sure list is in array format lowerCAmelCase = padded_inputs.get("""input_features""").transpose(2 , 0 , 1) lowerCAmelCase = [self._np_extract_fbank_features(__lowerCAmelCase) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCAmelCase): lowerCAmelCase = [np.asarray(__lowerCAmelCase , dtype=np.floataa) for feature in input_features] else: lowerCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(__lowerCAmelCase) return padded_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
272
0
from ... import PretrainedConfig UpperCamelCase = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Any = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __snake_case : List[str] = "nezha" def __init__( self: Optional[int] , UpperCAmelCase_: Tuple=21_128 , UpperCAmelCase_: Union[str, Any]=768 , UpperCAmelCase_: int=12 , UpperCAmelCase_: List[str]=12 , UpperCAmelCase_: str=3_072 , UpperCAmelCase_: int="gelu" , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Union[str, Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: Optional[Any]=64 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: List[str]=0.02 , UpperCAmelCase_: List[Any]=1E-12 , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: Union[str, Any]=2 , UpperCAmelCase_: str=3 , UpperCAmelCase_: str=True , **UpperCAmelCase_: Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = max_relative_position _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = classifier_dropout _SCREAMING_SNAKE_CASE = use_cache
125
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = TransfoXLTokenizer __snake_case : Tuple = False __snake_case : List[Any] = False def UpperCamelCase ( self: int ): '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCamelCase ( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """<unk> UNwanted , running""" _SCREAMING_SNAKE_CASE = """<unk> unwanted, running""" return input_text, output_text def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(UpperCAmelCase_ , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [0, 4, 8, 7] ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TransfoXLTokenizer(lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TransfoXLTokenizer(lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TransfoXLTokenizer(lower_case=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" _SCREAMING_SNAKE_CASE = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase_ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
125
1
from __future__ import annotations from collections import namedtuple def _a ( a :List[str] , a :Optional[int] , a :Dict ) -> tuple: a = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' _snake_case = 8.3_1_4_4_5_9_8 def _A ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
250
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[str]: for nxt, d in graph[v]: if nxt in visited_forward: continue A: str = cst_fwd.get(__UpperCamelCase , np.inf ) A: Optional[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A: Dict = new_cost_f A: List[Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A: Union[str, Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: A: List[str] = -1 A: List[str] = set() A: Tuple = set() A: Any = {source: 0} A: Dict = {destination: 0} A: Optional[Any] = {source: None} A: str = {destination: None} A: Optional[int] = PriorityQueue() A: Any = PriorityQueue() A: str = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A , A: Optional[int] = queue_forward.get() visited_forward.add(__UpperCamelCase ) A , A: Tuple = queue_backward.get() visited_backward.add(__UpperCamelCase ) A: Any = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) A: str = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A: str = shortest_distance return shortest_path_distance UpperCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } UpperCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __lowerCAmelCase : int = 'bert-base-cased' __lowerCAmelCase : List[str] = 'fp16' __lowerCAmelCase : Any = 'bf16' __lowerCAmelCase : Optional[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase_ ( _a ): '''simple docstring''' def _lowercase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" super().setUp() __magic_name__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(snake_case_ ): __magic_name__ = self.dist_env.copy() __magic_name__ = F'''{i + 1}''' __magic_name__ = strategy with mockenv_context(**snake_case_ ): __magic_name__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _lowercase ( self : List[str] ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(snake_case_ ): __magic_name__ = self.dist_env.copy() __magic_name__ = prefetch_policy with mockenv_context(**snake_case_ ): __magic_name__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _lowercase ( self : Dict ) -> Dict: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(snake_case_ ): __magic_name__ = self.dist_env.copy() __magic_name__ = state_dict_type with mockenv_context(**snake_case_ ): __magic_name__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _lowercase ( self : Tuple ) -> Optional[int]: """simple docstring""" __magic_name__ = AutoModel.from_pretrained(snake_case_ ) for policy in FSDP_AUTO_WRAP_POLICY: __magic_name__ = self.dist_env.copy() __magic_name__ = policy if policy == "TRANSFORMER_BASED_WRAP": __magic_name__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": __magic_name__ = """2000""" with mockenv_context(**snake_case_ ): __magic_name__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(snake_case_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __magic_name__ = self.dist_env.copy() __magic_name__ = """TRANSFORMER_BASED_WRAP""" __magic_name__ = """T5Layer""" with mockenv_context(**snake_case_ ): __magic_name__ = FullyShardedDataParallelPlugin() with self.assertRaises(snake_case_ ) as cm: fsdp_plugin.set_auto_wrap_policy(snake_case_ ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) __magic_name__ = self.dist_env.copy() __magic_name__ = """SIZE_BASED_WRAP""" __magic_name__ = """0""" with mockenv_context(**snake_case_ ): __magic_name__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(snake_case_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __magic_name__ = self.dist_env.copy() __magic_name__ = mp_dtype with mockenv_context(**snake_case_ ): __magic_name__ = Accelerator() if mp_dtype == "fp16": __magic_name__ = torch.floataa elif mp_dtype == "bf16": __magic_name__ = torch.bfloataa __magic_name__ = MixedPrecision(param_dtype=snake_case_ , reduce_dtype=snake_case_ , buffer_dtype=snake_case_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , snake_case_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , snake_case_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(snake_case_ ) def _lowercase ( self : Tuple ) -> int: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __magic_name__ = self.dist_env.copy() __magic_name__ = str(snake_case_ ).lower() with mockenv_context(**snake_case_ ): __magic_name__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=snake_case_ ) ) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase_ ( _a ): '''simple docstring''' def _lowercase ( self : List[str] ) -> int: """simple docstring""" super().setUp() __magic_name__ = 0.82 __magic_name__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] __magic_name__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __magic_name__ = 160 __magic_name__ = 160 __magic_name__ = inspect.getfile(accelerate.test_utils ) __magic_name__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _lowercase ( self : Any ) -> Tuple: """simple docstring""" __magic_name__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) __magic_name__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: __magic_name__ = cmd.copy() for i, strategy in enumerate(snake_case_ ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) __magic_name__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(snake_case_ ): __magic_name__ = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue __magic_name__ = len(snake_case_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: __magic_name__ = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) __magic_name__ = cmd_config[:-1] __magic_name__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) def _lowercase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __magic_name__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) __magic_name__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __magic_name__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(snake_case_ ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() )
88
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "glpn" def __init__( self : Optional[Any] , snake_case_ : List[str]=3 , snake_case_ : Dict=4 , snake_case_ : List[Any]=[2, 2, 2, 2] , snake_case_ : int=[8, 4, 2, 1] , snake_case_ : List[str]=[32, 64, 160, 256] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : List[Any]=[4, 2, 2, 2] , snake_case_ : Tuple=[1, 2, 5, 8] , snake_case_ : List[str]=[4, 4, 4, 4] , snake_case_ : Optional[int]="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : List[Any]=0.02 , snake_case_ : Tuple=0.1 , snake_case_ : Any=1E-6 , snake_case_ : Dict=64 , snake_case_ : Tuple=10 , snake_case_ : List[Any]=-1 , **snake_case_ : Optional[Any] , ): super().__init__(**snake_case_ ) snake_case__ : Optional[Any] = num_channels snake_case__ : Dict = num_encoder_blocks snake_case__ : Tuple = depths snake_case__ : Union[str, Any] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : Optional[Any] = patch_sizes snake_case__ : int = strides snake_case__ : List[Any] = mlp_ratios snake_case__ : Optional[int] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : Tuple = decoder_hidden_size snake_case__ : List[Any] = max_depth snake_case__ : Dict = head_in_index
35
0
def UpperCamelCase ( _A : str , _A : str )-> str: """simple docstring""" A__ = len(_A ) A__ = len(_A ) A__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) A__ = [] for char_count in range(_A ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_A ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
198
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase ( _A : Optional[int] )-> List[Any]: """simple docstring""" A__ = FileLock(str(tmpdir / "foo.lock" ) ) A__ = FileLock(str(tmpdir / "foo.lock" ) ) A__ = 0.01 with locka.acquire(): with pytest.raises(_A ): A__ = time.time() locka.acquire(_A ) assert time.time() - _start > timeout def UpperCamelCase ( _A : str )-> List[Any]: """simple docstring""" A__ = "a" * 1000 + ".lock" A__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(_A ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_A ): locka.acquire(0 )
198
1
"""simple docstring""" from math import factorial def _A (__a , __a , __a ) -> float: """simple docstring""" if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(__a , __a ) or not isinstance(__a , __a ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! SCREAMING_SNAKE_CASE_ : Optional[int] = float(factorial(__a ) ) coefficient /= factorial(__a ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.7_5))
91
"""simple docstring""" import pprint import requests _lowerCamelCase : Tuple = 'https://zenquotes.io/api' def lowercase_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowerCamelCase : List[Any] = random_quotes() pprint.pprint(response)
167
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: """simple docstring""" A : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" A : Optional[int] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) A : Tuple = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) A : Any = transform(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) return image def __UpperCamelCase ( _lowerCAmelCase ) -> int: """simple docstring""" if "visual_encoder" in key: A : Optional[int] = re.sub("""visual_encoder*""" , """vision_model.encoder""" , lowerCAmelCase__ ) if "blocks" in key: A : Optional[int] = re.sub(R"""blocks""" , """layers""" , lowerCAmelCase__ ) if "attn" in key: A : Dict = re.sub(R"""attn""" , """self_attn""" , lowerCAmelCase__ ) if "norm1" in key: A : Tuple = re.sub(R"""norm1""" , """layer_norm1""" , lowerCAmelCase__ ) if "norm2" in key: A : List[str] = re.sub(R"""norm2""" , """layer_norm2""" , lowerCAmelCase__ ) if "encoder.norm" in key: A : Tuple = re.sub(R"""encoder.norm""" , """post_layernorm""" , lowerCAmelCase__ ) if "encoder.patch_embed.proj" in key: A : Optional[int] = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , lowerCAmelCase__ ) if "encoder.pos_embed" in key: A : Optional[Any] = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , lowerCAmelCase__ ) if "encoder.cls_token" in key: A : Tuple = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , lowerCAmelCase__ ) if "self_attn" in key: A : List[Any] = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , lowerCAmelCase__ ) return key @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> Optional[Any]: """simple docstring""" if config_path is not None: A : Union[str, Any] = BlipConfig.from_pretrained(lowerCAmelCase__ ) else: A : List[Any] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) A : Any = BlipForConditionalGeneration(lowerCAmelCase__ ).eval() A : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" A : str = blip_decoder(pretrained=lowerCAmelCase__ , image_size=384 , vit="""base""" ) A : int = pt_model.eval() A : Dict = pt_model.state_dict() for key in modified_state_dict.copy(): A : List[str] = modified_state_dict.pop(lowerCAmelCase__ ) A : List[str] = rename_key(lowerCAmelCase__ ) A : int = value hf_model.load_state_dict(lowerCAmelCase__ ) A : str = 384 A : Optional[int] = load_demo_image(image_size=lowerCAmelCase__ , device="""cpu""" ) A : Dict = BertTokenizer.from_pretrained("""bert-base-uncased""" ) A : Tuple = tokenizer(["""a picture of"""] ).input_ids A : List[Any] = hf_model.generate(lowerCAmelCase__ , lowerCAmelCase__ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] A : str = hf_model.generate(lowerCAmelCase__ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCAmelCase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' A : str = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) A : str = blip_vqa(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" ) vqa_model.eval() A : Optional[int] = vqa_model.state_dict() for key in modified_state_dict.copy(): A : Tuple = modified_state_dict.pop(lowerCAmelCase__ ) A : int = rename_key(lowerCAmelCase__ ) A : Optional[Any] = value A : Dict = BlipForQuestionAnswering(lowerCAmelCase__ ) hf_vqa_model.load_state_dict(lowerCAmelCase__ ) A : int = ["""How many dogs are in this image?"""] A : Optional[Any] = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" ).input_ids A : Optional[int] = hf_vqa_model.generate(lowerCAmelCase__ , lowerCAmelCase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) A : Any = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" A : Tuple = blip_itm(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" ) itm_model.eval() A : Any = itm_model.state_dict() for key in modified_state_dict.copy(): A : List[str] = modified_state_dict.pop(lowerCAmelCase__ ) A : int = rename_key(lowerCAmelCase__ ) A : Optional[int] = value A : Any = BlipForImageTextRetrieval(lowerCAmelCase__ ) A : List[str] = ["""A picture of a woman with a dog sitting in a beach"""] A : Optional[Any] = tokenizer( lowerCAmelCase__ , return_tensors="""pt""" , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCAmelCase__ ) hf_itm_model.eval() A : Dict = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ ) A : Union[str, Any] = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") SCREAMING_SNAKE_CASE_:List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
366
import requests SCREAMING_SNAKE_CASE_:List[str] = """""" # <-- Put your OpenWeatherMap appid here! SCREAMING_SNAKE_CASE_:Dict = """https://api.openweathermap.org/data/2.5/""" def __UpperCamelCase ( _lowerCAmelCase = "Chicago" , _lowerCAmelCase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + """weather""" , params=locals() ).json() def __UpperCamelCase ( _lowerCAmelCase = "Kolkata, India" , _lowerCAmelCase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def __UpperCamelCase ( _lowerCAmelCase = 55.68 , _lowerCAmelCase = 12.57 , _lowerCAmelCase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: SCREAMING_SNAKE_CASE_:int = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
115
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __a (unittest.TestCase , lowerCamelCase ): def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = load_tool('''text-to-speech''' ) self.tool.setup() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = self.tool('''hey''' ) UpperCAmelCase_ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = self.tool('''hey''' ) UpperCAmelCase_ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
125
'''simple docstring''' from math import factorial def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", f'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
125
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) __lowercase : Any = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "ibert" def __init__( self , __a=3_0522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=False , __a="none" , **__a , ): '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __a : Tuple = vocab_size __a : Any = hidden_size __a : Tuple = num_hidden_layers __a : Dict = num_attention_heads __a : Tuple = hidden_act __a : Any = intermediate_size __a : List[Any] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : Any = type_vocab_size __a : Optional[Any] = initializer_range __a : Optional[int] = layer_norm_eps __a : Optional[int] = position_embedding_type __a : int = quant_mode __a : Optional[int] = force_dequant class __UpperCamelCase ( lowerCAmelCase_ ): @property def __UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
294
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __lowercase : str = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "dhaka" , _SCREAMING_SNAKE_CASE : int = 5 ): __a : Optional[Any] = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! __a : Optional[Any] = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } __a : Tuple = requests.get('https://www.google.com/search' , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ) __a : Dict = BeautifulSoup(html.text , 'html.parser' ) __a : List[str] = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) __a : Optional[Any] = json.dumps(_SCREAMING_SNAKE_CASE ) __a : List[str] = json.loads(_SCREAMING_SNAKE_CASE ) __a : List[Any] = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , _SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 __a : Tuple = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(_SCREAMING_SNAKE_CASE ) , ) __a : Optional[Any] = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , _SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index __a : List[str] = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Tuple = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Dict = urllib.request.build_opener() __a : Union[str, Any] = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) __a : List[Any] = F"""query_{query.replace(" " , "_" )}""" if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: __lowercase : Optional[int] = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
294
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : List[str] = TypeVar("T") class _snake_case ( Generic[T] ): def __init__( self , a__ = True ) -> None: '''simple docstring''' snake_case_ = {} # dictionary of lists snake_case_ = directed def lowerCAmelCase__ ( self , a__ , a__ ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) self.adj_list[destination_vertex].append(a__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) snake_case_ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(a__ ) snake_case_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: snake_case_ = [destination_vertex] snake_case_ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) snake_case_ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: snake_case_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: snake_case_ = [destination_vertex] snake_case_ = [] return self def __repr__( self ) -> str: '''simple docstring''' return pformat(self.adj_list )
85
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
"""simple docstring""" _a= {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _a= {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __UpperCAmelCase ( UpperCAmelCase_ : dict[int, list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : list[bool] ) -> list[int]: '''simple docstring''' __snake_case : Tuple = True __snake_case : Optional[Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) order.append(UpperCAmelCase_ ) return order def __UpperCAmelCase ( UpperCAmelCase_ : dict[int, list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : list[bool] ) -> list[int]: '''simple docstring''' __snake_case : str = True __snake_case : Dict = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return component def __UpperCAmelCase ( UpperCAmelCase_ : dict[int, list[int]] ) -> list[list[int]]: '''simple docstring''' __snake_case : Tuple = len(UpperCAmelCase_ ) * [False] __snake_case : dict[int, list[int]] = {vert: [] for vert in range(len(UpperCAmelCase_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCAmelCase_ ) __snake_case : Tuple = [] for i, was_visited in enumerate(UpperCAmelCase_ ): if not was_visited: order += topology_sort(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : int = [] __snake_case : List[str] = len(UpperCAmelCase_ ) * [False] for i in range(len(UpperCAmelCase_ ) ): __snake_case : str = order[len(UpperCAmelCase_ ) - i - 1] if not visited[vert]: __snake_case : int = find_components(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) components_list.append(UpperCAmelCase_ ) return components_list
351
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase ( lowercase ): UpperCAmelCase : Optional[int] = """new-model""" if is_tf_available(): class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = NewModelConfig @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : List[str]) -> Dict: __snake_case : Any = 'bert-base-cased' __snake_case : Optional[Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Union[str, Any] = TFAutoModel.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : List[Any]) -> str: __snake_case : Optional[int] = 'bert-base-cased' __snake_case : List[Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : Any) -> List[str]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : List[str] = TFAutoModelForCausalLM.from_pretrained(_A) __snake_case , __snake_case : List[str] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : Tuple) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : Union[str, Any]) -> Optional[int]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(_A) __snake_case , __snake_case : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : str) -> Union[str, Any]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : str = TFAutoModelForSeqaSeqLM.from_pretrained(_A) __snake_case , __snake_case : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : str) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __snake_case : Tuple = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Tuple = TFAutoModelForSequenceClassification.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : Optional[Any]) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __snake_case : List[str] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Any = TFAutoModelForQuestionAnswering.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow @require_tensorflow_probability def _lowercase (self : List[Any]) -> List[str]: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case : Optional[Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : int = TFAutoModelForTableQuestionAnswering.from_pretrained(_A) __snake_case , __snake_case : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) def _lowercase (self : Optional[Any]) -> Optional[Any]: __snake_case : Optional[int] = TFAutoModelWithLMHead.from_pretrained(_A) self.assertIsInstance(_A , _A) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=_A) , 1_44_10) def _lowercase (self : Any) -> List[str]: __snake_case : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A) self.assertIsInstance(_A , _A) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=_A) , 1_44_10) def _lowercase (self : Optional[Any]) -> str: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __snake_case : Optional[Any] = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny') self.assertIsInstance(_A , _A) __snake_case : int = copy.deepcopy(model.config) __snake_case : int = ['FunnelBaseModel'] __snake_case : int = TFAutoModel.from_config(_A) self.assertIsInstance(_A , _A) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A) __snake_case : List[Any] = TFAutoModel.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> int: try: AutoConfig.register('new-model' , _A) __snake_case : int = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(_A): auto_class.register(_A , _A) auto_class.register(_A , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): auto_class.register(_A , _A) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : Union[str, Any] = BertModelTester(self).get_config() __snake_case : Optional[int] = NewModelConfig(**tiny_config.to_dict()) __snake_case : List[str] = auto_class.from_config(_A) self.assertIsInstance(_A , _A) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A) __snake_case : Tuple = auto_class.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _lowercase (self : Optional[int]) -> Union[str, Any]: with self.assertRaisesRegex( _A , 'bert-base is not a local folder and is not a valid model identifier'): __snake_case : Any = TFAutoModel.from_pretrained('bert-base') def _lowercase (self : str) -> str: with self.assertRaisesRegex( _A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case : Optional[Any] = TFAutoModel.from_pretrained(_A , revision='aaaaaa') def _lowercase (self : int) -> Any: with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): __snake_case : List[str] = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model') def _lowercase (self : Optional[Any]) -> Any: with self.assertRaisesRegex(_A , 'Use `from_pt=True` to load this model'): __snake_case : List[str] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only') def _lowercase (self : str) -> Any: # Make sure we have cached the model. __snake_case : str = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __snake_case : List[str] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint __snake_case : Optional[int] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') with RequestCounter() as counter: __snake_case : Any = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
95
0
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 13 , __lowerCAmelCase = 64 , __lowerCAmelCase = 2 , __lowerCAmelCase = 3 , __lowerCAmelCase = 3 , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = 128 , __lowerCAmelCase=[16, 32, 64, 128] , __lowerCAmelCase = 7 , __lowerCAmelCase = 4 , __lowerCAmelCase = 37 , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 10 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 1 , __lowerCAmelCase = 128 , __lowerCAmelCase = [2, 2, 2, 2] , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , ) -> str: lowercase__ : Optional[Any] = parent lowercase__ : Any = batch_size lowercase__ : List[str] = image_size lowercase__ : Dict = patch_size lowercase__ : str = num_channels lowercase__ : List[Any] = is_training lowercase__ : int = use_labels lowercase__ : Any = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : str = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : List[Any] = encoder_stride lowercase__ : Dict = num_attention_outputs lowercase__ : Dict = embed_dim lowercase__ : int = embed_dim + 1 lowercase__ : Dict = resolution lowercase__ : Tuple = depths lowercase__ : str = hidden_sizes lowercase__ : Dict = dim lowercase__ : Dict = mlp_expansion_ratio def _lowerCAmelCase( self ) -> Any: lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _lowerCAmelCase( self ) -> Union[str, Any]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: lowercase__ : Optional[Any] = TFEfficientFormerModel(config=__lowerCAmelCase ) lowercase__ : List[str] = model(__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: lowercase__ : Union[str, Any] = self.type_sequence_label_size lowercase__ : Optional[Any] = TFEfficientFormerForImageClassification(__lowerCAmelCase ) lowercase__ : Optional[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ : Dict = 1 lowercase__ : List[Any] = TFEfficientFormerForImageClassification(__lowerCAmelCase ) lowercase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Tuple = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase( self ) -> Any: lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : int = config_and_inputs lowercase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[str] = TFEfficientFormerModelTester(self ) lowercase__ : Union[str, Any] = ConfigTester( self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def _lowerCAmelCase( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> str: pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' ) def _lowerCAmelCase( self ) -> List[str]: pass def _lowerCAmelCase( self ) -> int: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(__lowerCAmelCase ) lowercase__ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Any = [*signature.parameters.keys()] lowercase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Union[str, Any] = model_class(__lowerCAmelCase ) lowercase__ : Tuple = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) , training=__lowerCAmelCase ) lowercase__ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) if hasattr(self.model_tester , '''encoder_seq_length''' ): lowercase__ : List[str] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''' ) and self.model_tester.chunk_length > 1: lowercase__ : str = seq_length * self.model_tester.chunk_length else: lowercase__ : List[str] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowercase__ : Optional[Any] = outputs.decoder_hidden_states self.asseretIsInstance(__lowerCAmelCase , (list, tuple) ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) lowercase__ : str = getattr(self.model_tester , '''seq_length''' , __lowerCAmelCase ) lowercase__ : Tuple = getattr(self.model_tester , '''decoder_seq_length''' , __lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[Any]: lowercase__ : str = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def _lowerCAmelCase( self ) -> Optional[Any]: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFEfficientFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = True lowercase__ : List[Any] = getattr(self.model_tester , '''seq_length''' , __lowerCAmelCase ) lowercase__ : Union[str, Any] = getattr(self.model_tester , '''encoder_seq_length''' , __lowerCAmelCase ) lowercase__ : List[str] = getattr(self.model_tester , '''key_length''' , __lowerCAmelCase ) lowercase__ : List[Any] = getattr(self.model_tester , '''chunk_length''' , __lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes''' ): lowercase__ : str = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowercase__ : int = True lowercase__ : Dict = False lowercase__ : List[str] = True lowercase__ : Tuple = model_class(__lowerCAmelCase ) lowercase__ : List[Any] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) , training=__lowerCAmelCase ) lowercase__ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Any = True lowercase__ : Optional[int] = model_class(__lowerCAmelCase ) lowercase__ : Optional[Any] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) , training=__lowerCAmelCase ) lowercase__ : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _lowerCAmelCase( self ) -> int: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowercase__ : Optional[Any] = model_class(__lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowercase__ : List[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowercase__ : Optional[int] = model(__lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def __UpperCamelCase ( ): lowercase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' ) if is_vision_available() else None ) @slow def _lowerCAmelCase( self ) -> Dict: lowercase__ : Dict = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' ) lowercase__ : Optional[int] = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : int = image_processor(images=__lowerCAmelCase , return_tensors='''tf''' ) # forward pass lowercase__ : Any = model(**__lowerCAmelCase , training=__lowerCAmelCase ) # verify the logits lowercase__ : int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase__ : Dict = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''' ) lowercase__ : List[str] = self.default_image_processor lowercase__ : Optional[Any] = prepare_img() lowercase__ : Optional[Any] = image_processor(images=__lowerCAmelCase , return_tensors='''tf''' ) # forward pass lowercase__ : str = model(**__lowerCAmelCase , training=__lowerCAmelCase ) # verify the logits lowercase__ : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase__ : Union[str, Any] = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
198
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __a: List[str] = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "encoder-decoder" SCREAMING_SNAKE_CASE = True def __init__( self , **__lowerCAmelCase ) -> int: super().__init__(**__lowerCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase__ : Optional[int] = kwargs.pop('''encoder''' ) lowercase__ : Union[str, Any] = encoder_config.pop('''model_type''' ) lowercase__ : Any = kwargs.pop('''decoder''' ) lowercase__ : Any = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__ : Union[str, Any] = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Optional[Any] = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Tuple = True @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase__ : Union[str, Any] = True lowercase__ : Any = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Any: lowercase__ : Any = copy.deepcopy(self.__dict__ ) lowercase__ : Optional[Any] = self.encoder.to_dict() lowercase__ : Tuple = self.decoder.to_dict() lowercase__ : Dict = self.__class__.model_type return output
198
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
213
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : int = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
213
1
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : Any ): '''simple docstring''' _A = parent def lowerCAmelCase ( self : int ): '''simple docstring''' return {} def __lowercase ( ) -> Tuple: '''simple docstring''' _A = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" _A = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = MarkupLMFeatureExtractionTester(self ) @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.feature_extraction_class() # Test not batched input _A = get_html_strings()[0] _A = feature_extractor(__UpperCAmelCase ) # fmt: off _A = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] _A = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , __UpperCAmelCase ) self.assertEqual(encoding.xpaths , __UpperCAmelCase ) # Test batched _A = get_html_strings() _A = feature_extractor(__UpperCAmelCase ) # fmt: off _A = expected_nodes + [["My First Heading", "My first paragraph."]] _A = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __UpperCAmelCase ) self.assertEqual(encoding.xpaths , __UpperCAmelCase )
79
"""simple docstring""" import math def lowerCamelCase ( _UpperCamelCase : int ) -> list[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Dict = 2 __UpperCAmelCase : Union[str, Any] = int(math.sqrt(_UpperCamelCase ) ) # Size of every segment __UpperCAmelCase : Tuple = [True] * (end + 1) __UpperCAmelCase : int = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCamelCase ) for i in range(start * start , end + 1 , _UpperCamelCase ): __UpperCAmelCase : Dict = False start += 1 prime += in_prime __UpperCAmelCase : Optional[int] = end + 1 __UpperCAmelCase : Dict = min(2 * end , _UpperCamelCase ) while low <= n: __UpperCAmelCase : Union[str, Any] = [True] * (high - low + 1) for each in in_prime: __UpperCAmelCase : Dict = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCamelCase , high + 1 , _UpperCamelCase ): __UpperCAmelCase : Tuple = False for j in range(len(_UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) __UpperCAmelCase : Tuple = high + 1 __UpperCAmelCase : Optional[int] = min(high + end , _UpperCamelCase ) return prime print(sieve(10**6))
115
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel UpperCamelCase : Any = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } UpperCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : str=False ) -> int: """simple docstring""" a , a : Any = create_model( 'HTSAT-tiny' , 'roberta' , __lowerCAmelCase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=__lowerCAmelCase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> Tuple: """simple docstring""" a : Any = {} a : Optional[Any] = R'.*sequential.(\d+).*' a : Tuple = R'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: a : str = key.replace(__lowerCAmelCase , __lowerCAmelCase ) if re.match(__lowerCAmelCase , __lowerCAmelCase ): # replace sequential layers with list a : Optional[int] = re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) a : int = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(__lowerCAmelCase )//3}.linear.""" ) elif re.match(__lowerCAmelCase , __lowerCAmelCase ): a : Union[str, Any] = int(re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... a : Optional[int] = 1 if projecton_layer == 0 else 2 a : str = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value a : Tuple = value a : Optional[int] = mixed_qkv.size(0 ) // 3 a : Optional[Any] = mixed_qkv[:qkv_dim] a : List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] a : Optional[Any] = mixed_qkv[qkv_dim * 2 :] a : Tuple = query_layer a : List[Any] = key_layer a : Optional[int] = value_layer else: a : Tuple = value return model_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : Tuple , snake_case : Tuple , snake_case : int=False ) -> List[Any]: """simple docstring""" a , a : List[Any] = init_clap(__lowerCAmelCase , enable_fusion=__lowerCAmelCase ) clap_model.eval() a : Optional[int] = clap_model.state_dict() a : Dict = rename_state_dict(__lowerCAmelCase ) a : List[str] = ClapConfig() a : Dict = enable_fusion a : Dict = ClapModel(__lowerCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) transformers_config.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") UpperCamelCase : Any = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
353
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ["vqvae"] def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Mel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return 5_0 if isinstance(self.scheduler , UpperCAmelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = None , UpperCAmelCase_ : np.ndarray = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : Optional[Any]=True , ): """simple docstring""" a : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_) a : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) a : Tuple = noise a : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_) a : str = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a : List[str] = (input_image / 2_5_5) * 2 - 1 a : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0)).latent_dist.sample( generator=UpperCAmelCase_)[0] a : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1]) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : List[Any] = int(mask_start_secs * pixels_per_second) a : Optional[Any] = int(mask_end_secs * pixels_per_second) a : Optional[int] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , UpperCAmelCase_): a : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)['sample'] else: a : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] if isinstance(self.scheduler , UpperCAmelCase_): a : List[Any] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] else: a : Any = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] if mask is not None: if mask_start > 0: a : str = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : str = self.vqvae.decode(UpperCAmelCase_)['sample'] a : Tuple = (images / 2 + 0.5).clamp(0 , 1) a : Any = images.cpu().permute(0 , 2 , 3 , 1).numpy() a : List[str] = (images * 2_5_5).round().astype('uint8') a : Tuple = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode='RGB').convert('L') for _ in images)) a : List[str] = [self.mel.image_to_audio(UpperCAmelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase_)) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Image.Image] , UpperCAmelCase_ : int = 5_0): """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase_) self.scheduler.set_timesteps(UpperCAmelCase_) a : Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a : Tuple = (sample / 2_5_5) * 2 - 1 a : int = torch.Tensor(UpperCAmelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : List[str] = 1 - alpha_prod_t a : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] a : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : float): """simple docstring""" a : List[Any] = acos(torch.dot(torch.flatten(UpperCAmelCase_) , torch.flatten(UpperCAmelCase_)) / torch.norm(UpperCAmelCase_) / torch.norm(UpperCAmelCase_)) return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase_) + sin(alpha * theta) * xa / sin(UpperCAmelCase_)
345
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: _snake_case = None try: import msvcrt except ImportError: _snake_case = None try: import fcntl except ImportError: _snake_case = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _snake_case = OSError # Data # ------------------------------------------------ _snake_case = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] _snake_case = '3.0.12' _snake_case = None def lowerCAmelCase__ ( ): '''simple docstring''' global _logger _a : List[str] = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase ( snake_case_ ): def __init__( self : int , UpperCAmelCase__ : str ) -> Optional[int]: _a : Optional[Any] = lock_file return None def __str__( self : str ) -> Dict: _a : Any = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> List[Any]: _a : Dict = lock return None def __enter__( self : List[Any] ) -> int: return self.lock def __exit__( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ) -> List[str]: self.lock.release() return None class UpperCamelCase : def __init__( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any]=-1 , UpperCAmelCase__ : List[Any]=None ) -> Any: _a : Optional[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _a : Tuple = self.hash_filename_if_too_long(UpperCAmelCase__ , UpperCAmelCase__ ) # The path to the lock file. _a : Dict = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _a : str = None # The default timeout value. _a : Tuple = timeout # We use this lock primarily for the lock counter. _a : Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _a : Optional[int] = 0 return None @property def _lowercase ( self : List[str] ) -> Union[str, Any]: return self._lock_file @property def _lowercase ( self : Optional[Any] ) -> Dict: return self._timeout @timeout.setter def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> Optional[Any]: _a : int = float(UpperCAmelCase__ ) return None def _lowercase ( self : List[str] ) -> List[Any]: raise NotImplementedError() def _lowercase ( self : int ) -> Union[str, Any]: raise NotImplementedError() @property def _lowercase ( self : Optional[Any] ) -> Dict: return self._lock_file_fd is not None def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[Any]=0.0_5 ) -> Union[str, Any]: # Use the default timeout, if no timeout is provided. if timeout is None: _a : Dict = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _a : Optional[int] = id(self ) _a : Any = self._lock_file _a : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(UpperCAmelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _a : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[Any]=False ) -> List[Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _a : str = id(self ) _a : Dict = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() _a : int = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Optional[int] ) -> str: self.acquire() return self def __exit__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple ) -> Optional[int]: self.release() return None def __del__( self : Tuple ) -> Optional[int]: self.release(force=UpperCAmelCase__ ) return None def _lowercase ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: _a : Union[str, Any] = os.path.basename(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > max_length and max_length > 0: _a : List[Any] = os.path.dirname(UpperCAmelCase__ ) _a : Union[str, Any] = str(hash(UpperCAmelCase__ ) ) _a : Tuple = filename[: max_length - len(UpperCAmelCase__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) else: return path class UpperCamelCase ( snake_case_ ): def __init__( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple=-1 , UpperCAmelCase__ : Any=None ) -> Any: from .file_utils import relative_to_absolute_path super().__init__(UpperCAmelCase__ , timeout=UpperCAmelCase__ , max_filename_length=UpperCAmelCase__ ) _a : Dict = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _lowercase ( self : Optional[int] ) -> List[Any]: _a : Tuple = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _a : List[Any] = os.open(self._lock_file , UpperCAmelCase__ ) except OSError: pass else: try: msvcrt.locking(UpperCAmelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCAmelCase__ ) else: _a : List[Any] = fd return None def _lowercase ( self : List[Any] ) -> int: _a : str = self._lock_file_fd _a : Any = None msvcrt.locking(UpperCAmelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(UpperCAmelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase ( snake_case_ ): def __init__( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=-1 , UpperCAmelCase__ : List[str]=None ) -> int: _a : Dict = os.statvfs(os.path.dirname(UpperCAmelCase__ ) ).f_namemax super().__init__(UpperCAmelCase__ , timeout=UpperCAmelCase__ , max_filename_length=UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> Any: _a : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _a : Optional[Any] = os.open(self._lock_file , UpperCAmelCase__ ) try: fcntl.flock(UpperCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCAmelCase__ ) else: _a : Optional[int] = fd return None def _lowercase ( self : List[Any] ) -> Dict: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _a : List[str] = self._lock_file_fd _a : List[str] = None fcntl.flock(UpperCAmelCase__ , fcntl.LOCK_UN ) os.close(UpperCAmelCase__ ) return None class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Tuple ) -> Any: _a : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _a : Tuple = os.open(self._lock_file , UpperCAmelCase__ ) except OSError: pass else: _a : Union[str, Any] = fd return None def _lowercase ( self : Dict ) -> int: os.close(self._lock_file_fd ) _a : List[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _snake_case = None if msvcrt: _snake_case = WindowsFileLock elif fcntl: _snake_case = UnixFileLock else: _snake_case = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
294
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
1
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: '''simple docstring''' if gpta_config_file == "": lowercase : Any = GPTaConfig() else: lowercase : Optional[Any] = GPTaConfig.from_json_file(_UpperCAmelCase ) lowercase : Optional[int] = GPTaModel(_UpperCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model lowercase : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowercase : Union[str, Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _UpperCAmelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) _UpperCamelCase: str = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
367
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class a__ : def __init__( self : Union[str, Any], lowerCAmelCase : Any, lowerCAmelCase : Tuple=13, lowerCAmelCase : List[Any]=2, lowerCAmelCase : Tuple=24, lowerCAmelCase : Any=16, lowerCAmelCase : Optional[Any]=True, lowerCAmelCase : Tuple=True, lowerCAmelCase : Optional[int]=32, lowerCAmelCase : Optional[int]=5, lowerCAmelCase : Optional[int]=4, lowerCAmelCase : Optional[int]=37, lowerCAmelCase : Tuple="gelu", lowerCAmelCase : str=0.1, lowerCAmelCase : Tuple=0.1, lowerCAmelCase : List[Any]=10, lowerCAmelCase : List[Any]=0.02, lowerCAmelCase : List[str]=None, lowerCAmelCase : Any=2, lowerCAmelCase : str=2, ) -> Union[str, Any]: lowercase : str = parent lowercase : Optional[int] = batch_size lowercase : str = patch_size lowercase : List[Any] = max_length lowercase : Optional[Any] = num_mel_bins lowercase : int = is_training lowercase : Dict = use_labels lowercase : List[str] = hidden_size lowercase : str = num_hidden_layers lowercase : Any = num_attention_heads lowercase : List[str] = intermediate_size lowercase : int = hidden_act lowercase : Optional[Any] = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : int = type_sequence_label_size lowercase : Optional[int] = initializer_range lowercase : int = scope lowercase : int = frequency_stride lowercase : Dict = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase : Tuple = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase : Dict = (self.max_length - self.patch_size) // self.time_stride + 1 lowercase : Any = frequency_out_dimension * time_out_dimension lowercase : List[str] = num_patches + 2 def lowercase ( self : int ) -> Optional[int]: lowercase : List[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowercase : List[Any] = None if self.use_labels: lowercase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase : str = self.get_config() return config, input_values, labels def lowercase ( self : List[str] ) -> Any: return ASTConfig( patch_size=self.patch_size, max_length=self.max_length, num_mel_bins=self.num_mel_bins, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, frequency_stride=self.frequency_stride, time_stride=self.time_stride, ) def lowercase ( self : str, lowerCAmelCase : List[Any], lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any] ) -> Optional[int]: lowercase : Any = ASTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Any = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Any ) -> Tuple: lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict = config_and_inputs lowercase : Union[str, Any] = {'input_values': input_values} return config, inputs_dict @require_torch class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowercase ( self : Any, lowerCAmelCase : Any, lowerCAmelCase : Tuple, lowerCAmelCase : Dict, lowerCAmelCase : List[str], lowerCAmelCase : int ) -> Tuple: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowercase ( self : Optional[Any] ) -> Dict: lowercase : List[Any] = ASTModelTester(self ) lowercase : Any = ConfigTester(self, config_class=lowerCAmelCase, has_text_modality=lowerCAmelCase, hidden_size=37 ) def lowercase ( self : Tuple ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> List[str]: lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase, nn.Linear ) ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] = model_class(lowerCAmelCase ) lowercase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[Any] = [*signature.parameters.keys()] lowercase : str = ['input_values'] self.assertListEqual(arg_names[:1], lowerCAmelCase ) def lowercase ( self : Optional[int] ) -> Tuple: lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @slow def lowercase ( self : List[str] ) -> Optional[Any]: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = ASTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( ) -> Any: '''simple docstring''' lowercase : Tuple = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) lowercase , lowercase : List[str] = torchaudio.load(_UpperCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class a__ ( unittest.TestCase ): @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[int]: return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def lowercase ( self : Any ) -> Optional[Any]: lowercase : List[str] = self.default_feature_extractor lowercase : Tuple = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(lowerCAmelCase ) lowercase : List[str] = self.default_feature_extractor lowercase , lowercase : Optional[int] = prepare_audio() lowercase : List[str] = audio.squeeze().numpy() lowercase : List[Any] = feature_extractor(lowerCAmelCase, sampling_rate=lowerCAmelCase, return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase : List[Any] = model(**lowerCAmelCase ) # verify the logits lowercase : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape, lowerCAmelCase ) lowercase : Any = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCAmelCase, atol=1e-4 ) )
53
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = """▁""" __snake_case = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } __snake_case = { """facebook/m2m100_418M""": 1024, } # fmt: off __snake_case = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : int = PRETRAINED_VOCAB_FILES_MAP A_ : Dict = ["""input_ids""", """attention_mask"""] A_ : List[int] = [] A_ : List[int] = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="m2m100" , __UpperCAmelCase = None , __UpperCAmelCase=8 , **__UpperCAmelCase , ) -> None: _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = language_codes _a = FAIRSEQ_LANGUAGE_CODES[language_codes] _a = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} _a = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCAmelCase__ ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCAmelCase__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , language_codes=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowerCAmelCase__ , **lowerCAmelCase__ , ) _a = vocab_file _a = load_json(lowerCAmelCase__ ) _a = {v: k for k, v in self.encoder.items()} _a = spm_file _a = load_spm(lowerCAmelCase__ , self.sp_model_kwargs ) _a = len(self.encoder ) _a = { self.get_lang_token(lowerCAmelCase__ ): self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase__ ) } _a = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase__ )} _a = {v: k for k, v in self.lang_token_to_id.items()} _a = src_lang if src_lang is not None else "en" _a = tgt_lang _a = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _a = num_madeup_words @property def _UpperCAmelCase ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def _UpperCAmelCase ( self , __UpperCAmelCase ) -> None: _a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCAmelCase__ , self.encoder[self.unk_token] ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Any: _a = [] _a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _a = [] else: current_sub_tokens.append(lowerCAmelCase__ ) out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) _a = [1] * len(self.prefix_tokens ) _a = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self ) -> Dict: _a = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: _a = self.__dict__.copy() _a = None return state def __setstate__( self , __UpperCAmelCase ) -> None: _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = load_spm(self.spm_file , self.sp_model_kwargs ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: _a = Path(lowerCAmelCase__ ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowerCAmelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (str(lowerCAmelCase__ ), str(lowerCAmelCase__ )) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "en" , __UpperCAmelCase = None , __UpperCAmelCase = "ro" , **__UpperCAmelCase , ) -> BatchEncoding: _a = src_lang _a = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> str: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _a = src_lang _a = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ ) _a = self.get_lang_id(lowerCAmelCase__ ) _a = tgt_lang_id return inputs def _UpperCAmelCase ( self ) -> Tuple: self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self ) -> List[Any]: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> None: _a = self.get_lang_token(lowerCAmelCase__ ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def _UpperCAmelCase ( self , __UpperCAmelCase ) -> None: _a = self.get_lang_token(lowerCAmelCase__ ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: return self.lang_code_to_token[lang] def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int: _a = self.get_lang_token(lowerCAmelCase__ ) return self.lang_token_to_id[lang_token] def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Dict[str, Any] ): """simple docstring""" _a = sentencepiece.SentencePieceProcessor(**_lowerCAmelCase ) spm.Load(str(_lowerCAmelCase ) ) return spm def A_ ( _lowerCAmelCase : str ): """simple docstring""" with open(_lowerCAmelCase, '''r''' ) as f: return json.load(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : str ): """simple docstring""" with open(_lowerCAmelCase, '''w''' ) as f: json.dump(_lowerCAmelCase, _lowerCAmelCase, indent=2 )
320
import numpy # List of input, output pairs UpperCAmelCase : str = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase : Optional[int] = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCAmelCase : str = [2, 4, 1, 5] UpperCAmelCase : List[str] = len(train_data) UpperCAmelCase : Dict = 0.0_0_9 def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple="train" ): """simple docstring""" return calculate_hypothesis_value(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - output( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : Tuple =0 for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=m ): """simple docstring""" a__ : Any =0 for i in range(SCREAMING_SNAKE_CASE ): if index == -1: summation_value += _error(SCREAMING_SNAKE_CASE ) else: summation_value += _error(SCREAMING_SNAKE_CASE ) * train_data[i][0][index] return summation_value def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Any =summation_of_cost_derivative(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / m return cost_derivative_value def _A ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output a__ : Dict =0.0_0_0_0_0_2 a__ : Union[str, Any] =0 a__ : Any =0 while True: j += 1 a__ : Any =[0, 0, 0, 0] for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): a__ : Tuple =get_cost_derivative(i - 1 ) a__ : List[Any] =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE , rtol=SCREAMING_SNAKE_CASE , ): break a__ : Optional[Any] =temp_parameter_vector print(("Number of iterations:", j) ) def _A ( ): """simple docstring""" for i in range(len(SCREAMING_SNAKE_CASE ) ): print(("Actual output value:", output(SCREAMING_SNAKE_CASE , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(SCREAMING_SNAKE_CASE , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
95
0
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : str ): A__ = [int(_lowerCamelCase ) for i in ip_va_address.split("." ) if i.isdigit()] return len(_lowerCamelCase ) == 4 and all(0 <= int(_lowerCamelCase ) <= 2_54 for octet in octets ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =input().strip() __lowerCAmelCase : List[str] ="valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
123
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowercase = CLIPTokenizer __lowercase = CLIPTokenizerFast __lowercase = True __lowercase = {} __lowercase = False def UpperCAmelCase_ ( self :Optional[int] )-> Optional[Any]: super().setUp() # fmt: off A__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on A__ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) A__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] A__ = {"unk_token": "<unk>"} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def UpperCAmelCase_ ( self :Optional[int] , **lowercase_ :List[str] )-> str: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , **lowercase_ :Optional[int] )-> Tuple: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :List[Any] )-> List[str]: A__ = "lower newer" A__ = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self :int )-> List[str]: A__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = "lower newer" A__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] A__ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) A__ = tokens + [tokenizer.unk_token] A__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) @require_ftfy def UpperCAmelCase_ ( self :Dict )-> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) A__ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) A__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." A__ = tokenizer_s.tokenize(lowercase_ ) A__ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways A__ = "xa\u0303y" + " " + "x\xe3y" A__ = tokenizer_s.tokenize(lowercase_ ) A__ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on unicode of space type A__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: A__ = tokenizer_s.tokenize(lowercase_ ) A__ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on unicode of line break type A__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: A__ = tokenizer_s.tokenize(lowercase_ ) A__ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] )-> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` A__ = F"{text_of_1_token} {text_of_1_token}" A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) A__ = F" {text}" A__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , ) A__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCAmelCase_ ( self :str )-> Any: super().test_tokenization_python_rust_equals() def UpperCAmelCase_ ( self :Optional[int] )-> Union[str, Any]: # CLIP always lower cases letters pass
123
1
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]=1E-12 ): lowercase_ : Dict = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T lowercase_ : Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(__SCREAMING_SNAKE_CASE , norm_emb_a.T ) class UpperCamelCase ( nn.Module ): lowercase = 42 lowercase = jnp.floataa def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = FlaxCLIPVisionModule(self.config.vision_config ) lowercase_ : Any = nn.Dense(self.config.projection_dim ,use_bias=__UpperCamelCase ,dtype=self.dtype ) lowercase_ : int = self.param('concept_embeds' ,jax.nn.initializers.ones ,(17, self.config.projection_dim) ) lowercase_ : Any = self.param( 'special_care_embeds' ,jax.nn.initializers.ones ,(3, self.config.projection_dim) ) lowercase_ : List[str] = self.param('concept_embeds_weights' ,jax.nn.initializers.ones ,(17,) ) lowercase_ : Optional[int] = self.param('special_care_embeds_weights' ,jax.nn.initializers.ones ,(3,) ) def __call__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = self.vision_model(__UpperCamelCase )[1] lowercase_ : int = self.visual_projection(__UpperCamelCase ) lowercase_ : Dict = jax_cosine_distance(__UpperCamelCase ,self.special_care_embeds ) lowercase_ : Any = jax_cosine_distance(__UpperCamelCase ,self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase_ : List[str] = 0.0 lowercase_ : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase_ : Dict = jnp.round(__UpperCamelCase ,3 ) lowercase_ : List[Any] = jnp.any(special_scores > 0 ,axis=1 ,keepdims=__UpperCamelCase ) # Use a lower threshold if an image has any special care concept lowercase_ : int = is_special_care * 0.01 lowercase_ : int = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase_ : str = jnp.round(__UpperCamelCase ,3 ) lowercase_ : Optional[int] = jnp.any(concept_scores > 0 ,axis=1 ) return has_nsfw_concepts class UpperCamelCase ( lowercase_ ): lowercase = CLIPConfig lowercase = 'clip_input' lowercase = FlaxStableDiffusionSafetyCheckerModule def __init__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = 0 ,__UpperCamelCase = jnp.floataa ,__UpperCamelCase = True ,**__UpperCamelCase ,) -> Any: '''simple docstring''' if input_shape is None: lowercase_ : int = (1, 224, 224, 3) lowercase_ : Optional[Any] = self.module_class(config=__UpperCamelCase ,dtype=__UpperCamelCase ,**__UpperCamelCase ) super().__init__(__UpperCamelCase ,__UpperCamelCase ,input_shape=__UpperCamelCase ,seed=__UpperCamelCase ,dtype=__UpperCamelCase ,_do_init=_do_init ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ) -> FrozenDict: '''simple docstring''' lowercase_ : Optional[int] = jax.random.normal(__UpperCamelCase ,__UpperCamelCase ) lowercase_ , lowercase_ : int = jax.random.split(__UpperCamelCase ) lowercase_ : List[str] = {'params': params_rng, 'dropout': dropout_rng} lowercase_ : Dict = self.module.init(__UpperCamelCase ,__UpperCamelCase )['params'] return random_params def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,) -> str: '''simple docstring''' lowercase_ : List[Any] = jnp.transpose(__UpperCamelCase ,(0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} ,jnp.array(__UpperCamelCase ,dtype=jnp.floataa ) ,rngs={} ,)
213
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 0.9 ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 1 / 255 ,__UpperCamelCase = True ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : Optional[int] = size if size is not None else {'shortest_edge': 224} lowercase_ : Union[str, Any] = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase_ : Optional[int] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : List[str] = do_resize lowercase_ : List[Any] = size lowercase_ : int = crop_pct lowercase_ : Dict = resample lowercase_ : List[str] = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : List[Any] = do_rescale lowercase_ : Tuple = rescale_factor lowercase_ : Tuple = do_normalize lowercase_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : Any = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: lowercase_ : Union[str, Any] = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase_ : Tuple = int(size['height'] / crop_pct ) else: lowercase_ : Dict = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) lowercase_ : int = get_resize_output_image_size(__UpperCamelCase ,size=__UpperCamelCase ,default_to_square=__UpperCamelCase ) else: if "shortest_edge" in size: lowercase_ : Optional[int] = get_resize_output_image_size(__UpperCamelCase ,size=size['shortest_edge'] ,default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: lowercase_ : Dict = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) return resize(__UpperCamelCase ,size=__UpperCamelCase ,resample=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : List[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCamelCase ,size=(size['height'], size['width']) ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> str: '''simple docstring''' return rescale(__UpperCamelCase ,scale=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image: '''simple docstring''' lowercase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct lowercase_ : List[str] = resample if resample is not None else self.resample lowercase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : str = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Tuple = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : List[str] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : str = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase_ : Optional[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: lowercase_ : str = [self.resize(image=__UpperCamelCase ,size=__UpperCamelCase ,crop_pct=__UpperCamelCase ,resample=__UpperCamelCase ) for image in images] if do_center_crop: lowercase_ : str = [self.center_crop(image=__UpperCamelCase ,size=__UpperCamelCase ) for image in images] if do_rescale: lowercase_ : Any = [self.rescale(image=__UpperCamelCase ,scale=__UpperCamelCase ) for image in images] if do_normalize: lowercase_ : int = [self.normalize(image=__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ) for image in images] lowercase_ : Dict = [to_channel_dimension_format(__UpperCamelCase ,__UpperCamelCase ) for image in images] lowercase_ : Any = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase ,tensor_type=__UpperCamelCase )
213
1
from manim import * class UpperCAmelCase__ ( A__ ): """simple docstring""" def lowercase_ ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE__ = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE__ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = Text('''CPU''' , font_size=24 ) SCREAMING_SNAKE_CASE__ = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE__ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = Text('''GPU''' , font_size=24 ) SCREAMING_SNAKE_CASE__ = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = Text('''Model''' , font_size=24 ) SCREAMING_SNAKE_CASE__ = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) model_cpu_arr.append(__lowerCamelCase ) self.add(*__lowerCamelCase , *__lowerCamelCase , *__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = Text('''Loaded Checkpoint''' , font_size=24 ) SCREAMING_SNAKE_CASE__ = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) ckpt_arr.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowerCamelCase ) self.add(*__lowerCamelCase , *__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE__ = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) SCREAMING_SNAKE_CASE__ = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE__ = Text('''Disk''' , font_size=24 ) SCREAMING_SNAKE_CASE__ = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__lowerCamelCase , run_time=3 ) , Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE__ = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(FadeOut(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase , run_time=3 ) ) self.play( FadeOut(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , *__lowerCamelCase ) , ) self.wait()
218
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "transfo-xl" a = ["mems"] a = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , __lowerCamelCase : int=26_7735 , __lowerCamelCase : Any=[2_0000, 4_0000, 20_0000] , __lowerCamelCase : Dict=1024 , __lowerCamelCase : Optional[int]=1024 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Union[str, Any]=64 , __lowerCamelCase : Dict=4096 , __lowerCamelCase : int=4 , __lowerCamelCase : Dict=False , __lowerCamelCase : Tuple=18 , __lowerCamelCase : Optional[int]=1600 , __lowerCamelCase : str=1000 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : int=-1 , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : int=True , __lowerCamelCase : str="normal" , __lowerCamelCase : List[str]=0.01 , __lowerCamelCase : Any=0.01 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : List[str]=1e-5 , __lowerCamelCase : Union[str, Any]=0 , **__lowerCamelCase : int , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = [] self.cutoffs.extend(__lowerCamelCase ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE__ = [False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE__ = [False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = d_embed SCREAMING_SNAKE_CASE__ = d_head SCREAMING_SNAKE_CASE__ = d_inner SCREAMING_SNAKE_CASE__ = div_val SCREAMING_SNAKE_CASE__ = pre_lnorm SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = mem_len SCREAMING_SNAKE_CASE__ = same_length SCREAMING_SNAKE_CASE__ = attn_type SCREAMING_SNAKE_CASE__ = clamp_len SCREAMING_SNAKE_CASE__ = sample_softmax SCREAMING_SNAKE_CASE__ = adaptive SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = dropatt SCREAMING_SNAKE_CASE__ = untie_r SCREAMING_SNAKE_CASE__ = init SCREAMING_SNAKE_CASE__ = init_range SCREAMING_SNAKE_CASE__ = proj_init_std SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = layer_norm_epsilon super().__init__(eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @property def lowercase_ ( self : str ) -> Dict: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowercase_ ( self : List[str] , __lowerCamelCase : Any ) -> List[Any]: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
218
1
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" if return_pvalue: A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
3
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = "time_series_transformer" UpperCAmelCase : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = "mean" , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 32 , A_ = 32 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = True , A_ = "gelu" , A_ = 64 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.0_2 , A_=True , **A_ , ) -> Optional[Any]: # time series specific configuration lowerCAmelCase = prediction_length lowerCAmelCase = context_length or prediction_length lowerCAmelCase = distribution_output lowerCAmelCase = loss lowerCAmelCase = input_size lowerCAmelCase = num_time_features lowerCAmelCase = lags_sequence lowerCAmelCase = scaling lowerCAmelCase = num_dynamic_real_features lowerCAmelCase = num_static_real_features lowerCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase = cardinality else: lowerCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase = embedding_dimension else: lowerCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase = num_parallel_samples # Transformer architecture configuration lowerCAmelCase = input_size * len(A_ ) + self._number_of_features lowerCAmelCase = d_model lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_attention_heads lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = decoder_layers lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = use_cache super().__init__(is_encoder_decoder=A_ , **A_ ) @property def __snake_case ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
187
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase : Optional[int] = "dpt" def __init__( self : int , lowerCamelCase__ : Optional[int]=7_68 , lowerCamelCase__ : Any=12 , lowerCamelCase__ : Tuple=12 , lowerCamelCase__ : Optional[Any]=30_72 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Dict=1E-12 , lowerCamelCase__ : List[Any]=3_84 , lowerCamelCase__ : List[str]=16 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : str=True , lowerCamelCase__ : Union[str, Any]=[2, 5, 8, 11] , lowerCamelCase__ : Any="project" , lowerCamelCase__ : List[str]=[4, 2, 1, 0.5] , lowerCamelCase__ : Union[str, Any]=[96, 1_92, 3_84, 7_68] , lowerCamelCase__ : List[str]=2_56 , lowerCamelCase__ : str=-1 , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Union[str, Any]=0.4 , lowerCamelCase__ : int=2_55 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : Optional[Any]=[1, 10_24, 24, 24] , lowerCamelCase__ : List[str]=[0, 1] , lowerCamelCase__ : Optional[Any]=None , **lowerCamelCase__ : Tuple , ) ->Optional[int]: '''simple docstring''' super().__init__(**__A ) _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : Optional[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) _UpperCAmelCase : Any = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _UpperCAmelCase : str = BitConfig(**__A ) elif isinstance(__A , __A ): logger.info("Initializing the config with a `BiT` backbone." ) _UpperCAmelCase : List[str] = BitConfig(**__A ) elif isinstance(__A , __A ): _UpperCAmelCase : Dict = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) _UpperCAmelCase : Tuple = backbone_featmap_shape _UpperCAmelCase : Optional[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be \'project\' when using `DPT-hybrid` mode." ) else: _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[str] = [] _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : Dict = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : Union[str, Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of [\'ignore\', \'add\', \'project\']" ) _UpperCAmelCase : List[Any] = readout_type _UpperCAmelCase : Optional[Any] = reassemble_factors _UpperCAmelCase : int = neck_hidden_sizes _UpperCAmelCase : Tuple = fusion_hidden_size _UpperCAmelCase : Union[str, Any] = head_in_index _UpperCAmelCase : Tuple = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : Union[str, Any] = use_auxiliary_head _UpperCAmelCase : Optional[int] = auxiliary_loss_weight _UpperCAmelCase : Tuple = semantic_loss_ignore_index _UpperCAmelCase : Optional[int] = semantic_classifier_dropout def lowerCAmelCase__ ( self : List[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : Tuple = self.backbone_config.to_dict() _UpperCAmelCase : str = self.__class__.model_type return output
234
'''simple docstring''' import random def lowercase__ ( __lowercase : list , __lowercase : Optional[Any] ) -> tuple: """simple docstring""" __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = [], [], [] for element in data: if element < pivot: less.append(__lowercase ) elif element > pivot: greater.append(__lowercase ) else: equal.append(__lowercase ) return less, equal, greater def lowercase__ ( __lowercase : list , __lowercase : int ) -> Dict: """simple docstring""" if index >= len(__lowercase ) or index < 0: return None __UpperCamelCase = items[random.randint(0 , len(__lowercase ) - 1 )] __UpperCamelCase = 0 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = _partition(__lowercase , __lowercase ) __UpperCamelCase = len(__lowercase ) __UpperCamelCase = len(__lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__lowercase , __lowercase ) # must be in larger else: return quick_select(__lowercase , index - (m + count) )
53
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( _a ,unittest.TestCase ): lowercase_ = KandinskyVaaInpaintPipeline lowercase_ = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase_ = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase_ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase_ = False @property def __lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return 1_00 @property def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) _a = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def __lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a = self.dummy_unet _a = self.dummy_movq _a = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCAmelCase_ , ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=0 ) -> str: """simple docstring""" _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase_ ) # create init_image _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask _a = np.ones((64, 64) , dtype=np.floataa ) _a = 0 if str(lowerCAmelCase_ ).startswith('''mps''' ): _a = torch.manual_seed(lowerCAmelCase_ ) else: _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _a = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(lowerCAmelCase_ ) , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _a = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def __lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a = np.ones((7_68, 7_68) , dtype=np.floataa ) _a = 0 _a = '''a hat''' _a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase_ ) _a = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) _a = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a = pipe_prior( lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a = pipeline( image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) _a = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
358
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case : int = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['YolosFeatureExtractor'] _snake_case : Optional[int] = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Any: __snake_case : List[Any] = dataset __snake_case : Optional[int] = process __snake_case : str = params def __len__( self : Optional[Any] ) -> Any: return len(self.dataset ) def __getitem__( self : Dict , lowerCamelCase : List[Any] ) -> List[str]: __snake_case : List[Any] = self.dataset[i] __snake_case : Tuple = self.process(lowerCamelCase , **self.params ) return processed class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict=None ) -> int: __snake_case : List[Any] = loader __snake_case : Dict = infer __snake_case : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __snake_case : Union[str, Any] = None __snake_case : Optional[Any] = loader_batch_size # Internal bookkeeping __snake_case : int = None __snake_case : Optional[int] = None def __len__( self : Optional[Any] ) -> Tuple: return len(self.loader ) def __iter__( self : str ) -> Tuple: __snake_case : int = iter(self.loader ) return self def __snake_case ( self : int ) -> Any: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __snake_case : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __snake_case : int = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase , lowerCamelCase ): # Convert ModelOutput to tuple first __snake_case : Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __snake_case : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase , lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __snake_case : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : str = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __snake_case : Union[str, Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : List[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : Optional[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __snake_case : Tuple = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __snake_case : str = self._loader_batch_data.__class__(lowerCamelCase ) self._loader_batch_index += 1 return result def __snake_case ( self : Dict ) -> Union[str, Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __snake_case : List[str] = next(self.iterator ) __snake_case : int = self.infer(lowerCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase , torch.Tensor ): __snake_case : List[Any] = processed else: __snake_case : Optional[Any] = list(processed.keys() )[0] __snake_case : List[Any] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[str] = len(lowerCamelCase ) else: __snake_case : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Optional[Any] = observed_batch_size # Setting internal index to unwrap the batch __snake_case : Union[str, Any] = processed __snake_case : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=None ) -> Any: super().__init__(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __iter__( self : Optional[int] ) -> Optional[int]: __snake_case : Union[str, Any] = iter(self.loader ) __snake_case : int = None return self def __snake_case ( self : List[Any] ) -> List[Any]: if self.subiterator is None: __snake_case : Optional[int] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __snake_case : int = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __snake_case : Union[str, Any] = self.infer(next(self.iterator ) , **self.params ) __snake_case : int = next(self.subiterator ) return processed class a (_lowerCAmelCase ): """simple docstring""" def __iter__( self : Any ) -> Optional[Any]: __snake_case : str = iter(self.loader ) return self def __snake_case ( self : Tuple ) -> str: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __snake_case : Dict = False __snake_case : Dict = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __snake_case : Union[str, Any] = self.loader_batch_item() __snake_case : Any = item.pop("is_last" ) accumulator.append(lowerCamelCase ) if is_last: return accumulator while not is_last: __snake_case : str = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase , torch.Tensor ): __snake_case : Optional[int] = processed else: __snake_case : Union[str, Any] = list(processed.keys() )[0] __snake_case : Optional[Any] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : int = len(lowerCamelCase ) else: __snake_case : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Dict = observed_batch_size __snake_case : Union[str, Any] = processed __snake_case : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: __snake_case : str = self.loader_batch_item() __snake_case : str = item.pop("is_last" ) accumulator.append(lowerCamelCase ) if is_last: return accumulator else: __snake_case : List[str] = processed __snake_case : Tuple = item.pop("is_last" ) accumulator.append(lowerCamelCase ) return accumulator class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Dataset , lowerCamelCase : str ) -> Optional[Any]: __snake_case : int = dataset __snake_case : Union[str, Any] = key def __len__( self : Tuple ) -> Union[str, Any]: return len(self.dataset ) def __getitem__( self : Optional[Any] , lowerCamelCase : str ) -> Optional[int]: return self.dataset[i][self.key] class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : Dataset , lowerCamelCase : str , lowerCamelCase : str ) -> List[str]: __snake_case : Any = dataset __snake_case : Any = keya __snake_case : Union[str, Any] = keya def __len__( self : Optional[int] ) -> Tuple: return len(self.dataset ) def __getitem__( self : Tuple , lowerCamelCase : List[str] ) -> Optional[Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
123
def lowerCAmelCase_ ( __lowerCamelCase ): if edge <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCAmelCase_ ( __lowerCamelCase ): if edge <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
123
1
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
356
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Dict = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _lowerCAmelCase : Dict = CLIPImageProcessor() _lowerCAmelCase : Tuple = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") _lowerCAmelCase : Tuple = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
218
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[Any] = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = GPTSwaTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =GPTSwaTokenizer(__snake_case , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , __snake_case ) -> Tuple: '''simple docstring''' __a ='This is a test' __a ='This is a test' return input_text, output_text def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a ='<s>' __a =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__snake_case ) , 2000 ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =GPTSwaTokenizer(__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [465, 287, 265, 631, 842] ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( __snake_case , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) # fmt: off self.assertListEqual( __snake_case , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =GPTSwaTokenizer(__snake_case ) __a =['This is a test', 'I was born in 92000, and this is falsé.'] __a =[ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__snake_case , __snake_case ): self.assertListEqual(tokenizer.encode_fast(__snake_case ) , __snake_case ) # Test that decode_fast returns the input text for text, token_ids in zip(__snake_case , __snake_case ): self.assertEqual(tokenizer.decode_fast(__snake_case ) , __snake_case ) @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =[ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off __a ={'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='AI-Sweden/gpt-sw3-126m' , sequences=__snake_case , )
218
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _UpperCAmelCase : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] _UpperCAmelCase : Optional[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowercase ( lowercase__ ): __lowercase : Tuple = """whisper""" __lowercase : int = ["""past_key_values"""] __lowercase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A_=51_865 , A_=80 , A_=6 , A_=4 , A_=6 , A_=4 , A_=1_536 , A_=1_536 , A_=0.0 , A_=0.0 , A_=50_257 , A_=True , A_=True , A_="gelu" , A_=256 , A_=0.0 , A_=0.0 , A_=0.0 , A_=0.02 , A_=False , A_=1_500 , A_=448 , A_=50_256 , A_=50_256 , A_=50_256 , A_=None , A_=[220, 50_256] , A_=False , A_=256 , A_=False , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=7 , **A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = num_mel_bins UpperCamelCase = d_model UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = encoder_ffn_dim UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = max_source_positions UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks UpperCamelCase = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class lowercase ( lowercase__ ): @property def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase = {0: "batch"} else: UpperCamelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 22_050 , A_ = 5.0 , A_ = 220 , ) -> Optional[int]: """simple docstring""" UpperCamelCase = OrderedDict() UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCamelCase = encoder_inputs["input_features"].shape[2] UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase = encoder_inputs.pop('input_features' ) UpperCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return 1e-3
351
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = tempfile.mkdtemp() # fmt: off UpperCamelCase = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) UpperCamelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A_ , A_ ) def __UpperCamelCase ( self , **A_ ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **A_ ) def __UpperCamelCase ( self , **A_ ) -> Tuple: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **A_ ) def __UpperCamelCase ( self , **A_ ) -> Union[str, Any]: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = self.get_image_processor() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_image_processor(do_normalize=A_ ) UpperCamelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(A_ , return_tensors='np' ) UpperCamelCase = processor(images=A_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = processor(text=A_ , return_tensors='np' ) UpperCamelCase = tokenizer(A_ , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = ['cat', 'nasa badge'] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = [['cat', 'nasa badge'], ['person']] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 UpperCamelCase = len(A_ ) UpperCamelCase = max([len(A_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = ['cat', 'nasa badge'] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 UpperCamelCase = inputs['input_ids'] UpperCamelCase = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(images=A_ , query_images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(A_ ) UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
110
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = None def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=0.9_9_9 , _lowerCAmelCase : Optional[Any]="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCAmelCase : List[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCAmelCase : Any ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase : Any = [] for i in range(_lowerCAmelCase ): UpperCAmelCase : Dict = i / num_diffusion_timesteps UpperCAmelCase : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , __snake_case : int = 1000 , __snake_case : str = "fixed_small_log" , __snake_case : bool = True , __snake_case : Optional[float] = 1.0 , __snake_case : str = "epsilon" , __snake_case : str = "squaredcos_cap_v2" , ) -> str: if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) UpperCAmelCase : Union[str, Any] = betas_for_alpha_bar(__snake_case ) UpperCAmelCase : List[Any] = 1.0 - self.betas UpperCAmelCase : List[Any] = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : List[Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : int = 1.0 # setable values UpperCAmelCase : str = None UpperCAmelCase : Union[str, Any] = torch.from_numpy(np.arange(0 , __snake_case )[::-1].copy() ) UpperCAmelCase : Optional[Any] = variance_type def A ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None ) -> torch.FloatTensor: return sample def A ( self : Dict , __snake_case : int , __snake_case : Union[str, torch.device] = None ) -> Optional[Any]: UpperCAmelCase : List[str] = num_inference_steps UpperCAmelCase : Optional[int] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : str = (np.arange(0 , __snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : Optional[int] = torch.from_numpy(__snake_case ).to(__snake_case ) def A ( self : Any , __snake_case : str , __snake_case : List[str]=None , __snake_case : str=None , __snake_case : List[str]=None ) -> int: if prev_timestep is None: UpperCAmelCase : Optional[int] = t - 1 UpperCAmelCase : Any = self.alphas_cumprod[t] UpperCAmelCase : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Any = 1 - alpha_prod_t UpperCAmelCase : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Optional[int] = self.betas[t] else: UpperCAmelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Optional[Any] = torch.log(torch.clamp(__snake_case , min=1E-20 ) ) UpperCAmelCase : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : Tuple = variance.log() UpperCAmelCase : List[Any] = beta.log() UpperCAmelCase : List[Any] = (predicted_variance + 1) / 2 UpperCAmelCase : List[Any] = frac * max_log + (1 - frac) * min_log return variance def A ( self : Union[str, Any] , __snake_case : torch.FloatTensor , __snake_case : int , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None , __snake_case : int=None , __snake_case : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCAmelCase : Optional[int] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase , UpperCAmelCase : Tuple = torch.split(__snake_case , sample.shape[1] , dim=1 ) else: UpperCAmelCase : int = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : Optional[Any] = t - 1 UpperCAmelCase : str = self.alphas_cumprod[t] UpperCAmelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Tuple = self.betas[t] UpperCAmelCase : Optional[Any] = self.alphas[t] else: UpperCAmelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : Union[str, Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : int = torch.clamp( __snake_case , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : int = 0 if t > 0: UpperCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__snake_case , device=model_output.device ) UpperCAmelCase : Optional[Any] = self._get_variance( __snake_case , predicted_variance=__snake_case , prev_timestep=__snake_case , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : Tuple = variance elif self.variance_type == "learned_range": UpperCAmelCase : List[Any] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ''' for the UnCLIPScheduler.''' ) UpperCAmelCase : Dict = variance * variance_noise UpperCAmelCase : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__snake_case , pred_original_sample=__snake_case ) def A ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , __snake_case : torch.IntTensor , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase : Dict = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : Tuple = timesteps.to(original_samples.device ) UpperCAmelCase : int = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : Optional[int] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Optional[int] = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : Any = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
23
def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [] snake_case_ = 1 while len(_A ) < 1E6: constant.append(str(_A ) ) i += 1 snake_case_ = "".join(_A ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
187
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a : Optional[int] = logging.getLogger(__name__) a : List[str] = 'Hello world! cécé herlolip' a : Any = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: List[Any] = BertAbsConfig( temp_dir=""".""" , finetune_bert=lowerCAmelCase__ , large=lowerCAmelCase__ , share_emb=lowerCAmelCase__ , use_bert_emb=lowerCAmelCase__ , encoder="""bert""" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase_: int = torch.load(lowerCAmelCase__ , lambda lowerCAmelCase__ , lowerCAmelCase__ : storage ) UpperCAmelCase_: List[Any] = AbsSummarizer(lowerCAmelCase__ , torch.device("""cpu""" ) , lowerCAmelCase__ ) original.eval() UpperCAmelCase_: Optional[int] = BertAbsSummarizer(lowerCAmelCase__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase_: Union[str, Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase_: Optional[int] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(lowerCAmelCase__ )) ) UpperCAmelCase_: List[Any] = torch.tensor(lowerCAmelCase__ ).unsqueeze(0 ) UpperCAmelCase_: Optional[Any] = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(lowerCAmelCase__ )) ) UpperCAmelCase_: Any = torch.tensor(lowerCAmelCase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase_: Optional[Any] = encoder_input_ids UpperCAmelCase_: Tuple = decoder_input_ids UpperCAmelCase_: int = None UpperCAmelCase_: Dict = None UpperCAmelCase_: int = None UpperCAmelCase_: Union[str, Any] = None UpperCAmelCase_: Union[str, Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase_: List[Any] = original(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )[0] UpperCAmelCase_: Any = original.generator(lowerCAmelCase__ ) UpperCAmelCase_: List[Any] = new_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )[0] UpperCAmelCase_: List[Any] = new_model.generator(lowerCAmelCase__ ) UpperCAmelCase_: List[str] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(lowerCAmelCase__ ) ) UpperCAmelCase_: str = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(lowerCAmelCase__ ) ) UpperCAmelCase_: Any = torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a : str = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
82
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a : Optional[int] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: int = create_model( """HTSAT-tiny""" , """roberta""" , lowerCAmelCase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCAmelCase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: List[Any] = {} UpperCAmelCase_: Optional[Any] = r""".*sequential.(\d+).*""" UpperCAmelCase_: str = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_: Optional[int] = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_: int = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_: Dict = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(lowerCAmelCase__ )//3}.linear.' ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_: int = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_: Optional[Any] = 1 if projecton_layer == 0 else 2 UpperCAmelCase_: Tuple = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_: str = value UpperCAmelCase_: Optional[int] = mixed_qkv.size(0 ) // 3 UpperCAmelCase_: Optional[int] = mixed_qkv[:qkv_dim] UpperCAmelCase_: List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_: int = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_: str = query_layer UpperCAmelCase_: List[Any] = key_layer UpperCAmelCase_: str = value_layer else: UpperCAmelCase_: Tuple = value return model_state_dict def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: List[Any]=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_: Optional[Any] = clap_model.state_dict() UpperCAmelCase_: Optional[Any] = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_: Dict = ClapConfig() UpperCAmelCase_: Tuple = enable_fusion UpperCAmelCase_: int = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a : Optional[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
82
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase__ ( __UpperCamelCase )-> List[Any]: UpperCamelCase = image.size UpperCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) UpperCamelCase = np.array(snake_case_ ).astype(np.floataa ) / 255.0 UpperCamelCase = image[None].transpose(0 , 3 , 1 , 2 ) UpperCamelCase = torch.from_numpy(snake_case_ ) return 2.0 * image - 1.0 class a_ ( SCREAMING_SNAKE_CASE__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> Dict: """simple docstring""" if isinstance(__lowerCamelCase , PIL.Image.Image ): UpperCamelCase = 1 elif isinstance(__lowerCamelCase , torch.Tensor ): UpperCamelCase = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase )}" ) if isinstance(__lowerCamelCase , PIL.Image.Image ): UpperCamelCase = preprocess(__lowerCamelCase ) UpperCamelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCamelCase = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCamelCase = next(self.unet.parameters() ).dtype UpperCamelCase = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase ) UpperCamelCase = image.to(device=self.device , dtype=__lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) UpperCamelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta for t in self.progress_bar(__lowerCamelCase ): # concat latents and low resolution image in the channel dimension. UpperCamelCase = torch.cat([latents, image] , dim=1 ) UpperCamelCase = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) # predict the noise residual UpperCamelCase = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample # decode the image latents with the VQVAE UpperCamelCase = self.vqvae.decode(__lowerCamelCase ).sample UpperCamelCase = torch.clamp(__lowerCamelCase , -1.0 , 1.0 ) UpperCamelCase = image / 2 + 0.5 UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
321
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """microsoft/speecht5_tts""" _lowerCamelCase = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _lowerCamelCase = """text_reader""" _lowerCamelCase = SpeechTaProcessor _lowerCamelCase = SpeechTaForTextToSpeech _lowerCamelCase = SpeechTaHifiGan _lowerCamelCase = ["""text"""] _lowerCamelCase = ["""audio"""] def UpperCamelCase__( self ): '''simple docstring''' if self.post_processor is None: __A : List[str] = '''microsoft/speecht5_hifigan''' super().setup() def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : int = self.pre_processor(text=__lowerCamelCase , return_tensors='''pt''' , truncation=__lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) __A : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) __A : int = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' with torch.no_grad(): return self.post_processor(__lowerCamelCase ).cpu().detach()
179
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE :Any = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Tuple = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from sklearn.metrics import recall_score import datasets __SCREAMING_SNAKE_CASE :Any = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __SCREAMING_SNAKE_CASE :Tuple = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __SCREAMING_SNAKE_CASE :Optional[int] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def lowercase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[int]=None , snake_case_ : str=1 , snake_case_ : str="binary" , snake_case_ : int=None , snake_case_ : List[Any]="warn" , ): _UpperCAmelCase = recall_score( snake_case_ , snake_case_ , labels=snake_case_ , pos_label=snake_case_ , average=snake_case_ , sample_weight=snake_case_ , zero_division=snake_case_ , ) return {"recall": float(snake_case_ ) if score.size == 1 else score}
156
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ ): __lowerCAmelCase : Tuple = 1 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 1000 , _SCREAMING_SNAKE_CASE = None ) -> Dict: '''simple docstring''' self.set_timesteps(_SCREAMING_SNAKE_CASE ) # standard deviation of the initial noise distribution UpperCAmelCase : Optional[int] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase : List[str] = 4 # running values UpperCAmelCase : str = [] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] = num_inference_steps UpperCAmelCase : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase : str = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase : Optional[Any] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase : Optional[Any] = torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase : Dict = (1.0 - self.betas**2) ** 0.5 UpperCAmelCase : List[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase : List[Any] = timesteps.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = [] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) UpperCAmelCase : Optional[int] = (self.timesteps == timestep).nonzero().item() UpperCAmelCase : Optional[Any] = timestep_index + 1 UpperCAmelCase : Union[str, Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_SCREAMING_SNAKE_CASE ) if len(self.ets ) == 1: UpperCAmelCase : Union[str, Any] = self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase : Union[str, Any] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase : str = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: UpperCAmelCase : List[str] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase : Union[str, Any] = self._get_prev_sample(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> torch.FloatTensor: '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.alphas[timestep_index] UpperCAmelCase : List[str] = self.betas[timestep_index] UpperCAmelCase : Tuple = self.alphas[prev_timestep_index] UpperCAmelCase : int = self.betas[prev_timestep_index] UpperCAmelCase : List[Any] = (sample - sigma * ets) / max(_SCREAMING_SNAKE_CASE , 1E-8 ) UpperCAmelCase : Union[str, Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> int: '''simple docstring''' return self.config.num_train_timesteps
109
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowercase ( A_ , A_ , A_ , A_=5 )-> Union[str, Any]: '''simple docstring''' assert masked_input.count("<mask>" ) == 1 a : List[str] = torch.tensor(tokenizer.encode(A_ , add_special_tokens=A_ ) ).unsqueeze(0 ) # Batch size 1 a : Dict = model(A_ )[0] # The last hidden-state is the first element of the output tuple a : int = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a : Optional[Any] = logits[0, masked_index, :] a : Dict = logits.softmax(dim=0 ) a , a : Any = prob.topk(k=A_ , dim=0 ) a : Optional[Any] = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A_ ) )] ) a : str = tokenizer.mask_token a : Any = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): a : Dict = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(A_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(A_ ) , A_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A_ , A_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __lowercase = CamembertTokenizer.from_pretrained("""camembert-base""") __lowercase = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() __lowercase = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
226
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _A ( _a ): """simple docstring""" UpperCAmelCase : Union[str, Any] = """gpt_neox""" def __init__( self : List[str] , __UpperCAmelCase : Tuple=50432 , __UpperCAmelCase : str=6144 , __UpperCAmelCase : Any=44 , __UpperCAmelCase : Union[str, Any]=64 , __UpperCAmelCase : Dict=24576 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : List[Any]=0.25 , __UpperCAmelCase : Optional[Any]=10000 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : List[Any]=2048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Optional[Any]=1e-5 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : int=None , **__UpperCAmelCase : Tuple , ): super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : List[Any] = vocab_size a : Optional[int] = max_position_embeddings a : List[Any] = hidden_size a : Union[str, Any] = num_hidden_layers a : int = num_attention_heads a : Union[str, Any] = intermediate_size a : Optional[Any] = hidden_act a : Dict = rotary_pct a : Any = rotary_emb_base a : Dict = attention_dropout a : List[str] = hidden_dropout a : List[str] = classifier_dropout a : Any = initializer_range a : Union[str, Any] = layer_norm_eps a : int = use_cache a : int = tie_word_embeddings a : str = use_parallel_residual a : Union[str, Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!") def __snake_case ( self : Any): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''') a : str = self.rope_scaling.get("type" , __UpperCAmelCase) a : List[str] = self.rope_scaling.get("factor" , __UpperCAmelCase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''') if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''')
226
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Optional[int] = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class __snake_case ( lowerCAmelCase ): _a : Any= "camembert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=1 ,snake_case=0 ,snake_case=2 ,snake_case="absolute" ,snake_case=True ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : List[Any] = vocab_size lowercase : Tuple = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : List[str] = num_attention_heads lowercase : Optional[Any] = hidden_act lowercase : Tuple = intermediate_size lowercase : Any = hidden_dropout_prob lowercase : List[str] = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : Union[str, Any] = initializer_range lowercase : Tuple = layer_norm_eps lowercase : Dict = position_embedding_type lowercase : Union[str, Any] = use_cache lowercase : Optional[int] = classifier_dropout class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
20
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ = i + 1 else: lowercase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
110
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() snake_case_ = nn.Linear(3 , 4 ) snake_case_ = nn.BatchNormad(4 ) snake_case_ = nn.Linear(4 , 5 ) def UpperCamelCase__ ( self , _UpperCAmelCase ): return self.lineara(self.batchnorm(self.lineara(_UpperCAmelCase ) ) ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCAmelCase , model.state_dict() ) snake_case_ = os.path.join(_UpperCAmelCase , '''index.json''' ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: snake_case_ = os.path.join(_UpperCAmelCase , F'''{key}.dat''' ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase__ ( self ): snake_case_ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: snake_case_ = torch.randn(2 , 3 , dtype=_UpperCAmelCase ) with TemporaryDirectory() as tmp_dir: snake_case_ = offload_weight(_UpperCAmelCase , '''weight''' , _UpperCAmelCase , {} ) snake_case_ = os.path.join(_UpperCAmelCase , '''weight.dat''' ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) self.assertDictEqual(_UpperCAmelCase , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(_UpperCAmelCase ).split('''.''' )[1]}} ) snake_case_ = load_offloaded_weight(_UpperCAmelCase , index['''weight'''] ) self.assertTrue(torch.equal(_UpperCAmelCase , _UpperCAmelCase ) ) def UpperCamelCase__ ( self ): snake_case_ = ModelForTest() snake_case_ = model.state_dict() snake_case_ = {k: v for k, v in state_dict.items() if '''linear2''' not in k} snake_case_ = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = OffloadedWeightsLoader(state_dict=_UpperCAmelCase , save_folder=_UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCAmelCase , weight_map[key] ) ) snake_case_ = {k: v for k, v in state_dict.items() if '''weight''' in k} snake_case_ = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = OffloadedWeightsLoader(state_dict=_UpperCAmelCase , save_folder=_UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCAmelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCAmelCase , _UpperCAmelCase ) # Duplicates are removed snake_case_ = OffloadedWeightsLoader(state_dict=_UpperCAmelCase , save_folder=_UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCAmelCase , weight_map[key] ) ) def UpperCamelCase__ ( self ): snake_case_ = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} snake_case_ = extract_submodules_state_dict(_UpperCAmelCase , ['''a.1''', '''a.2'''] ) self.assertDictEqual(_UpperCAmelCase , {'''a.1''': 0, '''a.2''': 2} ) snake_case_ = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} snake_case_ = extract_submodules_state_dict(_UpperCAmelCase , ['''a.1''', '''a.2'''] ) self.assertDictEqual(_UpperCAmelCase , {'''a.1.a''': 0, '''a.2.a''': 2} )
267
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" snake_case_ = torch.exp(SCREAMING_SNAKE_CASE ) snake_case_ = torch.sum(SCREAMING_SNAKE_CASE , dim=1 ) # sum of exp(x_i) snake_case_ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(SCREAMING_SNAKE_CASE ) - B / A class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__() snake_case_ = config.output_attentions snake_case_ = config.output_hidden_states snake_case_ = nn.ModuleList([BertLayer(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) snake_case_ = nn.ModuleList([BertHighway(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) snake_case_ = [-1 for _ in range(config.num_hidden_layers )] def UpperCamelCase__ ( self , _UpperCAmelCase ): if (type(_UpperCAmelCase ) is float) or (type(_UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case_ = x else: snake_case_ = x def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): snake_case_ = () snake_case_ = () snake_case_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = layer_module( _UpperCAmelCase , _UpperCAmelCase , head_mask[i] , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = layer_outputs[0] if self.output_attentions: snake_case_ = all_attentions + (layer_outputs[1],) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = current_outputs + (all_attentions,) snake_case_ = self.highway[i](_UpperCAmelCase ) # logits, pooled_output if not self.training: snake_case_ = highway_exit[0] snake_case_ = entropy(_UpperCAmelCase ) snake_case_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_UpperCAmelCase , i + 1 ) else: snake_case_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = outputs + (all_attentions,) snake_case_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , lowerCamelCase__ , ) class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) snake_case_ = config snake_case_ = BertEmbeddings(_UpperCAmelCase ) snake_case_ = DeeBertEncoder(_UpperCAmelCase ) snake_case_ = BertPooler(_UpperCAmelCase ) self.init_weights() def UpperCamelCase__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def UpperCamelCase__ ( self ): return self.embeddings.word_embeddings def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = value def UpperCamelCase__ ( self , _UpperCAmelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: snake_case_ = input_ids.size() elif inputs_embeds is not None: snake_case_ = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) snake_case_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case_ = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if encoder_attention_mask is None: snake_case_ = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: snake_case_ = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case_ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case_ = encoder_attention_mask[:, None, None, :] snake_case_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case_ = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case_ = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) snake_case_ = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) snake_case_ = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(_UpperCAmelCase ) snake_case_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = message snake_case_ = exit_layer # start from 1! class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__() snake_case_ = BertPooler(_UpperCAmelCase ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , config.num_labels ) def UpperCamelCase__ ( self , _UpperCAmelCase ): # Pooler snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(_UpperCAmelCase ) # "return" pooler_output # BertModel snake_case_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case_ = bmodel_output[1] snake_case_ = self.dropout(_UpperCAmelCase ) snake_case_ = self.classifier(_UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowerCamelCase__ , ) class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) snake_case_ = config.num_labels snake_case_ = config.num_hidden_layers snake_case_ = DeeBertModel(_UpperCAmelCase ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=-1 , _UpperCAmelCase=False , ): snake_case_ = self.num_layers try: snake_case_ = self.bert( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case_ = outputs[1] snake_case_ = self.dropout(_UpperCAmelCase ) snake_case_ = self.classifier(_UpperCAmelCase ) snake_case_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ = e.message snake_case_ = e.exit_layer snake_case_ = outputs[0] if not self.training: snake_case_ = entropy(_UpperCAmelCase ) snake_case_ = [] snake_case_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ = [] for highway_exit in outputs[-1]: snake_case_ = highway_exit[0] if not self.training: highway_logits_all.append(_UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_UpperCAmelCase ) if train_highway: snake_case_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ = (loss,) + outputs if not self.training: snake_case_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
267
1
from numpy import exp, pi, sqrt def _UpperCAmelCase ( snake_case , snake_case = 0.0 , snake_case = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
82
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = AudioLDMPipeline __lowerCamelCase = TEXT_TO_AUDIO_PARAMS __lowerCamelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCamelCase = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_snake_case , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _lowerCAmelCase = ClapTextModelWithProjection(_snake_case ) _lowerCAmelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) _lowerCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_snake_case , ) _lowerCAmelCase = SpeechTaHifiGan(_snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_snake_case ) else: _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) _lowerCAmelCase = prompt_embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * ["""this is a negative prompt"""] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = [] for p in [prompt, negative_prompt]: _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) embeds.append(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = """egg cracking""" _lowerCAmelCase = audioldm_pipe(**_snake_case , negative_prompt=_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = ["""hey"""] _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase = SpeechTaHifiGan(_snake_case ).to(_snake_case ) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , _snake_case , _snake_case="cpu" , _snake_case=torch.floataa , _snake_case=0 ): """simple docstring""" _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) ) _lowerCAmelCase = torch.from_numpy(_snake_case ).to(device=_snake_case , dtype=_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = 25 _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[77230:77240] _lowerCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[27780:27790] _lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
82
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCAmelCase_ : str = logging.get_logger(__name__) class UpperCamelCase_ ( a_ ): def __init__( self , *snake_case__ , **snake_case__ ) -> None: """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
248
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return (data["data"], data["target"]) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase , lowerCAmelCase ) # Predict target for test data UpperCAmelCase = xgb.predict(lowerCAmelCase ) UpperCAmelCase = predictions.reshape(len(lowerCAmelCase ) , 1 ) return predictions def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = fetch_california_housing() UpperCAmelCase , UpperCAmelCase = data_handling(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split( lowerCAmelCase , lowerCAmelCase , test_size=0.25 , random_state=1 ) UpperCAmelCase = xgboost(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase , lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCAmelCase , lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
248
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = ['''pixel_values'''] def __init__( self : str , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Tuple , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = size if size is not None else {"shortest_edge": 224} SCREAMING_SNAKE_CASE_: Any = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE_: str = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name="crop_size") SCREAMING_SNAKE_CASE_: Optional[int] = do_resize SCREAMING_SNAKE_CASE_: List[Any] = size SCREAMING_SNAKE_CASE_: Optional[Any] = resample SCREAMING_SNAKE_CASE_: List[Any] = do_center_crop SCREAMING_SNAKE_CASE_: List[Any] = crop_size SCREAMING_SNAKE_CASE_: Dict = do_rescale SCREAMING_SNAKE_CASE_: Dict = rescale_factor SCREAMING_SNAKE_CASE_: str = do_normalize SCREAMING_SNAKE_CASE_: List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_: Tuple = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_: List[str] = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") SCREAMING_SNAKE_CASE_: List[str] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE_: Optional[Any] = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: str = size if size is not None else self.size SCREAMING_SNAKE_CASE_: str = get_size_dict(lowerCAmelCase__ , param_name="size" , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_: List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: Union[str, Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_: str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_: str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_: List[str] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_: str = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: List[Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: Tuple = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_: Union[str, Any] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: int = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: str = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: List[Any] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: Tuple = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
13
from collections import deque from .hash_table import HashTable class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , *_snake_case : Union[str, Any] , **_snake_case : Union[str, Any] ): super().__init__(*_snake_case , **_snake_case ) def snake_case_ ( self : List[Any] , _snake_case : List[Any] , _snake_case : Dict ): __lowercase : Any = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_snake_case ) __lowercase : List[Any] = self.values[key] def snake_case_ ( self : Any ): return ( sum(self.charge_factor - len(_snake_case ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case_ ( self : int , _snake_case : str , _snake_case : Optional[int]=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_snake_case ) == 0 ): return key return super()._collision_resolution(_snake_case , _snake_case )
156
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowercase_ ( unittest.TestCase ): def __init__( self : Optional[Any] , A__ : Dict , A__ : int=13 , A__ : str=7 , A__ : Optional[Any]=True , A__ : int=True , A__ : Union[str, Any]=True , A__ : int=True , A__ : List[str]=99 , A__ : List[str]=32 , A__ : Tuple=5 , A__ : Any=4 , A__ : Dict=37 , A__ : Tuple="gelu" , A__ : List[str]=0.1 , A__ : Any=0.1 , A__ : Union[str, Any]=512 , A__ : int=16 , A__ : Optional[int]=2 , A__ : Optional[Any]=0.02 , A__ : Optional[Any]=4 , ) -> List[str]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_attention_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_choices def UpperCamelCase_ ( self : str ) -> Dict: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_attention_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self : Any ) -> int: _snake_case = self.prepare_config_and_inputs() _snake_case = config_and_inputs _snake_case = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowercase_ ( A__ , unittest.TestCase ): UpperCamelCase_ : int = True UpperCamelCase_ : int = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : List[str] ) -> int: _snake_case = FlaxRoFormerModelTester(self ) @slow def UpperCamelCase_ ( self : Dict ) -> str: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=__A ) _snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class lowercase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ) -> Any: _snake_case = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) _snake_case = jnp.array([[0, 1, 2, 3, 4, 5]] ) _snake_case = model(__A )[0] _snake_case = 50000 _snake_case = (1, 6, vocab_size) self.assertEqual(output.shape , __A ) _snake_case = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __A , atol=1e-4 ) )
351
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A = logging.get_logger(__name__) class lowercase_ ( __lowercase ): def __init__( self : Optional[Any] , *A__ : List[Any] , **A__ : int ) -> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , A__ , ) super().__init__(*A__ , **A__ )
278
0
from math import factorial def a ( _UpperCAmelCase : int = 1_00 ): '''simple docstring''' return sum(int(_UpperCAmelCase ) for x in str(factorial(_UpperCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
226
from __future__ import annotations class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , a_ : Optional[int]=None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = data __UpperCAmelCase : Any = None def __repr__( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = [] __UpperCAmelCase : Any = self while temp: string_rep.append(F'{temp.data}' ) __UpperCAmelCase : Dict = temp.next return "->".join(a_ ) def a ( _UpperCAmelCase : list ): '''simple docstring''' if not elements_list: raise Exception('''The Elements List is empty''' ) __UpperCAmelCase : int = Node(elements_list[0] ) for i in range(1 , len(_UpperCAmelCase ) ): __UpperCAmelCase : Any = Node(elements_list[i] ) __UpperCAmelCase : Optional[int] = current.next return head def a ( _UpperCAmelCase : Node ): '''simple docstring''' if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def a ( ): '''simple docstring''' from doctest import testmod testmod() __UpperCAmelCase : Tuple = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(_UpperCAmelCase ) print('''Elements in Reverse:''' ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
226
1
import mpmath # for roots of unity import numpy as np class _A : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]=None): # Input as list a : List[Any] = list(poly_a or [0])[:] a : Any = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() a : Optional[Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() a : Dict = len(self.polyB) # Add 0 to make lengths equal a power of 2 a : int = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform a : Dict = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product a : Optional[int] = self.__multiply() def __snake_case ( self : Optional[int] , __UpperCAmelCase : str): a : Union[str, Any] = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase) <= 1: return dft[0] # a : str = self.c_max_length // 2 while next_ncol > 0: a : Tuple = [[] for i in range(__lowerCAmelCase)] a : Tuple = self.root**next_ncol # First half of next step a : Optional[int] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(__lowerCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step a : Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(__lowerCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update a : Union[str, Any] = new_dft a : List[str] = next_ncol // 2 return dft[0] def __snake_case ( self : Tuple): a : List[Any] = self.__dft("A") a : Tuple = self.__dft("B") a : Any = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT a : List[str] = 2 while next_ncol <= self.c_max_length: a : Union[str, Any] = [[] for i in range(__lowerCAmelCase)] a : Tuple = self.root ** (next_ncol // 2) a : List[str] = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update a : List[str] = new_inverse_c next_ncol *= 2 # Unpack a : str = [round(x[0].real , 8) + round(x[0].imag , 8) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict): a : Dict = "A = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A])) a : Dict = "B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B])) a : List[str] = "A*B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product)) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : int=18 , __UpperCAmelCase : int=30 , __UpperCAmelCase : Optional[int]=400 , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Union[str, Any]=True , ): a : Optional[int] = size if size is not None else {"height": 18, "width": 18} a : Any = parent a : int = batch_size a : str = num_channels a : Dict = image_size a : Dict = min_resolution a : Optional[int] = max_resolution a : Optional[int] = do_resize a : Any = size a : Dict = apply_ocr def __snake_case ( self : Optional[int]): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __snake_case ( self : List[Any]): a : Optional[int] = LayoutLMvaImageProcessingTester(self) @property def __snake_case ( self : Optional[int]): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : List[Any]): a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize")) self.assertTrue(hasattr(__UpperCAmelCase , "size")) self.assertTrue(hasattr(__UpperCAmelCase , "apply_ocr")) def __snake_case ( self : str): a : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 18, "width": 18}) a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"height": 42, "width": 42}) def __snake_case ( self : Union[str, Any]): pass def __snake_case ( self : List[str]): # Initialize image_processing a : Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images a : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image) # Test not batched input a : str = image_processing(image_inputs[0] , return_tensors="pt") self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __UpperCAmelCase) self.assertIsInstance(encoding.boxes , __UpperCAmelCase) # Test batched a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : Union[str, Any]): # Initialize image_processing a : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray) # Test not batched input a : Dict = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : List[str] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : List[str]): # Initialize image_processing a : str = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor) # Test not batched input a : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : List[str] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : List[str]): # with apply_OCR = True a : List[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset a : List[str] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test") a : int = Image.open(ds[0]["file"]).convert("RGB") a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt") self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a : Tuple = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 a : str = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCAmelCase) self.assertListEqual(encoding.boxes , __UpperCAmelCase) # with apply_OCR = False a : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase) a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt") self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
226
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCAmelCase__ : """simple docstring""" def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" raise NotImplementedError() def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" raise NotImplementedError() class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : str , __SCREAMING_SNAKE_CASE : "AutoTokenizer" , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = skip_prompt __SCREAMING_SNAKE_CASE = decode_kwargs # variables used in the streaming process __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = True def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> Dict: """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: __SCREAMING_SNAKE_CASE = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __SCREAMING_SNAKE_CASE = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __SCREAMING_SNAKE_CASE = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): __SCREAMING_SNAKE_CASE = text[self.print_len :] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 # If the last token is a CJK character, we print the characters. elif len(__SCREAMING_SNAKE_CASE ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __SCREAMING_SNAKE_CASE = text[self.print_len :] self.print_len += len(__SCREAMING_SNAKE_CASE ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __SCREAMING_SNAKE_CASE = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__SCREAMING_SNAKE_CASE ) self.on_finalized_text(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" if len(self.token_cache ) > 0: __SCREAMING_SNAKE_CASE = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __SCREAMING_SNAKE_CASE = text[self.print_len :] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = True self.on_finalized_text(__SCREAMING_SNAKE_CASE , stream_end=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = False ) -> str: """simple docstring""" print(__SCREAMING_SNAKE_CASE , flush=__SCREAMING_SNAKE_CASE , end="""""" if not stream_end else None ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : "AutoTokenizer" , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[float] = None , **__SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = Queue() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = timeout def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = False ) -> Any: """simple docstring""" self.text_queue.put(__SCREAMING_SNAKE_CASE , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
267
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = FlaxAutoencoderKL @property def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = (32, 32) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.uniform(__SCREAMING_SNAKE_CASE , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict
267
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
355
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) -> float: if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(__lowerCamelCase ) * abs(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
40
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __snake_case : Optional[Any] = parse(importlib.metadata.version("""torch""")) def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}''') a_ : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(a__ , a__): a_ : Optional[int] = parse(importlib.metadata.version(a__)) return operation(a__ , parse(a__)) def _UpperCAmelCase ( a__ , a__): '''simple docstring''' return compare_versions(a__ , a__ , a__)
248
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__(a_ ): """simple docstring""" def __init__( self , *_lowercase , _lowercase=None , _lowercase=None , **_lowercase ) -> Optional[Any]: super().__init__(*_lowercase , **_lowercase ) a_ : Optional[int] = eval_examples a_ : Tuple = post_process_function def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = "eval" ) -> Union[str, Any]: a_ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset a_ : List[str] = self.get_eval_dataloader(_lowercase ) a_ : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ : Optional[int] = self.compute_metrics a_ : List[str] = None a_ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Any = time.time() try: a_ : Union[str, Any] = eval_loop( _lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Dict = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a_ : List[Any] = self.post_process_function(_lowercase , _lowercase , output.predictions ) a_ : Optional[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : List[str] = metrics.pop(_lowercase ) metrics.update(output.metrics ) else: a_ : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowercase ) return metrics def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase = "test" ) -> str: a_ : Tuple = self.get_test_dataloader(_lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a_ : List[Any] = self.compute_metrics a_ : int = None a_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Union[str, Any] = time.time() try: a_ : List[str] = eval_loop( _lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Optional[Any] = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a_ : Optional[int] = self.post_process_function(_lowercase , _lowercase , output.predictions , """predict""" ) a_ : List[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : int = metrics.pop(_lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowercase )
248
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__( self , _snake_case=None , **_snake_case ) -> int: """simple docstring""" super().__init__(features=_snake_case ) UpperCAmelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" import torch if isinstance(_snake_case , _snake_case ) and column: if all( isinstance(_snake_case , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_snake_case ) return column def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" import torch if isinstance(_snake_case , (str, bytes, type(_snake_case )) ): return value elif isinstance(_snake_case , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase = {} if isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase = {'''dtype''': torch.intaa} elif isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_snake_case , PIL.Image.Image ): UpperCAmelCase = np.asarray(_snake_case ) return torch.tensor(_snake_case , **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(_snake_case , '''__array__''' ) and not isinstance(_snake_case , torch.Tensor ): UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_snake_case , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) elif isinstance(_snake_case , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) return self._tensorize(_snake_case ) def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" return map_nested(self._recursive_tensorize , _snake_case , map_list=_snake_case ) def snake_case_ ( self , _snake_case ) -> Mapping: """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_row(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_row(_snake_case ) return self.recursive_tensorize(_snake_case ) def snake_case_ ( self , _snake_case ) -> "torch.Tensor": """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_column(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_column(_snake_case , pa_table.column_names[0] ) UpperCAmelCase = self.recursive_tensorize(_snake_case ) UpperCAmelCase = self._consolidate(_snake_case ) return column def snake_case_ ( self , _snake_case ) -> Mapping: """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_batch(_snake_case ) UpperCAmelCase = self.recursive_tensorize(_snake_case ) for column_name in batch: UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
152
1
_A = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ): return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
278
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase ( _A ): lowerCAmelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] lowerCAmelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCAmelCase_ = [4, 4, 4, 4] lowerCAmelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] else: lowerCAmelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCAmelCase_ = 96 elif "small" in model_name: lowerCAmelCase_ = 96 elif "base" in model_name: lowerCAmelCase_ = 128 elif "large" in model_name: lowerCAmelCase_ = 192 elif "xlarge" in model_name: lowerCAmelCase_ = 256 elif "huge" in model_name: lowerCAmelCase_ = 352 # set label information lowerCAmelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCAmelCase_ = '''imagenet-22k-id2label.json''' else: lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = FocalNetConfig( embed_dim=_A , depths=_A , focal_levels=_A , focal_windows=_A , use_conv_embed=_A , idalabel=_A , labelaid=_A , use_post_layernorm=_A , use_layerscale=_A , ) return config def __UpperCamelCase ( _A ): if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowerCAmelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCAmelCase_ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowerCAmelCase_ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowerCAmelCase_ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCAmelCase_ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCAmelCase_ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCAmelCase_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowerCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ = '''layernorm.bias''' if "head" in name: lowerCAmelCase_ = name.replace('''head''' , '''classifier''' ) else: lowerCAmelCase_ = '''focalnet.''' + name return name def __UpperCamelCase ( _A , _A , _A=False ): # fmt: off lowerCAmelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCAmelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _A ) lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ = state_dict.pop(_A ) lowerCAmelCase_ = val lowerCAmelCase_ = get_focalnet_config(_A ) lowerCAmelCase_ = FocalNetForImageClassification(_A ) model.eval() # load state dict model.load_state_dict(_A ) # verify conversion lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = BitImageProcessor( do_resize=_A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_A , crop_size=224 , do_normalize=_A , image_mean=_A , image_std=_A , ) lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' ) lowerCAmelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCAmelCase_ = image_transforms(_A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _A , atol=1E-4 ) lowerCAmelCase_ = model(**_A ) lowerCAmelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCAmelCase_ = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowerCAmelCase_ = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowerCAmelCase_ = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowerCAmelCase_ = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowerCAmelCase_ = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowerCAmelCase_ = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) _A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""OwlViTFeatureExtractor"""] _UpperCAmelCase = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} _UpperCAmelCase = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } _UpperCAmelCase = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[int] = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) A_ : Any = bs[:] A_ : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 A_ : str = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase ,__lowercase ) ) def UpperCamelCase ( __lowercase : Dict ): '''simple docstring''' A_ : List[str] = set() A_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A_ : Union[str, Any] = char return pairs class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase , lowercase , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , **lowercase , ): """simple docstring""" A_ : Union[str, Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else bos_token A_ : str = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else eos_token A_ : str = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else sep_token A_ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else cls_token A_ : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else unk_token A_ : Optional[int] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A_ : int = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( errors=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , **lowercase , ) with open(lowercase , encoding='utf-8' ) as vocab_handle: A_ : int = json.load(lowercase ) A_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} A_ : Union[str, Any] = errors # how to handle errors in decoding A_ : Tuple = bytes_to_unicode() A_ : str = {v: k for k, v in self.byte_encoder.items()} with open(lowercase , encoding='utf-8' ) as merges_handle: A_ : str = merges_handle.read().split('\n' )[1:-1] A_ : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] A_ : Any = dict(zip(lowercase , range(len(lowercase ) ) ) ) A_ : str = {} A_ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A_ : Optional[Any] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return len(self.encoder ) def lowerCAmelCase_ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if token in self.cache: return self.cache[token] A_ : List[Any] = tuple(lowercase ) A_ : List[Any] = get_pairs(lowercase ) if not pairs: return token while True: A_ : List[str] = min(lowercase , key=lambda lowercase : self.bpe_ranks.get(lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A_ , A_ : Optional[Any] = bigram A_ : List[Any] = [] A_ : Tuple = 0 while i < len(lowercase ): try: A_ : Optional[Any] = word.index(lowercase , lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A_ : int = j if word[i] == first and i < len(lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A_ : Union[str, Any] = tuple(lowercase ) A_ : Tuple = new_word if len(lowercase ) == 1: break else: A_ : Optional[int] = get_pairs(lowercase ) A_ : Optional[Any] = ' '.join(lowercase ) A_ : str = word return word def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[int] = [] for token in re.findall(self.pat , lowercase ): A_ : Optional[Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase ).split(' ' ) ) return bpe_tokens def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.encoder.get(lowercase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.decoder.get(lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = ''.join(lowercase ) A_ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : Optional[int] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A_ : Dict = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase , ensure_ascii=lowercase ) + '\n' ) A_ : Dict = 0 with open(lowercase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A_ : int = token_index writer.write(' '.join(lowercase ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : Tuple = [self.cls_token_id] A_ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Optional[int] = [self.sep_token_id] A_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self , lowercase , lowercase=False , **lowercase ): """simple docstring""" A_ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase ) > 0 and not text[0].isspace()): A_ : int = ' ' + text return (text, kwargs)
192
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = IFPipeline __UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} __UpperCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" return self._get_dummy_components() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> List[Any]: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __magic_name__ (self ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __magic_name__ (self ) -> List[str]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __magic_name__ (self ) -> Tuple: """simple docstring""" self._test_save_load_local() def __magic_name__ (self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE__ : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE__ : Optional[Any] = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
25
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , a_ : List[Any]="</s>" , a_ : str="<unk>" , a_ : Tuple="<pad>" , a_ : List[Any]=1_25 , a_ : Any=None , **a_ : Tuple , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : Optional[Any] = [F'<extra_id_{i}>' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase : Optional[Any] = len(set(filter(lambda a_ : bool('''extra_id''' in str(a_ ) ) , a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) __UpperCAmelCase : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token __UpperCAmelCase : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token __UpperCAmelCase : int = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else unk_token super().__init__( eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , ) __UpperCAmelCase : Dict = extra_ids __UpperCAmelCase : Any = 2**8 # utf is 8 bits # define special tokens dict __UpperCAmelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCAmelCase : Optional[int] = len(self.special_tokens_encoder ) __UpperCAmelCase : Union[str, Any] = len(a_ ) for i, token in enumerate(a_ ): __UpperCAmelCase : Union[str, Any] = self.vocab_size + i - n __UpperCAmelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case__ ( self : Tuple ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case__ ( self : Any , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a_ )) + [1] return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def snake_case__ ( self : Any , a_ : List[int] ): '''simple docstring''' if len(a_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case__ ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case__ ( self : Optional[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._add_eos_if_not_present(a_ ) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase : List[str] = self._add_eos_if_not_present(a_ ) return token_ids_a + token_ids_a def snake_case__ ( self : List[Any] , a_ : str ): '''simple docstring''' __UpperCAmelCase : str = [chr(a_ ) for i in text.encode('''utf-8''' )] return tokens def snake_case__ ( self : Optional[Any] , a_ : int ): '''simple docstring''' if token in self.special_tokens_encoder: __UpperCAmelCase : Union[str, Any] = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCAmelCase : Optional[Any] = self.added_tokens_encoder[token] elif len(a_ ) != 1: __UpperCAmelCase : int = self.unk_token_id else: __UpperCAmelCase : List[str] = ord(a_ ) + self._num_special_tokens return token_id def snake_case__ ( self : Union[str, Any] , a_ : Optional[int] ): '''simple docstring''' if index in self.special_tokens_decoder: __UpperCAmelCase : Dict = self.special_tokens_decoder[index] else: __UpperCAmelCase : List[Any] = chr(index - self._num_special_tokens ) return token def snake_case__ ( self : int , a_ : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = b'''''' for token in tokens: if token in self.special_tokens_decoder: __UpperCAmelCase : Optional[int] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: __UpperCAmelCase : List[str] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: __UpperCAmelCase : Tuple = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: __UpperCAmelCase : int = token.encode('''utf-8''' ) else: __UpperCAmelCase : Any = bytes([ord(a_ )] ) bstring += tok_string __UpperCAmelCase : Dict = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def snake_case__ ( self : Tuple , a_ : str , a_ : Optional[str] = None ): '''simple docstring''' return ()
226
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class A__ ( __magic_name__ ): lowercase = 'align_text_model' def __init__( self : int , a : Dict=30_522 , a : int=768 , a : Tuple=12 , a : List[Any]=12 , a : List[Any]=3_072 , a : Optional[int]="gelu" , a : List[str]=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Any=2 , a : Union[str, Any]=0.0_2 , a : Any=1E-12 , a : Optional[int]=0 , a : Dict="absolute" , a : Dict=True , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Tuple = type_vocab_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Optional[Any] = layer_norm_eps lowerCAmelCase__ : str = position_embedding_type lowerCAmelCase__ : List[str] = use_cache lowerCAmelCase__ : Optional[Any] = pad_token_id @classmethod def _lowerCamelCase ( cls : List[str] , a : Union[str, os.PathLike] , **a : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(a ) lowerCAmelCase__ : Optional[Any] = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": lowerCAmelCase__ : str = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a , **a ) class A__ ( __magic_name__ ): lowercase = 'align_vision_model' def __init__( self : Optional[Any] , a : int = 3 , a : int = 600 , a : float = 2.0 , a : float = 3.1 , a : int = 8 , a : List[int] = [3, 3, 5, 3, 5, 5, 3] , a : List[int] = [32, 16, 24, 40, 80, 112, 192] , a : List[int] = [16, 24, 40, 80, 112, 192, 320] , a : List[int] = [] , a : List[int] = [1, 2, 2, 2, 1, 2, 1] , a : List[int] = [1, 2, 2, 3, 3, 4, 1] , a : List[int] = [1, 6, 6, 6, 6, 6, 6] , a : float = 0.2_5 , a : str = "swish" , a : int = 2_560 , a : str = "mean" , a : float = 0.0_2 , a : float = 0.0_0_1 , a : float = 0.9_9 , a : float = 0.2 , **a : Tuple , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[int] = width_coefficient lowerCAmelCase__ : str = depth_coefficient lowerCAmelCase__ : List[Any] = depth_divisor lowerCAmelCase__ : str = kernel_sizes lowerCAmelCase__ : List[Any] = in_channels lowerCAmelCase__ : Union[str, Any] = out_channels lowerCAmelCase__ : Optional[int] = depthwise_padding lowerCAmelCase__ : Dict = strides lowerCAmelCase__ : Any = num_block_repeats lowerCAmelCase__ : int = expand_ratios lowerCAmelCase__ : Dict = squeeze_expansion_ratio lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Dict = hidden_dim lowerCAmelCase__ : Tuple = pooling_type lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : List[Any] = batch_norm_eps lowerCAmelCase__ : Tuple = batch_norm_momentum lowerCAmelCase__ : Any = drop_connect_rate lowerCAmelCase__ : int = sum(a ) * 4 @classmethod def _lowerCamelCase ( cls : List[str] , a : Union[str, os.PathLike] , **a : Dict ): '''simple docstring''' cls._set_token_in_kwargs(a ) lowerCAmelCase__ : int = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": lowerCAmelCase__ : Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a , **a ) class A__ ( __magic_name__ ): lowercase = 'align' lowercase = True def __init__( self : Tuple , a : str=None , a : List[Any]=None , a : Any=640 , a : Tuple=1.0 , a : Optional[Any]=0.0_2 , **a : Any , ): '''simple docstring''' super().__init__(**a ) if text_config is None: lowerCAmelCase__ : List[Any] = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: lowerCAmelCase__ : Optional[Any] = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) lowerCAmelCase__ : str = AlignTextConfig(**a ) lowerCAmelCase__ : Tuple = AlignVisionConfig(**a ) lowerCAmelCase__ : Dict = projection_dim lowerCAmelCase__ : Tuple = temperature_init_value lowerCAmelCase__ : List[Any] = initializer_range @classmethod def _lowerCamelCase ( cls : Optional[Any] , a : AlignTextConfig , a : AlignVisionConfig , **a : List[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : List[Any] = self.text_config.to_dict() lowerCAmelCase__ : Optional[int] = self.vision_config.to_dict() lowerCAmelCase__ : Dict = self.__class__.model_type return output
351
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : list[list] ): """simple docstring""" lowercase_ : Union[str, Any] = current_set.copy() for row_index, row in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = row[0] for column_index, column in enumerate(__SCREAMING_SNAKE_CASE ): if magnitude == 0: lowercase_ : Dict = column continue lowercase_ : Any = column / magnitude # Subtract to cancel term lowercase_ : Union[str, Any] = current_set[0] lowercase_ : Dict = [first_row] lowercase_ : Optional[Any] = current_set[1::] for row in current_set: lowercase_ : Optional[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__SCREAMING_SNAKE_CASE ) continue for column_index in range(len(__SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase_ : List[Any] = final_set[0] lowercase_ : Any = [] lowercase_ : List[str] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase_ : Optional[Any] = simplify(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __SCREAMING_SNAKE_CASE ) lowercase_ : int = resultant return final_set def snake_case_ ( __SCREAMING_SNAKE_CASE : list[list] ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) lowercase_ : Dict = len(__SCREAMING_SNAKE_CASE ) + 1 if any(len(__SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(__SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] lowercase_ : Optional[int] = equations.copy() if any(0 in row for row in data_set ): lowercase_ : Tuple = data_set.copy() lowercase_ : Any = [] for row_index, row in enumerate(__SCREAMING_SNAKE_CASE ): if 0 not in row: lowercase_ : Optional[Any] = data_set.pop(__SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , __SCREAMING_SNAKE_CASE ) lowercase_ : int = data_set.copy() lowercase_ : List[str] = simplify(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = simplified[::-1] lowercase_ : list = [] for row in simplified: lowercase_ : Dict = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase_ : Optional[int] = row.copy()[: len(__SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue lowercase_ : List[str] = temp_row[1::] lowercase_ : Tuple = temp_row[::-1] for column_index, column in enumerate(__SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(__SCREAMING_SNAKE_CASE ) lowercase_ : str = [] for item in solutions: final.append(float(round(__SCREAMING_SNAKE_CASE , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
93
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowercase = datasets.utils.logging.get_logger(__name__) @dataclass class _A ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase : int = 1_0_0_0_0 UpperCAmelCase : Optional[List[str]] = None UpperCAmelCase : Optional[datasets.Features] = None class _A ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase : str = ParquetConfig def __snake_case ( self : Tuple): return datasets.DatasetInfo(features=self.config.features) def __snake_case ( self : List[Any] , __UpperCAmelCase : str): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''') a : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__UpperCAmelCase , (str, list, tuple)): a : Dict = data_files if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : List[Any] = [dl_manager.iter_files(__UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files})] a : Dict = [] for split_name, files in data_files.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : Tuple = [dl_manager.iter_files(__UpperCAmelCase) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__UpperCAmelCase): with open(__UpperCAmelCase , "rb") as f: a : Tuple = datasets.Features.from_arrow_schema(pq.read_schema(__UpperCAmelCase)) break splits.append(datasets.SplitGenerator(name=__UpperCAmelCase , gen_kwargs={"files": files})) return splits def __snake_case ( self : List[str] , __UpperCAmelCase : pa.Table): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a : Optional[int] = table_cast(__UpperCAmelCase , self.info.features.arrow_schema) return pa_table def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int): a : Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema) != sorted(self.config.columns): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''') for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase)): with open(__UpperCAmelCase , "rb") as f: a : Tuple = pq.ParquetFile(__UpperCAmelCase) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns)): a : Optional[Any] = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(__UpperCAmelCase) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__UpperCAmelCase)}: {e}''') raise
40
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=0.6 , A_=None , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = TFViTMAEModel(config=_a ) UpperCamelCase = model(_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> str: '''simple docstring''' UpperCamelCase = TFViTMAEForPreTraining(_a ) UpperCamelCase = model(_a , training=_a ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(_a ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(_a , training=_a ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() (UpperCamelCase) = config_and_inputs UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowerCAmelCase_ = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_a ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' np.random.seed(2 ) UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_a ) UpperCamelCase = self._prepare_for_class(_a , _a ) UpperCamelCase = model(_a , noise=_a ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(_a , _a ) ) UpperCamelCase = model(**_a , noise=_a ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' np.random.seed(2 ) UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(A_ ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(_a ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(_a ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(_a ) UpperCamelCase = self._prepare_for_class(_a , _a ) UpperCamelCase = prepare_numpy_arrays(_a ) UpperCamelCase = model(_a , noise=_a ) UpperCamelCase = model(**_a , noise=_a ) self.assert_outputs_same(_a , _a ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> str: '''simple docstring''' np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(_a ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(_a , _a , _a ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' np.random.seed(2 ) UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_a ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_a , _a ),) if isinstance(_a , _a ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_a , '_keras_serializable' , _a ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(_a ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(_a ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(_a , outputs=main_layer(_a ) ) UpperCamelCase = model(_a ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(_a , 'keras_model.h5' ) model.save(_a ) UpperCamelCase = tf.keras.models.load_model( _a , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_a , tf.keras.Model ) UpperCamelCase = model(_a ) self.assert_outputs_same(_a , _a ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' np.random.seed(2 ) UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_a ) UpperCamelCase = self._prepare_for_class(_a , _a ) UpperCamelCase = model(_a , noise=_a ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a , saved_model=_a ) UpperCamelCase = model_class.from_pretrained(_a ) UpperCamelCase = model(_a , noise=_a ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs["last_hidden_state"].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs["logits"].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a , 1e-5 ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' np.random.seed(2 ) UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_a ) UpperCamelCase = self._prepare_for_class(_a , _a ) UpperCamelCase = model(_a , noise=_a ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_a ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(_a ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(_a , noise=_a ) self.assert_outputs_same(_a , _a ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' pass @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_a ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_a , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**_a , noise=_a ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _a ) UpperCamelCase = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _a , atol=1e-4 )
369
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : Any = logging.get_logger(__name__) # General docstring lowerCAmelCase : Tuple = 'MobileNetV1Config' # Base docstring lowerCAmelCase : Dict = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : Any = [1, 10_24, 7, 7] # Image classification docstring lowerCAmelCase : Optional[Any] = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : List[str] = 'tabby, tabby cat' lowerCAmelCase : str = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_( A : Union[str, Any] , A : Optional[Any] , A : Optional[Any]=None): UpperCamelCase = {} if isinstance(A , A): UpperCamelCase = model.mobilenet_va else: UpperCamelCase = model UpperCamelCase = 'MobilenetV1/Conv2d_0/' UpperCamelCase = backbone.conv_stem.convolution.weight UpperCamelCase = backbone.conv_stem.normalization.bias UpperCamelCase = backbone.conv_stem.normalization.weight UpperCamelCase = backbone.conv_stem.normalization.running_mean UpperCamelCase = backbone.conv_stem.normalization.running_var for i in range(13): UpperCamelCase = i + 1 UpperCamelCase = i * 2 UpperCamelCase = backbone.layer[pt_index] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var UpperCamelCase = backbone.layer[pt_index + 1] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var if isinstance(A , A): UpperCamelCase = 'MobilenetV1/Logits/Conv2d_1c_1x1/' UpperCamelCase = model.classifier.weight UpperCamelCase = model.classifier.bias return tf_to_pt_map def A_( A : int , A : str , A : Optional[int]): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.') raise # Load weights from TF model UpperCamelCase = tf.train.list_variables(A) UpperCamelCase = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''') UpperCamelCase = tf.train.load_variable(A , A) UpperCamelCase = array # Build TF to PyTorch weights loading map UpperCamelCase = _build_tf_to_pytorch_map(A , A , A) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''') if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''') continue UpperCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise') UpperCamelCase = np.transpose(A , (2, 3, 0, 1)) elif "weights" in name: logger.info('Transposing') if len(pointer.shape) == 2: # copying into linear layer UpperCamelCase = array.squeeze().transpose() else: UpperCamelCase = np.transpose(A , (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''') logger.info(f'''Initialize PyTorch weight {name} {array.shape}''') UpperCamelCase = torch.from_numpy(A) tf_weights.pop(A , A) tf_weights.pop(name + '/RMSProp' , A) tf_weights.pop(name + '/RMSProp_1' , A) tf_weights.pop(name + '/ExponentialMovingAverage' , A) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys())}''') return model def A_( A : torch.Tensor , A : nn.Convad): UpperCamelCase , UpperCamelCase = features.shape[-2:] UpperCamelCase , UpperCamelCase = conv_layer.stride UpperCamelCase , UpperCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase = max(kernel_height - stride_height , 0) else: UpperCamelCase = max(kernel_height - (in_height % stride_height) , 0) if in_width % stride_width == 0: UpperCamelCase = max(kernel_width - stride_width , 0) else: UpperCamelCase = max(kernel_width - (in_width % stride_width) , 0) UpperCamelCase = pad_along_width // 2 UpperCamelCase = pad_along_width - pad_left UpperCamelCase = pad_along_height // 2 UpperCamelCase = pad_along_height - pad_top UpperCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A , A , 'constant' , 0.0) class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ , A_ , A_ , A_ , A_ = 1 , A_ = 1 , A_ = False , A_ = True , A_ = True , )-> None: '''simple docstring''' super().__init__() UpperCamelCase = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) UpperCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase = nn.Convad( in_channels=A_ , out_channels=A_ , kernel_size=A_ , stride=A_ , padding=A_ , groups=A_ , bias=A_ , padding_mode='zeros' , ) if use_normalization: UpperCamelCase = nn.BatchNormad( num_features=A_ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=A_ , track_running_stats=A_ , ) else: UpperCamelCase = None if use_activation: if isinstance(A_ , A_ ): UpperCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , A_ ): UpperCamelCase = ACTaFN[config.hidden_act] else: UpperCamelCase = config.hidden_act else: UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> torch.Tensor: '''simple docstring''' if self.config.tf_padding: UpperCamelCase = apply_tf_padding(A_ , self.convolution ) UpperCamelCase = self.convolution(A_ ) if self.normalization is not None: UpperCamelCase = self.normalization(A_ ) if self.activation is not None: UpperCamelCase = self.activation(A_ ) return features class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = MobileNetVaConfig lowerCAmelCase_ = load_tf_weights_in_mobilenet_va lowerCAmelCase_ = """mobilenet_v1""" lowerCAmelCase_ = """pixel_values""" lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' if isinstance(A_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase : Union[str, Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : Union[str, Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ = True )-> Union[str, Any]: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config UpperCamelCase = 32 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase = MobileNetVaConvLayer( A_ , in_channels=config.num_channels , out_channels=A_ , kernel_size=3 , stride=2 , ) UpperCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase = nn.ModuleList() for i in range(13 ): UpperCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=3 , stride=strides[i] , groups=A_ , ) ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=1 , ) ) UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , )-> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) UpperCamelCase = self.conv_stem(A_ ) UpperCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase = layer_module(A_ ) if output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = hidden_states if self.pooler is not None: UpperCamelCase = torch.flatten(self.pooler(A_ ) , start_dim=1 ) else: UpperCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=A_ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> None: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config.num_labels UpperCamelCase = MobileNetVaModel(A_ ) UpperCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=A_ ) UpperCamelCase = nn.Linear(A_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , )-> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.mobilenet_va(A_ , output_hidden_states=A_ , return_dict=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier(self.dropout(A_ ) ) UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase = 'single_label_classification' else: UpperCamelCase = 'multi_label_classification' if self.config.problem_type == "regression": UpperCamelCase = MSELoss() if self.num_labels == 1: UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase = BCEWithLogitsLoss() UpperCamelCase = loss_fct(A_ , A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=A_ , logits=A_ , hidden_states=outputs.hidden_states , )
251
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
152
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _a( UpperCamelCase__ : int, UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =old_name if "patch_embed" in old_name: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =old_name.split('''.''' ) if layer == "0": SCREAMING_SNAKE_CASE__ : int =old_name.replace('''0''', '''convolution1''' ) elif layer == "1": SCREAMING_SNAKE_CASE__ : Tuple =old_name.replace('''1''', '''batchnorm_before''' ) elif layer == "3": SCREAMING_SNAKE_CASE__ : List[Any] =old_name.replace('''3''', '''convolution2''' ) else: SCREAMING_SNAKE_CASE__ : Dict =old_name.replace('''4''', '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''', UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple =R'''\b\d{2}\b''' if bool(re.search(UpperCamelCase__, UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ : int =re.search(R'''\d\.\d\d.''', UpperCamelCase__ ).group() else: SCREAMING_SNAKE_CASE__ : Tuple =re.search(R'''\d\.\d.''', UpperCamelCase__ ).group() if int(match[0] ) < 6: SCREAMING_SNAKE_CASE__ : List[str] =old_name.replace(UpperCamelCase__, '''''' ) SCREAMING_SNAKE_CASE__ : Any =trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) SCREAMING_SNAKE_CASE__ : Any ='''intermediate_stages.''' + trimmed_name else: SCREAMING_SNAKE_CASE__ : Optional[Any] =old_name.replace(UpperCamelCase__, '''''' ) if int(match[2] ) < num_meta4D_last_stage: SCREAMING_SNAKE_CASE__ : str =trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2] ) else: SCREAMING_SNAKE_CASE__ : int =str(int(match[2] ) - num_meta4D_last_stage ) SCREAMING_SNAKE_CASE__ : Any =trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: SCREAMING_SNAKE_CASE__ : Optional[int] =trimmed_name.replace('''norm1''', '''layernorm1''' ) elif "norm2" in old_name: SCREAMING_SNAKE_CASE__ : List[Any] =trimmed_name.replace('''norm2''', '''layernorm2''' ) elif "fc1" in old_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] =trimmed_name.replace('''fc1''', '''linear_in''' ) elif "fc2" in old_name: SCREAMING_SNAKE_CASE__ : str =trimmed_name.replace('''fc2''', '''linear_out''' ) SCREAMING_SNAKE_CASE__ : Any ='''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''', UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =old_name.replace('''network''', '''intermediate_stages''' ) if "fc" in new_name: SCREAMING_SNAKE_CASE__ : str =new_name.replace('''fc''', '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): SCREAMING_SNAKE_CASE__ : Tuple =new_name.replace('''norm1''', '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): SCREAMING_SNAKE_CASE__ : List[str] =new_name.replace('''norm2''', '''batchnorm_after''' ) if "proj" in new_name: SCREAMING_SNAKE_CASE__ : Optional[int] =new_name.replace('''proj''', '''projection''' ) if "dist_head" in new_name: SCREAMING_SNAKE_CASE__ : Optional[Any] =new_name.replace('''dist_head''', '''distillation_classifier''' ) elif "head" in new_name: SCREAMING_SNAKE_CASE__ : Tuple =new_name.replace('''head''', '''classifier''' ) elif "patch_embed" in new_name: SCREAMING_SNAKE_CASE__ : Optional[int] ='''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": SCREAMING_SNAKE_CASE__ : Any =new_name.replace('''norm''', '''layernorm''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] ='''efficientformer.''' + new_name else: SCREAMING_SNAKE_CASE__ : str ='''efficientformer.encoder.''' + new_name return new_name def _a( UpperCamelCase__ : int, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' for key in checkpoint.copy().keys(): SCREAMING_SNAKE_CASE__ : List[str] =checkpoint.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =val return checkpoint def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict ='''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ : List[str] =Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) return image def _a( UpperCamelCase__ : Path, UpperCamelCase__ : Path, UpperCamelCase__ : Path, UpperCamelCase__ : bool ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =torch.load(UpperCamelCase__, map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE__ : Optional[int] =EfficientFormerConfig.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =EfficientFormerForImageClassificationWithTeacher(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str ='''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) SCREAMING_SNAKE_CASE__ : Tuple =config.depths[-1] - config.num_metaad_blocks + 1 SCREAMING_SNAKE_CASE__ : Tuple =convert_torch_checkpoint(UpperCamelCase__, UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ : Any ={ '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image SCREAMING_SNAKE_CASE__ : Any =prepare_img() SCREAMING_SNAKE_CASE__ : List[str] =2_5_6 SCREAMING_SNAKE_CASE__ : Optional[int] =2_2_4 SCREAMING_SNAKE_CASE__ : List[Any] =EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) SCREAMING_SNAKE_CASE__ : str =processor(images=UpperCamelCase__, return_tensors='''pt''' ).pixel_values # original processing pipeline SCREAMING_SNAKE_CASE__ : List[Any] =Compose( [ Resize(UpperCamelCase__, interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(UpperCamelCase__ ), ToTensor(), Normalize(UpperCamelCase__, UpperCamelCase__ ), ] ) SCREAMING_SNAKE_CASE__ : List[str] =image_transforms(UpperCamelCase__ ).unsqueeze(0 ) assert torch.allclose(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =outputs.logits SCREAMING_SNAKE_CASE__ : Dict =(1, 1_0_0_0) if "l1" in model_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :1_0], UpperCamelCase__, atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: SCREAMING_SNAKE_CASE__ : Optional[int] =torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :1_0], UpperCamelCase__, atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(UpperCamelCase__ ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message='''Add model''', use_temp_dir=UpperCamelCase__, ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message='''Add image processor''', use_temp_dir=UpperCamelCase__, ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) a_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
152
1
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __UpperCAmelCase = logging.get_logger(__name__) class __a ( _lowerCAmelCase ): def __init__( self : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["""bs4"""] ) super().__init__(**SCREAMING_SNAKE_CASE_ ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] ): lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Any = [] lowerCAmelCase_ : str = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCAmelCase_ : int = parent.find_all(child.name , recursive=SCREAMING_SNAKE_CASE_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(SCREAMING_SNAKE_CASE_ ) else next(i for i, s in enumerate(SCREAMING_SNAKE_CASE_ , 1 ) if s is child ) ) lowerCAmelCase_ : Tuple = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def A ( self : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : List[str] = BeautifulSoup(SCREAMING_SNAKE_CASE_ , """html.parser""" ) lowerCAmelCase_ : int = [] lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Dict = [] for element in html_code.descendants: if type(SCREAMING_SNAKE_CASE_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCAmelCase_ : str = html.unescape(SCREAMING_SNAKE_CASE_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = self.xpath_soup(SCREAMING_SNAKE_CASE_ ) stringaxtag_seq.append(SCREAMING_SNAKE_CASE_ ) stringaxsubs_seq.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : str ): lowerCAmelCase_ : List[str] = """""" for tagname, subs in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): xpath += F'/{tagname}' if subs != 0: xpath += F'[{subs}]' return xpath def __call__( self : Dict , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : str = False # Check that strings has a valid type if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[Any] = True elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): if len(SCREAMING_SNAKE_CASE_ ) == 0 or isinstance(html_strings[0] , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : int = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F'but is of type {type(SCREAMING_SNAKE_CASE_ )}.' ) lowerCAmelCase_ : Optional[int] = bool(isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(html_strings[0] , SCREAMING_SNAKE_CASE_ )) ) if not is_batched: lowerCAmelCase_ : Optional[int] = [html_strings] # Get nodes + xpaths lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : List[Any] = [] for html_string in html_strings: lowerCAmelCase_ : Dict = self.get_three_from_single(SCREAMING_SNAKE_CASE_ ) nodes.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = [] for node, tag_list, sub_list in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Dict = self.construct_xpath(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) xpath_strings.append(SCREAMING_SNAKE_CASE_ ) xpaths.append(SCREAMING_SNAKE_CASE_ ) # return as Dict lowerCAmelCase_ : List[Any] = {"""nodes""": nodes, """xpaths""": xpaths} lowerCAmelCase_ : Union[str, Any] = BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) return encoded_inputs
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def UpperCamelCase ( __lowerCamelCase : SplitDict ): snake_case : List[Any] = split_dict._to_yaml_list() assert len(__lowerCamelCase ) == len(__lowerCamelCase ) snake_case : List[Any] = SplitDict._from_yaml_list(__lowerCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case : Tuple = None # the split name of split_dict takes over the name of the split info object snake_case : str = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__lowerCamelCase ), SplitInfo(dataset_name="my_dataset" )] ) def UpperCamelCase ( __lowerCamelCase : Dict ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files snake_case : Tuple = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
59
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A_ : List[Any] = logging.get_logger(__name__) class _a : '''simple docstring''' def __init__( self , A__ = None , A__ = None , A__=None , A__=None ): if not conversation_id: A__ : List[Any] = uuid.uuida() if past_user_inputs is None: A__ : Dict = [] if generated_responses is None: A__ : int = [] A__ : uuid.UUID = conversation_id A__ : List[str] = past_user_inputs A__ : List[str] = generated_responses A__ : Optional[str] = text def __eq__( self , A__ ): if not isinstance(A__ , A__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __A ( self , A__ , A__ = False ): if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) A__ : str = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: A__ : Tuple = text def __A ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A__ : Tuple = None def __A ( self , A__ ): self.generated_responses.append(A__ ) def __A ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): A__ : Optional[Any] = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): A__ : str = """user""" if is_user else """bot""" output += F"""{name} >> {text} \n""" return output @add_end_docstrings( __magic_name__ , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , *A__ , **A__ ): super().__init__(*A__ , **A__ ) if self.tokenizer.pad_token_id is None: A__ : Tuple = self.tokenizer.eos_token def __A ( self , A__=None , A__=None , A__=None , **A__ ): A__ : Tuple = {} A__ : List[str] = {} A__ : Union[str, Any] = {} if min_length_for_response is not None: A__ : str = min_length_for_response if minimum_tokens is not None: A__ : List[str] = minimum_tokens if "max_length" in generate_kwargs: A__ : List[Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A__ : Optional[int] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A__ , A__=0 , **A__ ): A__ : Optional[Any] = super().__call__(A__ , num_workers=A__ , **A__ ) if isinstance(A__ , A__ ) and len(A__ ) == 1: return outputs[0] return outputs def __A ( self , A__ , A__=32 ): if not isinstance(A__ , A__ ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): A__ : List[str] = self.tokenizer._build_conversation_input_ids(A__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version A__ : Tuple = self._legacy_parse_and_tokenize(A__ ) if self.framework == "pt": A__ : List[str] = torch.LongTensor([input_ids] ) elif self.framework == "tf": A__ : Optional[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __A ( self , A__ , A__=10 , **A__ ): A__ : List[Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) A__ : Optional[int] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) A__ : Dict = max_length - minimum_tokens A__ : Optional[int] = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: A__ : str = model_inputs["""attention_mask"""][:, -trim:] A__ : List[str] = model_inputs.pop("""conversation""" ) A__ : Dict = max_length A__ : str = self.model.generate(**A__ , **A__ ) if self.model.config.is_encoder_decoder: A__ : Union[str, Any] = 1 else: A__ : Optional[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __A ( self , A__ , A__=True ): A__ : Dict = model_outputs["""output_ids"""] A__ : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ , ) A__ : Optional[int] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(A__ ) return conversation def __A ( self , A__ ): A__ : str = self.tokenizer.eos_token_id A__ : Tuple = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A__ , add_special_tokens=A__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A__ , add_special_tokens=A__ ) ) if len(A__ ) > self.tokenizer.model_max_length: A__ : str = input_ids[-self.tokenizer.model_max_length :] return input_ids
192
0
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> list[list[int]]: __snake_case = [] __snake_case = [] __snake_case = 0 __snake_case = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : int , ) -> None: if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) snake_case_ = [3, 34, 4, 12, 5, 2] snake_case_ = 9 snake_case_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
238
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): def __init__(self : Optional[int] , a__ : Tuple=None , **a__ : Optional[int] ): """simple docstring""" super().__init__(features=a__ ) __snake_case = torch_tensor_kwargs import torch # noqa import torch at initialization def a (self : Union[str, Any] , a__ : Union[str, Any] ): """simple docstring""" import torch if isinstance(a__ , a__ ) and column: if all( isinstance(a__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a__ ) return column def a (self : Optional[Any] , a__ : str ): """simple docstring""" import torch if isinstance(a__ , (str, bytes, type(a__ )) ): return value elif isinstance(a__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case = {} if isinstance(a__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case = {'''dtype''': torch.intaa} elif isinstance(a__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a__ , PIL.Image.Image ): __snake_case = np.asarray(a__ ) return torch.tensor(a__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def a (self : Optional[int] , a__ : str ): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(a__ , '''__array__''' ) and not isinstance(a__ , torch.Tensor ): __snake_case = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a__ ) for substruct in data_struct] ) elif isinstance(a__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a__ ) for substruct in data_struct] ) return self._tensorize(a__ ) def a (self : Optional[Any] , a__ : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , a__ , map_list=a__ ) def a (self : Optional[int] , a__ : pa.Table ): """simple docstring""" __snake_case = self.numpy_arrow_extractor().extract_row(a__ ) __snake_case = self.python_features_decoder.decode_row(a__ ) return self.recursive_tensorize(a__ ) def a (self : List[Any] , a__ : pa.Table ): """simple docstring""" __snake_case = self.numpy_arrow_extractor().extract_column(a__ ) __snake_case = self.python_features_decoder.decode_column(a__ , pa_table.column_names[0] ) __snake_case = self.recursive_tensorize(a__ ) __snake_case = self._consolidate(a__ ) return column def a (self : Optional[int] , a__ : pa.Table ): """simple docstring""" __snake_case = self.numpy_arrow_extractor().extract_batch(a__ ) __snake_case = self.python_features_decoder.decode_batch(a__ ) __snake_case = self.recursive_tensorize(a__ ) for column_name in batch: __snake_case = self._consolidate(batch[column_name] ) return batch
238
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( __A, __A, __A, __A, __A = None, __A = None, __A = None, ) -> Dict: '''simple docstring''' if config_name_or_path is None: UpperCAmelCase__ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: UpperCAmelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase__ = question_encoder_name_or_path UpperCAmelCase__ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. UpperCAmelCase__ = RagConfig.from_pretrained(_A ) UpperCAmelCase__ = AutoConfig.from_pretrained(_A ) UpperCAmelCase__ = AutoConfig.from_pretrained(_A ) UpperCAmelCase__ = gen_config UpperCAmelCase__ = question_encoder_config UpperCAmelCase__ = model_class.from_pretrained_question_encoder_generator( _A, _A, config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. UpperCAmelCase__ = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
65
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _a ( _a ): @staticmethod @abstractmethod def lowerCamelCase_ ( UpperCamelCase_: List[Any] ) -> List[str]: """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" raise NotImplementedError()
368
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = ShapEImgaImgPipeline _lowercase : Optional[Any] = ['''image'''] _lowercase : Optional[int] = ['''image'''] _lowercase : Optional[int] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowercase : Tuple = False @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" return 8 @property def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase_ ) return model def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int]=0 ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
93
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "swinv2" lowercase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , snake_case_ : int=224 , snake_case_ : List[Any]=4 , snake_case_ : List[Any]=3 , snake_case_ : Optional[Any]=96 , snake_case_ : str=[2, 2, 6, 2] , snake_case_ : Tuple=[3, 6, 12, 24] , snake_case_ : Optional[Any]=7 , snake_case_ : List[str]=4.0 , snake_case_ : Optional[int]=True , snake_case_ : Any=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Any="gelu" , snake_case_ : Optional[Any]=False , snake_case_ : List[str]=0.02 , snake_case_ : Dict=1E-5 , snake_case_ : Optional[int]=32 , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) snake_case__ : Optional[int] = image_size snake_case__ : Union[str, Any] = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : str = embed_dim snake_case__ : List[str] = depths snake_case__ : int = len(snake_case_ ) snake_case__ : Union[str, Any] = num_heads snake_case__ : Tuple = window_size snake_case__ : str = mlp_ratio snake_case__ : Optional[Any] = qkv_bias snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : Optional[Any] = drop_path_rate snake_case__ : Tuple = hidden_act snake_case__ : str = use_absolute_embeddings snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[int] = initializer_range snake_case__ : Dict = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : List[str] = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) snake_case__ : Tuple = (0, 0, 0, 0)
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
0
'''simple docstring''' def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. _a , _a = y, x % y return abs(UpperCamelCase ) def snake_case_ (): '''simple docstring''' try: _a = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) _a = int(nums[0] ) _a = int(nums[1] ) print( f'greatest_common_divisor({num_a}, {num_a}) = ' f'{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}' ) print(f'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : List[str] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
0
"""simple docstring""" import os import sys import unittest lowerCamelCase_ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCamelCase_ : Dict = os.path.join(git_repo_path, """src""", """diffusers""") class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =find_backend(''' if not is_torch_available():''' ) self.assertEqual(__A , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") a =find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(__A , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") a =find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(__A , '''torch_and_transformers_and_onnx''' ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __A ) self.assertIn('''torch_and_transformers''' , __A ) self.assertIn('''flax_and_transformers''' , __A ) self.assertIn('''torch_and_transformers_and_onnx''' , __A ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__A , '''\nCONSTANT = None\n''' ) a =create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) a =''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' a =create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a ='''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' a =create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __A )
81
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _lowerCamelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Dict , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[Any] ): """simple docstring""" warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
28
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCAmelCase = "base_with_context" def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=__lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): SCREAMING_SNAKE_CASE_ = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE_ = ly_weight['''attention'''] SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=__lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): SCREAMING_SNAKE_CASE_ = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE_ = ly_weight['''attention'''] SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): SCREAMING_SNAKE_CASE_ = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = ly_weight['''self_attention'''] SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = ly_weight['''MultiHeadDotProductAttention_0'''] SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) SCREAMING_SNAKE_CASE_ = jnp.tree_util.tree_map(onp.array, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] SCREAMING_SNAKE_CASE_ = os.path.join(args.checkpoint_path, '''..''', '''config.gin''' ) SCREAMING_SNAKE_CASE_ = inference.parse_training_gin_file(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = inference.InferenceModel(args.checkpoint_path, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''', variance_type='''fixed_large''' ) SCREAMING_SNAKE_CASE_ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', ) SCREAMING_SNAKE_CASE_ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length['''targets_context'''], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', ) SCREAMING_SNAKE_CASE_ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length['''targets_context'''], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) SCREAMING_SNAKE_CASE_ = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''], __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''], __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = load_decoder(ta_checkpoint['''target''']['''decoder'''], __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) SCREAMING_SNAKE_CASE_ = SpectrogramDiffusionPipeline( notes_encoder=__lowerCamelCase, continuous_encoder=__lowerCamelCase, decoder=__lowerCamelCase, scheduler=__lowerCamelCase, melgan=__lowerCamelCase, ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) __UpperCAmelCase = parser.parse_args() main(args)
257
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type='''dataset''' ), '''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" SCREAMING_SNAKE_CASE_ = BitConfig( conv_layer=__lowerCamelCase, num_labels=10_00, idalabel=__lowerCamelCase, labelaid=__lowerCamelCase, ) return config def A__ ( __lowerCamelCase ): if "stem.conv" in name: SCREAMING_SNAKE_CASE_ = name.replace('''stem.conv''', '''bit.embedder.convolution''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ = name.replace('''blocks''', '''layers''' ) if "head.fc" in name: SCREAMING_SNAKE_CASE_ = name.replace('''head.fc''', '''classifier.1''' ) if name.startswith('''norm''' ): SCREAMING_SNAKE_CASE_ = '''bit.''' + name if "bit" not in name and "classifier" not in name: SCREAMING_SNAKE_CASE_ = '''bit.encoder.''' + name return name def A__ ( ): SCREAMING_SNAKE_CASE_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): SCREAMING_SNAKE_CASE_ = get_config(__lowerCamelCase ) # load original model from timm SCREAMING_SNAKE_CASE_ = create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model SCREAMING_SNAKE_CASE_ = timm_model.state_dict() for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = state_dict.pop(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = val.squeeze() if '''head''' in key else val # load HuggingFace model SCREAMING_SNAKE_CASE_ = BitForImageClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # create image processor SCREAMING_SNAKE_CASE_ = create_transform(**resolve_data_config({}, model=__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = transform.transforms SCREAMING_SNAKE_CASE_ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE_ = BitImageProcessor( do_resize=__lowerCamelCase, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=__lowerCamelCase, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=__lowerCamelCase, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = transform(__lowerCamelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = processor(__lowerCamelCase, return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__lowerCamelCase, __lowerCamelCase ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits print('''Logits:''', logits[0, :3] ) print('''Predicted class:''', model.config.idalabel[logits.argmax(-1 ).item()] ) SCREAMING_SNAKE_CASE_ = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(F'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(F'''ybelkada/{model_name}''' ) processor.push_to_hub(F'''ybelkada/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
257
1
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[int] =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Dict ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Dict =emb.weight.shape lowerCamelCase__ : Union[str, Any] =nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowerCamelCase__ : Any =emb.weight.data return lin_layer def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=None ): """simple docstring""" lowerCamelCase__ : Union[str, Any] ={} for old_key in state_dict.keys(): lowerCamelCase__ : Optional[Any] =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase__ : List[str] =key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase__ : str =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase__ : int =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase__ : Tuple =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase__ : Tuple =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase__ : Optional[Any] =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase__ : Tuple =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase__ : Optional[int] =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase__ : Optional[int] =state_dict[old_key] return new_dict def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : str = WEIGHTS_NAME ): """simple docstring""" lowerCamelCase__ : Optional[int] =[] lowerCamelCase__ : Dict =0 os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) for expert in range(__lowerCamelCase ): lowerCamelCase__ : str =switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowerCamelCase ): lowerCamelCase__ : Any =torch.load(__lowerCamelCase )['''model'''] remove_ignore_keys_(__lowerCamelCase ) lowerCamelCase__ : Dict =rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =os.path.join( __lowerCamelCase , weights_name.replace('''.bin''' , f'''-{len(__lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(__lowerCamelCase , __lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowerCamelCase )[0]].dtype ) # Add the last block lowerCamelCase__ : Optional[Any] =os.path.join(__lowerCamelCase , weights_name.replace('''.bin''' , f'''-{len(__lowerCamelCase )+1:05d}-of-???.bin''' ) ) lowerCamelCase__ : Any =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : int =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowerCamelCase ) == 1: lowerCamelCase__ : Tuple =os.path.join(__lowerCamelCase , __lowerCamelCase ) torch.save(__lowerCamelCase , __lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowerCamelCase , __lowerCamelCase ) # Otherwise, let's build the index lowerCamelCase__ : List[Any] ={} for idx, shard in enumerate(__lowerCamelCase ): lowerCamelCase__ : Optional[Any] =weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin''' ) lowerCamelCase__ : Optional[int] =os.path.join(__lowerCamelCase , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) for key in shard: lowerCamelCase__ : int =shard_file # Add the metadata lowerCamelCase__ : Optional[int] ={'''total_size''': total_size} lowerCamelCase__ : int ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase__ : Optional[Any] =json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + '''\n''' f.write(__lowerCamelCase ) return metadata, index if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) _lowercase : int = parser.parse_args() _lowercase , _lowercase : List[str] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) _lowercase : str = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowercase : Optional[Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
238
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : List[str] = logging.get_logger(__name__) _lowercase : int = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'deberta-v2' def __init__( self : Optional[Any], lowerCamelCase : Optional[int]=12_8100, lowerCamelCase : List[Any]=1536, lowerCamelCase : Dict=24, lowerCamelCase : Any=24, lowerCamelCase : Union[str, Any]=6144, lowerCamelCase : List[Any]="gelu", lowerCamelCase : int=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : Union[str, Any]=512, lowerCamelCase : Optional[Any]=0, lowerCamelCase : Any=0.02, lowerCamelCase : int=1E-7, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : Union[str, Any]=-1, lowerCamelCase : Tuple=0, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : int=None, lowerCamelCase : Dict=0, lowerCamelCase : Tuple="gelu", **lowerCamelCase : Optional[int], )-> Union[str, Any]: super().__init__(**lowerCamelCase ) lowerCamelCase__ : str =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Optional[Any] =num_attention_heads lowerCamelCase__ : List[Any] =intermediate_size lowerCamelCase__ : int =hidden_act lowerCamelCase__ : Tuple =hidden_dropout_prob lowerCamelCase__ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : int =type_vocab_size lowerCamelCase__ : Tuple =initializer_range lowerCamelCase__ : Tuple =relative_attention lowerCamelCase__ : Optional[Any] =max_relative_positions lowerCamelCase__ : List[Any] =pad_token_id lowerCamelCase__ : int =position_biased_input # Backwards compatibility if type(lowerCamelCase ) == str: lowerCamelCase__ : Union[str, Any] =[x.strip() for x in pos_att_type.lower().split('''|''' )] lowerCamelCase__ : Tuple =pos_att_type lowerCamelCase__ : Union[str, Any] =vocab_size lowerCamelCase__ : Optional[int] =layer_norm_eps lowerCamelCase__ : Dict =kwargs.get('''pooler_hidden_size''', lowerCamelCase ) lowerCamelCase__ : Tuple =pooler_dropout lowerCamelCase__ : List[Any] =pooler_hidden_act class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' @property def snake_case ( self : List[str] )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : Union[str, Any] ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Any ={0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case ( self : List[str] )-> int: return 12 def snake_case ( self : str, lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional["TensorType"] = None, lowerCamelCase : int = 3, lowerCamelCase : int = 40, lowerCamelCase : int = 40, lowerCamelCase : "PreTrainedTokenizerBase" = None, )-> Mapping[str, Any]: lowerCamelCase__ : List[Any] =super().generate_dummy_inputs(preprocessor=lowerCamelCase, framework=lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
238
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _lowercase : List[Any] = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(a__ ) class lowerCAmelCase__ ( a__ ): lowerCAmelCase_ = 'rag' lowerCAmelCase_ = True def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=" / " , __SCREAMING_SNAKE_CASE=" // " , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=3_00 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE="wiki_dpr" , __SCREAMING_SNAKE_CASE="train" , __SCREAMING_SNAKE_CASE="compressed" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( bos_token_id=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , prefix=_lowerCamelCase , vocab_size=_lowerCamelCase , **_lowerCamelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase_ : Tuple = kwargs.pop('''question_encoder''' ) lowercase_ : Optional[Any] = question_encoder_config.pop('''model_type''' ) lowercase_ : Dict = kwargs.pop('''generator''' ) lowercase_ : List[str] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase_ : Dict = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) lowercase_ : Tuple = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) lowercase_ : Union[str, Any] = reduce_loss lowercase_ : int = label_smoothing lowercase_ : Optional[Any] = exclude_bos_score lowercase_ : Dict = do_marginalize lowercase_ : str = title_sep lowercase_ : str = doc_sep lowercase_ : str = n_docs lowercase_ : List[Any] = max_combined_length lowercase_ : str = dataset lowercase_ : int = dataset_split lowercase_ : Optional[int] = index_name lowercase_ : Any = retrieval_vector_size lowercase_ : Union[str, Any] = retrieval_batch_size lowercase_ : Tuple = passages_path lowercase_ : str = index_path lowercase_ : Tuple = use_dummy_dataset lowercase_ : int = output_retrieved lowercase_ : Any = do_deduplication lowercase_ : Tuple = use_cache if self.forced_eos_token_id is None: lowercase_ : Dict = getattr(self.generator , '''forced_eos_token_id''' , _lowerCamelCase ) @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = copy.deepcopy(self.__dict__ ) lowercase_ : Optional[Any] = self.question_encoder.to_dict() lowercase_ : Any = self.generator.to_dict() lowercase_ : Dict = self.__class__.model_type return output
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCamelCase_ ): def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
264
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = (PNDMScheduler,) __lowerCamelCase = (('''num_inference_steps''', 50),) def snake_case ( self , **_snake_case ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_snake_case ) return config def snake_case ( self , _snake_case=0 , **_snake_case ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_snake_case ) _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self ): """simple docstring""" pass def snake_case ( self , _snake_case=0 , **_snake_case ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self , **_snake_case ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_snake_case ) _lowerCAmelCase = scheduler_class(**_snake_case ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCAmelCase = model(_snake_case , _snake_case ) _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCAmelCase = model(_snake_case , _snake_case ) _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case ).prev_sample return sample def snake_case ( self ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , """set_timesteps""" ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , """set_timesteps""" ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = scheduler.step_prk(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCAmelCase = scheduler.step_plms(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = scheduler.step_plms(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_snake_case ) def snake_case ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_snake_case ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def snake_case ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def snake_case ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def snake_case ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def snake_case ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_snake_case ) def snake_case ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = 27 for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample def snake_case ( self ): """simple docstring""" with self.assertRaises(_snake_case ): _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
82
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() lowercase_ : Tuple = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.nn.CosineSimilarity(3 , 1E-0_8 ) lowercase_ : Optional[Any] = torch.nn.Softmax(dim=1 ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = W_supports['''sizes'''].tolist() lowercase_ : Dict = W_supports['''start_token_id'''].item() lowercase_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase_ : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.BERT(**__SCREAMING_SNAKE_CASE ) lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Tuple = W_supports['''input_ids'''] == start_token_id lowercase_ : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: lowercase_ : List[str] = 0 else: lowercase_ : List[Any] = support_sizes[i - 1] lowercase_ : str = S[s : s + size][start_token_masks[s : s + size]] lowercase_ : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] lowercase_ : List[str] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase_ : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase_ : Tuple = torch.vstack((p_starts, p_start) ) lowercase_ : Optional[Any] = torch.vstack((p_ends, p_end) ) else: lowercase_ : str = p_start lowercase_ : int = p_end return p_starts, p_ends
93
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "blip_text_model" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[Any]=30_524 , SCREAMING_SNAKE_CASE__ : Tuple=768 , SCREAMING_SNAKE_CASE__ : Tuple=768 , SCREAMING_SNAKE_CASE__ : str=3_072 , SCREAMING_SNAKE_CASE__ : Tuple=768 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : List[str]=512 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : str=1e-1_2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : int=30_522 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Dict=102 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : str , ) -> List[str]: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , sep_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = encoder_hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = projection_dim lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = hidden_act lowerCAmelCase__ = initializer_range lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = is_decoder lowerCAmelCase__ = use_cache @classmethod def a ( cls : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": lowerCAmelCase__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "blip_vision_model" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str]=768 , SCREAMING_SNAKE_CASE__ : str=3_072 , SCREAMING_SNAKE_CASE__ : Any=512 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : int=384 , SCREAMING_SNAKE_CASE__ : int=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=1e-1_0 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = projection_dim lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = patch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = hidden_act @classmethod def a ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : int ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": lowerCAmelCase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "blip" snake_case__ = True def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=512 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2.6_592 , SCREAMING_SNAKE_CASE__ : str=256 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> List[Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) if text_config is None: lowerCAmelCase__ = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: lowerCAmelCase__ = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) lowerCAmelCase__ = BlipTextConfig(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = BlipVisionConfig(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.vision_config.hidden_size lowerCAmelCase__ = projection_dim lowerCAmelCase__ = logit_scale_init_value lowerCAmelCase__ = 1.0 lowerCAmelCase__ = 0.02 lowerCAmelCase__ = image_text_hidden_size @classmethod def a ( cls : Tuple , SCREAMING_SNAKE_CASE__ : BlipTextConfig , SCREAMING_SNAKE_CASE__ : BlipVisionConfig , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> Union[str, Any]: lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.text_config.to_dict() lowerCAmelCase__ = self.vision_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
221
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase__ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ = "sgugger/tiny-distilbert-classification" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , only_pretrain_model=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> int: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , torchscript=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def a ( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ) -> Tuple: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # set architectures equal to `None` lowerCAmelCase__ = None lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Any ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def a ( self : int ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : List[Any] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , save_to_csv=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) ).exists() ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE__ : List[Any] ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "sequential" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "cumulative" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "current" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) , log_print=SCREAMING_SNAKE_CASE__ , trace_memory_line_by_line=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) ).exists() )
221
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration a_ = 50000 a_ = 5000 a_ , a_ = os.path.split(__file__) a_ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __lowercase ( snake_case_ : datasets.Dataset ,snake_case_ : Tuple ) ->Tuple: '''simple docstring''' for i in range(snake_case_ ): __A : int = dataset[i] @get_duration def __lowercase ( snake_case_ : datasets.Dataset ,snake_case_ : Optional[Any] ,snake_case_ : int ) ->Tuple: '''simple docstring''' for i in range(0 ,len(snake_case_ ) ,snake_case_ ): __A : List[str] = dataset[i : i + batch_size] @get_duration def __lowercase ( snake_case_ : datasets.Dataset ,snake_case_ : List[Any] ,snake_case_ : Any ) ->int: '''simple docstring''' with dataset.formatted_as(type=snake_case_ ): for i in range(snake_case_ ): __A : Union[str, Any] = dataset[i] @get_duration def __lowercase ( snake_case_ : datasets.Dataset ,snake_case_ : Any ,snake_case_ : Union[str, Any] ,snake_case_ : Optional[int] ) ->Union[str, Any]: '''simple docstring''' with dataset.formatted_as(type=snake_case_ ): for i in range(0 ,snake_case_ ,snake_case_ ): __A : Dict = dataset[i : i + batch_size] def __lowercase ( ) ->Optional[int]: '''simple docstring''' __A : int = {'''num examples''': SPEED_TEST_N_EXAMPLES} __A : Optional[int] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] __A : int = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) __A : Any = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) __A : List[Any] = generate_example_dataset( os.path.join(snake_case_ ,'''dataset.arrow''' ) ,snake_case_ ,num_examples=snake_case_ ,seq_shapes={'''list''': (100,)} ,) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ ,str(snake_case_ ) ) __A : Dict = func(snake_case_ ,**snake_case_ ) print('''shuffling dataset''' ) __A : int = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' ,func.__name__ ,str(snake_case_ ) ) __A : Optional[Any] = func( snake_case_ ,**snake_case_ ) with open(snake_case_ ,'''wb''' ) as f: f.write(json.dumps(snake_case_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
179
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : List[str] = logging.get_logger(__name__) lowerCamelCase_ : Dict = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Dict = """poolformer""" def __init__( self : List[Any] , snake_case_ : str=3 , snake_case_ : List[str]=16 , snake_case_ : int=16 , snake_case_ : Optional[Any]=3 , snake_case_ : Tuple=4.0 , snake_case_ : Any=[2, 2, 6, 2] , snake_case_ : Union[str, Any]=[64, 128, 320, 512] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : List[Any]=[4, 2, 2, 2] , snake_case_ : str=[2, 1, 1, 1] , snake_case_ : Dict=4 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : int=True , snake_case_ : str=1e-5 , snake_case_ : Dict=0.02 , **snake_case_ : List[str] , ): UpperCamelCase_: int = num_channels UpperCamelCase_: int = patch_size UpperCamelCase_: Optional[int] = stride UpperCamelCase_: Optional[Any] = padding UpperCamelCase_: List[str] = pool_size UpperCamelCase_: Tuple = hidden_sizes UpperCamelCase_: Any = mlp_ratio UpperCamelCase_: List[Any] = depths UpperCamelCase_: List[Any] = patch_sizes UpperCamelCase_: Tuple = strides UpperCamelCase_: Optional[int] = num_encoder_blocks UpperCamelCase_: Tuple = drop_path_rate UpperCamelCase_: Any = hidden_act UpperCamelCase_: Dict = use_layer_scale UpperCamelCase_: Optional[Any] = layer_scale_init_value UpperCamelCase_: int = initializer_range super().__init__(**snake_case_ ) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = version.parse("""1.11""" ) @property def lowerCAmelCase__ ( self : List[Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): return 2e-3
357
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase_ : List[str] = False lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = """ybelkada/fonts""" def A__ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: requires_backends(lowerCamelCase , ["""torch"""] ) _check_torch_version() UpperCamelCase_: Tuple = image_tensor.unsqueeze(0 ) UpperCamelCase_: Any = torch.nn.functional.unfold(lowerCamelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_: int = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCamelCase , lowerCamelCase , -1 ) UpperCamelCase_: Any = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def A__ ( lowerCamelCase , lowerCamelCase = 36 , lowerCamelCase = "black" , lowerCamelCase = "white" , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = None , lowerCamelCase = None , ) -> Image.Image: requires_backends(lowerCamelCase , """vision""" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_: List[str] = textwrap.TextWrapper(width=80 ) UpperCamelCase_: Optional[int] = wrapper.wrap(text=lowerCamelCase ) UpperCamelCase_: List[str] = """\n""".join(lowerCamelCase ) if font_bytes is not None and font_path is None: UpperCamelCase_: List[Any] = io.BytesIO(lowerCamelCase ) elif font_path is not None: UpperCamelCase_: List[Any] = font_path else: UpperCamelCase_: Tuple = hf_hub_download(lowerCamelCase , """Arial.TTF""" ) UpperCamelCase_: Optional[Any] = ImageFont.truetype(lowerCamelCase , encoding="""UTF-8""" , size=lowerCamelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_: str = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , lowerCamelCase ) ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = temp_draw.textbbox((0, 0) , lowerCamelCase , lowerCamelCase ) # Create the actual image with a bit of padding around the text. UpperCamelCase_: Optional[int] = text_width + left_padding + right_padding UpperCamelCase_: List[str] = text_height + top_padding + bottom_padding UpperCamelCase_: Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) , lowerCamelCase ) UpperCamelCase_: Optional[Any] = ImageDraw.Draw(lowerCamelCase ) draw.text(xy=(left_padding, top_padding) , text=lowerCamelCase , fill=lowerCamelCase , font=lowerCamelCase ) return image def A__ ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> List[str]: requires_backends(lowerCamelCase , """vision""" ) # Convert to PIL image if necessary UpperCamelCase_: List[str] = to_pil_image(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = render_text(lowerCamelCase , **lowerCamelCase ) UpperCamelCase_: Tuple = max(header_image.width , image.width ) UpperCamelCase_: Tuple = int(image.height * (new_width / image.width) ) UpperCamelCase_: Dict = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_: str = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_: Optional[Any] = to_numpy_array(lowerCamelCase ) if infer_channel_dimension_format(lowerCamelCase ) == ChannelDimension.LAST: UpperCamelCase_: Tuple = to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = ["""flattened_patches"""] def __init__( self : int , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : int = 2048 , snake_case_ : bool = False , **snake_case_ : Any , ): super().__init__(**snake_case_ ) UpperCamelCase_: int = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} UpperCamelCase_: Tuple = do_normalize UpperCamelCase_: List[Any] = do_convert_rgb UpperCamelCase_: Tuple = max_patches UpperCamelCase_: Tuple = is_vqa def lowerCAmelCase__ ( self : int , snake_case_ : np.ndarray , snake_case_ : int , snake_case_ : dict , **snake_case_ : Tuple ): requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch UpperCamelCase_: int = to_channel_dimension_format(snake_case_ , ChannelDimension.FIRST ) UpperCamelCase_: List[str] = torch.from_numpy(snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[Any] = patch_size["""height"""], patch_size["""width"""] UpperCamelCase_, UpperCamelCase_: Tuple = get_image_size(snake_case_ ) # maximize scale s.t. UpperCamelCase_: List[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_: Any = max(min(math.floor(scale * image_height / patch_height ) , snake_case_ ) , 1 ) UpperCamelCase_: List[str] = max(min(math.floor(scale * image_width / patch_width ) , snake_case_ ) , 1 ) UpperCamelCase_: int = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_: Optional[Any] = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_: str = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=snake_case_ , antialias=snake_case_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_: List[str] = torch_extract_patches(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase_: List[Any] = patches.shape UpperCamelCase_: List[str] = patches_shape[1] UpperCamelCase_: Optional[Any] = patches_shape[2] UpperCamelCase_: List[str] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_: Union[str, Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_: Optional[Any] = torch.arange(snake_case_ ).reshape([rows, 1] ).repeat(1 , snake_case_ ).reshape([rows * columns, 1] ) UpperCamelCase_: Optional[int] = torch.arange(snake_case_ ).reshape([1, columns] ).repeat(snake_case_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_: Union[str, Any] = row_ids.to(torch.floataa ) UpperCamelCase_: str = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_: Optional[Any] = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_: Tuple = torch.nn.functional.pad(snake_case_ , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_: List[Any] = to_numpy_array(snake_case_ ) return result def lowerCAmelCase__ ( self : List[Any] , snake_case_ : np.ndarray , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple ): if image.dtype == np.uinta: UpperCamelCase_: List[str] = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_: str = np.mean(snake_case_ ) UpperCamelCase_: str = np.std(snake_case_ ) UpperCamelCase_: str = max(snake_case_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : ImageInput , snake_case_ : Optional[str] = None , snake_case_ : bool = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[Dict[str, int]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_: Optional[Any] = patch_size if patch_size is not None else self.patch_size UpperCamelCase_: Optional[int] = max_patches if max_patches is not None else self.max_patches UpperCamelCase_: Tuple = self.is_vqa if kwargs.get("""data_format""" , snake_case_ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) UpperCamelCase_: Dict = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_: str = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(snake_case_ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) UpperCamelCase_: List[Any] = kwargs.pop("""font_bytes""" , snake_case_ ) UpperCamelCase_: List[Any] = kwargs.pop("""font_path""" , snake_case_ ) if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: str = [header_text] * len(snake_case_ ) UpperCamelCase_: str = [ render_header(snake_case_ , header_text[i] , font_bytes=snake_case_ , font_path=snake_case_ ) for i, image in enumerate(snake_case_ ) ] if do_normalize: UpperCamelCase_: Union[str, Any] = [self.normalize(image=snake_case_ ) for image in images] # convert to torch tensor and permute UpperCamelCase_: str = [ self.extract_flattened_patches(image=snake_case_ , max_patches=snake_case_ , patch_size=snake_case_ ) for image in images ] # create attention mask in numpy UpperCamelCase_: List[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_: Optional[Any] = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=snake_case_ ) return encoded_outputs
223
0
import math def __lowercase ( a__ ) -> bool: __SCREAMING_SNAKE_CASE = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def __lowercase ( a__ = 1 / 1_23_45 ) -> int: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 3 while True: __SCREAMING_SNAKE_CASE = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): __SCREAMING_SNAKE_CASE = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
257
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowercase ( a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.weight.shape __SCREAMING_SNAKE_CASE = nn.Linear(a__ , a__ , bias=a__ ) __SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __lowercase ( a__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location='cpu' ) __SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model'] __SCREAMING_SNAKE_CASE = mam_aaa['model'] remove_ignore_keys_(a__ ) __SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0] __SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=a__ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) __SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'] __SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(a__ ) model.model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ : Optional[int] =parser.parse_args() lowerCAmelCase__ : Tuple =convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
257
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_a ) def __UpperCAmelCase ( self ): __a = self.tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
11
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } UpperCAmelCase_ = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } UpperCAmelCase_ = '▁' class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict="<s>" , UpperCamelCase_: str="</s>" , UpperCamelCase_: Tuple="</s>" , UpperCamelCase_: Dict="<s>" , UpperCamelCase_: int="<unk>" , UpperCamelCase_: List[Any]="<pad>" , UpperCamelCase_: Union[str, Any]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __lowerCamelCase = vocab_file __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __lowerCamelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __lowerCamelCase = len(self.sp_model ) - 1 __lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self: str ): return len(self.sp_model ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase = self.sp_model.PieceToId(UpperCamelCase_ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int ): __lowerCamelCase = [] __lowerCamelCase = """""" __lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token __lowerCamelCase = True __lowerCamelCase = [] else: current_sub_tokens.append(UpperCamelCase_ ) __lowerCamelCase = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def __getstate__( self: str ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self: Optional[int] , UpperCamelCase_: List[Any] ): __lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , """wb""" ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
12
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) def __lowercase ( _a , _a=False ): snake_case_ : List[str] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def __lowercase ( _a , _a , _a=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case_ : List[str] = '''''' else: snake_case_ : Dict = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : List[str] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case_ : Optional[int] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case_ : Dict = in_proj_bias[: config.hidden_size] snake_case_ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : Dict = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : str = in_proj_bias[-config.hidden_size :] def __lowercase ( _a ): snake_case_ : Dict = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def __lowercase ( _a , _a , _a ): snake_case_ : Union[str, Any] = dct.pop(_a ) snake_case_ : Union[str, Any] = val def __lowercase ( ): snake_case_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ : Tuple = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def __lowercase ( _a , _a , _a=False ): snake_case_ : str = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_a , ) snake_case_ : Tuple = ViTHybridConfig(backbone_config=_a , image_size=384 , num_labels=1_000 ) snake_case_ : int = False # load original model from timm snake_case_ : str = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a ) snake_case_ : int = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) snake_case_ : Optional[Any] = '''huggingface/label-files''' snake_case_ : Any = '''imagenet-1k-id2label.json''' snake_case_ : Dict = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : Dict = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Optional[int] = idalabel snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case_ : Optional[Any] = ViTHybridModel(_a ).eval() else: snake_case_ : Any = ViTHybridForImageClassification(_a ).eval() model.load_state_dict(_a ) # create image processor snake_case_ : Optional[Any] = create_transform(**resolve_data_config({} , model=_a ) ) snake_case_ : List[Any] = transform.transforms snake_case_ : Optional[Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } snake_case_ : List[Any] = ViTHybridImageProcessor( do_resize=_a , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_a , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case_ : Optional[int] = prepare_img() snake_case_ : Optional[int] = transform(_a ).unsqueeze(0 ) snake_case_ : int = processor(_a , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_a , _a ) # verify logits with torch.no_grad(): snake_case_ : List[str] = model(_a ) snake_case_ : Any = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: snake_case_ : Optional[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1E-3 ) else: snake_case_ : int = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_a ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowercase__ : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
264
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase="eval" ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , f"""{split}_results.json""" ) if os.path.exists(UpperCamelCase ): with open(UpperCamelCase , """r""" ) as f: return json.load(UpperCamelCase ) raise ValueError(f"""can't find {path}""" ) _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[int] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_flax_glue.main() lowerCAmelCase__ : List[Any] = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.7_5 ) @slow def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : str = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[Any] = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_clm_flax.main() lowerCAmelCase__ : Any = get_results(__UpperCAmelCase ) self.assertLess(result["""eval_perplexity"""] ,100 ) @slow def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Any = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Union[str, Any] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_summarization_flax.main() lowerCAmelCase__ : List[str] = get_results(__UpperCAmelCase ,split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] ,10 ) self.assertGreaterEqual(result["""test_rouge2"""] ,2 ) self.assertGreaterEqual(result["""test_rougeL"""] ,7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] ,7 ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_mlm_flax.main() lowerCAmelCase__ : List[Any] = get_results(__UpperCAmelCase ) self.assertLess(result["""eval_perplexity"""] ,42 ) @slow def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : List[str] = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_ta_mlm_flax.main() lowerCAmelCase__ : Tuple = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.4_2 ) @slow def UpperCAmelCase_ ( self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowerCAmelCase__ : Optional[Any] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase__ : Any = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : List[str] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_flax_ner.main() lowerCAmelCase__ : int = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] ,0.3 ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[int] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_qa.main() lowerCAmelCase__ : str = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_f1"""] ,30 ) self.assertGreaterEqual(result["""eval_exact"""] ,30 )
184
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : str = tempfile.mkdtemp() lowerCAmelCase__ : List[Any] = 8 # DPR tok lowerCAmelCase__ : int = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) os.makedirs(__UpperCAmelCase ,exist_ok=__UpperCAmelCase ) lowerCAmelCase__ : Dict = os.path.join(__UpperCAmelCase ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok lowerCAmelCase__ : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase__ : List[Any] = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase__ : Any = {"""unk_token""": """<unk>"""} lowerCAmelCase__ : str = os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) os.makedirs(__UpperCAmelCase ,exist_ok=__UpperCAmelCase ) lowerCAmelCase__ : Any = os.path.join(__UpperCAmelCase ,BART_VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : Dict = os.path.join(__UpperCAmelCase ,BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def UpperCAmelCase_ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) ) def UpperCAmelCase_ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Any = os.path.join(self.tmpdirname ,"""rag_tokenizer""" ) lowerCAmelCase__ : Any = RagConfig(question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ) lowerCAmelCase__ : str = RagTokenizer(question_encoder=self.get_dpr_tokenizer() ,generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__UpperCAmelCase ) rag_tokenizer.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Any = RagTokenizer.from_pretrained(__UpperCAmelCase ,config=__UpperCAmelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder ,__UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() ,rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator ,__UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() ,rag_tokenizer.generator.get_vocab() ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) lowerCAmelCase__ : Optional[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowerCAmelCase__ : Dict = tokenizer(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : str = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) lowerCAmelCase__ : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowerCAmelCase__ : Tuple = tokenizer(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
184
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class UpperCamelCase__( __A ): lowerCAmelCase__ : str = 'mra' def __init__( self ,__UpperCAmelCase=5_02_65 ,__UpperCAmelCase=7_68 ,__UpperCAmelCase=12 ,__UpperCAmelCase=12 ,__UpperCAmelCase=30_72 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1e-5 ,__UpperCAmelCase="absolute" ,__UpperCAmelCase=4 ,__UpperCAmelCase="full" ,__UpperCAmelCase=0 ,__UpperCAmelCase=0 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0 ,__UpperCAmelCase=2 ,**__UpperCAmelCase ,) -> List[Any]: super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = position_embedding_type A__ = block_per_row A__ = approx_mode A__ = initial_prior_first_n_blocks A__ = initial_prior_diagonal_n_blocks
221
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["ChineseCLIPFeatureExtractor"] __lowerCamelCase = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
221
1
'''simple docstring''' from __future__ import annotations _lowerCAmelCase = '''#''' class lowerCAmelCase_: def __init__( self ) -> None: lowerCAmelCase__ : dict = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: lowerCAmelCase__ : Dict = self._trie for char in text: if char not in trie: lowerCAmelCase__ : int = {} lowerCAmelCase__ : Union[str, Any] = trie[char] lowerCAmelCase__ : int = True def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> tuple | list: lowerCAmelCase__ : List[Any] = self._trie for char in prefix: if char in trie: lowerCAmelCase__ : Optional[int] = trie[char] else: return [] return self._elements(snake_case__ ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> tuple: lowerCAmelCase__ : Optional[int] = [] for c, v in d.items(): lowerCAmelCase__ : List[str] = [" "] if c == END else [(c + s) for s in self._elements(snake_case__ )] result.extend(snake_case__ ) return tuple(snake_case__ ) _lowerCAmelCase = Trie() _lowerCAmelCase = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
360
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=7 ,__UpperCAmelCase=3 ,__UpperCAmelCase=18 ,__UpperCAmelCase=30 ,__UpperCAmelCase=400 ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,) -> Optional[Any]: lowerCAmelCase__ : Optional[Any] = size if size is not None else {"""height""": 20, """width""": 20} lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : List[str] = batch_size lowerCAmelCase__ : Tuple = num_channels lowerCAmelCase__ : Optional[int] = image_size lowerCAmelCase__ : Optional[Any] = min_resolution lowerCAmelCase__ : Tuple = max_resolution lowerCAmelCase__ : List[Any] = size lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : Optional[int] = do_convert_rgb lowerCAmelCase__ : str = [512, 1024, 2048, 4096] lowerCAmelCase__ : int = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def UpperCAmelCase_ ( self ) -> Optional[int]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Optional[Any] = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" lowerCAmelCase__ : Union[str, Any] = Image.open(requests.get(__UpperCAmelCase ,stream=__UpperCAmelCase ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[Any] = self.image_processor_tester.prepare_dummy_image() lowerCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase__ : str = 2048 lowerCAmelCase__ : Tuple = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() ,torch.tensor(0.0_6_0_6 ) ,atol=1E-3 ,rtol=1E-3 ) ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processor lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : List[str] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCAmelCase__ : str = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched lowerCAmelCase__ : Any = image_processor( __UpperCAmelCase ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def UpperCAmelCase_ ( self ) -> Any: # Initialize image_processor lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : Tuple = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 lowerCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Any = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches lowerCAmelCase__ : Optional[Any] = """Hello""" lowerCAmelCase__ : List[str] = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ,header_text=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched lowerCAmelCase__ : str = image_processor( __UpperCAmelCase ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ,header_text=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processor lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,np.ndarray ) lowerCAmelCase__ : Tuple = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCAmelCase__ : Any = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched lowerCAmelCase__ : int = image_processor( __UpperCAmelCase ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processor lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Optional[int] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCAmelCase__ : Dict = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched lowerCAmelCase__ : Union[str, Any] = image_processor( __UpperCAmelCase ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Dict = PixaStructImageProcessingTester(self ,num_channels=4 ) lowerCAmelCase__ : str = 3 @property def UpperCAmelCase_ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: # Initialize image_processor lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : Dict = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCAmelCase__ : int = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched lowerCAmelCase__ : Dict = image_processor( __UpperCAmelCase ,return_tensors="""pt""" ,max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,)
184
0
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration a_ : Optional[int] = 5_0_0_0_0 a_ : str = 5_0_0_0 a_ : List[Any] = os.path.split(__file__) a_ : List[str] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _A (lowerCAmelCase__ :datasets.Dataset , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' for i in range(__lowerCamelCase ): _a = dataset[i] @get_duration def _A (lowerCAmelCase__ :datasets.Dataset , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Tuple: '''simple docstring''' for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): _a = dataset[i : i + batch_size] @get_duration def _A (lowerCAmelCase__ :datasets.Dataset , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any] ) -> int: '''simple docstring''' with dataset.formatted_as(type=__lowerCamelCase ): for i in range(__lowerCamelCase ): _a = dataset[i] @get_duration def _A (lowerCAmelCase__ :datasets.Dataset , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] ) -> List[str]: '''simple docstring''' with dataset.formatted_as(type=__lowerCamelCase ): for i in range(0 , __lowerCamelCase , __lowerCamelCase ): _a = dataset[i : i + batch_size] def _A () -> Any: '''simple docstring''' _a = {"num examples": SPEED_TEST_N_EXAMPLES} _a = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_00}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10_00}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10_00}), ] _a = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_00}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10_00}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) _a = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) _a = generate_example_dataset( os.path.join(__lowerCamelCase , 'dataset.arrow' ) , __lowerCamelCase , num_examples=__lowerCamelCase , seq_shapes={'list': (1_00,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(__lowerCamelCase ) ) _a = func(__lowerCamelCase , **__lowerCamelCase ) print('shuffling dataset' ) _a = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(__lowerCamelCase ) ) _a = func( __lowerCamelCase , **__lowerCamelCase ) with open(__lowerCamelCase , 'wb' ) as f: f.write(json.dumps(__lowerCamelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
168
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[Any] ={ '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
223
0
"""simple docstring""" from __future__ import annotations def snake_case ( A__ ,A__ ): if b == 0: return (1, 0) (UpperCAmelCase_) : Dict = extended_euclid(A__ ,a % b ) UpperCAmelCase_ : List[Any] = a // b return (y, x - k * y) def snake_case ( A__ ,A__ ,A__ ,A__ ): (UpperCAmelCase_) : Optional[int] = extended_euclid(A__ ,A__ ) UpperCAmelCase_ : Optional[Any] = na * na UpperCAmelCase_ : Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m def snake_case ( A__ ,A__ ): (UpperCAmelCase_) : int = extended_euclid(A__ ,A__ ) if b < 0: UpperCAmelCase_ : str = (b % n + n) % n return b def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : List[str] = invert_modulo(A__ ,A__ ), invert_modulo(A__ ,A__ ) UpperCAmelCase_ : Any = na * na UpperCAmelCase_ : List[str] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
360
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Optional[Any] = accelerator.prepare(lowerCAmelCase_ ) try: pickle.loads(pickle.dumps(lowerCAmelCase_ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
253
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase__ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = load_tool("text-question-answering") self.tool.setup() _A : List[Any] = load_tool("text-question-answering" , remote=__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Union[str, Any] = self.tool(__lowerCamelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__lowerCamelCase , "launched the BigScience Research Workshop") def _lowerCamelCase ( self) -> Dict: _A : List[Any] = self.remote_tool(__lowerCamelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__lowerCamelCase , "launched the BigScience Research Workshop") def _lowerCamelCase ( self) -> str: _A : int = self.tool(text=__lowerCamelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__lowerCamelCase , "launched the BigScience Research Workshop") def _lowerCamelCase ( self) -> List[Any]: _A : Union[str, Any] = self.remote_tool(text=__lowerCamelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__lowerCamelCase , "launched the BigScience Research Workshop")
11
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) _A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = AutoConfig.from_pretrained("gpt2") _A : int = GenerationConfig.from_model_config(__lowerCamelCase) _A : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = GenerationConfig() _A : List[Any] = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _A : List[str] = copy.deepcopy(__lowerCamelCase) _A : int = generation_config.update(**__lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"}) def _lowerCamelCase ( self) -> Any: _A : int = GenerationConfig() _A : int = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__lowerCamelCase) _A : Any = GenerationConfig.from_pretrained(__lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") _A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase) assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config def _lowerCamelCase ( self) -> List[str]: _A : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCamelCase) self.assertEqual(default_config.num_beams , 1) _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase) _A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[int]: _A : Dict = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _lowerCamelCase ( self) -> Any: _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) _A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Union[str, Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) _A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
11
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Path , __UpperCamelCase : str = None , __UpperCamelCase : str = None , __UpperCamelCase : str = None , ) -> Tuple: """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE__ = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE__ = question_encoder_name_or_path SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE__ = RagConfig.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = gen_config SCREAMING_SNAKE_CASE__ = question_encoder_config SCREAMING_SNAKE_CASE__ = model_class.from_pretrained_question_encoder_generator( __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) rag_model.save_pretrained(__UpperCamelCase ) # Sanity check. model_class.from_pretrained(__UpperCamelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : Optional[Any] = parser.parse_args() __lowerCamelCase : Union[str, Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
204
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Optional[Any] = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
204
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowercase ( unittest.TestCase): """simple docstring""" def __init__( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=7 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Any=10 , __lowerCamelCase : List[Any]=18 , __lowerCamelCase : List[Any]=30 , __lowerCamelCase : Any=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : List[Any]=None , ): '''simple docstring''' lowerCamelCase__ : Optional[int] = size if size is not None else {"shortest_edge": 18} lowerCamelCase__ : int = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCamelCase__ : Tuple = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : str = num_frames lowerCamelCase__ : List[Any] = image_size lowerCamelCase__ : Optional[Any] = min_resolution lowerCamelCase__ : Optional[int] = max_resolution lowerCamelCase__ : Tuple = do_resize lowerCamelCase__ : Union[str, Any] = size lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : Tuple = image_mean lowerCamelCase__ : List[str] = image_std lowerCamelCase__ : List[Any] = crop_size def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = VivitImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = VivitImageProcessingTester(self ) @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCamelCase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCamelCase__ : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for video in video_inputs: self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[Any] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__ : List[str] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : str = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for video in video_inputs: self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowerCamelCase__ : Any = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__ : List[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for video in video_inputs: self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowerCamelCase__ : Any = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__ : Any = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
184
def lowercase_ ( _A : int , _A : int ): """simple docstring""" while a != 0: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = b % a, a return b def lowercase_ ( _A : int , _A : int ): """simple docstring""" if gcd(_A , _A ) != 1: lowerCamelCase__ : List[str] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(_A ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = 1, 0, a lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = 0, 1, m while va != 0: lowerCamelCase__ : Tuple = ua // va lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
184
1
import numpy as np from PIL import Image def a_ ( __lowercase : np.ndarray , __lowercase : int , __lowercase : int ) -> np.ndarray: _snake_case = np.array(__lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 # compute the shape of the output matrix _snake_case = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _snake_case = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _snake_case = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _snake_case = 0 _snake_case = 0 return updated_arr def a_ ( __lowercase : np.ndarray , __lowercase : int , __lowercase : int ) -> np.ndarray: _snake_case = np.array(__lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 # compute the shape of the output matrix _snake_case = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _snake_case = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _snake_case = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _snake_case = 0 _snake_case = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _lowerCamelCase : Dict = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
363
from __future__ import annotations _lowerCamelCase : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowerCamelCase : Optional[int] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a_ ( __lowercase : list[float] ) -> list[float]: _snake_case = [] _snake_case = len(__lowercase ) for i in range(__lowercase ): _snake_case = -1 for j in range(i + 1 , __lowercase ): if arr[i] < arr[j]: _snake_case = arr[j] break result.append(__lowercase ) return result def a_ ( __lowercase : list[float] ) -> list[float]: _snake_case = [] for i, outer in enumerate(__lowercase ): _snake_case = -1 for inner in arr[i + 1 :]: if outer < inner: _snake_case = inner break result.append(__lowercase ) return result def a_ ( __lowercase : list[float] ) -> list[float]: _snake_case = len(__lowercase ) _snake_case = [] _snake_case = [-1] * arr_size for index in reversed(range(__lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _snake_case = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowerCamelCase : Union[str, Any] = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
130
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __A( a ): snake_case_ = 42 snake_case_ = jnp.floataa snake_case_ = True def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' super().setup() __a = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' __a = super().__call__(*_snake_case , **_snake_case ) __a = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __A( a ): snake_case_ = FlaxBigBirdForNaturalQuestionsModule def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ , a__ ) -> Dict: def cross_entropy(a__ , a__ , a__=None ): __a = logits.shape[-1] __a = (labels[..., None] == jnp.arange(a__ )[None]).astype('''f4''' ) __a = jax.nn.log_softmax(a__ , axis=-1 ) __a = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __a = reduction(a__ ) return loss __a = partial(a__ , reduction=jnp.mean ) __a = cross_entropy(a__ , a__ ) __a = cross_entropy(a__ , a__ ) __a = cross_entropy(a__ , a__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __A: snake_case_ = "google/bigbird-roberta-base" snake_case_ = 3_0_0_0 snake_case_ = 1_0_5_0_0 snake_case_ = 1_2_8 snake_case_ = 3 snake_case_ = 1 snake_case_ = 5 # tx_args snake_case_ = 3E-5 snake_case_ = 0.0 snake_case_ = 2_0_0_0_0 snake_case_ = 0.0_095 snake_case_ = "bigbird-roberta-natural-questions" snake_case_ = "training-expt" snake_case_ = "data/nq-training.jsonl" snake_case_ = "data/nq-validation.jsonl" def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=_snake_case ) __a = os.path.join(self.base_dir , self.save_dir ) __a = self.batch_size_per_device * jax.device_count() @dataclass class __A: snake_case_ = 42 snake_case_ = 4_0_9_6 # no dynamic padding on TPUs def __call__( self , _snake_case ) -> int: '''simple docstring''' __a = self.collate_fn(_snake_case ) __a = jax.tree_util.tree_map(_snake_case , _snake_case ) return batch def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a , __a = self.fetch_inputs(features['''input_ids'''] ) __a = { '''input_ids''': jnp.array(_snake_case , dtype=jnp.intaa ), '''attention_mask''': jnp.array(_snake_case , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' __a = [self._fetch_inputs(_snake_case ) for ids in input_ids] return zip(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = [1 for _ in range(len(_snake_case ) )] while len(_snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __lowerCAmelCase ( a__ , a__ , a__=None ) -> List[str]: if seed is not None: __a = dataset.shuffle(seed=a__ ) for i in range(len(a__ ) // batch_size ): __a = dataset[i * batch_size : (i + 1) * batch_size] yield dict(a__ ) @partial(jax.pmap , axis_name='''batch''' ) def __lowerCAmelCase ( a__ , a__ , **a__ ) -> Any: def loss_fn(a__ ): __a = model_inputs.pop('''start_labels''' ) __a = model_inputs.pop('''end_labels''' ) __a = model_inputs.pop('''pooled_labels''' ) __a = state.apply_fn(**a__ , params=a__ , dropout_rng=a__ , train=a__ ) __a , __a , __a = outputs return state.loss_fn( a__ , a__ , a__ , a__ , a__ , a__ , ) __a , __a = jax.random.split(a__ ) __a = jax.value_and_grad(a__ ) __a , __a = grad_fn(state.params ) __a = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) __a = jax.lax.pmean(a__ , '''batch''' ) __a = state.apply_gradients(grads=a__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __lowerCAmelCase ( a__ , **a__ ) -> str: __a = model_inputs.pop('''start_labels''' ) __a = model_inputs.pop('''end_labels''' ) __a = model_inputs.pop('''pooled_labels''' ) __a = state.apply_fn(**a__ , params=state.params , train=a__ ) __a , __a , __a = outputs __a = state.loss_fn(a__ , a__ , a__ , a__ , a__ , a__ ) __a = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class __A( train_state.TrainState ): snake_case_ = struct.field(pytree_node=a ) @dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = None def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case=None ) -> Union[str, Any]: '''simple docstring''' __a = model.params __a = TrainState.create( apply_fn=model.__call__ , params=_snake_case , tx=_snake_case , loss_fn=_snake_case , ) if ckpt_dir is not None: __a , __a , __a , __a , __a = restore_checkpoint(_snake_case , _snake_case ) __a = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __a , __a = build_tx(**_snake_case ) __a = train_state.TrainState( step=_snake_case , apply_fn=model.__call__ , params=_snake_case , tx=_snake_case , opt_state=_snake_case , ) __a = args __a = data_collator __a = lr __a = params __a = jax_utils.replicate(_snake_case ) return state def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.args __a = len(_snake_case ) // args.batch_size __a = jax.random.PRNGKey(0 ) __a = jax.random.split(_snake_case , jax.device_count() ) for epoch in range(args.max_epochs ): __a = jnp.array(0 , dtype=jnp.floataa ) __a = get_batched_dataset(_snake_case , args.batch_size , seed=_snake_case ) __a = 0 for batch in tqdm(_snake_case , total=_snake_case , desc=F"""Running EPOCH-{epoch}""" ): __a = self.data_collator(_snake_case ) __a , __a , __a = self.train_step_fn(_snake_case , _snake_case , **_snake_case ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __a = jax_utils.unreplicate(state.step ) __a = running_loss.item() / i __a = self.scheduler_fn(state_step - 1 ) __a = self.evaluate(_snake_case , _snake_case ) __a = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(_snake_case ) ) self.logger.log(_snake_case , commit=_snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = get_batched_dataset(_snake_case , self.args.batch_size ) __a = len(_snake_case ) // self.args.batch_size __a = jnp.array(0 , dtype=jnp.floataa ) __a = 0 for batch in tqdm(_snake_case , total=_snake_case , desc='''Evaluating ... ''' ): __a = self.data_collator(_snake_case ) __a = self.val_step_fn(_snake_case , **_snake_case ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> List[str]: '''simple docstring''' __a = jax_utils.unreplicate(_snake_case ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(_snake_case , params=state.params ) with open(os.path.join(_snake_case , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_snake_case , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(_snake_case , '''data_collator.joblib''' ) ) with open(os.path.join(_snake_case , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , _snake_case ) print('''DONE''' ) def __lowerCAmelCase ( a__ , a__ ) -> List[Any]: print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=''' ... ''' ) with open(os.path.join(a__ , '''flax_model.msgpack''' ) , '''rb''' ) as f: __a = from_bytes(state.params , f.read() ) with open(os.path.join(a__ , '''opt_state.msgpack''' ) , '''rb''' ) as f: __a = from_bytes(state.opt_state , f.read() ) __a = joblib.load(os.path.join(a__ , '''args.joblib''' ) ) __a = joblib.load(os.path.join(a__ , '''data_collator.joblib''' ) ) with open(os.path.join(a__ , '''training_state.json''' ) , '''r''' ) as f: __a = json.load(a__ ) __a = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> Optional[Any]: __a = num_train_steps - warmup_steps __a = optax.linear_schedule(init_value=a__ , end_value=a__ , transition_steps=a__ ) __a = optax.linear_schedule(init_value=a__ , end_value=1e-7 , transition_steps=a__ ) __a = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> str: def weight_decay_mask(a__ ): __a = traverse_util.flatten_dict(a__ ) __a = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(a__ ) __a = scheduler_fn(a__ , a__ , a__ , a__ ) __a = optax.adamw(learning_rate=a__ , weight_decay=a__ , mask=a__ ) return tx, lr
6
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _lowercase ( unittest.TestCase): """simple docstring""" def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Union[str, Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=[0.5, 0.5, 0.5] , __lowerCamelCase : str=[0.5, 0.5, 0.5] , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=1 / 255 , __lowerCamelCase : Optional[Any]=True , ): '''simple docstring''' lowerCamelCase__ : List[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Optional[Any] = min_resolution lowerCamelCase__ : List[Any] = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : Union[str, Any] = size lowerCamelCase__ : Union[str, Any] = do_normalize lowerCamelCase__ : int = image_mean lowerCamelCase__ : Optional[int] = image_std lowerCamelCase__ : List[Any] = do_rescale lowerCamelCase__ : Optional[Any] = rescale_factor lowerCamelCase__ : Any = do_pad def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str]=False ): '''simple docstring''' if not batched: lowerCamelCase__ : Tuple = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): lowerCamelCase__ , lowerCamelCase__ : Tuple = image.size else: lowerCamelCase__ , lowerCamelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : List[Any] = int(self.size["shortest_edge"] * h / w ) lowerCamelCase__ : Optional[Any] = self.size["shortest_edge"] elif w > h: lowerCamelCase__ : List[Any] = self.size["shortest_edge"] lowerCamelCase__ : List[str] = int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase__ : Optional[int] = self.size["shortest_edge"] lowerCamelCase__ : Union[str, Any] = self.size["shortest_edge"] else: lowerCamelCase__ : Dict = [] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : str = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = DetaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) lowerCamelCase__ : List[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowerCamelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Dict = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase__ : Dict = json.loads(f.read() ) lowerCamelCase__ : Any = {"image_id": 39769, "annotations": target} # encode them lowerCamelCase__ : Union[str, Any] = DetaImageProcessor() lowerCamelCase__ : List[str] = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase__ : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area lowerCamelCase__ : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes lowerCamelCase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) lowerCamelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCamelCase__ : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd lowerCamelCase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels lowerCamelCase__ : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify orig_size lowerCamelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size lowerCamelCase__ : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase__ : Tuple = json.loads(f.read() ) lowerCamelCase__ : List[str] = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowerCamelCase__ : Union[str, Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase__ : Tuple = DetaImageProcessor(format="coco_panoptic" ) lowerCamelCase__ : Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase__ : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area lowerCamelCase__ : List[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes lowerCamelCase__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCamelCase__ : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd lowerCamelCase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels lowerCamelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify masks lowerCamelCase__ : Union[str, Any] = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __lowerCamelCase ) # verify orig_size lowerCamelCase__ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size lowerCamelCase__ : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) )
184
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[int] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict =logging.get_logger(__name__) A__ : Dict ={ '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class UpperCAmelCase ( snake_case_ ): _lowercase: List[str] = '''lilt''' def __init__( self : str , __snake_case : Any=3_05_22 , __snake_case : str=7_68 , __snake_case : Any=12 , __snake_case : List[str]=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : Tuple="gelu" , __snake_case : List[str]=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=5_12 , __snake_case : Optional[int]=2 , __snake_case : int=0.02 , __snake_case : Any=1E-1_2 , __snake_case : Optional[int]=0 , __snake_case : List[str]="absolute" , __snake_case : Dict=None , __snake_case : List[str]=4 , __snake_case : List[Any]=10_24 , **__snake_case : List[Any] , ) -> List[str]: super().__init__(pad_token_id=__snake_case , **__snake_case ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = classifier_dropout _lowerCAmelCase = channel_shrink_ratio _lowerCAmelCase = max_ad_position_embeddings
70
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = {'vocab_file': 'spiece.model'} lowerCAmelCase : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } lowerCAmelCase : Optional[int] = {'bert_for_seq_generation': 5_12} class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<::::>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_file SCREAMING_SNAKE_CASE_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ : Optional[int] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
253
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) snake_case_ = 'https://openaipublic.azureedge.net/jukebox/models/' snake_case_ = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def lowerCamelCase__ ( snake_case_ : Union[str, Any] ) -> List[str]: if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __snake_case = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __snake_case = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __snake_case = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __snake_case = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __snake_case = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __snake_case = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __snake_case = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __snake_case = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : List[str] ) -> Optional[Any]: __snake_case = {} import re __snake_case = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __snake_case = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __snake_case = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __snake_case = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __snake_case = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __snake_case = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __snake_case = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __snake_case = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __snake_case = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(snake_case_ ): __snake_case = re_encoder_block_conv_in.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = int(groups[2] ) * 2 + int(groups[3] ) __snake_case = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __snake_case = re_encoder_block_conv_in.sub(snake_case_ , snake_case_ ) elif re_encoder_block_resnet.fullmatch(snake_case_ ): __snake_case = re_encoder_block_resnet.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = int(groups[2] ) * 2 + int(groups[3] ) __snake_case = {'''1''': 1, '''3''': 2}[groups[-2]] __snake_case = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __snake_case = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __snake_case = prefix + resnet_block __snake_case = re_encoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_encoder_block_proj_out.fullmatch(snake_case_ ): __snake_case = re_encoder_block_proj_out.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __snake_case = re_encoder_block_proj_out.sub(snake_case_ , snake_case_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(snake_case_ ): __snake_case = re_decoder_block_conv_out.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = int(groups[2] ) * 2 + int(groups[3] ) - 2 __snake_case = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __snake_case = re_decoder_block_conv_out.sub(snake_case_ , snake_case_ ) elif re_decoder_block_resnet.fullmatch(snake_case_ ): __snake_case = re_decoder_block_resnet.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = int(groups[2] ) * 2 + int(groups[3] ) - 2 __snake_case = {'''1''': 1, '''3''': 2}[groups[-2]] __snake_case = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __snake_case = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __snake_case = prefix + resnet_block __snake_case = re_decoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_decoder_block_proj_in.fullmatch(snake_case_ ): __snake_case = re_decoder_block_proj_in.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __snake_case = re_decoder_block_proj_in.sub(snake_case_ , snake_case_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(snake_case_ ): __snake_case = re_prior_cond_conv_out.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = int(groups[1] ) * 2 + int(groups[2] ) - 2 __snake_case = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __snake_case = re_prior_cond_conv_out.sub(snake_case_ , snake_case_ ) elif re_prior_cond_resnet.fullmatch(snake_case_ ): __snake_case = re_prior_cond_resnet.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = int(groups[1] ) * 2 + int(groups[2] ) - 2 __snake_case = {'''1''': 1, '''3''': 2}[groups[-2]] __snake_case = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __snake_case = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __snake_case = prefix + resnet_block __snake_case = re_prior_cond_resnet.sub(snake_case_ , snake_case_ ) elif re_prior_cond_proj_in.fullmatch(snake_case_ ): __snake_case = re_prior_cond_proj_in.match(snake_case_ ) __snake_case = regex_match.groups() __snake_case = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __snake_case = re_prior_cond_proj_in.sub(snake_case_ , snake_case_ ) # keep original key else: __snake_case = original_key __snake_case = replace_key(snake_case_ ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: __snake_case = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __snake_case = original_key __snake_case = original_key __snake_case = value return new_dict @torch.no_grad() def lowerCamelCase__ ( snake_case_ : str=None , snake_case_ : Tuple=None ) -> Any: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): __snake_case = requests.get(f"""{PREFIX}{file}""" , allow_redirects=snake_case_ ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=snake_case_ ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , '''wb''' ).write(r.content ) __snake_case = MODEL_MAPPING[model_name.split('''/''' )[-1]] __snake_case = JukeboxConfig.from_pretrained(snake_case_ ) __snake_case = JukeboxModel(snake_case_ ) __snake_case = [] __snake_case = {} for i, dict_name in enumerate(snake_case_ ): __snake_case = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['''model'''] __snake_case = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __snake_case = old_dic[k] elif k.endswith('''.w''' ): __snake_case = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __snake_case = old_dic[k] else: __snake_case = old_dic[k] __snake_case = '''vqvae''' if i == 0 else f"""priors.{3 - i}""" __snake_case = fix_jukebox_keys(snake_case_ , model.state_dict() , snake_case_ , snake_case_ ) weight_dict.append(snake_case_ ) __snake_case = weight_dict.pop(0 ) model.vqvae.load_state_dict(snake_case_ ) for i in range(len(snake_case_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(snake_case_ , snake_case_ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) return weight_dict if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) snake_case_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
238
from __future__ import annotations import collections import pprint from pathlib import Path def lowerCamelCase__ ( snake_case_ : str ) -> str: return "".join(sorted(snake_case_ ) ) def lowerCamelCase__ ( snake_case_ : str ) -> list[str]: return word_by_signature[signature(snake_case_ )] snake_case_ = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') snake_case_ = sorted({word.strip().lower() for word in data.splitlines()}) snake_case_ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case_ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
238
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase : Any = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : List[Any] ): '''simple docstring''' return (preds == labels).mean() @dataclass class A: '''simple docstring''' UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A: '''simple docstring''' UpperCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) UpperCamelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowercase ) # Set seed set_seed(training_args.seed ) try: lowerCamelCase_ = processors[data_args.task_name]() lowerCamelCase_ = processor.get_labels() lowerCamelCase_ = len(lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: lowerCamelCase_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowercase , p.label_ids )} # Data collator lowerCamelCase_ = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowercase , args=lowercase , train_dataset=lowercase , eval_dataset=lowercase , compute_metrics=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase_ = trainer.evaluate() lowerCamelCase_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowercase , lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(lowercase ) return results def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' main() if __name__ == "__main__": main()
204
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase : Union[str, Any] = "src/diffusers" # Matches is_xxx_available() lowerCamelCase : Dict = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCamelCase : Union[str, Any] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCamelCase : Any = "\n{0} = None\n" lowerCamelCase : List[str] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCamelCase : str = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = _re_backend.findall(lowercase ) if len(lowercase ) == 0: return None return "_and_".join(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with open(os.path.join(lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCamelCase_ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ = 0 lowerCamelCase_ = {} # Go through the end of the file while line_index < len(lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 lowerCamelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase ) and len(lines[line_index] ) > 1: lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _re_single_line_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase ) > 0: lowerCamelCase_ = objects else: line_index += 1 return backend_specific_objects def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : str ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase , lowercase ) else: return DUMMY_CLASS.format(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int]=None ): '''simple docstring''' if backend_specific_objects is None: lowerCamelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ = '[' + ', '.join(f"""\"{b}\"""" for b in backend.split('_and_' ) ) + ']' lowerCamelCase_ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase , lowercase ) for o in objects] ) lowerCamelCase_ = dummy_file return dummy_files def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int]=False ): '''simple docstring''' lowerCamelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ = {'torch': 'pt'} # Locate actual dummy modules and read their content. lowerCamelCase_ = os.path.join(lowercase , 'utils' ) lowerCamelCase_ = { backend: os.path.join(lowercase , f"""dummy_{short_names.get(lowercase , lowercase )}_objects.py""" ) for backend in dummy_files.keys() } lowerCamelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase ): with open(lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCamelCase_ = f.read() else: lowerCamelCase_ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py as the main """ '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f"""diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py. Run `make fix-copies` """ 'to fix this.' ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
204
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : Dict = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class a__ ( __snake_case ): A__ : Optional[Any] = 'git_vision_model' def __init__( self , UpperCAmelCase=7_6_8 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3 , UpperCAmelCase=2_2_4 , UpperCAmelCase=1_6 , UpperCAmelCase="quick_gelu" , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = num_channels __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase , **UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase ) __a , __a = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": __a = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class a__ ( __snake_case ): A__ : Dict = 'git' def __init__( self , UpperCAmelCase=None , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=6 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_4 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1_0_1 , UpperCAmelCase=1_0_2 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Any: super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , pad_token_id=UpperCAmelCase , **UpperCAmelCase ) if vision_config is None: __a = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) __a = GitVisionConfig(**UpperCAmelCase ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = tie_word_embeddings __a = num_image_with_embedding __a = bos_token_id __a = eos_token_id def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.__class__.model_type return output
197
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class a__ ( __snake_case ): def __init__( self , **UpperCAmelCase ) -> List[str]: super().__init__(**UpperCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type(UpperCAmelCase ) def __call__( self , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Tuple: if "text_queries" in kwargs: __a = kwargs.pop('text_queries' ) if isinstance(UpperCAmelCase , (str, Image.Image) ): __a = {'image': image, 'candidate_labels': candidate_labels} else: __a = image __a = super().__call__(UpperCAmelCase , **UpperCAmelCase ) return results def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> List[str]: __a = {} if "threshold" in kwargs: __a = kwargs['threshold'] if "top_k" in kwargs: __a = kwargs['top_k'] return {}, {}, postprocess_params def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Union[str, Any]: __a = load_image(inputs['image'] ) __a = inputs['candidate_labels'] if isinstance(UpperCAmelCase , UpperCAmelCase ): __a = candidate_labels.split(',' ) __a = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase ): __a = self.tokenizer(UpperCAmelCase , return_tensors=self.framework ) __a = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: __a = model_inputs.pop('target_size' ) __a = model_inputs.pop('candidate_label' ) __a = model_inputs.pop('is_last' ) __a = self.model(**UpperCAmelCase ) __a = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=0.1 , UpperCAmelCase=None ) -> Tuple: __a = [] for model_output in model_outputs: __a = model_output['candidate_label'] __a = BaseModelOutput(UpperCAmelCase ) __a = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase , threshold=UpperCAmelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): __a = outputs['scores'][index].item() __a = self._get_bounding_box(outputs['boxes'][index][0] ) __a = {'score': score, 'label': label, 'box': box} results.append(UpperCAmelCase ) __a = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x["score"] , reverse=UpperCAmelCase ) if top_k: __a = results[:top_k] return results def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) __a , __a , __a , __a = box.int().tolist() __a = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
197
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: return max(metric_fn(lowerCamelCase__ , lowerCamelCase__ ) for gt in ground_truths ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ) -> Optional[int]: __lowercase = [line.strip() for line in open(lowerCamelCase__ , 'r' ).readlines()] __lowercase = [] if args.gold_data_mode == "qa": __lowercase = pd.read_csv(lowerCamelCase__ , sep='\t' , header=lowerCamelCase__ ) for answer_list in data[1]: __lowercase = ast.literal_eval(lowerCamelCase__ ) answers.append(lowerCamelCase__ ) else: __lowercase = [line.strip() for line in open(lowerCamelCase__ , 'r' ).readlines()] __lowercase = [[reference] for reference in references] __lowercase = 0 for prediction, ground_truths in zip(lowerCamelCase__ , lowerCamelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) fa += metric_max_over_ground_truths(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowercase = 100.0 * em / total __lowercase = 100.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: __lowercase = args.k __lowercase = [line.strip() for line in open(lowerCamelCase__ , 'r' ).readlines()] __lowercase = [line.strip() for line in open(lowerCamelCase__ , 'r' ).readlines()] __lowercase = 0 for hypo, reference in zip(lowerCamelCase__ , lowerCamelCase__ ): __lowercase = set(hypo.split('\t' )[:k] ) __lowercase = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __lowercase = 100.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: def strip_title(SCREAMING_SNAKE_CASE : Union[str, Any] ): if title.startswith('\"' ): __lowercase = title[1:] if title.endswith('\"' ): __lowercase = title[:-1] return title __lowercase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase__ , return_tensors='pt' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , )["input_ids"].to(args.device ) __lowercase = rag_model.rag.question_encoder(lowerCamelCase__ ) __lowercase = question_enc_outputs[0] __lowercase = rag_model.retriever( lowerCamelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) __lowercase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __lowercase = [] for docs in all_docs: __lowercase = [strip_title(lowerCamelCase__ ) for title in docs["title"]] provenance_strings.append('\t'.join(lowerCamelCase__ ) ) return provenance_strings def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: with torch.no_grad(): __lowercase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase__ , return_tensors='pt' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowercase = inputs_dict.input_ids.to(args.device ) __lowercase = inputs_dict.attention_mask.to(args.device ) __lowercase = rag_model.generate( # rag_model overwrites generate lowerCamelCase__ , attention_mask=lowerCamelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __lowercase = rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) if args.print_predictions: for q, a in zip(lowerCamelCase__ , lowerCamelCase__ ): logger.info('Q: {} - A: {}'.format(lowerCamelCase__ , lowerCamelCase__ ) ) return answers def __SCREAMING_SNAKE_CASE ( ) -> int: __lowercase = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=lowerCamelCase__ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=lowerCamelCase__ , choices=['exact', 'compressed', 'legacy'] , type=lowerCamelCase__ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=lowerCamelCase__ , type=lowerCamelCase__ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=lowerCamelCase__ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=lowerCamelCase__ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=lowerCamelCase__ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=lowerCamelCase__ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=lowerCamelCase__ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=lowerCamelCase__ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=lowerCamelCase__ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=lowerCamelCase__ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=lowerCamelCase__ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) __lowercase = parser.parse_args() __lowercase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> Any: __lowercase = {} if args.model_type is None: __lowercase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): __lowercase = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration __lowercase = args.n_docs if args.index_name is not None: __lowercase = args.index_name if args.index_path is not None: __lowercase = args.index_path else: __lowercase = BartForConditionalGeneration __lowercase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , lowerCamelCase__ ) __lowercase = get_scores if args.eval_mode == "e2e" else get_precision_at_k __lowercase = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(lowerCamelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(lowerCamelCase__ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): __lowercase = RagRetriever.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __lowercase = model_class.from_pretrained(lowerCamelCase__ , retriever=lowerCamelCase__ , **lowerCamelCase__ ) model.retriever.init_retrieval() else: __lowercase = model_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: __lowercase = [] for line in tqdm(lowerCamelCase__ ): questions.append(line.strip() ) if len(lowerCamelCase__ ) == args.eval_batch_size: __lowercase = evaluate_batch_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) preds_file.write('\n'.join(lowerCamelCase__ ) + '\n' ) preds_file.flush() __lowercase = [] if len(lowerCamelCase__ ) > 0: __lowercase = evaluate_batch_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) preds_file.write('\n'.join(lowerCamelCase__ ) ) preds_file.flush() score_fn(lowerCamelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_args() main(args)
325
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = [] for part_id in partition_order: lowercase__ : str = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(lowerCamelCase__ ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Tuple = spark.range(100 ).repartition(1 ) lowercase__ : Tuple = Spark(lowerCamelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Tuple = spark.range(10 ).repartition(2 ) lowercase__ : Any = [1, 0] lowercase__ : Optional[int] = _generate_iterable_examples(lowerCamelCase__ , lowerCamelCase__ ) # Reverse the partitions. lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , lowerCamelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase__ , lowercase__ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : int = spark.range(10 ).repartition(1 ) lowercase__ : Optional[int] = SparkExamplesIterable(lowerCamelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: lowercase__ : int = lambda lowerCamelCase__ : x.reverse() lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [2, 1, 0] ) lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shuffle_data_sources(lowerCamelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Optional[Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase__ : Optional[Any] = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : int = spark.range(100 ).repartition(1 ) lowercase__ : Tuple = Spark(lowerCamelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
130
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__=0.01 , lowerCAmelCase__=1_000 ) -> Dict: SCREAMING_SNAKE_CASE = p_stop SCREAMING_SNAKE_CASE = max_length def __iter__( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE = random.random() < self.p_stop class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=True ) -> List[str]: SCREAMING_SNAKE_CASE = [ BatchSamplerShard(lowerCAmelCase__ , 2 , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) for i in range(2 ) ] SCREAMING_SNAKE_CASE = [list(lowerCAmelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCAmelCase__ ) for shard in batch_sampler_shards] , [len(lowerCAmelCase__ ) for e in expected] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> str: # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> str: # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) def __A ( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) def __A ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE = [BatchSamplerShard(lowerCAmelCase__ , 2 , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=2 , lowerCAmelCase__=False ) -> List[str]: random.seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ IterableDatasetShard( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , drop_last=lowerCAmelCase__ , num_processes=lowerCAmelCase__ , process_index=lowerCAmelCase__ , split_batches=lowerCAmelCase__ , ) for i in range(lowerCAmelCase__ ) ] SCREAMING_SNAKE_CASE = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCAmelCase__ ) iterable_dataset_lists.append(list(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) self.assertTrue(len(lowerCAmelCase__ ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE = [] for idx in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCAmelCase__ ) < len(lowerCAmelCase__ ): reference += reference self.assertListEqual(lowerCAmelCase__ , reference[: len(lowerCAmelCase__ )] ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = SkipBatchSampler(lowerCAmelCase__ , 2 ) self.assertListEqual(list(lowerCAmelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE = skip_first_batches(lowerCAmelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __A ( self ) -> Dict: Accelerator() SCREAMING_SNAKE_CASE = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
354
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['model'] # pop unnecessary weights SCREAMING_SNAKE_CASE = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE = sd.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.q_proj.' ) SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.k_proj.' ) SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.v_proj.' ) SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(SCREAMING_SNAKE_CASE_ , depth // 3 , dim=0 ) SCREAMING_SNAKE_CASE = q SCREAMING_SNAKE_CASE = k SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> List[Any]: SCREAMING_SNAKE_CASE = load_checkpoint(SCREAMING_SNAKE_CASE_ ) if config is not None: SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = OPTConfig() SCREAMING_SNAKE_CASE = OPTModel(SCREAMING_SNAKE_CASE_ ).half().eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check results Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __UpperCamelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
38
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = '''mctct''' def __init__(self , SCREAMING_SNAKE_CASE__=80_65 , SCREAMING_SNAKE_CASE__=15_36 , SCREAMING_SNAKE_CASE__=36 , SCREAMING_SNAKE_CASE__=61_44 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3_84 , SCREAMING_SNAKE_CASE__=9_20 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=(7,) , SCREAMING_SNAKE_CASE__=(3,) , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="sum" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> str: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = attention_head_dim SCREAMING_SNAKE_CASE__ : str = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = layerdrop SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = bos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE__ : Any = conv_glu_dim SCREAMING_SNAKE_CASE__ : Tuple = conv_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_conv_layers SCREAMING_SNAKE_CASE__ : Tuple = input_feat_per_channel SCREAMING_SNAKE_CASE__ : Dict = input_channels SCREAMING_SNAKE_CASE__ : Optional[int] = conv_channels SCREAMING_SNAKE_CASE__ : List[str] = ctc_loss_reduction SCREAMING_SNAKE_CASE__ : Any = ctc_zero_infinity # prevents config testing fail with exporting to json SCREAMING_SNAKE_CASE__ : int = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = list(SCREAMING_SNAKE_CASE__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
25
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
"""simple docstring""" from collections import deque class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = process_name # process name snake_case = arrival_time # arrival time of the process # completion time of finished process or last interrupted time snake_case = arrival_time snake_case = burst_time # remaining burst time snake_case = 0 # total time of the process wait in ready queue snake_case = 0 # time from arrival time to completion time class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" snake_case = number_of_queues # time slice of queues that round robin algorithm applied snake_case = time_slices # unfinished process is in this ready_queue snake_case = queue # current time snake_case = current_time # finished process is in this sequence queue snake_case = deque() def snake_case ( self ): """simple docstring""" snake_case = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for i in range(len(lowerCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for i in range(len(lowerCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for i in range(len(lowerCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case ( self , lowerCAmelCase ): """simple docstring""" return [q.burst_time for q in queue] def snake_case ( self , lowerCAmelCase ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = deque() # sequence deque of finished process while len(lowerCAmelCase ) != 0: snake_case = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowerCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 snake_case = 0 # set the process's turnaround time because it is finished snake_case = self.current_time - cp.arrival_time # set the completion time snake_case = self.current_time # add the process to queue that has finished queue finished.append(lowerCAmelCase ) self.finish_queue.extend(lowerCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowerCAmelCase ) ): snake_case = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowerCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time snake_case = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowerCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished snake_case = 0 # set the finish time snake_case = self.current_time # update the process' turnaround time because it is finished snake_case = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowerCAmelCase ) self.finish_queue.extend(lowerCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case ( self ): """simple docstring""" for i in range(self.number_of_queues - 1 ): snake_case ,snake_case = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest SCREAMING_SNAKE_CASE__ = Process("P1", 0, 53) SCREAMING_SNAKE_CASE__ = Process("P2", 0, 17) SCREAMING_SNAKE_CASE__ = Process("P3", 0, 68) SCREAMING_SNAKE_CASE__ = Process("P4", 0, 24) SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = [17, 25] SCREAMING_SNAKE_CASE__ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) SCREAMING_SNAKE_CASE__ = Process("P1", 0, 53) SCREAMING_SNAKE_CASE__ = Process("P2", 0, 17) SCREAMING_SNAKE_CASE__ = Process("P3", 0, 68) SCREAMING_SNAKE_CASE__ = Process("P4", 0, 24) SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = [17, 25] SCREAMING_SNAKE_CASE__ = deque([Pa, Pa, Pa, Pa]) SCREAMING_SNAKE_CASE__ = MLFQ(number_of_queues, time_slices, queue, 0) SCREAMING_SNAKE_CASE__ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
371
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" pass class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = data snake_case = None def __iter__( self ): """simple docstring""" snake_case = self snake_case = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase ) yield node.data snake_case = node.next_node @property def snake_case ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = Node(1) SCREAMING_SNAKE_CASE__ = Node(2) SCREAMING_SNAKE_CASE__ = Node(3) SCREAMING_SNAKE_CASE__ = Node(4) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = root_node.next_node print(root_node.has_loop) # True SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = Node(1) print(root_node.has_loop) # False
149
0
"""simple docstring""" import math def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : Tuple =2 lowerCamelCase__ : Optional[int] =int(math.sqrt(__lowerCamelCase ) ) # Size of every segment lowerCamelCase__ : Optional[Any] =[True] * (end + 1) lowerCamelCase__ : Optional[Any] =[] while start <= end: if temp[start] is True: in_prime.append(__lowerCamelCase ) for i in range(start * start , end + 1 , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =False start += 1 prime += in_prime lowerCamelCase__ : Optional[Any] =end + 1 lowerCamelCase__ : Optional[int] =min(2 * end , __lowerCamelCase ) while low <= n: lowerCamelCase__ : List[Any] =[True] * (high - low + 1) for each in in_prime: lowerCamelCase__ : Tuple =math.floor(low / each ) * each if t < low: t += each for j in range(__lowerCamelCase , high + 1 , __lowerCamelCase ): lowerCamelCase__ : List[Any] =False for j in range(len(__lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) lowerCamelCase__ : Dict =high + 1 lowerCamelCase__ : Any =min(high + end , __lowerCamelCase ) return prime print(sieve(1_0**6))
238
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = DDIMPipeline _a = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _a = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } _a = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _a = False def snake_case ( self : str )-> Optional[Any]: torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) lowerCamelCase__ : Optional[Any] =DDIMScheduler() lowerCamelCase__ : List[Any] ={'''unet''': unet, '''scheduler''': scheduler} return components def snake_case ( self : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : Optional[Any]=0 )-> Optional[int]: if str(lowerCamelCase ).startswith('''mps''' ): lowerCamelCase__ : Dict =torch.manual_seed(lowerCamelCase ) else: lowerCamelCase__ : Optional[int] =torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase__ : Tuple ={ '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case ( self : Dict )-> str: lowerCamelCase__ : Optional[Any] ='''cpu''' lowerCamelCase__ : int =self.get_dummy_components() lowerCamelCase__ : Optional[int] =self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : List[str] =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : Any =pipe(**lowerCamelCase ).images lowerCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 32, 32, 3) ) lowerCamelCase__ : Tuple =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowerCamelCase__ : str =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase, 1E-3 ) def snake_case ( self : Union[str, Any] )-> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case ( self : Union[str, Any] )-> int: super().test_save_load_local(expected_max_difference=3E-3 ) def snake_case ( self : List[Any] )-> List[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def snake_case ( self : Optional[Any] )-> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Optional[Any] )-> List[str]: lowerCamelCase__ : Optional[Any] ='''google/ddpm-cifar10-32''' lowerCamelCase__ : Union[str, Any] =UNetaDModel.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Optional[int] =DDIMScheduler() lowerCamelCase__ : int =DDIMPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase ) ddim.to(lowerCamelCase ) ddim.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Tuple =torch.manual_seed(0 ) lowerCamelCase__ : int =ddim(generator=lowerCamelCase, eta=0.0, output_type='''numpy''' ).images lowerCamelCase__ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ : Any =np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self : Optional[int] )-> Any: lowerCamelCase__ : str ='''google/ddpm-ema-bedroom-256''' lowerCamelCase__ : Optional[int] =UNetaDModel.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Any =DDIMScheduler.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =DDIMPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase ) ddpm.to(lowerCamelCase ) ddpm.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : List[str] =torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] =ddpm(generator=lowerCamelCase, output_type='''numpy''' ).images lowerCamelCase__ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase__ : Any =np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
238
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ : Tuple ='src/diffusers' # Matches is_xxx_available() lowerCAmelCase__ : List[Any] =re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla lowerCAmelCase__ : Optional[Any] =re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') lowerCAmelCase__ : List[Any] ='\n{0} = None\n' lowerCAmelCase__ : List[Any] ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' lowerCAmelCase__ : Optional[int] ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = _re_backend.findall(A__ ) if len(A__ ) == 0: return None return "_and_".join(A__ ) def a__ ( ): with open(os.path.join(A__, '__init__.py' ), 'r', encoding='utf-8', newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : str = f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = {} # Go through the end of the file while line_index < len(A__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE_ : Optional[Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE_ : int = [] # Until we unindent, add backend objects to the list while line_index < len(A__ ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE_ : str = lines[line_index] SCREAMING_SNAKE_CASE_ : Dict = _re_single_line_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(A__ ) > 0: SCREAMING_SNAKE_CASE_ : Dict = objects else: line_index += 1 return backend_specific_objects def a__ ( A__, A__ ): if name.isupper(): return DUMMY_CONSTANT.format(A__ ) elif name.islower(): return DUMMY_FUNCTION.format(A__, A__ ) else: return DUMMY_CLASS.format(A__, A__ ) def a__ ( A__=None ): if backend_specific_objects is None: SCREAMING_SNAKE_CASE_ : List[str] = read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE_ : List[str] = {} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE_ : Optional[int] = '[' + ', '.join(F'''"{b}"''' for b in backend.split('_and_' ) ) + ']' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(A__, A__ ) for o in objects] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = dummy_file return dummy_files def a__ ( A__=False ): SCREAMING_SNAKE_CASE_ : List[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE_ : int = {'torch': 'pt'} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE_ : Any = os.path.join(A__, 'utils' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = { backend: os.path.join(A__, F'''dummy_{short_names.get(A__, A__ )}_objects.py''' ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE_ : Dict = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(A__ ): with open(A__, 'r', encoding='utf-8', newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : Dict = f.read() else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(A__, A__ )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend], 'w', encoding='utf-8', newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'''diffusers.utils.dummy_{short_names.get(A__, A__ )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ : Dict =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ : List[str] =parser.parse_args() check_dummies(args.fix_and_overwrite)
162
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : int = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Dict = use_labels SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Dict = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Tuple = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = DistilBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = DistilBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = DistilBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = DistilBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = DistilBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = DistilBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _UpperCAmelCase = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE_ : str = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Any = DistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : str = model_class(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'traced_model.pt' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.jit.load(os.path.join(lowerCAmelCase__ , 'traced_model.pt' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase__ ) , inputs_dict['attention_mask'].to(lowerCAmelCase__ ) ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = DistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
162
1
"""simple docstring""" from scipy.stats import spearmanr import datasets __lowerCAmelCase : List[Any] =""" The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __lowerCAmelCase : Optional[int] =""" Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __lowerCAmelCase : Tuple =R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" lowercase = spearmanr(__lowerCAmelCase , __lowerCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
197
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : str ={ """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class _A ( lowerCAmelCase ): snake_case__ : Tuple = 'dpr' def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="absolute" , __lowerCAmelCase = 0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = projection_dim lowercase = position_embedding_type
197
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( _lowercase): snake_case__ : List[Any] = (PNDMScheduler,) snake_case__ : Optional[Any] = (("num_inference_steps", 5_0),) def SCREAMING_SNAKE_CASE ( self : str , **__lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[str] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**__lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : List[Any]=0 , **__lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = dict(self.forward_default_kwargs ) _lowerCamelCase : Union[str, Any] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) _lowerCamelCase : Dict = self.dummy_sample _lowerCamelCase : Optional[int] = 0.1 * sample _lowerCamelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : Union[str, Any] = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals _lowerCamelCase : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals _lowerCamelCase : List[Any] = dummy_past_residuals[:] _lowerCamelCase : Tuple = scheduler.step_prk(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCamelCase : str = new_scheduler.step_prk(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCamelCase : int = scheduler.step_plms(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCamelCase : List[str] = new_scheduler.step_plms(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any]=0 , **__lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = dict(self.forward_default_kwargs ) _lowerCamelCase : List[str] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) _lowerCamelCase : Any = self.dummy_sample _lowerCamelCase : Any = 0.1 * sample _lowerCamelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : List[Any] = dummy_past_residuals[:] _lowerCamelCase : Any = scheduler.step_prk(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCamelCase : Optional[int] = new_scheduler.step_prk(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCamelCase : Optional[int] = scheduler.step_plms(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCamelCase : List[Any] = new_scheduler.step_plms(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : List[Any] , **__lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : Any = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Dict = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = 1_0 _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCamelCase : Dict = model(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[str] = scheduler.step_prk(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCamelCase : Optional[int] = model(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = scheduler.step_plms(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : str = dict(self.forward_default_kwargs ) _lowerCamelCase : List[str] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Any = self.dummy_sample _lowerCamelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , '''set_timesteps''' ): _lowerCamelCase : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCamelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCamelCase : Dict = dummy_past_residuals[:] _lowerCamelCase : Any = scheduler.step_prk(__lowerCAmelCase , 0 , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCamelCase : str = scheduler.step_prk(__lowerCAmelCase , 1 , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCamelCase : Union[str, Any] = scheduler.step_plms(__lowerCAmelCase , 0 , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCamelCase : Optional[int] = scheduler.step_plms(__lowerCAmelCase , 1 , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Dict = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : int = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for t in [1, 5, 1_0]: self.check_over_forward(time_step=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[str] = 2_7 for scheduler_class in self.scheduler_classes: _lowerCamelCase : Dict = self.dummy_sample _lowerCamelCase : Dict = 0.1 * sample _lowerCamelCase : Any = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCamelCase : Dict = scheduler.step_prk(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Tuple = self.get_scheduler_config() _lowerCamelCase : Optional[int] = scheduler_class(**__lowerCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : List[Any] = self.full_loop() _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Tuple = self.full_loop(set_alpha_to_one=__lowerCAmelCase , beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Any = self.full_loop(set_alpha_to_one=__lowerCAmelCase , beta_start=0.01 ) _lowerCamelCase : Dict = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
175
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowercase) class __snake_case ( _lowercase): def __init__( self : Any , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" super().__init__(**__lowerCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(__lowerCAmelCase ) def __call__( self : Dict , __lowerCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , __lowerCAmelCase : Union[str, List[str]] = None , **__lowerCAmelCase : int , ): """simple docstring""" if "text_queries" in kwargs: _lowerCamelCase : List[Any] = kwargs.pop('''text_queries''' ) if isinstance(__lowerCAmelCase , (str, Image.Image) ): _lowerCamelCase : Optional[int] = {'''image''': image, '''candidate_labels''': candidate_labels} else: _lowerCamelCase : List[Any] = image _lowerCamelCase : List[str] = super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) return results def SCREAMING_SNAKE_CASE ( self : List[Any] , **__lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = {} if "threshold" in kwargs: _lowerCamelCase : Optional[Any] = kwargs['''threshold'''] if "top_k" in kwargs: _lowerCamelCase : int = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = load_image(inputs['''image'''] ) _lowerCamelCase : Optional[Any] = inputs['''candidate_labels'''] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : int = candidate_labels.split(''',''' ) _lowerCamelCase : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__lowerCAmelCase ): _lowerCamelCase : Any = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) _lowerCamelCase : Optional[Any] = self.image_processor(__lowerCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(__lowerCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = model_inputs.pop('''target_size''' ) _lowerCamelCase : List[Any] = model_inputs.pop('''candidate_label''' ) _lowerCamelCase : Dict = model_inputs.pop('''is_last''' ) _lowerCamelCase : str = self.model(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[Any]=None ): """simple docstring""" _lowerCamelCase : str = [] for model_output in model_outputs: _lowerCamelCase : Any = model_output['''candidate_label'''] _lowerCamelCase : Union[str, Any] = BaseModelOutput(__lowerCAmelCase ) _lowerCamelCase : Tuple = self.image_processor.post_process_object_detection( outputs=__lowerCAmelCase , threshold=__lowerCAmelCase , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): _lowerCamelCase : Tuple = outputs['''scores'''][index].item() _lowerCamelCase : Optional[Any] = self._get_bounding_box(outputs['''boxes'''][index][0] ) _lowerCamelCase : Optional[Any] = {'''score''': score, '''label''': label, '''box''': box} results.append(__lowerCAmelCase ) _lowerCamelCase : int = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x["score"] , reverse=__lowerCAmelCase ) if top_k: _lowerCamelCase : Dict = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = box.int().tolist() _lowerCamelCase : Union[str, Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
175
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor a__ = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): _snake_case : Union[str, Any] = [image] _snake_case : Tuple = [trans(img.convert("""RGB""" ) ) for img in image] _snake_case : int = torch.stack(SCREAMING_SNAKE_CASE__ ) return image class snake_case ( _a ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Any) -> List[str]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _snake_case : List[Any] = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[str]) -> Any: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''') def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" _snake_case : Optional[Any] = min(int(num_inference_steps * strength) , __lowerCamelCase) _snake_case : Dict = max(num_inference_steps - init_timestep , 0) _snake_case : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=None) -> Optional[int]: """simple docstring""" if not isinstance(__lowerCamelCase , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCamelCase)}''') _snake_case : Tuple = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) and len(__lowerCamelCase) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__lowerCamelCase)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _snake_case : Tuple = init_latents.shape _snake_case : List[str] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase) # get latents print("""add noise to latents at timestep""" , __lowerCamelCase) _snake_case : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _snake_case : Tuple = init_latents return latents @torch.no_grad() def __call__( self : Tuple , lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCAmelCase : float = 0.8 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 50 , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , ) -> Dict: """simple docstring""" self.check_inputs(__lowerCamelCase) # 2. Preprocess image _snake_case : Any = preprocess(__lowerCamelCase) # 3. set timesteps self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _snake_case : Dict = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , self.device) _snake_case : List[Any] = timesteps[:1].repeat(__lowerCamelCase) # 4. Prepare latent variables _snake_case : str = self.prepare_latents(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.unet.dtype , self.device , __lowerCamelCase) _snake_case : List[str] = latents # 5. Denoising loop for t in self.progress_bar(__lowerCamelCase): # 1. predict noise model_output _snake_case : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case : Union[str, Any] = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase , ).prev_sample _snake_case : Dict = (image / 2 + 0.5).clamp(0 , 1) _snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _snake_case : List[str] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__lowerCamelCase)
317
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : list[int] ) -> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : list[int] , __magic_name__ : int ) -> bool: """simple docstring""" if curr_ind == len(__magic_name__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__magic_name__ ) ): if valid_connection(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): # Insert current vertex into path as next transition UpperCamelCase :str = next_ver # Validate created path if util_hamilton_cycle(__magic_name__ , __magic_name__ , curr_ind + 1 ): return True # Backtrack UpperCamelCase :Union[str, Any] = -1 return False def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int = 0 ) -> list[int]: """simple docstring""" UpperCamelCase :Union[str, Any] = [-1] * (len(__magic_name__ ) + 1) # initialize start and end of path with starting index UpperCamelCase :Any = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__magic_name__ , __magic_name__ , 1 ) else []
38
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> List[str]: UpperCamelCase : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'tf_padding' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'depth_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="relu6", SCREAMING_SNAKE_CASE_=1280, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, ) -> List[Any]: UpperCamelCase : str = parent UpperCamelCase : str = batch_size UpperCamelCase : List[str] = num_channels UpperCamelCase : Any = image_size UpperCamelCase : Union[str, Any] = depth_multiplier UpperCamelCase : Optional[int] = depth_divisible_by UpperCamelCase : Dict = min_depth UpperCamelCase : Dict = expand_ratio UpperCamelCase : Optional[Any] = tf_padding UpperCamelCase : str = output_stride UpperCamelCase : Union[str, Any] = first_layer_is_expansion UpperCamelCase : Optional[Any] = finegrained_output UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Tuple = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase : Dict = classifier_dropout_prob UpperCamelCase : Tuple = use_labels UpperCamelCase : Optional[int] = is_training UpperCamelCase : List[Any] = num_labels UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = scope def snake_case_ ( self ) -> Any: UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Optional[int] = None UpperCamelCase : List[Any] = None if self.use_labels: UpperCamelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : str = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> List[str]: return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Tuple = MobileNetVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : List[Any] = self.num_labels UpperCamelCase : Any = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[Any] = self.num_labels UpperCamelCase : Optional[int] = MobileNetVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase : str = config_and_inputs UpperCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Dict = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : int = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Dict = False def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[Any] = MobileNetVaModelTester(self ) UpperCamelCase : str = MobileNetVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def snake_case_ ( self ) -> List[Any]: pass def snake_case_ ( self ) -> int: UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Any = [*signature.parameters.keys()] UpperCamelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[Any] = outputs.hidden_states UpperCamelCase : List[str] = 16 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> List[str]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Dict: UpperCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> int: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Any = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = self.default_image_processor UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Dict = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : List[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase : Tuple = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase : Dict = prepare_img() UpperCamelCase : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Dict = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = outputs.logits # verify the logits UpperCamelCase : Tuple = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
365
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') __UpperCAmelCase = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) UpperCAmelCase__ : Optional[str] = field(default=a__ , metadata={"help": "A folder containing the training data."} ) UpperCAmelCase__ : Optional[str] = field(default=a__ , metadata={"help": "A folder containing the validation data."} ) UpperCAmelCase__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) UpperCAmelCase__ : int = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) UpperCAmelCase__ : float = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : List[Any] = {} if self.train_dir is not None: UpperCamelCase : Any = self.train_dir if self.validation_dir is not None: UpperCamelCase : Union[str, Any] = self.validation_dir UpperCamelCase : List[str] = data_files if data_files else None @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str = field( default=a__ , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(a__ )} , ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) UpperCAmelCase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase__ : str = field(default=a__ , metadata={"help": "Name or path of preprocessor config."} ) UpperCAmelCase__ : bool = field( default=a__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={"help": "Stride to use for the encoder."} , ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_=192, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=0.6 ) -> Optional[Any]: UpperCamelCase : List[Any] = input_size UpperCamelCase : Any = mask_patch_size UpperCamelCase : Tuple = model_patch_size UpperCamelCase : Optional[Any] = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) UpperCamelCase : Tuple = self.input_size // self.mask_patch_size UpperCamelCase : int = self.mask_patch_size // self.model_patch_size UpperCamelCase : Union[str, Any] = self.rand_size**2 UpperCamelCase : str = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> str: UpperCamelCase : Union[str, Any] = np.random.permutation(self.token_count )[: self.mask_count] UpperCamelCase : Tuple = np.zeros(self.token_count, dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = 1 UpperCamelCase : Union[str, Any] = mask.reshape((self.rand_size, self.rand_size) ) UpperCamelCase : str = mask.repeat(self.scale, axis=0 ).repeat(self.scale, axis=1 ) return torch.tensor(mask.flatten() ) def UpperCamelCase ( snake_case__ : int ) -> int: UpperCamelCase : List[Any] = torch.stack([example['pixel_values'] for example in examples] ) UpperCamelCase : Optional[Any] = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCamelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , snake_case__ , snake_case__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. UpperCamelCase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase : Tuple = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case__ ) and data_args.train_val_split > 0.0: UpperCamelCase : List[str] = ds['train'].train_test_split(data_args.train_val_split ) UpperCamelCase : str = split['train'] UpperCamelCase : Any = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : Tuple = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: UpperCamelCase : Dict = AutoConfig.from_pretrained(model_args.config_name_or_path , **snake_case__ ) elif model_args.model_name_or_path: UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: UpperCamelCase : str = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(snake_case__ , 'decoder_type' ): UpperCamelCase : Tuple = 'simmim' # adapt config UpperCamelCase : List[str] = model_args.image_size if model_args.image_size is not None else config.image_size UpperCamelCase : str = model_args.patch_size if model_args.patch_size is not None else config.patch_size UpperCamelCase : Dict = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case__ ) elif model_args.model_name_or_path: UpperCamelCase : List[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: UpperCamelCase : Optional[int] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } UpperCamelCase : Dict = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: UpperCamelCase : Union[str, Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) UpperCamelCase : Union[str, Any] = AutoModelForMaskedImageModeling.from_config(snake_case__ ) if training_args.do_train: UpperCamelCase : Optional[int] = ds['train'].column_names else: UpperCamelCase : Optional[int] = ds['validation'].column_names if data_args.image_column_name is not None: UpperCamelCase : Dict = data_args.image_column_name elif "image" in column_names: UpperCamelCase : Union[str, Any] = 'image' elif "img" in column_names: UpperCamelCase : int = 'img' else: UpperCamelCase : Optional[int] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py UpperCamelCase : Optional[int] = Compose( [ Lambda(lambda snake_case__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator UpperCamelCase : Optional[int] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(snake_case__ : List[Any] ): UpperCamelCase : Any = [transforms(snake_case__ ) for image in examples[image_column_name]] UpperCamelCase : Tuple = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: UpperCamelCase : Tuple = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: UpperCamelCase : str = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case__ ) # Initialize our trainer UpperCamelCase : Any = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: UpperCamelCase : Dict = None if training_args.resume_from_checkpoint is not None: UpperCamelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase : Tuple = last_checkpoint UpperCamelCase : List[Any] = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase : List[str] = trainer.evaluate() trainer.log_metrics('eval' , snake_case__ ) trainer.save_metrics('eval' , snake_case__ ) # Write model card and (optionally) push to hub UpperCamelCase : List[str] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
103
0