code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def snake_case ( self : Dict )-> Any: lowerCamelCase__ : Any =TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) lowerCamelCase__ : Optional[int] ={ "input_ids": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]], dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]], dtype=tf.intaa ), } lowerCamelCase__ : Optional[int] =model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : int =tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape, __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : Tuple =tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ], dtype=tf.floataa, ) self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4 ) )
238
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_): UpperCamelCase__: List[str] = cva.getAffineTransform(A_ ,A_) return cva.warpAffine(A_ ,A_ ,(rows, cols)) if __name__ == "__main__": # read original image A__: Union[str, Any] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value A__: Tuple = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A__ , A__: List[Any] = gray_img.shape # set different points to rotate image A__: Tuple = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) A__: Dict = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) A__: Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) A__: Union[str, Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list A__: str = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A__: Optional[int] = plt.figure(1) A__: List[str] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
149
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase__ ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : List[str] ): a__: Union[str, Any] =pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) a__: Any =load_dataset("ashraq/esc50" ) a__: Union[str, Any] =dataset["train"]["audio"][-1]["array"] a__: Union[str, Any] =audio_classifier(_a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_a ) , [{"score": 0.5_0_1, "label": "Sound of a dog"}, {"score": 0.4_9_9, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def _lowerCamelCase ( self : List[Any] ): pass @slow @require_torch def _lowerCamelCase ( self : Optional[int] ): a__: List[str] =pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog a__: Optional[int] =load_dataset("ashraq/esc50" ) a__: int =dataset["train"]["audio"][-1]["array"] a__: Tuple =audio_classifier(_a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_a ) , [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ] , ) a__: Any =audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_a ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) a__: int =audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(_a ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def _lowerCamelCase ( self : Any ): pass
42
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class lowerCamelCase__ ( _a ): _lowerCAmelCase = 42 class lowerCamelCase__ ( _a ): def __init__( self : Optional[Any] , _a : PriorTransformer , _a : CLIPVisionModel , _a : CLIPImageProcessor , _a : HeunDiscreteScheduler , _a : ShapERenderer , ): super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def _lowerCamelCase ( self : Tuple , _a : Tuple , _a : Tuple , _a : Any , _a : Any , _a : List[str] , _a : Any ): if latents is None: a__: Any =randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) a__: List[str] =latents.to(_a ) a__: int =latents * scheduler.init_noise_sigma return latents def _lowerCamelCase ( self : Dict , _a : str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) a__: List[Any] =torch.device(F"cuda:{gpu_id}" ) a__: List[Any] =[self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def _lowerCamelCase ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowerCamelCase ( self : Any , _a : List[str] , _a : Optional[int] , _a : Union[str, Any] , _a : List[str] , ): if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): a__: Optional[int] =torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): a__: Optional[Any] =self.image_processor(_a , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) a__: int =image.to(dtype=self.image_encoder.dtype , device=_a ) a__: str =self.image_encoder(_a )["last_hidden_state"] a__: Tuple =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 a__: Optional[Any] =image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: a__: Union[str, Any] =torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a__: int =torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self : List[Any] , _a : Union[PIL.Image.Image, List[PIL.Image.Image]] , _a : int = 1 , _a : int = 2_5 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : Optional[torch.FloatTensor] = None , _a : float = 4.0 , _a : int = 6_4 , _a : Optional[str] = "pil" , _a : bool = True , ): if isinstance(_a , PIL.Image.Image ): a__: List[str] =1 elif isinstance(_a , torch.Tensor ): a__: List[Any] =image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): a__: int =len(_a ) else: raise ValueError( F"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}" ) a__: Optional[int] =self._execution_device a__: Optional[int] =batch_size * num_images_per_prompt a__: Any =guidance_scale > 1.0 a__: int =self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) a__: int =self.scheduler.timesteps a__: str =self.prior.config.num_embeddings a__: Dict =self.prior.config.embedding_dim a__: Dict =self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim a__: int =latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance a__: Union[str, Any] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__: Tuple =self.scheduler.scale_model_input(_a , _a ) a__: Tuple =self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance a__ , a__: List[str] =noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: a__ , a__: Union[str, Any] =noise_pred.chunk(2 ) a__: Union[str, Any] =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) a__: Any =self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) a__: List[str] =[] for i, latent in enumerate(_a ): print() a__: Any =self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_a ) a__: Tuple =torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F"Only the output types `pil` and `np` are supported not output_type={output_type}" ) a__: Dict =images.cpu().numpy() if output_type == "pil": a__: Optional[int] =[self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
42
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) A_ = flatten_dict(UpperCAmelCase__ ) return flax_params def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = {} A_ = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } A_ = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key A_ = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number A_ = re.sub(r"""layers_(\d+)""", r"""layer.\1""", UpperCAmelCase__ ) A_ = new_key.replace("""encoder""", """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number A_ = re.sub(r"""layers_(\d+)""", r"""layer.\1""", UpperCAmelCase__ ) A_ = flax_dict[key] A_ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): A_ = torch.from_numpy(converted_dict[key].T ) else: A_ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False, UpperCAmelCase__=False ) -> Dict: A_ = get_flax_param(UpperCAmelCase__ ) if not use_large: A_ = PixaStructVisionConfig() A_ = PixaStructTextConfig() else: A_ = PixaStructVisionConfig( hidden_size=15_36, d_ff=39_68, num_attention_heads=24, num_hidden_layers=18 ) A_ = PixaStructTextConfig(hidden_size=15_36, d_ff=39_68, num_heads=24, num_layers=18 ) A_ = PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=UpperCAmelCase__ ) A_ = PixaStructForConditionalGeneration(UpperCAmelCase__ ) A_ = rename_and_convert_flax_params(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) A_ = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) A_ = PixaStructImageProcessor() A_ = PixaStructProcessor(image_processor=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) if use_large: A_ = 40_96 A_ = True # mkdir if needed os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) print("""Model saved in {}""".format(UpperCAmelCase__ ) ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') __lowerCamelCase = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
162
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( _snake_case , unittest.TestCase ): lowercase = ShapEPipeline lowercase = ["prompt"] lowercase = ["prompt"] lowercase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 8 @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A_ = PriorTransformer(**UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A_ = ShapERenderer(**UpperCamelCase__ ) return model def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_renderer A_ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase__ , clip_sample=UpperCamelCase__ , clip_sample_range=1.0 , ) A_ = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.images[0] A_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A_ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = 1 A_ = 2 A_ = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: A_ = batch_size * [inputs[key]] A_ = pipe(**UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> str: '''simple docstring''' A_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) A_ = ShapEPipeline.from_pretrained("""openai/shap-e""" ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A_ = pipe( """a shark""" , generator=UpperCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
162
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] , *__a : List[str] , **__a : Optional[Any] ): warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
358
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase_ : List[str] = TypeVar('T') lowerCAmelCase_ : Dict = TypeVar('U') class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ): _a = key _a = val _a = None _a = None def __repr__( self : Any ): return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Dict ): _a = DoubleLinkedListNode(__a , __a ) _a = DoubleLinkedListNode(__a , __a ) _a , _a = self.rear, self.head def __repr__( self : str ): _a = ["DoubleLinkedList"] _a = self.head while node.next is not None: rep.append(str(__a ) ) _a = node.next rep.append(str(self.rear ) ) return ",\n ".join(__a ) def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ): _a = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a = node _a = previous _a = node _a = self.rear def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ): if node.prev is None or node.next is None: return None _a = node.next _a = node.prev _a = None _a = None return node class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" __a ={} def __init__( self : Union[str, Any] , __a : int ): _a = DoubleLinkedList() _a = capacity _a = 0 _a = 0 _a = 0 _a = {} def __repr__( self : Optional[int] ): return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : str , __a : T ): return key in self.cache def UpperCamelCase__ ( self : str , __a : T ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a = self.cache[key] _a = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__a ) return node.val self.miss += 1 return None def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a = DoubleLinkedListNode(__a , __a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a = value self.list.add(__a ) @classmethod def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ): def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*__a : T ) -> U: if func not in cls.decorator_function_to_instance_map: _a = LRUCache(__a ) _a = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a = func(*__a ) cls.decorator_function_to_instance_map[func].put(args[0] , __a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__a , "cache_info" , __a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
346
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __lowercase ( lowerCamelCase : str , lowerCamelCase : str , **lowerCamelCase : List[Any] ): UpperCamelCase_ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase , **lowerCamelCase ) UpperCamelCase_ : str = AutoModelForSeqaSeqLM.from_config(lowerCamelCase ) model.save_pretrained(lowerCamelCase ) AutoTokenizer.from_pretrained(lowerCamelCase ).save_pretrained(lowerCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
175
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[str] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : str = VideoClassificationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase , top_k=2 ) UpperCAmelCase_ : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: for example in examples: UpperCAmelCase_ : str = video_classifier(_UpperCamelCase ) self.assertEqual( _UpperCamelCase , [ {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, ] , ) @require_torch def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : str = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCAmelCase_ : Optional[Any] = VideoMAEFeatureExtractor( size={'shortest_edge': 1_0} , crop_size={'height': 1_0, 'width': 1_0} ) UpperCAmelCase_ : str = pipeline( 'video-classification' , model=_UpperCamelCase , feature_extractor=_UpperCamelCase , frame_sampling_rate=4 ) UpperCAmelCase_ : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : List[str] = video_classifier(_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) UpperCAmelCase_ : Tuple = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def __UpperCAmelCase ( self ) -> Dict: pass
145
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __lowerCAmelCase : Any = logging.getLogger(__name__) def UpperCAmelCase_ ( __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=16 , __lowerCAmelCase = 10 , __lowerCAmelCase = 2 ) -> Dict: def get_dataset(__lowerCAmelCase ): __lowercase : Any = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__UpperCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowercase : Dict = get_dataset(__UpperCamelCase ) __lowercase : Dict = get_dataset(__UpperCamelCase ) __lowercase : Dict = DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 ) __lowercase : Optional[Any] = DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Dict: __lowercase : Union[str, Any] = [] for epoch in range(__UpperCamelCase ): # Train quickly model.train() for batch in dataloader: __lowercase : Any = batch __lowercase : Dict = model(__UpperCamelCase ) __lowercase : Any = torch.nn.functional.mse_loss(__UpperCamelCase , __UpperCamelCase ) accelerator.backward(__UpperCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] ): super().__init__() __lowercase : str = nn.Parameter(torch.randn(1 ) ) __lowercase : Dict = nn.Parameter(torch.randn(1 ) ) def snake_case_ ( self : Dict , _snake_case : int ): return x * self.a + self.b class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase : List[str] = DummyModel() __lowercase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowercase : Any = dummy_dataloaders() __lowercase : int = ProjectConfiguration(total_limit=1 , project_dir=A_ , automatic_checkpoint_naming=A_ ) # Train baseline __lowercase : str = Accelerator(project_config=A_ ) __lowercase : Union[str, Any] = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case_ ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase : Dict = DummyModel() __lowercase : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowercase : Dict = dummy_dataloaders() # Train baseline __lowercase : Optional[int] = Accelerator() __lowercase : List[Any] = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial __lowercase : Union[str, Any] = os.path.join(A_ , '''initial''' ) accelerator.save_state(A_ ) (__lowercase) : Union[str, Any] = model.a.item(), model.b.item() __lowercase : List[Any] = optimizer.state_dict() __lowercase : List[Any] = train(3 , A_ , A_ , A_ , A_ ) (__lowercase) : str = model.a.item(), model.b.item() __lowercase : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) __lowercase : List[Any] = DummyModel() __lowercase : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowercase : str = dummy_dataloaders() __lowercase : Dict = Accelerator() __lowercase : List[Any] = accelerator.prepare( A_ , A_ , A_ , A_ ) accelerator.load_state(A_ ) (__lowercase) : List[Any] = model.a.item(), model.b.item() __lowercase : Tuple = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) __lowercase : Union[str, Any] = train(2 , A_ , A_ , A_ , A_ ) # Save everything __lowercase : List[str] = os.path.join(A_ , '''checkpoint''' ) accelerator.save_state(A_ ) # Load everything back in and make sure all states work accelerator.load_state(A_ ) test_rands += train(1 , A_ , A_ , A_ , A_ ) (__lowercase) : List[str] = model.a.item(), model.b.item() __lowercase : Union[str, Any] = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) def snake_case_ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase : Optional[Any] = DummyModel() __lowercase : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowercase : Dict = dummy_dataloaders() __lowercase : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=A_ ) # Train baseline __lowercase : Any = Accelerator(project_dir=A_ , project_config=A_ ) __lowercase : str = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() (__lowercase) : Optional[int] = model.a.item(), model.b.item() __lowercase : Optional[int] = optimizer.state_dict() __lowercase : Optional[int] = train(3 , A_ , A_ , A_ , A_ ) (__lowercase) : Union[str, Any] = model.a.item(), model.b.item() __lowercase : Union[str, Any] = optimizer.state_dict() # Train partially set_seed(42 ) __lowercase : Any = DummyModel() __lowercase : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowercase : Dict = dummy_dataloaders() __lowercase : List[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=A_ ) __lowercase : List[str] = Accelerator(project_dir=A_ , project_config=A_ ) __lowercase : List[Any] = accelerator.prepare( A_ , A_ , A_ , A_ ) accelerator.load_state(os.path.join(A_ , '''checkpoints''' , '''checkpoint_0''' ) ) (__lowercase) : Optional[int] = model.a.item(), model.b.item() __lowercase : Any = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) __lowercase : Optional[Any] = train(2 , A_ , A_ , A_ , A_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , A_ , A_ , A_ , A_ ) (__lowercase) : List[str] = model.a.item(), model.b.item() __lowercase : Union[str, Any] = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) def snake_case_ ( self : Optional[int] ): __lowercase : Union[str, Any] = torch.tensor([1, 2, 3] ) __lowercase : Any = torch.tensor([2, 3, 4] ) __lowercase : Any = DummyModel() __lowercase : Dict = torch.optim.Adam(net.parameters() ) __lowercase : str = Accelerator() with self.assertRaises(A_ ) as ve: accelerator.register_for_checkpointing(A_ , A_ , A_ , A_ ) __lowercase : str = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def snake_case_ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase : Optional[Any] = DummyModel() __lowercase : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowercase : Optional[int] = torch.optim.lr_scheduler.StepLR(A_ , step_size=1 , gamma=0.99 ) __lowercase : str = dummy_dataloaders() __lowercase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=A_ ) # Train baseline __lowercase : Optional[int] = Accelerator(project_dir=A_ , project_config=A_ ) __lowercase : Any = accelerator.prepare( A_ , A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() __lowercase : Union[str, Any] = scheduler.state_dict() train(3 , A_ , A_ , A_ , A_ , A_ ) self.assertNotEqual(A_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(A_ , scheduler.state_dict() ) def snake_case_ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase : List[str] = DummyModel() __lowercase : Any = ProjectConfiguration(automatic_checkpoint_naming=A_ , total_limit=2 ) # Train baseline __lowercase : Optional[int] = Accelerator(project_dir=A_ , project_config=A_ ) __lowercase : List[Any] = accelerator.prepare(A_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(A_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(A_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(A_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def snake_case_ ( self : List[Any] ): __lowercase : Optional[Any] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = '''/tmp/accelerate/state_checkpointing''' __lowerCAmelCase : List[str] = DummyModel() __lowerCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) __lowerCAmelCase : List[str] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __lowerCAmelCase : Optional[Any] = dummy_dataloaders() __lowerCAmelCase : Any = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __lowerCAmelCase : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __lowerCAmelCase : Any = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __lowerCAmelCase : Dict = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __lowerCAmelCase : List[str] = group['''params'''][0].device break assert param_device.type == accelerator.device.type __lowerCAmelCase : Optional[Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: __lowerCAmelCase : List[str] = group['''params'''][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: __lowerCAmelCase : Optional[int] = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
156
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ : List[str] = logging.get_logger(__name__) class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ): _a = '''maskformer-swin''' _a = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] , A_ : Dict=2_2_4 , A_ : Optional[Any]=4 , A_ : List[str]=3 , A_ : str=9_6 , A_ : Optional[Any]=[2, 2, 6, 2] , A_ : Tuple=[3, 6, 1_2, 2_4] , A_ : List[Any]=7 , A_ : List[Any]=4.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : int=0.0 , A_ : str=0.1 , A_ : Optional[int]="gelu" , A_ : List[Any]=False , A_ : int=0.02 , A_ : int=1e-5 , A_ : Optional[int]=None , A_ : List[str]=None , **A_ : List[Any] , ): super().__init__(**A_) lowerCAmelCase_ : Dict = image_size lowerCAmelCase_ : Optional[Any] = patch_size lowerCAmelCase_ : Tuple = num_channels lowerCAmelCase_ : Any = embed_dim lowerCAmelCase_ : List[str] = depths lowerCAmelCase_ : Union[str, Any] = len(A_) lowerCAmelCase_ : List[str] = num_heads lowerCAmelCase_ : Dict = window_size lowerCAmelCase_ : Optional[int] = mlp_ratio lowerCAmelCase_ : Dict = qkv_bias lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = drop_path_rate lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : str = use_absolute_embeddings lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : int = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : str = int(embed_dim * 2 ** (len(A_) - 1)) lowerCAmelCase_ : Optional[Any] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(A_) + 1)] lowerCAmelCase_ , lowerCAmelCase_ : int = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names)
103
0
import math def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float ): '''simple docstring''' return math.pow(lowercase , 2 ) - a def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' return 2 * x def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(lowercase , 2 ) return start def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : int = 99_99 , lowercase : float = 0.00_0000_0000_0001 ): '''simple docstring''' if a < 0: raise ValueError('math domain error' ) lowerCamelCase_ = get_initial_point(lowercase ) for _ in range(lowercase ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(lowercase , lowercase ) / fx_derivative(lowercase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
208
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : dict , lowercase : str ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = set(lowercase ), [start] while stack: lowerCamelCase_ = stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored lowerCamelCase : int = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
208
1
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=0 ) -> List[str]: # Format the message. if name is None: _snake_case = None else: _snake_case = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' _snake_case = fmt.format(__A ) # Print and recurse (if needed). if isinstance(__A , __A ): if msg is not None: print(__A ) for k in val.keys(): recursive_print(__A , val[k] , spaces + 2 ) elif isinstance(__A , torch.Tensor ): print(__A , ':' , val.size() ) else: print(__A , ':' , __A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> Optional[Any]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _snake_case = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _snake_case = (num_heads, hidden_size, num_splits) + input_shape[1:] _snake_case = param.view(*__A ) _snake_case = param.transpose(0 , 2 ) _snake_case = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _snake_case = (num_heads, num_splits, hidden_size) + input_shape[1:] _snake_case = param.view(*__A ) _snake_case = param.transpose(0 , 1 ).contiguous() _snake_case = param.view(*__A ) return param def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Union[str, Any]: # The converted output model. _snake_case = {} # old versions did not store training args _snake_case = input_state_dict.get('args' , __A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _snake_case = ds_args.padded_vocab_size _snake_case = ds_args.max_position_embeddings _snake_case = ds_args.hidden_size _snake_case = ds_args.num_layers _snake_case = ds_args.num_attention_heads _snake_case = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _snake_case = config.n_head # The hidden_size per head. _snake_case = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _snake_case = input_state_dict['checkpoint_version'] else: _snake_case = 0.0 # The model. _snake_case = input_state_dict['model'] # The language model. _snake_case = model['language_model'] # The embeddings. _snake_case = lm['embedding'] # The word embeddings. _snake_case = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. _snake_case = word_embeddings[: config.vocab_size, :] _snake_case = word_embeddings # The position embeddings. _snake_case = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _snake_case = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. _snake_case = pos_embeddings # The transformer. _snake_case = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. _snake_case = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. _snake_case = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. _snake_case = layer_re.match(__A ) # Stop if that's not a layer if m is None: break # The index of the layer. _snake_case = int(m.group(1 ) ) # The name of the operation. _snake_case = m.group(2 ) # Is it a weight or a bias? _snake_case = m.group(3 ) # The name of the layer. _snake_case = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): _snake_case = 'ln_1' if op_name.startswith('input' ) else 'ln_2' _snake_case = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _snake_case = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __A , __A ) _snake_case = causal_mask # Insert a "dummy" tensor for masked_bias. _snake_case = torch.tensor(-1e4 , dtype=torch.floataa ) _snake_case = masked_bias _snake_case = fix_query_key_value_ordering(__A , __A , 3 , __A , __A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _snake_case = out_val.transpose(0 , 1 ).contiguous() # Store. _snake_case = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _snake_case = fix_query_key_value_ordering(__A , __A , 3 , __A , __A ) # Store. No change of shape. _snake_case = out_val # Transpose the weights. elif weight_or_bias == "weight": _snake_case = megatron_to_transformers[op_name] _snake_case = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _snake_case = megatron_to_transformers[op_name] _snake_case = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _snake_case = transformer['final_layernorm.weight'] _snake_case = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. _snake_case = word_embeddings # It should be done! return output_state_dict def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: # Create the argument parser. _snake_case = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=__A , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=__A , help='An optional config json file describing the pre-trained model.' , ) _snake_case = parser.parse_args() # Extract the basename. _snake_case = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: _snake_case = torch.load(__A , map_location='cpu' ) else: _snake_case = torch.load(args.path_to_checkpoint , map_location='cpu' ) _snake_case = input_state_dict.get('args' , __A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _snake_case = 'gelu_fast' elif ds_args.openai_gelu: _snake_case = 'gelu_new' else: _snake_case = 'gelu' else: # in the very early days this used to be "gelu_new" _snake_case = 'gelu_new' # Spell out all parameters in case the defaults change. _snake_case = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=__A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type='cls_index' , summary_use_proj=__A , summary_activation=__A , summary_proj_to_labels=__A , summary_first_dropout=0.1 , scale_attn_weights=__A , use_cache=__A , bos_token_id=50_256 , eos_token_id=50_256 , ) else: _snake_case = GPTaConfig.from_json_file(args.config_file ) _snake_case = ['GPT2LMHeadModel'] # Convert. print('Converting' ) _snake_case = convert_megatron_checkpoint(__A , __A , __A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__A , __A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _snake_case = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _snake_case = 'gpt2' elif tokenizer_type == "PretrainedFromHF": _snake_case = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: _snake_case = 'gpt2' _snake_case = AutoTokenizer.from_pretrained(__A ) _snake_case = type(__A ).__name__ _snake_case = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(__A ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__A ) # Store the state_dict to file. _snake_case = os.path.join(__A , 'pytorch_model.bin' ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__A , __A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
42
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase : List[str] = logging.get_logger("transformers.models.speecht5") def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Dict: hf_model.apply_weight_norm() _snake_case = checkpoint['input_conv.weight_g'] _snake_case = checkpoint['input_conv.weight_v'] _snake_case = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): _snake_case = checkpoint[F'upsamples.{i}.1.weight_g'] _snake_case = checkpoint[F'upsamples.{i}.1.weight_v'] _snake_case = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] _snake_case = checkpoint['output_conv.1.weight_g'] _snake_case = checkpoint['output_conv.1.weight_v'] _snake_case = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A=None , __A=None , ) -> List[Any]: if config_path is not None: _snake_case = SpeechTaHifiGanConfig.from_pretrained(__A ) else: _snake_case = SpeechTaHifiGanConfig() _snake_case = SpeechTaHifiGan(__A ) _snake_case = torch.load(__A ) load_weights(orig_checkpoint['model']['generator'] , __A , __A ) _snake_case = np.load(__A ) _snake_case = stats[0].reshape(-1 ) _snake_case = stats[1].reshape(-1 ) _snake_case = torch.from_numpy(__A ).float() _snake_case = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__A ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase : List[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
42
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=6_4 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=3_2 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=1_0 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ) -> Optional[int]: _a : int = parent _a : str = batch_size _a : Dict = image_size _a : str = patch_size _a : Optional[Any] = num_channels _a : str = make_divisible(5_1_2 * width_multiplier , divisor=8 ) _a : Any = hidden_act _a : Dict = conv_kernel_size _a : List[Any] = output_stride _a : Any = classifier_dropout_prob _a : Optional[int] = use_labels _a : List[str] = is_training _a : List[Any] = num_labels _a : Any = initializer_range _a : Union[str, Any] = scope _a : Dict = width_multiplier _a : int = ffn_dropout _a : int = attn_dropout def __lowercase ( self ) -> int: _a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Union[str, Any] = None _a : List[str] = None if self.use_labels: _a : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self ) -> List[Any]: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __lowercase ( self , _a , _a , _a , _a ) -> Any: _a : str = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self , _a , _a , _a , _a ) -> str: _a : Union[str, Any] = self.num_labels _a : int = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a ) -> Union[str, Any]: _a : Optional[Any] = self.num_labels _a : List[str] = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _a : Union[str, Any] = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self ) -> int: _a : str = self.prepare_config_and_inputs() _a , _a , _a , _a : Dict = config_and_inputs _a : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : List[str] = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : int = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> List[str]: _a : Any = MobileViTVaModelTester(self ) _a : List[Any] = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __lowercase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __lowercase ( self ) -> Optional[int]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __lowercase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __lowercase ( self ) -> Union[str, Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> List[Any]: _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = model_class(_a ) _a : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[int] = [*signature.parameters.keys()] _a : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> Union[str, Any]: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Any: def check_hidden_states_output(_a , _a , _a ): _a : List[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[int] = outputs.hidden_states _a : List[str] = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _a : List[str] = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> Dict: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __lowercase ( self ) -> Any: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __lowercase ( self ) -> Union[str, Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> int: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) _a : str = self.default_image_processor _a : List[Any] = prepare_img() _a : str = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Any = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : Dict = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def __lowercase ( self ) -> Tuple: _a : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : List[str] = model.to(_a ) _a : Any = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : List[Any] = model(**_a ) _a : Dict = outputs.logits # verify the logits _a : Tuple = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , _a ) _a : Any = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) ) @slow def __lowercase ( self ) -> Tuple: _a : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : Optional[Any] = model.to(_a ) _a : str = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : List[str] = prepare_img() _a : Dict = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : int = model(**_a ) _a : List[Any] = outputs.logits.detach().cpu() _a : List[Any] = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(5_0, 6_0)] ) _a : Tuple = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , _a ) _a : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=_a ) _a : Optional[int] = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , _a )
15
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Any = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class A__ ( __snake_case ): _UpperCAmelCase :Union[PIL.Image.Image, np.ndarray] class A__ ( __snake_case ): def __init__( self , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() self.register_modules( prior=A_ , image_encoder=A_ , image_processor=A_ , scheduler=A_ , renderer=A_ , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if latents is None: UpperCamelCase : str = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCamelCase : Dict = latents.to(A_ ) UpperCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCamelCase( self , A_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase : List[Any] = torch.device(F"""cuda:{gpu_id}""" ) UpperCamelCase : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) @property def __UpperCamelCase( self ): '''simple docstring''' if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(A_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCamelCase( self , A_ , A_ , A_ , A_ , ): '''simple docstring''' if isinstance(A_ , A_ ) and isinstance(image[0] , torch.Tensor ): UpperCamelCase : Any = torch.cat(A_ , axis=0 ) if image[0].ndim == 4 else torch.stack(A_ , axis=0 ) if not isinstance(A_ , torch.Tensor ): UpperCamelCase : Dict = self.image_processor(A_ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) UpperCamelCase : str = image.to(dtype=self.image_encoder.dtype , device=A_ ) UpperCamelCase : Union[str, Any] = self.image_encoder(A_ )["last_hidden_state"] UpperCamelCase : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCamelCase : Dict = image_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase : List[str] = torch.zeros_like(A_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : Dict = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , A_ , A_ = 1 , A_ = 25 , A_ = None , A_ = None , A_ = 4.0 , A_ = 64 , A_ = "pil" , A_ = True , ): '''simple docstring''' if isinstance(A_ , PIL.Image.Image ): UpperCamelCase : Union[str, Any] = 1 elif isinstance(A_ , torch.Tensor ): UpperCamelCase : str = image.shape[0] elif isinstance(A_ , A_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCamelCase : Optional[Any] = len(A_ ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A_ )}""" ) UpperCamelCase : Dict = self._execution_device UpperCamelCase : Dict = batch_size * num_images_per_prompt UpperCamelCase : str = guidance_scale > 1.0 UpperCamelCase : str = self._encode_image(A_ , A_ , A_ , A_ ) # prior self.scheduler.set_timesteps(A_ , device=A_ ) UpperCamelCase : Optional[Any] = self.scheduler.timesteps UpperCamelCase : List[str] = self.prior.config.num_embeddings UpperCamelCase : Union[str, Any] = self.prior.config.embedding_dim UpperCamelCase : int = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCamelCase : Optional[int] = latents.reshape(latents.shape[0] , A_ , A_ ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : List[str] = self.scheduler.scale_model_input(A_ , A_ ) UpperCamelCase : List[str] = self.prior( A_ , timestep=A_ , proj_embedding=A_ , ).predicted_image_embedding # remove the variance UpperCamelCase , UpperCamelCase : int = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCamelCase , UpperCamelCase : Optional[int] = noise_pred.chunk(2 ) UpperCamelCase : int = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCamelCase : Optional[int] = self.scheduler.step( A_ , timestep=A_ , sample=A_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=A_ ) UpperCamelCase : Any = [] for i, latent in enumerate(A_ ): print() UpperCamelCase : Union[str, Any] = self.renderer.decode( latent[None, :] , A_ , size=A_ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(A_ ) UpperCamelCase : List[str] = torch.stack(A_ ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) UpperCamelCase : str = images.cpu().numpy() if output_type == "pil": UpperCamelCase : List[str] = [self.numpy_to_pil(A_ ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=A_ )
52
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = False while not completed: if counter == 1: self.reset() UpperCAmelCase__ = self.advance() if not self.does_advance(_UpperCAmelCase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCAmelCase__ = token_ids UpperCAmelCase__ = len(self.token_ids ) UpperCAmelCase__ = -1 # the index of the currently fulfilled step UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.fulfilled_idx += 1 UpperCAmelCase__ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase__ = True UpperCAmelCase__ = completed else: # failed to make progress. UpperCAmelCase__ = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.fulfilled_idx UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ): """simple docstring""" UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] ) UpperCAmelCase__ = {} for token_ids in nested_token_ids: UpperCAmelCase__ = root for tidx, token_id in enumerate(_UpperCAmelCase ): if token_id not in level: UpperCAmelCase__ = {} UpperCAmelCase__ = level[token_id] if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) UpperCAmelCase__ = root def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.trie for current_token in current_seq: UpperCAmelCase__ = start[current_token] UpperCAmelCase__ = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase ) return len(_UpperCAmelCase ) == 0 def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = list(root.values() ) if len(_UpperCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase ) return len(_UpperCAmelCase ) != leaf_count class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase ) UpperCAmelCase__ = nested_token_ids UpperCAmelCase__ = self.trie.max_height UpperCAmelCase__ = [] UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.current_seq.append(_UpperCAmelCase ) UpperCAmelCase__ = True else: UpperCAmelCase__ = True self.reset() UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase__ = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ): """simple docstring""" UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.current_seq UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ): """simple docstring""" UpperCAmelCase__ = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase__ = max([c.seqlen for c in constraints] ) UpperCAmelCase__ = len(_UpperCAmelCase ) UpperCAmelCase__ = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = None UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase__ = constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) else: UpperCAmelCase__ = self.inprogress_constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCAmelCase__ , UpperCAmelCase__ = False, False if self.completed: UpperCAmelCase__ = True UpperCAmelCase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) ) UpperCAmelCase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase__ = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_UpperCAmelCase ) UpperCAmelCase__ = None if not complete and stepped: UpperCAmelCase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ): """simple docstring""" UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase__ = [ constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
346
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Tuple = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
363
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : """simple docstring""" def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]=3 , lowercase_ : Tuple=32 , lowercase_ : List[str]=3 , lowercase_ : str=10 , lowercase_ : Tuple=[10, 20, 30, 40] , lowercase_ : Tuple=[1, 1, 2, 1] , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]="relu" , lowercase_ : Optional[int]=3 , lowercase_ : List[Any]=None , ): UpperCamelCase__ : Tuple =parent UpperCamelCase__ : str =batch_size UpperCamelCase__ : List[Any] =image_size UpperCamelCase__ : Union[str, Any] =num_channels UpperCamelCase__ : Dict =embeddings_size UpperCamelCase__ : Tuple =hidden_sizes UpperCamelCase__ : List[Any] =depths UpperCamelCase__ : List[Any] =is_training UpperCamelCase__ : Union[str, Any] =use_labels UpperCamelCase__ : Optional[int] =hidden_act UpperCamelCase__ : Dict =num_labels UpperCamelCase__ : List[str] =scope UpperCamelCase__ : Optional[Any] =len(lowercase_ ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[int] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Tuple =None if self.use_labels: UpperCamelCase__ : str =ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ : List[str] =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Tuple ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[str] ): UpperCamelCase__ : Any =RegNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Union[str, Any] =model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple ): UpperCamelCase__ : List[str] =self.num_labels UpperCamelCase__ : Optional[Any] =RegNetForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Optional[int] =model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : List[Any] =self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[Any] =config_and_inputs UpperCamelCase__ : str ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : Optional[int] =RegNetModelTester(self ) UpperCamelCase__ : Optional[int] =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def _lowerCAmelCase ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self : Dict ): return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _lowerCAmelCase ( self : List[Any] ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _lowerCAmelCase ( self : Dict ): pass def _lowerCAmelCase ( self : int ): UpperCamelCase__ , UpperCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] =model_class(lowercase_ ) UpperCamelCase__ : List[str] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[str] =[*signature.parameters.keys()] UpperCamelCase__ : str =['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ , UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] =model_class(config=lowercase_ ) for name, module in model.named_modules(): if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _lowerCAmelCase ( self : List[Any] ): def check_hidden_states_output(lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[Any] ): UpperCamelCase__ : int =model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ : List[str] =model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase__ : Tuple =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : Optional[int] =self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCamelCase__ , UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[Any] =['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ : Dict =layer_type UpperCamelCase__ : Dict =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : int =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def _lowerCAmelCase ( self : Any ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Union[str, Any] =RegNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __a ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : int ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : List[Any] =RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.default_image_processor UpperCamelCase__ : Any =prepare_img() UpperCamelCase__ : Optional[Any] =image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict =model(**lowercase_ ) # verify the logits UpperCamelCase__ : Union[str, Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCamelCase__ : Union[str, Any] =torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
157
0
'''simple docstring''' def __UpperCAmelCase ( a_: int ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
145
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __a = logging.get_logger(__name__) __a = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''instructblip_vision_model''' def __init__( self : str , lowerCAmelCase__ : Dict=1_4_0_8 , lowerCAmelCase__ : int=6_1_4_4 , lowerCAmelCase__ : List[str]=3_9 , lowerCAmelCase__ : int=1_6 , lowerCAmelCase__ : Tuple=2_2_4 , lowerCAmelCase__ : Tuple=1_4 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Union[str, Any]=1e-6 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Optional[int]=1e-10 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : str , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : str = patch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Tuple = qkv_bias @classmethod def _lowerCAmelCase ( cls : Optional[int] , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = '''instructblip_qformer''' def __init__( self : List[str] , lowerCAmelCase__ : Union[str, Any]=3_0_5_2_2 , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Optional[int]=1e-12 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Union[str, Any]="absolute" , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=1_4_0_8 , **lowerCAmelCase__ : List[str] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Tuple = position_embedding_type _UpperCAmelCase : Tuple = cross_attention_frequency _UpperCAmelCase : Any = encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : Dict , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : Tuple = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''instructblip''' UpperCamelCase_ : Dict = True def __init__( self : Tuple , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=3_2 , **lowerCAmelCase__ : Dict ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if vision_config is None: _UpperCAmelCase : List[str] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: _UpperCAmelCase : Tuple = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: _UpperCAmelCase : int = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _UpperCAmelCase : List[str] = InstructBlipVisionConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = InstructBlipQFormerConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = text_config["model_type"] if "model_type" in text_config else "opt" _UpperCAmelCase : Optional[int] = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.text_config.tie_word_embeddings _UpperCAmelCase : List[Any] = self.text_config.is_encoder_decoder _UpperCAmelCase : List[str] = num_query_tokens _UpperCAmelCase : int = self.vision_config.hidden_size _UpperCAmelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : int = 1.0 _UpperCAmelCase : Dict = 0.02 @classmethod def _lowerCAmelCase ( cls : Dict , lowerCAmelCase__ : InstructBlipVisionConfig , lowerCAmelCase__ : InstructBlipQFormerConfig , lowerCAmelCase__ : PretrainedConfig , **lowerCAmelCase__ : Union[str, Any] , ) -> Tuple: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.qformer_config.to_dict() _UpperCAmelCase : List[Any] = self.text_config.to_dict() _UpperCAmelCase : Dict = self.__class__.model_type return output
145
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= 1_3 __lowercase= 7 __lowercase= True __lowercase= True __lowercase= True __lowercase= True __lowercase= 9_9 __lowercase= 3_8_4 __lowercase= 2 __lowercase= 4 __lowercase= 3_7 __lowercase= 'gelu' __lowercase= 0.1 __lowercase= 0.1 __lowercase= 5_1_2 __lowercase= 1_6 __lowercase= 2 __lowercase= 0.02 __lowercase= 3 __lowercase= 4 __lowercase= 1_2_8 __lowercase= 2 __lowercase= 9 __lowercase= 1 __lowercase= None def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= TFConvBertModel(config=lowerCAmelCase ) __lowercase= {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase= [input_ids, input_mask] __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= TFConvBertForMaskedLM(config=lowerCAmelCase ) __lowercase= { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= TFConvBertForSequenceClassification(config=lowerCAmelCase ) __lowercase= { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_choices __lowercase= TFConvBertForMultipleChoice(config=lowerCAmelCase ) __lowercase= tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase= tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase= tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase= { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= TFConvBertForTokenClassification(config=lowerCAmelCase ) __lowercase= { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= TFConvBertForQuestionAnswering(config=lowerCAmelCase ) __lowercase= { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( __lowercase )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A ( _a , _a , unittest.TestCase ): UpperCamelCase_ : List[Any] =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ : Tuple =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : int =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : List[Any] =False def _A (self ): __lowercase= TFConvBertModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs_for_common() __lowercase= True __lowercase= True if hasattr(lowerCAmelCase , 'use_cache' ): __lowercase= True __lowercase= getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase= getattr(self.model_tester , 'key_length' , lowerCAmelCase ) for model_class in self.all_model_classes: __lowercase= self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowercase= model_class(lowerCAmelCase ) __lowercase= len(model(lowerCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase , saved_model=lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , 'saved_model' , '1' ) __lowercase= tf.keras.models.load_model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) if self.is_encoder_decoder: __lowercase= outputs['encoder_hidden_states'] __lowercase= outputs['encoder_attentions'] else: __lowercase= outputs['hidden_states'] __lowercase= outputs['attentions'] self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) __lowercase= getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _A (self ): __lowercase= TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs_for_common() __lowercase= True __lowercase= getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase= getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase= getattr(self.model_tester , 'key_length' , lowerCAmelCase ) __lowercase= getattr(self.model_tester , 'key_length' , lowerCAmelCase ) def check_decoder_attentions_output(lowerCAmelCase ): __lowercase= len(lowerCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase= outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCAmelCase ): __lowercase= [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase= True __lowercase= False __lowercase= model_class(lowerCAmelCase ) __lowercase= model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= len(lowerCAmelCase ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) if self.is_encoder_decoder: __lowercase= model_class(lowerCAmelCase ) __lowercase= model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_decoder_attentions_output(lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase= True __lowercase= model_class(lowerCAmelCase ) __lowercase= model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) # Check attention is always last and order is fine __lowercase= True __lowercase= True __lowercase= model_class(lowerCAmelCase ) __lowercase= model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase= tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase= model(lowerCAmelCase )[0] __lowercase= [1, 6, 7_6_8] self.assertEqual(output.shape , lowerCAmelCase ) __lowercase= tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-4 )
368
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
0
'''simple docstring''' def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(_lowerCAmelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
208
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> np.array: __lowerCamelCase : Any = F'{sampling_rate}' __lowerCamelCase : List[str] = '1' __lowerCamelCase : int = 'f32le' __lowerCamelCase : Dict = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_lowerCAmelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: __lowerCamelCase : Tuple = ffmpeg_process.communicate(_lowerCAmelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error __lowerCamelCase : Any = output_stream[0] __lowerCamelCase : Union[str, Any] = np.frombuffer(_lowerCAmelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = "f32le" ,) -> Dict: __lowerCamelCase : Optional[Any] = F'{sampling_rate}' __lowerCamelCase : Optional[int] = '1' if format_for_conversion == "s16le": __lowerCamelCase : List[Any] = 2 elif format_for_conversion == "f32le": __lowerCamelCase : Tuple = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) __lowerCamelCase : Any = platform.system() if system == "Linux": __lowerCamelCase : Tuple = 'alsa' __lowerCamelCase : Optional[Any] = 'default' elif system == "Darwin": __lowerCamelCase : Union[str, Any] = 'avfoundation' __lowerCamelCase : Tuple = ':0' elif system == "Windows": __lowerCamelCase : List[str] = 'dshow' __lowerCamelCase : Optional[Any] = 'default' __lowerCamelCase : Optional[int] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] __lowerCamelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowerCamelCase : int = _ffmpeg_stream(_lowerCAmelCase ,_lowerCAmelCase ) for item in iterator: yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "f32le" ,) -> List[str]: if stream_chunk_s is not None: __lowerCamelCase : int = stream_chunk_s else: __lowerCamelCase : List[Any] = chunk_length_s __lowerCamelCase : Dict = ffmpeg_microphone(_lowerCAmelCase ,_lowerCAmelCase ,format_for_conversion=_lowerCAmelCase ) if format_for_conversion == "s16le": __lowerCamelCase : List[str] = np.intaa __lowerCamelCase : Union[str, Any] = 2 elif format_for_conversion == "f32le": __lowerCamelCase : Union[str, Any] = np.floataa __lowerCamelCase : Optional[Any] = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: __lowerCamelCase : Any = chunk_length_s / 6 __lowerCamelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_lowerCAmelCase ,(int, float) ): __lowerCamelCase : Tuple = [stride_length_s, stride_length_s] __lowerCamelCase : Union[str, Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowerCamelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowerCamelCase : Dict = datetime.datetime.now() __lowerCamelCase : Any = datetime.timedelta(seconds=_lowerCAmelCase ) for item in chunk_bytes_iter(_lowerCAmelCase ,_lowerCAmelCase ,stride=(stride_left, stride_right) ,stream=_lowerCAmelCase ): # Put everything back in numpy scale __lowerCamelCase : Optional[int] = np.frombuffer(item['raw'] ,dtype=_lowerCAmelCase ) __lowerCamelCase : Tuple = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) __lowerCamelCase : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = False ) -> str: __lowerCamelCase : Optional[int] = b'' __lowerCamelCase ,__lowerCamelCase : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) __lowerCamelCase : str = 0 for raw in iterator: acc += raw if stream and len(_lowerCAmelCase ) < chunk_len: __lowerCamelCase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_lowerCAmelCase ) >= chunk_len: # We are flushing the accumulator __lowerCamelCase : Any = (_stride_left, stride_right) __lowerCamelCase : Optional[int] = {'raw': acc[:chunk_len], 'stride': stride} if stream: __lowerCamelCase : List[str] = False yield item __lowerCamelCase : Tuple = stride_left __lowerCamelCase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_lowerCAmelCase ) > stride_left: __lowerCamelCase : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: __lowerCamelCase : List[str] = False yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Tuple: __lowerCamelCase : int = 2**24 # 16Mo try: with subprocess.Popen(_lowerCAmelCase ,stdout=subprocess.PIPE ,bufsize=_lowerCAmelCase ) as ffmpeg_process: while True: __lowerCamelCase : Union[str, Any] = ffmpeg_process.stdout.read(_lowerCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
208
1
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase (__snake_case ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase="None" , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Dict = batch_size lowercase__: Optional[int] = seq_length lowercase__: Union[str, Any] = is_training lowercase__: int = use_input_mask lowercase__: int = use_token_type_ids lowercase__: Tuple = use_labels lowercase__: Any = vocab_size lowercase__: Union[str, Any] = hidden_size lowercase__: Optional[Any] = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: Optional[int] = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: Tuple = hidden_dropout_prob lowercase__: Any = attention_probs_dropout_prob lowercase__: Any = max_position_embeddings lowercase__: Union[str, Any] = type_vocab_size lowercase__: Optional[int] = type_sequence_label_size lowercase__: int = initializer_range lowercase__: Dict = num_labels lowercase__: List[str] = num_choices lowercase__: int = relative_attention lowercase__: List[Any] = position_biased_input lowercase__: Dict = pos_att_type lowercase__: Optional[Any] = scope def _snake_case ( self ): lowercase__: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: str = None if self.use_input_mask: lowercase__: Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase__: Dict = None if self.use_token_type_ids: lowercase__: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Any = None lowercase__: int = None lowercase__: Tuple = None if self.use_labels: lowercase__: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _snake_case ( self ): lowercase__: Tuple = self.get_config() lowercase__: str = 300 return config def _snake_case ( self , _UpperCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = DebertaModel(config=a_ ) model.to(a_ ) model.eval() lowercase__: Optional[Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ )[0] lowercase__: str = model(a_ , token_type_ids=a_ )[0] lowercase__: Dict = model(a_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = DebertaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowercase__: List[Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = self.num_labels lowercase__: Union[str, Any] = DebertaForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowercase__: Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a_ ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = self.num_labels lowercase__: str = DebertaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowercase__: Union[str, Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = DebertaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowercase__: Any = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ): lowercase__: int = self.prepare_config_and_inputs() ( lowercase__ ): Tuple = config_and_inputs lowercase__: Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (__snake_case ,__snake_case ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase :List[Any] = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[int] = True _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Dict = False def _snake_case ( self ): lowercase__: List[str] = DebertaModelTester(self ) lowercase__: List[str] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a_ ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a_ ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a_ ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a_ ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a_ ) @slow def _snake_case ( self ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Tuple = DebertaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def _snake_case ( self ): pass @slow def _snake_case ( self ): lowercase__: Any = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) lowercase__: str = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowercase__: Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Optional[int] = model(a_ , attention_mask=a_ )[0] # compare the actual values for a slice. lowercase__: int = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) , F"""{output[:, 1:4, 1:4]}""" )
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"width_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] ,A : List[Any] ,A : Optional[int]=13 ,A : Dict=64 ,A : Optional[Any]=2 ,A : Optional[int]=3 ,A : int="swish" ,A : Tuple=3 ,A : Tuple=32 ,A : int=0.1 ,A : Any=0.02 ,A : Any=True ,A : Optional[int]=True ,A : Tuple=10 ,A : Any=None ,A : Any=0.25 ,A : Tuple=0.0 ,A : Optional[int]=0.0 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = make_divisible(5_12 * width_multiplier ,divisor=8 ) __A = hidden_act __A = conv_kernel_size __A = output_stride __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope __A = width_multiplier __A = ffn_dropout __A = attn_dropout def UpperCamelCase_ ( self : Tuple ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[Any] ): return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def UpperCamelCase_ ( self : int ,A : Any ,A : Any ,A : Union[str, Any] ,A : Optional[int] ): __A = MobileViTVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : Tuple ): __A = self.num_labels __A = MobileViTVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : Union[str, Any] ,A : int ): __A = self.num_labels __A = MobileViTVaForSemanticSegmentation(A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) __A = model(A ,labels=A ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : Dict ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Union[str, Any] ): __A = MobileViTVaModelTester(self ) __A = MobileViTVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def UpperCamelCase_ ( self : List[str] ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def UpperCamelCase_ ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def UpperCamelCase_ ( self : int ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase_ ( self : Optional[int] ): pass def UpperCamelCase_ ( self : Dict ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): def check_hidden_states_output(A : Dict ,A : Optional[int] ,A : Any ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 5 self.assertEqual(len(A ) ,A ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __A = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self : Optional[Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileViTVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : str ): __A = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : int ): __A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = model.to(A ) __A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) __A = outputs.logits # verify the logits __A = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,A ) __A = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] ,device=A ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): __A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = model.to(A ) __A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) __A = outputs.logits.detach().cpu() __A = image_processor.post_process_semantic_segmentation(outputs=A ,target_sizes=[(50, 60)] ) __A = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,A ) __A = image_processor.post_process_semantic_segmentation(outputs=A ) __A = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,A )
15
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = {} __A = job["started_at"] __A = job["completed_at"] __A = date_parser.parse(a_ ) __A = date_parser.parse(a_ ) __A = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __A = start __A = end __A = duration_in_min return job_info def UpperCAmelCase ( a_ , a_=None ) -> str: """simple docstring""" __A = None if token is not None: __A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} __A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __A = requests.get(a_ , headers=a_ ).json() __A = {} try: job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) __A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(a_ ): __A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json() job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
15
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """longformer""" def __init__( self : Any , UpperCamelCase__ : Union[List[int], int] = 512 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 0 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 3_0522 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 3072 , UpperCamelCase__ : str = "gelu" , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : int = 512 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 1E-12 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = attention_window SCREAMING_SNAKE_CASE : int = sep_token_id SCREAMING_SNAKE_CASE : Tuple = bos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = onnx_export class lowercase__ ( UpperCamelCase_): def __init__( self : int , UpperCamelCase__ : "PretrainedConfig" , UpperCamelCase__ : str = "default" , UpperCamelCase__ : "List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = True @property def __A ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE : Dict = {0: '''batch'''} return outputs @property def __A ( self : Optional[Any] ): '''simple docstring''' return 1E-4 @property def __A ( self : List[str] ): '''simple docstring''' return max(super().default_onnx_opset , 14 ) def __A ( self : Optional[int] , UpperCamelCase__ : "PreTrainedTokenizerBase" , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = super().generate_dummy_inputs( preprocessor=UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE : Dict = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global SCREAMING_SNAKE_CASE : Union[str, Any] = 1 return inputs
258
from typing import Union import fire import torch from tqdm import tqdm def A ( _lowercase , _lowercase = "cpu" , _lowercase = None ): SCREAMING_SNAKE_CASE : Optional[int] = torch.load(_lowercase , map_location=_lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowercase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) SCREAMING_SNAKE_CASE : List[Any] = v.half() if save_path is None: # overwrite src_path SCREAMING_SNAKE_CASE : str = src_path torch.save(_lowercase , _lowercase ) if __name__ == "__main__": fire.Fire(convert)
258
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : Union[str, Any] , a : List[str]=13 , a : Optional[Any]=7 , a : Tuple=True , a : Dict=True , a : List[Any]=True , a : Union[str, Any]=True , a : List[str]=99 , a : Any=32 , a : List[str]=5 , a : List[Any]=4 , a : Dict=37 , a : List[str]="gelu" , a : List[str]=0.1 , a : Dict=0.1 , a : Optional[int]=128 , a : Dict=32 , a : Any=16 , a : Optional[Any]=2 , a : Dict=0.02 , a : str=3 , a : Union[str, Any]=4 , a : str=None , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices SCREAMING_SNAKE_CASE : Optional[int] = scope def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCamelCase ( self : Union[str, Any] , a : str , a : int , a : List[Any] , a : Tuple , a : Optional[Any] , a : Optional[int] , a : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = NezhaModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Any = model(a , attention_mask=a , token_type_ids=a ) SCREAMING_SNAKE_CASE : List[Any] = model(a , token_type_ids=a ) SCREAMING_SNAKE_CASE : Optional[int] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self : Dict , a : Any , a : Tuple , a : Dict , a : str , a : List[str] , a : Optional[Any] , a : List[str] , a : Tuple , a : str , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[int] = NezhaModel(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : int = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , encoder_attention_mask=a , ) SCREAMING_SNAKE_CASE : List[Any] = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , ) SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , token_type_ids=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self : Any , a : Any , a : str , a : str , a : Union[str, Any] , a : Union[str, Any] , a : str , a : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = NezhaForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Dict , a : List[str] , a : Dict , a : Dict , a : Any , a : str , a : Optional[int] , a : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = NezhaForNextSentencePrediction(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __UpperCamelCase ( self : Tuple , a : Tuple , a : List[Any] , a : Tuple , a : Any , a : int , a : int , a : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = NezhaForPreTraining(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __UpperCamelCase ( self : str , a : List[Any] , a : Tuple , a : Union[str, Any] , a : Any , a : Optional[int] , a : List[Any] , a : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = NezhaForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : int , a : str , a : Any , a : Union[str, Any] , a : str , a : Union[str, Any] , a : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : Any = NezhaForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : Any , a : Tuple , a : List[Any] , a : Any , a : Dict , a : Union[str, Any] , a : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_labels SCREAMING_SNAKE_CASE : Dict = NezhaForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : str , a : List[str] , a : Tuple , a : Optional[int] , a : Union[str, Any] , a : str , a : Tuple , a : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : str = NezhaForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[int] , a : Any , a : Optional[int] , a : str=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = NezhaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=a , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , a , a , a , ) def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def __UpperCamelCase ( self : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a ) def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = NezhaModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : int = model_class(config=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : List[Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "bert.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "bert.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) ) @slow def __UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Any = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
76
def _UpperCamelCase ( snake_case__ ) -> bool: if not isinstance(snake_case__, snake_case__ ): raise ValueError("check_bouncy() accepts only integer arguments" ) __UpperCAmelCase : Optional[int] = str(snake_case__ ) __UpperCAmelCase : Any = "".join(sorted(snake_case__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _UpperCamelCase ( snake_case__ = 99 ) -> int: if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : int = 1 while True: if check_bouncy(snake_case__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(99)}')
157
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__( unittest.TestCase): def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: str=3 , UpperCamelCase_: Optional[Any]=32 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Dict=10 , UpperCamelCase_: Union[str, Any]=[10, 20, 30, 40] , UpperCamelCase_: Dict=[1, 1, 2, 1] , UpperCamelCase_: int=True , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Union[str, Any]="relu" , UpperCamelCase_: List[str]=3 , UpperCamelCase_: List[str]=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = self.get_config() return config, pixel_values def lowerCAmelCase__ ( self: List[Any] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Dict ): __lowerCamelCase = FlaxRegNetModel(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] ): __lowerCamelCase = self.num_labels __lowerCamelCase = FlaxRegNetForImageClassification(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : List[str] = False def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = FlaxRegNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self: Union[str, Any] ): return def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCAmelCase__ ( self: Optional[int] ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCAmelCase__ ( self: str ): pass def lowerCAmelCase__ ( self: int ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): def check_hidden_states_output(UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict ): __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , **UpperCamelCase_: str ): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowerCamelCase__( unittest.TestCase): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = model(**UpperCamelCase_ ) # verify the logits __lowerCamelCase = (1, 10_00) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowerCamelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
365
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = "bert-generation" def __init__( self , a=5_0_3_5_8 , a=1_0_2_4 , a=2_4 , a=1_6 , a=4_0_9_6 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=0.02 , a=1e-12 , a=0 , a=2 , a=1 , a="absolute" , a=True , **a , ) -> Optional[int]: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : List[Any] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[str] = hidden_act lowercase__ : str = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : Optional[Any] = initializer_range lowercase__ : str = layer_norm_eps lowercase__ : Tuple = position_embedding_type lowercase__ : Tuple = use_cache
77
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = s.rsplit(A_ , A_ ) return new.join(A_ ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCAmelCase = key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: UpperCAmelCase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): UpperCAmelCase = rreplace(A_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): UpperCAmelCase = rreplace(A_ , """.b""" , """.bias""" , 1 ) UpperCAmelCase = value.float() return upgrade @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=True ): '''simple docstring''' from dall_e import Encoder UpperCAmelCase = Encoder() if os.path.exists(A_ ): UpperCAmelCase = torch.load(A_ ) else: UpperCAmelCase = torch.hub.load_state_dict_from_url(A_ ) if isinstance(A_ , A_ ): UpperCAmelCase = ckpt.state_dict() encoder.load_state_dict(A_ ) if config_path is not None: UpperCAmelCase = FlavaImageCodebookConfig.from_pretrained(A_ ) else: UpperCAmelCase = FlavaImageCodebookConfig() UpperCAmelCase = FlavaImageCodebook(A_ ).eval() UpperCAmelCase = encoder.state_dict() UpperCAmelCase = upgrade_state_dict(A_ ) hf_model.load_state_dict(A_ ) UpperCAmelCase = hf_model.state_dict() UpperCAmelCase = count_parameters(A_ ) UpperCAmelCase = count_parameters(A_ ) assert torch.allclose(A_ , A_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(A_ ) else: return hf_state_dict if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase_ : Dict = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
358
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=lowerCAmelCase ) UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go UpperCAmelCase = parser.parse_args() if not hasattr(lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
248
0
from collections import defaultdict from math import gcd def lowerCamelCase__ ( snake_case_ : int = 150_0000 ) -> int: __snake_case = defaultdict(snake_case_ ) __snake_case = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ): if gcd(snake_case_ , snake_case_ ) > 1: continue __snake_case = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case_ , limit + 1 , snake_case_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
24
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = """mvp""" lowerCAmelCase__ : Optional[Any] = ["""past_key_values"""] lowerCAmelCase__ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : Any , UpperCamelCase : Optional[int]=50267 , UpperCamelCase : Tuple=1024 , UpperCamelCase : int=12 , UpperCamelCase : Tuple=4096 , UpperCamelCase : Dict=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Union[str, Any]=1024 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=1 , UpperCamelCase : int=0 , UpperCamelCase : int=2 , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=False , UpperCamelCase : int=100 , UpperCamelCase : Optional[Any]=800 , **UpperCamelCase : str , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = classifier_dropout lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_prompt lowercase__ = prompt_length lowercase__ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase ): lowercase__ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
2
0
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__="" , snake_case__="train" ): """simple docstring""" assert os.path.isdir(snake_case__ ) lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = os.listdir(snake_case__ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCAmelCase : int = os.path.join(snake_case__ , snake_case__ ) if not os.path.isfile(snake_case__ ): continue self.documents.append(snake_case__ ) def __len__( self ): """simple docstring""" return len(self.documents ) def __getitem__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = self.documents[idx] lowerCAmelCase : Optional[int] = document_path.split("/" )[-1] with open(snake_case__ , encoding="utf-8" ) as source: lowerCAmelCase : List[str] = source.read() lowerCAmelCase , lowerCAmelCase : str = process_story(snake_case__ ) return document_name, story_lines, summary_lines def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : str = list(filter(lambda SCREAMING_SNAKE_CASE : len(SCREAMING_SNAKE_CASE ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it lowerCAmelCase : Dict = [_add_missing_period(SCREAMING_SNAKE_CASE ) for line in nonempty_lines] # gather article lines lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[Any] = deque(SCREAMING_SNAKE_CASE ) while True: try: lowerCAmelCase : Dict = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(SCREAMING_SNAKE_CASE ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCAmelCase : Dict = list(filter(lambda SCREAMING_SNAKE_CASE : not t.startswith("@highlight" ) , SCREAMING_SNAKE_CASE ) ) return story_lines, summary_lines def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE )) ) return sequence def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : str = torch.ones_like(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = sequence == pad_token_id lowerCAmelCase : List[str] = 0 return mask def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : str = [tokenizer.encode(SCREAMING_SNAKE_CASE ) for line in story_lines] lowerCAmelCase : Any = [token for sentence in story_lines_token_ids for token in sentence] lowerCAmelCase : Optional[int] = [tokenizer.encode(SCREAMING_SNAKE_CASE ) for line in summary_lines] lowerCAmelCase : Union[str, Any] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for sequence in batch: lowerCAmelCase : str = -1 lowerCAmelCase : str = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(SCREAMING_SNAKE_CASE ) return torch.tensor(SCREAMING_SNAKE_CASE )
133
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : Union[str, Any] = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] lowerCAmelCase : Union[str, Any] = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCAmelCase : Dict = "fp16" self.assertFalse(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] lowerCAmelCase : int = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] lowerCAmelCase : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : List[Any] = "fp16" self.assertFalse(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) )
133
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[Any] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = CycleDiffusionPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def A (self : int ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A = CLIPTextModel(_lowerCAmelCase ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A (self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : List[str]=0 ): A = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) A = image / 2 + 0.5 if str(_lowerCAmelCase ).startswith("""mps""" ): A = torch.manual_seed(_lowerCAmelCase ) else: A = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) A = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def A (self : Any ): A = """cpu""" # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = CycleDiffusionPipeline(**_lowerCAmelCase ) A = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = self.get_dummy_inputs(_lowerCAmelCase ) A = pipe(**_lowerCAmelCase ) A = output.images A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A (self : str ): A = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowerCAmelCase , """half""" ): A = module.half() A = CycleDiffusionPipeline(**_lowerCAmelCase ) A = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = self.get_dummy_inputs(_lowerCAmelCase ) A = pipe(**_lowerCAmelCase ) A = output.images A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A (self : Optional[int] ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def A (self : Optional[Any] ): return super().test_inference_batch_single_identical() @skip_mps def A (self : Dict ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def A (self : Optional[Any] ): return super().test_save_load_optional_components() @skip_mps def A (self : Optional[int] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A (self : int ): A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) A = init_image.resize((512, 512) ) A = """CompVis/stable-diffusion-v1-4""" A = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) A = CycleDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() A = """A black colored car""" A = """A blue colored car""" A = torch.manual_seed(0 ) A = pipe( prompt=_lowerCAmelCase , source_prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCAmelCase , output_type="""np""" , ) A = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def A (self : int ): A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) A = init_image.resize((512, 512) ) A = """CompVis/stable-diffusion-v1-4""" A = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) A = CycleDiffusionPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() A = """A black colored car""" A = """A blue colored car""" A = torch.manual_seed(0 ) A = pipe( prompt=_lowerCAmelCase , source_prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCAmelCase , output_type="""np""" , ) A = output.images assert np.abs(image - expected_image ).max() < 2e-2
258
1
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( ): """simple docstring""" UpperCamelCase = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase = json.loads(_SCREAMING_SNAKE_CASE ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase = json.loads(_SCREAMING_SNAKE_CASE ) if not mpi_options.get("sagemaker_mpi_enabled" , _SCREAMING_SNAKE_CASE ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def snake_case_ (self ) -> Optional[int]: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , __a , ) @cached_property def snake_case_ (self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: UpperCamelCase = torch.device("cpu" ) UpperCamelCase = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase = smp.local_rank() UpperCamelCase = torch.device("cuda" , __a ) UpperCamelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) UpperCamelCase = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) UpperCamelCase = torch.device("cuda" , self.local_rank ) UpperCamelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) UpperCamelCase = torch.device("cuda" , self.local_rank ) UpperCamelCase = 1 if device.type == "cuda": torch.cuda.set_device(__a ) return device @property def snake_case_ (self ) -> Union[str, Any]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def snake_case_ (self ) -> Dict: return not is_sagemaker_model_parallel_available() @property def snake_case_ (self ) -> Optional[int]: return False
244
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase__ = NewType('''DataClass''', Any) lowerCAmelCase__ = NewType('''DataClassType''', Any) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {str(_SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda _SCREAMING_SNAKE_CASE : str_to_choice.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( *, _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls UpperCamelCase = {} if aliases is not None: UpperCamelCase = aliases if help is not None: UpperCamelCase = help return dataclasses.field(metadata=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , default_factory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = 42 def __init__(self , __a , **__a ) -> Any: # To make the default appear when using --help if "formatter_class" not in kwargs: UpperCamelCase = ArgumentDefaultsHelpFormatter super().__init__(**__a ) if dataclasses.is_dataclass(__a ): UpperCamelCase = [dataclass_types] UpperCamelCase = list(__a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__a ) @staticmethod def snake_case_ (__a , __a ) -> Optional[Any]: UpperCamelCase = F"--{field.name}" UpperCamelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __a ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) UpperCamelCase = kwargs.pop("aliases" , [] ) if isinstance(__a , __a ): UpperCamelCase = [aliases] UpperCamelCase = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(__a , "UnionType" ) and isinstance(__a , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__a ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F" Problem encountered in field '{field.name}'." ) if type(__a ) not in field.type.__args__: # filter `str` in Union UpperCamelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] UpperCamelCase = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) UpperCamelCase = ( field.type.__args__[0] if isinstance(__a , field.type.__args__[1] ) else field.type.__args__[1] ) UpperCamelCase = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) UpperCamelCase = {} if origin_type is Literal or (isinstance(field.type , __a ) and issubclass(field.type , __a )): if origin_type is Literal: UpperCamelCase = field.type.__args__ else: UpperCamelCase = [x.value for x in field.type] UpperCamelCase = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: UpperCamelCase = field.default else: UpperCamelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument UpperCamelCase = copy(__a ) # Hack because type=bool in argparse does not behave as we want. UpperCamelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. UpperCamelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way UpperCamelCase = default # This tells argparse we accept 0 or 1 value after --field_name UpperCamelCase = "?" # This is the value that will get picked if we do --field_name (without value) UpperCamelCase = True elif isclass(__a ) and issubclass(__a , __a ): UpperCamelCase = field.type.__args__[0] UpperCamelCase = "+" if field.default_factory is not dataclasses.MISSING: UpperCamelCase = field.default_factory() elif field.default is dataclasses.MISSING: UpperCamelCase = True else: UpperCamelCase = field.type if field.default is not dataclasses.MISSING: UpperCamelCase = field.default elif field.default_factory is not dataclasses.MISSING: UpperCamelCase = field.default_factory() else: UpperCamelCase = True parser.add_argument(__a , *__a , **__a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): UpperCamelCase = False parser.add_argument(F"--no_{field.name}" , action="store_false" , dest=field.name , **__a ) def snake_case_ (self , __a ) -> List[Any]: if hasattr(__a , "_argument_group_name" ): UpperCamelCase = self.add_argument_group(dtype._argument_group_name ) else: UpperCamelCase = self try: UpperCamelCase = get_type_hints(__a ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__a ): UpperCamelCase = ".".join(map(__a , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(__a ): if not field.init: continue UpperCamelCase = type_hints[field.name] self._parse_dataclass_field(__a , __a ) def snake_case_ (self , __a=None , __a=False , __a=True , __a=None , __a=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): UpperCamelCase = [] if args_filename: args_files.append(Path(__a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values UpperCamelCase = ArgumentParser() args_file_parser.add_argument(__a , type=__a , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) UpperCamelCase , UpperCamelCase = args_file_parser.parse_known_args(args=__a ) UpperCamelCase = vars(__a ).get(args_file_flag.lstrip("-" ) , __a ) if cmd_args_file_paths: args_files.extend([Path(__a ) for p in cmd_args_file_paths] ) UpperCamelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last UpperCamelCase = file_args + args if args is not None else file_args + sys.argv[1:] UpperCamelCase , UpperCamelCase = self.parse_known_args(args=__a ) UpperCamelCase = [] for dtype in self.dataclass_types: UpperCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} UpperCamelCase = {k: v for k, v in vars(__a ).items() if k in keys} for k in keys: delattr(__a , __a ) UpperCamelCase = dtype(**__a ) outputs.append(__a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: UpperCamelCase = set(args.keys() ) UpperCamelCase = [] for dtype in self.dataclass_types: UpperCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} UpperCamelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) UpperCamelCase = dtype(**__a ) outputs.append(__a ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(__a )}" ) return tuple(__a ) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: with open(Path(__a ) , encoding="utf-8" ) as open_json_file: UpperCamelCase = json.loads(open_json_file.read() ) UpperCamelCase = self.parse_dict(__a , allow_extra_keys=__a ) return tuple(__a ) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: UpperCamelCase = self.parse_dict(yaml.safe_load(Path(__a ).read_text() ) , allow_extra_keys=__a ) return tuple(__a )
244
1
from __future__ import annotations __A = list[list[int]] # assigning initial values to the grid __A = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase_ ( UpperCamelCase__ : Matrix , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Optional[int]: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase_ ( UpperCamelCase__ : Matrix ) -> Union[str, Any]: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ) -> Optional[int]: """simple docstring""" if location := find_empty_location(__snake_case ): __lowerCamelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__snake_case , __snake_case , __snake_case , __snake_case ): __lowerCamelCase = digit if sudoku(__snake_case ) is not None: return grid __lowerCamelCase = 0 return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ) -> List[str]: """simple docstring""" for row in grid: for cell in row: print(__snake_case , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __A = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
90
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( _lowercase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = KandinskyVaaPriorPipeline lowerCAmelCase : str = ['prompt'] lowerCAmelCase : Optional[Any] = ['prompt', 'negative_prompt'] lowerCAmelCase : Any = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] lowerCAmelCase : List[str] = False @property def lowerCamelCase_ ( self : int ): return 32 @property def lowerCamelCase_ ( self : str ): return 32 @property def lowerCamelCase_ ( self : Union[str, Any] ): return self.time_input_dim @property def lowerCamelCase_ ( self : str ): return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : Tuple ): return 1_00 @property def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCamelCase_ ( self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__UpperCamelCase ) @property def lowerCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } UpperCAmelCase_ = PriorTransformer(**__UpperCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 UpperCAmelCase_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_24 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) UpperCAmelCase_ = CLIPVisionModelWithProjection(__UpperCamelCase ) return model @property def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = CLIPImageProcessor( crop_size=2_24 , do_center_crop=__UpperCamelCase , do_normalize=__UpperCamelCase , do_resize=__UpperCamelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_24 , ) return image_processor def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = self.dummy_prior UpperCAmelCase_ = self.dummy_image_encoder UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = self.dummy_tokenizer UpperCAmelCase_ = self.dummy_image_processor UpperCAmelCase_ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=__UpperCamelCase , clip_sample_range=10.0 , ) UpperCAmelCase_ = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def lowerCamelCase_ ( self : Tuple , __snake_case : Tuple , __snake_case : Optional[int]=0 ): if str(__UpperCamelCase ).startswith('''mps''' ): UpperCAmelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCAmelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCAmelCase_ = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__UpperCamelCase ) UpperCAmelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) UpperCAmelCase_ = output.image_embeds UpperCAmelCase_ = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] UpperCAmelCase_ = image[0, -10:] UpperCAmelCase_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) UpperCAmelCase_ = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = torch_device == '''cpu''' UpperCAmelCase_ = True UpperCAmelCase_ = False self._test_inference_batch_single_identical( test_max_difference=__UpperCamelCase , relax_max_difference=__UpperCamelCase , test_mean_pixel_difference=__UpperCamelCase , ) @skip_mps def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = torch_device == '''cpu''' UpperCAmelCase_ = False self._test_attention_slicing_forward_pass( test_max_difference=__UpperCamelCase , test_mean_pixel_difference=__UpperCamelCase , )
360
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , __snake_case : Optional[int]=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=5_12 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : List[Any]=1E-12 , __snake_case : Any=1 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Any=None , **__snake_case : List[Any] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a ( _A ): '''simple docstring''' @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCAmelCase__ = random.Random() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Optional[int]=1.0 , SCREAMING_SNAKE_CASE_: Tuple=None , SCREAMING_SNAKE_CASE_: Dict=None ) -> List[Any]: '''simple docstring''' if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=7 , lowercase=400 , lowercase=2000 , lowercase=1 , lowercase=0.0 , lowercase=16000 , lowercase=True , lowercase=80 , lowercase=16 , lowercase=64 , lowercase="hann_window" , lowercase=80 , lowercase=7600 , lowercase=1e-10 , lowercase=True , ) -> Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = feature_size A__ = padding_value A__ = sampling_rate A__ = do_normalize A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = fmin A__ = fmax A__ = mel_floor A__ = return_attention_mask def UpperCamelCase ( self ) -> str: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCamelCase ( self , lowercase=False , lowercase=False ) -> Union[str, Any]: '''simple docstring''' def _flatten(lowercase ): return list(itertools.chain(*lowercase ) ) if equal_length: A__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase ) for x in speech_inputs] return speech_inputs def UpperCamelCase ( self , lowercase=False , lowercase=False ) -> Union[str, Any]: '''simple docstring''' if equal_length: A__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase ) for x in speech_inputs] return speech_inputs @require_torch class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SpeechTaFeatureExtractor def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = SpeechTaFeatureExtractionTester(self ) def UpperCamelCase ( self , lowercase ) -> Dict: '''simple docstring''' self.assertTrue(np.all(np.mean(lowercase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = [np.asarray(lowercase ) for speech_input in speech_inputs] # Test not batched input A__ = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values A__ = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) # Test batched A__ = feat_extract(lowercase , return_tensors="np" ).input_values A__ = feat_extract(lowercase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase ): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = ["longest", "max_length", "do_not_pad"] A__ = [None, 1600, None] for max_length, padding in zip(lowercase , lowercase ): A__ = feat_extract(lowercase , padding=lowercase , max_length=lowercase , return_tensors="np" ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = range(800 , 1400 , 200 ) A__ = [floats_list((1, x) )[0] for x in lengths] A__ = ["longest", "max_length", "do_not_pad"] A__ = [None, 1600, None] for max_length, padding in zip(lowercase , lowercase ): A__ = feat_extract(lowercase , max_length=lowercase , padding=lowercase ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = feat_extract( lowercase , truncation=lowercase , max_length=1000 , padding="max_length" , return_tensors="np" ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = feat_extract( lowercase , truncation=lowercase , max_length=1000 , padding="longest" , return_tensors="np" ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = feat_extract( lowercase , truncation=lowercase , max_length=2000 , padding="longest" , return_tensors="np" ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = np.random.rand(100 ).astype(np.floataa ) A__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A__ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = [np.asarray(lowercase ) for speech_input in speech_inputs] # Test feature size A__ = feature_extractor(audio_target=lowercase , padding=lowercase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input A__ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values A__ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) # Test batched A__ = feature_extractor(lowercase , return_tensors="np" ).input_values A__ = feature_extractor(lowercase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase ): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ = np.asarray(lowercase ) A__ = feature_extractor(lowercase , return_tensors="np" ).input_values A__ = feature_extractor(lowercase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase ): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowercase ) == len(lowercase ) for x, y in zip(lowercase , processed_features[input_name] ) ) ) A__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase ) A__ = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase ) A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad(lowercase , padding="longest" , return_tensors="np" )[input_name] A__ = feat_extract.pad(lowercase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**lowercase ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = [len(lowercase ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad(lowercase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowercase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowercase ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**lowercase ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = [len(lowercase ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = min(lowercase ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad( lowercase , padding="max_length" , max_length=lowercase , truncation=lowercase , return_tensors="np" ) self.assertIn("attention_mask" , lowercase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def UpperCamelCase ( self , lowercase ) -> Tuple: '''simple docstring''' from datasets import load_dataset A__ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A__ = ds.sort("id" ).select(range(lowercase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on A__ = self._load_datasamples(1 ) A__ = SpeechTaFeatureExtractor() A__ = feature_extractor(lowercase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowercase , atol=1e-6 ) ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on A__ = self._load_datasamples(1 ) A__ = SpeechTaFeatureExtractor() A__ = feature_extractor(audio_target=lowercase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowercase , atol=1e-4 ) )
68
def _UpperCAmelCase ( ): '''simple docstring''' return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9) for b in range(a__ , 9_9_9) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"""{solution() = }""")
248
0
"""simple docstring""" from sklearn.metrics import recall_score import datasets __snake_case = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __snake_case = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __snake_case = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase="binary" , __UpperCAmelCase=None , __UpperCAmelCase="warn" , ) -> str: _a = recall_score( __UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase , pos_label=__UpperCAmelCase , average=__UpperCAmelCase , sample_weight=__UpperCAmelCase , zero_division=__UpperCAmelCase , ) return {"recall": float(__UpperCAmelCase ) if score.size == 1 else score}
153
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _UpperCAmelCase ( self ) -> str: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__UpperCAmelCase , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) _UpperCAmelCase = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = torch.load(snake_case_ , map_location="cpu" ) _UpperCAmelCase = Namespace(**checkpoint["cfg"]["model"] ) _UpperCAmelCase = checkpoint["model"] remove_ignore_keys_(snake_case_ ) _UpperCAmelCase = state_dict["decoder.embed_tokens.weight"].shape[0] _UpperCAmelCase = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} _UpperCAmelCase = XGLMConfig( vocab_size=snake_case_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _UpperCAmelCase = XGLMForCausalLM(snake_case_ ) _UpperCAmelCase = model.load_state_dict(snake_case_ , strict=snake_case_ ) print(snake_case_ ) _UpperCAmelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowercase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowercase_ : str = parser.parse_args() lowercase_ : Dict = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
133
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): snake_case_ : Any = KandinskyVaaPriorPipeline snake_case_ : List[str] = ["prompt"] snake_case_ : int = ["prompt", "negative_prompt"] snake_case_ : Optional[int] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] snake_case_ : List[Any] = False @property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return 32 @property def UpperCamelCase ( self : Tuple ): """simple docstring""" return 32 @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCamelCase ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(snake_case__ ) @property def UpperCamelCase ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } _UpperCAmelCase = PriorTransformer(**snake_case__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _UpperCAmelCase = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase ( self : str ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _UpperCAmelCase = CLIPVisionModelWithProjection(snake_case__ ) return model @property def UpperCamelCase ( self : Dict ): """simple docstring""" _UpperCAmelCase = CLIPImageProcessor( crop_size=224 , do_center_crop=snake_case__ , do_normalize=snake_case__ , do_resize=snake_case__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase ( self : Dict ): """simple docstring""" _UpperCAmelCase = self.dummy_prior _UpperCAmelCase = self.dummy_image_encoder _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_image_processor _UpperCAmelCase = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=snake_case__ , clip_sample_range=10.0 , ) _UpperCAmelCase = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def UpperCamelCase ( self : str , snake_case__ : int , snake_case__ : Optional[Any]=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(snake_case__ ) else: _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = "cpu" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case__ ) _UpperCAmelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = pipe(**self.get_dummy_inputs(snake_case__ ) ) _UpperCAmelCase = output.image_embeds _UpperCAmelCase = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _UpperCAmelCase = image[0, -10:] _UpperCAmelCase = image_from_tuple[0, -10:] assert image.shape == (1, 32) _UpperCAmelCase = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase ( self : Dict ): """simple docstring""" _UpperCAmelCase = torch_device == "cpu" _UpperCAmelCase = True _UpperCAmelCase = False self._test_inference_batch_single_identical( test_max_difference=snake_case__ , relax_max_difference=snake_case__ , test_mean_pixel_difference=snake_case__ , ) @skip_mps def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = torch_device == "cpu" _UpperCAmelCase = False self._test_attention_slicing_forward_pass( test_max_difference=snake_case__ , test_mean_pixel_difference=snake_case__ , )
133
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=18 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=False , ): lowercase_ :Optional[Any] = size if size is not None else {'''height''': 20, '''width''': 20} lowercase_ :int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase_ :List[str] = parent lowercase_ :List[Any] = batch_size lowercase_ :Tuple = num_channels lowercase_ :str = image_size lowercase_ :Optional[Any] = min_resolution lowercase_ :int = max_resolution lowercase_ :str = do_resize lowercase_ :List[str] = size lowercase_ :List[str] = do_center_crop lowercase_ :Optional[int] = crop_size lowercase_ :Optional[Any] = do_normalize lowercase_ :int = image_mean lowercase_ :Optional[int] = image_std lowercase_ :Dict = do_reduce_labels def UpperCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowercase_ :int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase_ :List[str] = Image.open(dataset[0]['''file'''] ) lowercase_ :List[str] = Image.open(dataset[1]['''file'''] ) return image, map def UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowercase_ :Dict = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase_ :Optional[Any] = Image.open(ds[0]['''file'''] ) lowercase_ :List[str] = Image.open(ds[1]['''file'''] ) lowercase_ :List[Any] = Image.open(ds[2]['''file'''] ) lowercase_ :Any = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[Any] =BeitImageProcessor if is_vision_available() else None def UpperCamelCase ( self ): lowercase_ :Dict = BeitImageProcessingTester(self ) @property def UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) def UpperCamelCase ( self ): lowercase_ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase_ ) lowercase_ :Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase_ ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): # Initialize image_processing lowercase_ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase_ :Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase_ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self ): # Initialize image_processing lowercase_ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowercase_ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase_ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self ): # Initialize image_processing lowercase_ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase_ :List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase_ :str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self ): # Initialize image_processing lowercase_ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) lowercase_ :Tuple = [] for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowercase_ :Tuple = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched lowercase_ :Optional[int] = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) lowercase_ , lowercase_ :List[Any] = prepare_semantic_single_inputs() lowercase_ :Union[str, Any] = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) lowercase_ , lowercase_ :Tuple = prepare_semantic_batch_inputs() lowercase_ :str = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def UpperCamelCase ( self ): # Initialize image_processing lowercase_ :Tuple = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowercase_ , lowercase_ :Tuple = prepare_semantic_single_inputs() lowercase_ :Dict = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) lowercase_ :Dict = True lowercase_ :Tuple = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
252
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCamelCase : '''simple docstring''' lowercase : Any =PegasusConfig lowercase : Any ={} lowercase : int ="""gelu""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=40 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): lowercase_ :Union[str, Any] = parent lowercase_ :Tuple = batch_size lowercase_ :Optional[Any] = seq_length lowercase_ :Any = is_training lowercase_ :Optional[int] = use_labels lowercase_ :Optional[int] = vocab_size lowercase_ :Optional[Any] = hidden_size lowercase_ :List[Any] = num_hidden_layers lowercase_ :Tuple = num_attention_heads lowercase_ :Optional[Any] = intermediate_size lowercase_ :List[Any] = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Any = max_position_embeddings lowercase_ :Any = eos_token_id lowercase_ :List[str] = pad_token_id lowercase_ :Optional[Any] = bos_token_id def UpperCamelCase ( self ): lowercase_ :Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase_ :Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ :int = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase_ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ :Optional[int] = prepare_pegasus_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[Any] = TFPegasusModel(config=UpperCamelCase_ ).get_decoder() lowercase_ :Tuple = inputs_dict['''input_ids'''] lowercase_ :Optional[int] = input_ids[:1, :] lowercase_ :Tuple = inputs_dict['''attention_mask'''][:1, :] lowercase_ :List[str] = inputs_dict['''head_mask'''] lowercase_ :int = 1 # first forward pass lowercase_ :Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) lowercase_ , lowercase_ :Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase_ :List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ :Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase_ :Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase_ :Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase_ :Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] lowercase_ :str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase_ :Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase_ :Optional[int] = output_from_no_past[:, -3:, random_slice_idx] lowercase_ :Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 ) def UpperCamelCase ( _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Optional[int]: '''simple docstring''' if attention_mask is None: lowercase_ :Dict = tf.cast(tf.math.not_equal(_a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase_ :Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase_ :List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ :Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ :Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowercase : List[str] =(TFPegasusForConditionalGeneration,) if is_tf_available() else () lowercase : str =( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowercase : Optional[int] =True lowercase : List[str] =False lowercase : Union[str, Any] =False def UpperCamelCase ( self ): lowercase_ :Dict = TFPegasusModelTester(self ) lowercase_ :str = ConfigTester(self , config_class=UpperCamelCase_ ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowercase : Tuple =[ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase : Optional[int] =[ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowercase : Optional[Any] ="""google/pegasus-xsum""" @cached_property def UpperCamelCase ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :Any = self.translate_src_text(**UpperCamelCase_ ) assert self.expected_text == generated_words def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :Dict = self.tokenizer(self.src_text , **UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''tf''' ) lowercase_ :int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCamelCase_ , ) lowercase_ :int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ ) return generated_words @slow def UpperCamelCase ( self ): self._assert_generated_batch_equal_expected()
252
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCamelCase_ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCamelCase_ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCamelCase_ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCamelCase_ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCamelCase_ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCamelCase_ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCamelCase_ = '''''' lowerCamelCase_ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCamelCase_ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase_ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __magic_name__ ( __a : Any , __a : Optional[Any] ): '''simple docstring''' assert ReadMe.from_string(__a , __a ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __magic_name__ ( __a : Tuple , __a : List[str] ): '''simple docstring''' with pytest.raises(__a , match=re.escape(expected_error.format(path="""root""" ) ) ): UpperCamelCase__ = ReadMe.from_string(__a , __a ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __magic_name__ ( __a : str , __a : Optional[Any] ): '''simple docstring''' with pytest.raises(__a , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(__a , __a ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __magic_name__ ( __a : Optional[Any] ): '''simple docstring''' ReadMe.from_string(__a , __a , suppress_parsing_errors=__a ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __magic_name__ ( __a : List[Any] , __a : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = Path(__a ) / """README.md""" with open(__a , """w+""" ) as readme_file: readme_file.write(__a ) UpperCamelCase__ = ReadMe.from_readme(__a , __a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __magic_name__ ( __a : List[Any] , __a : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = Path(__a ) / """README.md""" with open(__a , """w+""" ) as readme_file: readme_file.write(__a ) UpperCamelCase__ = expected_error.format(path=__a ) with pytest.raises(__a , match=re.escape(__a ) ): UpperCamelCase__ = ReadMe.from_readme(__a , __a ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __magic_name__ ( __a : Any , __a : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = Path(__a ) / """README.md""" with open(__a , """w+""" ) as readme_file: readme_file.write(__a ) UpperCamelCase__ = expected_error.format(path=__a ) with pytest.raises(__a , match=re.escape(__a ) ): ReadMe.from_readme(__a , __a ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __magic_name__ ( __a : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = Path(__a ) / """README.md""" with open(__a , """w+""" ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a , __a , suppress_parsing_errors=__a )
244
from collections.abc import Generator def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = 0, 1 while True: UpperCamelCase__ , UpperCamelCase__ = b, a + b yield b def __magic_name__ ( __a : int = 1_000 ): '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = fibonacci_generator() while len(str(next(__a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
244
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase: Optional[Any] = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCAmelCase: Dict = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = SavedModel() a : int = [] with open(os.path.join(_A , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: a : List[str] = json.load(_A )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_A )] ) with open(_A , 'rb' ) as f: saved_model.ParseFromString(f.read() ) a : Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want a : List[str] = sorted(_A ) a : Union[str, Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_A ) if strict and len(_A ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(_A ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*_A , sep='\n' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": lowerCAmelCase: Optional[int] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) lowerCAmelCase: Any = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
371
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase: List[str] = 'examples/' lowerCAmelCase: List[Any] = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowerCAmelCase: str = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowerCAmelCase: str = 'README.md' def lowerCamelCase__ ( _A , _A , _A ): with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.read() a , a : Tuple = REPLACE_PATTERNS[pattern] a : Dict = replace.replace('VERSION' , _A ) a : Dict = re_pattern.sub(_A , _A ) with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_A ) def lowerCamelCase__ ( _A ): for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern='examples' ) def lowerCamelCase__ ( _A , _A=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def lowerCamelCase__ ( ): a : Tuple = '🤗 Transformers currently provides the following architectures' a : Any = '1. Want to contribute a new model?' with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.readlines() # Find the start of the list. a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): a : List[Any] = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_A ) def lowerCamelCase__ ( ): with open(REPLACE_FILES['init'] , 'r' ) as f: a : Union[str, Any] = f.read() a : Tuple = REPLACE_PATTERNS['init'][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def lowerCamelCase__ ( _A=False ): a : int = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: a : Any = default_version.base_version elif patch: a : Dict = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: a : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. a : List[Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_A ) == 0: a : Union[str, Any] = default_version print(f"""Updating version to {version}.""" ) global_version_update(_A , patch=_A ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): a : int = get_version() a : Any = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" a : int = current_version.base_version # Check with the user we got that right. a : Tuple = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_A ) == 0: a : Optional[int] = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_A ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase: Tuple = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowerCAmelCase: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
96
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A (__A : List[str] , __A : Optional[Any]=False ) -> List[Any]: """simple docstring""" try: UpperCAmelCase_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value snake_case_ : Any = parse_flag_from_env("RUN_SLOW", default=False) def A (__A : Any ) -> Tuple: """simple docstring""" return unittest.skip('''Test was skipped''' )(__A ) def A (__A : int ) -> Dict: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__A ) def A (__A : Dict ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__A ) def A (__A : Dict ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__A ) def A (__A : Optional[Any] ) -> Any: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__A ) def A (__A : List[Any] ) -> str: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__A ) def A (__A : int ) -> Optional[int]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__A ) def A (__A : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__A ) def A (__A : List[Any] ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__A ) def A (__A : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__A ) def A (__A : List[str] ) -> List[str]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__A ) def A (__A : Optional[int] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__A ) def A (__A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__A ) def A (__A : Union[str, Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__A ) def A (__A : Dict ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__A ) def A (__A : Union[str, Any] ) -> str: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__A ) def A (__A : Any=None , __A : List[Any]=None ) -> List[str]: """simple docstring""" if test_case is None: return partial(__A , version=__A ) return unittest.skipUnless(is_torch_version('''>=''' , __A ) , F"""test requires torch version >= {version}""" )(__A ) def A (__A : Union[str, Any] ) -> Any: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__A ) def A (__A : Union[str, Any] ) -> str: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__A ) def A (__A : Any ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__A ) snake_case_ : Optional[int] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A (__A : Union[str, Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__A ) class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCamelCase ( cls : List[Any]): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() @classmethod def lowerCamelCase ( cls : Dict): """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def lowerCamelCase ( self : Tuple): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob('''**/*'''): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_snake_case) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[mock.Mock, List[mock.Mock]]): """simple docstring""" UpperCAmelCase_ = mocks if isinstance(_snake_case , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def A (__A : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ = AcceleratorState() UpperCAmelCase_ = tensor[None].clone().to(state.device ) UpperCAmelCase_ = gather(__A ).cpu() UpperCAmelCase_ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __A ): return False return True class __snake_case : def __init__( self : List[Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = returncode UpperCAmelCase_ = stdout UpperCAmelCase_ = stderr async def A (__A : List[Any] , __A : Union[str, Any] ) -> Tuple: """simple docstring""" while True: UpperCAmelCase_ = await stream.readline() if line: callback(__A ) else: break async def A (__A : Optional[int] , __A : Optional[int]=None , __A : Any=None , __A : List[Any]=None , __A : Any=False , __A : Optional[int]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__A ) ) UpperCAmelCase_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ = [] UpperCAmelCase_ = [] def tee(__A : Optional[int] , __A : List[Any] , __A : str , __A : Any="" ): UpperCAmelCase_ = line.decode('''utf-8''' ).rstrip() sink.append(__A ) if not quiet: print(__A , __A , file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __A : tee(__A , __A , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __A : tee(__A , __A , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__A , ) return _RunOutput(await p.wait() , __A , __A ) def A (__A : Dict , __A : Any=None , __A : Any=None , __A : List[Any]=180 , __A : Optional[int]=False , __A : Any=True ) -> _RunOutput: """simple docstring""" UpperCAmelCase_ = asyncio.get_event_loop() UpperCAmelCase_ = loop.run_until_complete( _stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) ) UpperCAmelCase_ = ''' '''.join(__A ) if result.returncode > 0: UpperCAmelCase_ = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class __snake_case ( a ): pass def A (__A : List[str] , __A : Tuple=False ) -> Optional[Any]: """simple docstring""" try: UpperCAmelCase_ = subprocess.check_output(__A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__A , '''decode''' ): UpperCAmelCase_ = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(__A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
51
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __A = False class UpperCAmelCase (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: List[str] = '''A painting of a squirrel eating a burger ''' lowercase__: str = torch.manual_seed(0 ) lowercase__: Union[str, Any] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) lowercase__: Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = generator.manual_seed(0 ) lowercase__: List[str] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _snake_case ( self ): lowercase__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Tuple = '''A painting of a squirrel eating a burger ''' lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: Tuple = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowercase__: Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__: Any = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
177
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A : int = pd.read_csv('''sample_data.csv''', header=None) __A : Dict = df.shape[:1][0] # If you're using some other dataset input the target column __A : Dict = df.iloc[:, 1:2] __A : Optional[Any] = actual_data.values.reshape(len_data, 1) __A : List[str] = MinMaxScaler().fit_transform(actual_data) __A : List[Any] = 10 __A : Tuple = 5 __A : Dict = 20 __A : Tuple = len_data - periods * look_back __A : Optional[int] = actual_data[:division] __A : Optional[int] = actual_data[division - look_back :] __A , __A : Dict = [], [] __A , __A : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A : str = np.array(train_x) __A : List[Any] = np.array(test_x) __A : Dict = np.array([list(i.ravel()) for i in train_y]) __A : Optional[int] = np.array([list(i.ravel()) for i in test_y]) __A : Tuple = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __A : Union[str, Any] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __A : Any = model.predict(x_test)
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def wrapper(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): UpperCamelCase = timeit.default_timer() UpperCamelCase = func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = timeit.default_timer() - starttime return delta UpperCamelCase = func.__name__ return wrapper def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = seq_shapes or {} for i in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_SCREAMING_SNAKE_CASE , _ArrayXD ): UpperCamelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_SCREAMING_SNAKE_CASE , datasets.Value ): if v.dtype == "string": UpperCamelCase = "The small grey turtle was surprisingly fast when challenged." else: UpperCamelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_SCREAMING_SNAKE_CASE , datasets.Sequence ): while isinstance(_SCREAMING_SNAKE_CASE , datasets.Sequence ): UpperCamelCase = v.feature UpperCamelCase = seq_shapes[k] UpperCamelCase = np.random.rand(*_SCREAMING_SNAKE_CASE ).astype(v.dtype ) UpperCamelCase = data dummy_data.append((i, example) ) return dummy_data def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase = generate_examples(_SCREAMING_SNAKE_CASE , num_examples=_SCREAMING_SNAKE_CASE , seq_shapes=_SCREAMING_SNAKE_CASE ) with ArrowWriter(features=_SCREAMING_SNAKE_CASE , path=_SCREAMING_SNAKE_CASE ) as writer: for key, record in dummy_data: UpperCamelCase = features.encode_example(_SCREAMING_SNAKE_CASE ) writer.write(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCamelCase = datasets.Dataset.from_file(filename=_SCREAMING_SNAKE_CASE , info=datasets.DatasetInfo(features=_SCREAMING_SNAKE_CASE ) ) return dataset
153
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return x.sum() def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _lowerCamelCase : UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> Optional[int]: UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": [1, 2], "b": [3, 4]} UpperCamelCase = {"a": {"1": 1}, "b": 2} UpperCamelCase = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"a": 2, "b": 3} UpperCamelCase = {"a": [2, 3], "b": [4, 5]} UpperCamelCase = {"a": {"1": 2}, "b": 3} UpperCamelCase = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) UpperCamelCase = 2 self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) UpperCamelCase = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} UpperCamelCase = {"a": 2, "b": 0, "c": 2} UpperCamelCase = { "a": np.eye(2 ).astype(__a ), "b": np.zeros(3 ).astype(__a ), "c": np.ones(2 ).astype(__a ), } self.assertEqual(map_nested(__a , __a , map_numpy=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__a , __a , map_numpy=__a , num_proc=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a , num_proc=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__a ): # can't pickle a local lambda map_nested(lambda __a : x + 1 , __a , num_proc=__a ) def snake_case_ (self ) -> Tuple: UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": 3, "b": 4} UpperCamelCase = {"a": 5, "b": 6} UpperCamelCase = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__a , __a , __a ) ) , __a ) def snake_case_ (self ) -> Dict: class _lowerCamelCase : UpperCAmelCase_ = "bar" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__a , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(_SCREAMING_SNAKE_CASE )} UpperCamelCase = map_nested(lambda _SCREAMING_SNAKE_CASE : x + 10 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _lowerCamelCase ( _lowercase ): @require_tf def snake_case_ (self ) -> str: import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(__a ).numpy() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def snake_case_ (self ) -> Tuple: import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(__a ).detach().numpy() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def snake_case_ (self ) -> Tuple: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def a__ ( ): """simple docstring""" UpperCamelCase = A(x=1 , y="foobar" ) UpperCamelCase = {"x": 1, "y": "foobar"} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output UpperCamelCase = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} UpperCamelCase = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(_SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y="foo" )] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return text.split() def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def a__ ( ): """simple docstring""" with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( _SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_SCREAMING_SNAKE_CASE ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(_SCREAMING_SNAKE_CASE ) == 4
153
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Union[str, Any] = logging.get_logger(__name__) A_ :Tuple = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""xlnet""" UpperCamelCase__ : Tuple =["""mems"""] UpperCamelCase__ : Any ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=32000 , lowerCamelCase__=1024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4096 , lowerCamelCase__="gelu" , lowerCamelCase__=True , lowerCamelCase__="bi" , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=-1 , lowerCamelCase__=False , lowerCamelCase__="last" , lowerCamelCase__=True , lowerCamelCase__="tanh" , lowerCamelCase__=0.1 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[int] =vocab_size __UpperCamelCase : int =d_model __UpperCamelCase : Optional[Any] =n_layer __UpperCamelCase : str =n_head if d_model % n_head != 0: raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) __UpperCamelCase : Optional[Any] =d_model // n_head __UpperCamelCase : List[Any] =ff_activation __UpperCamelCase : Tuple =d_inner __UpperCamelCase : List[Any] =untie_r __UpperCamelCase : List[Any] =attn_type __UpperCamelCase : Dict =initializer_range __UpperCamelCase : List[str] =layer_norm_eps __UpperCamelCase : List[str] =dropout __UpperCamelCase : int =mem_len __UpperCamelCase : List[Any] =reuse_len __UpperCamelCase : Union[str, Any] =bi_data __UpperCamelCase : Optional[Any] =clamp_len __UpperCamelCase : Tuple =same_length __UpperCamelCase : int =summary_type __UpperCamelCase : Dict =summary_use_proj __UpperCamelCase : Dict =summary_activation __UpperCamelCase : str =summary_last_dropout __UpperCamelCase : Dict =start_n_top __UpperCamelCase : Optional[Any] =end_n_top __UpperCamelCase : int =bos_token_id __UpperCamelCase : Union[str, Any] =pad_token_id __UpperCamelCase : Dict =eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCamelCase__ , ) __UpperCamelCase : Dict =kwargs['use_cache'] __UpperCamelCase : Optional[int] =use_mems_eval __UpperCamelCase : Any =use_mems_train super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
245
import itertools import math def A ( a_ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(a_ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( ) -> Tuple: __UpperCamelCase : Optional[Any] =2 while True: if is_prime(a_ ): yield num num += 1 def A ( a_ = 10_001 ) -> int: return next(itertools.islice(prime_generator() ,nth - 1 ,a_ ) ) if __name__ == "__main__": print(f"{solution() = }")
245
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[Any] = StableDiffusionDiffEditPipeline UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} UpperCamelCase : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase : Tuple = frozenset([] ) def __A ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A , ) lowerCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) lowerCamelCase = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_zero=A , ) torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCamelCase = CLIPTextModel(A ) lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , A , A=0 ) -> str: '''simple docstring''' lowerCamelCase = floats_tensor((1, 16, 16) , rng=random.Random(A ) ).to(A ) lowerCamelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(A ) else: lowerCamelCase = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self , A , A=0 ) -> Any: '''simple docstring''' lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(A ) else: lowerCamelCase = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self , A , A=0 ) -> str: '''simple docstring''' lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(A ) else: lowerCamelCase = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def __A ( self ) -> Tuple: '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A , A , A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) lowerCamelCase = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A , A ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = pipe_loaded(**A )[0] lowerCamelCase = np.abs(output - output_loaded ).max() self.assertLess(A , 1e-4 ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = """cpu""" lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_mask_inputs(A ) lowerCamelCase = pipe.generate_mask(**A ) lowerCamelCase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCamelCase = np.array([0] * 9 ) lowerCamelCase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = """cpu""" lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inversion_inputs(A ) lowerCamelCase = pipe.invert(**A ).images lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = """cpu""" lowerCamelCase = self.get_dummy_components() lowerCamelCase = {"""beta_start""": 0.00085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowerCamelCase = DPMSolverMultistepScheduler(**A ) lowerCamelCase = DPMSolverMultistepInverseScheduler(**A ) lowerCamelCase = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inversion_inputs(A ) lowerCamelCase = pipe.invert(**A ).images lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __A ( cls ) -> Any: '''simple docstring''' lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowerCamelCase = raw_image.convert("""RGB""" ).resize((7_68, 7_68) ) lowerCamelCase = raw_image def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa ) lowerCamelCase = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCamelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """a bowl of fruit""" lowerCamelCase = """a bowl of pears""" lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , ) lowerCamelCase = pipe.invert( prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A ).latents lowerCamelCase = pipe( prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowerCamelCase = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa ) lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCamelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """a bowl of fruit""" lowerCamelCase = """a bowl of pears""" lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , ) lowerCamelCase = pipe.invert( prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A , num_inference_steps=25 , ).latents lowerCamelCase = pipe( prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowerCamelCase = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
252
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = 1 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(A ) @property def __A ( self ) -> str: '''simple docstring''' def extract(*A , **A ): class __lowercase : """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' lowerCamelCase = torch.ones([0] ) def __A ( self , A ) -> Union[str, Any]: '''simple docstring''' self.pixel_values.to(A ) return self return Out() return extract def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCamelCase = 77 lowerCamelCase = self.dummy_image.to(A ) lowerCamelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=A , ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=A , return_dict=A , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCamelCase = 77 lowerCamelCase = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase = unet.half() lowerCamelCase = vae.half() lowerCamelCase = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type="""np""" , image=A , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase = init_image.resize((7_60, 5_04) ) lowerCamelCase = """BAAI/AltDiffusion""" lowerCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = """A fantasy landscape, trending on artstation""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type="""np""" , ) lowerCamelCase = output.images[0] lowerCamelCase = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) lowerCamelCase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCamelCase = init_image.resize((7_68, 5_12) ) lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowerCamelCase = """BAAI/AltDiffusion""" lowerCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = """A fantasy landscape, trending on artstation""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type="""np""" , ) lowerCamelCase = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
252
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ): '''simple docstring''' from .. import __version__ __snake_case : List[Any] = take_from __snake_case : List[Any] = () if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ): __snake_case : str = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __snake_case : Optional[Any] = None if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),) __snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),) __snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __snake_case : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0: __snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : int = call_frame.filename __snake_case : int = call_frame.lineno __snake_case : List[str] = call_frame.function __snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: return elif len(__SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
20
1
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
290
"""simple docstring""" import math def _snake_case ( lowercase__ ): return math.sqrt(lowercase__ ) * math.sqrt(lowercase__ ) == num def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[Any] = n while left <= right: _lowerCamelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _lowerCamelCase : str = mid - 1 else: _lowerCamelCase : Optional[int] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
96
0
def lowerCAmelCase__ ( a__: Optional[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = len(a__ ) for i in range(n - 1 ): for j in range(i + 1 , a__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowerCAmelCase__ ( a__: Optional[int] ) -> List[str]: '''simple docstring''' if len(a__ ) <= 1: return arr, 0 _UpperCAmelCase = len(a__ ) // 2 _UpperCAmelCase = arr[0:mid] _UpperCAmelCase = arr[mid:] _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(a__ ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(a__ ) _UpperCAmelCase , _UpperCAmelCase = _count_cross_inversions(a__ , a__ ) _UpperCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int] ) -> Any: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = _UpperCAmelCase = _UpperCAmelCase = 0 while i < len(a__ ) and j < len(a__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(a__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(a__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCAmelCase = count_inversions_bf(a__ ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , a__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCAmelCase = count_inversions_bf(a__ ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , a__ ) # an empty list should also have zero inversions _UpperCAmelCase = [] _UpperCAmelCase = count_inversions_bf(a__ ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , a__ ) if __name__ == "__main__": main()
185
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCAmelCase__ :Tuple = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowerCAmelCase__ :Optional[int] = parser.parse_args() if args.model_type == "bert": lowerCAmelCase__ :Tuple = BertForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase__ :Optional[int] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') lowerCAmelCase__ :Any = model.state_dict() lowerCAmelCase__ :Dict = {} for w in ["word_embeddings", "position_embeddings"]: lowerCAmelCase__ :List[Any] = state_dict[f'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: lowerCAmelCase__ :Union[str, Any] = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}'''] lowerCAmelCase__ :str = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: lowerCAmelCase__ :Any = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] lowerCAmelCase__ :List[str] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] lowerCAmelCase__ :int = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 lowerCAmelCase__ :Optional[int] = state_dict['''cls.predictions.decoder.weight'''] lowerCAmelCase__ :List[str] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase__ :Any = state_dict[f'''cls.predictions.transform.dense.{w}'''] lowerCAmelCase__ :List[str] = state_dict[f'''cls.predictions.transform.LayerNorm.{w}'''] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
185
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = RobertaTokenizer lowerCAmelCase_ = RobertaTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'''cls_token''': '''<s>'''} def _snake_case ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase_ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowercase_ : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase_ : Union[str, Any] = {'''unk_token''': '''<unk>'''} lowercase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = '''lower newer''' lowercase_ : Dict = '''lower newer''' return input_text, output_text def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ : List[Any] = '''lower newer''' lowercase_ : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowercase_ : Union[str, Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokens + [tokenizer.unk_token] lowercase_ : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.tokenizer_class.from_pretrained('''roberta-base''' ) lowercase_ : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.get_tokenizer() lowercase_ : Optional[Any] = '''Encode this sequence.''' lowercase_ : Optional[Any] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments lowercase_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowercase_ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens lowercase_ : Any = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space lowercase_ : List[Any] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) lowercase_ : int = '''Encode <mask> sequence''' lowercase_ : List[Any] = '''Encode <mask>sequence''' lowercase_ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = encoded.index(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = encoded.index(__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : str = '''A, <mask> AllenNLP sentence.''' lowercase_ : Optional[int] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowercase_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase_ : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _snake_case ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase_ : List[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Optional[Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ : int = F'''{text_of_1_token} {text_of_1_token}''' lowercase_ : Dict = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : List[str] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
93
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block SCREAMING_SNAKE_CASE : int = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = output_channel SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i] SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU() SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Tuple = False def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = x SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[Any] ): def custom_forward(*lowerCamelCase_ : List[str] ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ ) # post-process SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = layers_per_block SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] ) SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None # mid SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : List[Any] = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : Dict = nn.SiLU() SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Dict = False def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = z SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[str] ): def custom_forward(*lowerCamelCase_ : str ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Tuple = n_e SCREAMING_SNAKE_CASE : int = vq_embed_dim SCREAMING_SNAKE_CASE : Tuple = beta SCREAMING_SNAKE_CASE : Union[str, Any] = legacy SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE : Optional[Any] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0] SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed SCREAMING_SNAKE_CASE : Any = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: SCREAMING_SNAKE_CASE : Optional[int] = n_e SCREAMING_SNAKE_CASE : Any = sane_index_shape def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 ) SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE : Any = self.unknown_index return new.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : List[str] = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' if self.remap is not None: SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ ) if shape is not None: SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parameters SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE : Dict = deterministic SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample return x def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return self.mean
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
125
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 512 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Tuple ): '''simple docstring''' ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ) # Also check the case where encoder outputs are not passed _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFEsmForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __snake_case : Tuple = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __snake_case : List[str] = False __snake_case : Union[str, Any] = False def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _SCREAMING_SNAKE_CASE = model.get_bias() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for k, v in name.items(): assert isinstance(UpperCAmelCase_ , tf.Variable ) else: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase_ ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
1
'''simple docstring''' from statistics import mean, stdev def lowerCAmelCase (__A , __A = 3): """simple docstring""" _a = min(__a) _a = max(__a) # normalize data return [round((x - x_min) / (x_max - x_min) , __a) for x in data] def lowerCAmelCase (__A , __A = 3): """simple docstring""" _a = mean(__a) _a = stdev(__a) # standardize data return [round((x - mu) / (sigma) , __a) for x in data]
211
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """visual_bert""" def __init__(self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = visual_embedding_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = type_vocab_size UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = bypass_transformer UpperCamelCase__ = special_visual_initialize
244
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowercase ) def A_ ( self ): _lowerCamelCase : str = self.dummy_uncond_unet _lowerCamelCase : Tuple = DDIMScheduler() _lowerCamelCase : Union[str, Any] = self.dummy_vq_model _lowerCamelCase : Optional[int] = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Any = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' ).images _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : int = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase )[0] _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] _lowerCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : List[Any] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) _lowerCamelCase : Dict = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : Any = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy' ).images _lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : Optional[Any] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) _lowerCamelCase : Union[str, Any] = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase : Any = logging.get_logger(__name__) # General docstring lowercase : Tuple = """RegNetConfig""" # Base docstring lowercase : int = """facebook/regnet-y-040""" lowercase : str = [1, 1088, 7, 7] # Image classification docstring lowercase : Tuple = """facebook/regnet-y-040""" lowercase : Optional[int] = """tabby, tabby cat""" lowercase : str = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case = 3 ,snake_case = 1 ,snake_case = 1 ,snake_case = "relu" ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase : Any = tf.keras.layers.ConvaD( filters=snake_case ,kernel_size=snake_case ,strides=snake_case ,padding="""VALID""" ,groups=snake_case ,use_bias=snake_case ,name="""convolution""" ,) lowercase : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name="""normalization""" ) lowercase : Dict = ACTaFN[activation] if activation is not None else tf.identity def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.convolution(self.padding(snake_case ) ) lowercase : Any = self.normalization(snake_case ) lowercase : int = self.activation(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : Dict = config.num_channels lowercase : Any = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="""embedder""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = shape_list(snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase : str = tf.transpose(snake_case ,perm=(0, 2, 3, 1) ) lowercase : Dict = self.embedder(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case = 2 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : Dict = tf.keras.layers.ConvaD( filters=snake_case ,kernel_size=1 ,strides=snake_case ,use_bias=snake_case ,name="""convolution""" ) lowercase : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name="""normalization""" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case ) ,training=snake_case ) class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case ,name="""pooler""" ) lowercase : Dict = [ tf.keras.layers.ConvaD(filters=snake_case ,kernel_size=1 ,activation="""relu""" ,name="""attention.0""" ), tf.keras.layers.ConvaD(filters=snake_case ,kernel_size=1 ,activation="""sigmoid""" ,name="""attention.2""" ), ] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.pooler(snake_case ) for layer_module in self.attention: lowercase : List[Any] = layer_module(snake_case ) lowercase : Union[str, Any] = hidden_state * pooled return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case = 1 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : List[Any] = in_channels != out_channels or stride != 1 lowercase : Tuple = max(1 ,out_channels // config.groups_width ) lowercase : str = ( TFRegNetShortCut(snake_case ,stride=snake_case ,name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" ,name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase : List[Any] = [ TFRegNetConvLayer(snake_case ,kernel_size=1 ,activation=config.hidden_act ,name="""layer.0""" ), TFRegNetConvLayer( snake_case ,stride=snake_case ,groups=snake_case ,activation=config.hidden_act ,name="""layer.1""" ), TFRegNetConvLayer(snake_case ,kernel_size=1 ,activation=snake_case ,name="""layer.2""" ), ] lowercase : Any = ACTaFN[config.hidden_act] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = hidden_state for layer_module in self.layers: lowercase : Optional[int] = layer_module(snake_case ) lowercase : Optional[Any] = self.shortcut(snake_case ) hidden_state += residual lowercase : Dict = self.activation(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case = 1 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : Optional[Any] = in_channels != out_channels or stride != 1 lowercase : List[Any] = max(1 ,out_channels // config.groups_width ) lowercase : Optional[Any] = ( TFRegNetShortCut(snake_case ,stride=snake_case ,name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" ,name="""shortcut""" ) ) lowercase : Optional[int] = [ TFRegNetConvLayer(snake_case ,kernel_size=1 ,activation=config.hidden_act ,name="""layer.0""" ), TFRegNetConvLayer( snake_case ,stride=snake_case ,groups=snake_case ,activation=config.hidden_act ,name="""layer.1""" ), TFRegNetSELayer(snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ,name="""layer.2""" ), TFRegNetConvLayer(snake_case ,kernel_size=1 ,activation=snake_case ,name="""layer.3""" ), ] lowercase : List[Any] = ACTaFN[config.hidden_act] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = hidden_state for layer_module in self.layers: lowercase : Tuple = layer_module(snake_case ) lowercase : Union[str, Any] = self.shortcut(snake_case ) hidden_state += residual lowercase : Optional[int] = self.activation(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case = 2 ,snake_case = 2 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : List[str] = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer lowercase : List[Any] = [ # downsampling is done in the first layer with stride of 2 layer(snake_case ,snake_case ,snake_case ,stride=snake_case ,name="""layers.0""" ), *[layer(snake_case ,snake_case ,snake_case ,name=f"layers.{i+1}" ) for i in range(depth - 1 )], ] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' for layer_module in self.layers: lowercase : Dict = layer_module(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : int = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="""stages.0""" ,) ) lowercase : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case ,snake_case ,snake_case ,depth=snake_case ,name=f"stages.{i+1}" ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = False ,snake_case = True ): '''simple docstring''' lowercase : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase : str = hidden_states + (hidden_state,) lowercase : Union[str, Any] = stage_module(snake_case ) if output_hidden_states: lowercase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case ,hidden_states=snake_case ) @keras_serializable class __snake_case ( tf.keras.layers.Layer ): _a : List[Any]= RegNetConfig def __init__( self ,snake_case ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : List[str] = config lowercase : Optional[int] = TFRegNetEmbeddings(snake_case ,name="""embedder""" ) lowercase : List[Any] = TFRegNetEncoder(snake_case ,name="""encoder""" ) lowercase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case ,name="""pooler""" ) @unpack_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case = False ,): '''simple docstring''' lowercase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowercase : List[Any] = self.embedder(snake_case ,training=snake_case ) lowercase : Optional[Any] = self.encoder( snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ,training=snake_case ) lowercase : Optional[Any] = encoder_outputs[0] lowercase : Optional[int] = self.pooler(snake_case ) # Change to NCHW output format have uniformity in the modules lowercase : Union[str, Any] = tf.transpose(snake_case ,perm=(0, 3, 1, 2) ) lowercase : Dict = tf.transpose(snake_case ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase : Any = tuple([tf.transpose(snake_case ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case ,pooler_output=snake_case ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= RegNetConfig _a : Optional[int]= "regnet" _a : str= "pixel_values" @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) ,dtype=tf.floataa )} lowercase : Union[str, Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase : Tuple = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase , ) class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(snake_case ,*snake_case ,**snake_case ) lowercase : Dict = TFRegNetMainLayer(snake_case ,name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=snake_case ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case=False ,): '''simple docstring''' lowercase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Optional[int] = self.regnet( pixel_values=snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ,training=snake_case ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase , ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): def __init__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(snake_case ,*snake_case ,**snake_case ) lowercase : Optional[int] = config.num_labels lowercase : Optional[Any] = TFRegNetMainLayer(snake_case ,name="""regnet""" ) # classification head lowercase : Union[str, Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case=False ,): '''simple docstring''' lowercase : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Optional[int] = self.regnet( snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ,training=snake_case ) lowercase : Any = outputs.pooler_output if return_dict else outputs[1] lowercase : Dict = self.classifier[0](snake_case ) lowercase : Optional[int] = self.classifier[1](snake_case ) lowercase : Dict = None if labels is None else self.hf_compute_loss(labels=snake_case ,logits=snake_case ) if not return_dict: lowercase : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case ,logits=snake_case ,hidden_states=outputs.hidden_states )
20
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
1
def SCREAMING_SNAKE_CASE__ ( __a ): def merge(__a , __a ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_UpperCamelCase ) <= 1: return collection snake_case_ : str = len(_UpperCamelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
368
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = u for i in range(1 , __a ): snake_case_ : Optional[Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = int(input('enter the numbers of values: ' ) ) snake_case_ : list[list[float]] = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) snake_case_ : str = 0 print('enter the values of parameters in a list: ' ) snake_case_ : int = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): snake_case_ : Union[str, Any] = float(input() ) snake_case_ : int = int(input('enter the value to interpolate: ' ) ) snake_case_ : List[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): snake_case_ : int = y[j + 1][i - 1] - y[j][i - 1] snake_case_ : str = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
88
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig A__ : List[str] = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring A__ : Union[str, Any] = """UperNetConfig""" class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , ) -> None: super().__init__() __lowerCamelCase : Optional[int] = nn.Convad( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , dilation=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[str] = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = nn.ReLU() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> torch.Tensor: __lowerCamelCase : List[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = self.batch_norm(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.activation(SCREAMING_SNAKE_CASE_ ) return output class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: super().__init__() __lowerCamelCase : str = [ nn.AdaptiveAvgPoolad(SCREAMING_SNAKE_CASE_ ), UperNetConvModule(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> torch.Tensor: __lowerCamelCase : Union[str, Any] = input for layer in self.layers: __lowerCamelCase : str = layer(SCREAMING_SNAKE_CASE_ ) return hidden_state class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: super().__init__() __lowerCamelCase : Optional[int] = pool_scales __lowerCamelCase : List[Any] = align_corners __lowerCamelCase : str = in_channels __lowerCamelCase : List[Any] = channels __lowerCamelCase : int = [] for i, pool_scale in enumerate(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = UperNetPyramidPoolingBlock(pool_scale=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , channels=SCREAMING_SNAKE_CASE_ ) self.blocks.append(SCREAMING_SNAKE_CASE_ ) self.add_module(str(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[torch.Tensor]: __lowerCamelCase : Optional[int] = [] for ppm in self.blocks: __lowerCamelCase : Dict = ppm(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = nn.functional.interpolate( SCREAMING_SNAKE_CASE_ , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(SCREAMING_SNAKE_CASE_ ) return ppm_outs class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: super().__init__() __lowerCamelCase : Union[str, Any] = config __lowerCamelCase : int = config.pool_scales # e.g. (1, 2, 3, 6) __lowerCamelCase : Tuple = in_channels __lowerCamelCase : Union[str, Any] = config.hidden_size __lowerCamelCase : int = False __lowerCamelCase : Optional[int] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __lowerCamelCase : List[str] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __lowerCamelCase : Optional[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __lowerCamelCase : List[Any] = nn.ModuleList() __lowerCamelCase : Dict = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __lowerCamelCase : int = UperNetConvModule(SCREAMING_SNAKE_CASE_ , self.channels , kernel_size=1 ) __lowerCamelCase : str = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(SCREAMING_SNAKE_CASE_ ) self.fpn_convs.append(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowercase_ ( self ) -> List[Any]: self.apply(self._init_weights ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : int = inputs[-1] __lowerCamelCase : List[Any] = [x] psp_outs.extend(self.psp_modules(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : str = torch.cat(SCREAMING_SNAKE_CASE_ , dim=1 ) __lowerCamelCase : Tuple = self.bottleneck(SCREAMING_SNAKE_CASE_ ) return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> torch.Tensor: # build laterals __lowerCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(SCREAMING_SNAKE_CASE_ ) ) # build top-down path __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __lowerCamelCase : str = laterals[i - 1].shape[2:] __lowerCamelCase : str = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=SCREAMING_SNAKE_CASE_ , mode='bilinear' , align_corners=self.align_corners ) # build outputs __lowerCamelCase : Optional[int] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __lowerCamelCase : str = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) __lowerCamelCase : Tuple = torch.cat(SCREAMING_SNAKE_CASE_ , dim=1 ) __lowerCamelCase : Tuple = self.fpn_bottleneck(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self.classifier(SCREAMING_SNAKE_CASE_ ) return output class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 1 ) -> None: super().__init__() __lowerCamelCase : List[Any] = config __lowerCamelCase : Dict = config.auxiliary_in_channels __lowerCamelCase : List[str] = config.auxiliary_channels __lowerCamelCase : List[Any] = config.auxiliary_num_convs __lowerCamelCase : List[Any] = config.auxiliary_concat_input __lowerCamelCase : Any = in_index __lowerCamelCase : Dict = (kernel_size // 2) * dilation __lowerCamelCase : Union[str, Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , dilation=SCREAMING_SNAKE_CASE_ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , dilation=SCREAMING_SNAKE_CASE_ ) ) if self.num_convs == 0: __lowerCamelCase : Any = nn.Identity() else: __lowerCamelCase : Any = nn.Sequential(*SCREAMING_SNAKE_CASE_ ) if self.concat_input: __lowerCamelCase : Any = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE_ , padding=kernel_size // 2 ) __lowerCamelCase : Union[str, Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowercase_ ( self ) -> int: self.apply(self._init_weights ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> torch.Tensor: # just take the relevant feature maps __lowerCamelCase : Optional[int] = encoder_hidden_states[self.in_index] __lowerCamelCase : int = self.convs(SCREAMING_SNAKE_CASE_ ) if self.concat_input: __lowerCamelCase : Optional[int] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __lowerCamelCase : Optional[Any] = self.classifier(SCREAMING_SNAKE_CASE_ ) return output class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : int = UperNetConfig lowerCamelCase : List[Any] = 'pixel_values' lowerCamelCase : Dict = True def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowercase_ ( self ) -> Optional[int]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : List[str] = value A__ : Union[str, Any] = R""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ A__ : List[Any] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , _UpperCAmelCase , ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __lowerCamelCase : List[Any] = UperNetHead(SCREAMING_SNAKE_CASE_ , in_channels=self.backbone.channels ) __lowerCamelCase : Optional[Any] = UperNetFCNHead(SCREAMING_SNAKE_CASE_ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> Union[tuple, SemanticSegmenterOutput]: __lowerCamelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Any = output_attentions if output_attentions is not None else self.config.output_attentions __lowerCamelCase : str = self.backbone.forward_with_filtered_kwargs( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = outputs.feature_maps __lowerCamelCase : Optional[int] = self.decode_head(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.functional.interpolate(SCREAMING_SNAKE_CASE_ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = None if self.auxiliary_head is not None: __lowerCamelCase : str = self.auxiliary_head(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = nn.functional.interpolate( SCREAMING_SNAKE_CASE_ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss __lowerCamelCase : int = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __lowerCamelCase : Optional[int] = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __lowerCamelCase : Optional[int] = (logits,) + outputs[1:] else: __lowerCamelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
185
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) __lowerCamelCase : Dict = img __lowerCamelCase : Any = img.shape[1] __lowerCamelCase : Optional[int] = img.shape[0] __lowerCamelCase : Dict = dst_width __lowerCamelCase : str = dst_height __lowerCamelCase : Dict = self.src_w / self.dst_w __lowerCamelCase : List[Any] = self.src_h / self.dst_h __lowerCamelCase : Optional[int] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def lowercase_ ( self ) -> List[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase : Union[str, Any] = self.img[self.get_y(SCREAMING_SNAKE_CASE_ )][self.get_x(SCREAMING_SNAKE_CASE_ )] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: return int(self.ratio_x * x ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": A__ , A__ : Optional[Any] = 800, 600 A__ : List[str] = imread("""image_data/lena.jpg""", 1) A__ : List[Any] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
185
1
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=[0.5, 0.5, 0.5] , a_=[0.5, 0.5, 0.5] , ): '''simple docstring''' __snake_case : str = size if size is not None else {'''height''': 18, '''width''': 18} __snake_case : str = parent __snake_case : Optional[Any] = batch_size __snake_case : int = num_channels __snake_case : List[Any] = image_size __snake_case : Optional[int] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[str] = do_resize __snake_case : str = size __snake_case : Union[str, Any] = do_normalize __snake_case : Optional[Any] = image_mean __snake_case : str = image_std def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''image_mean''' ) ) self.assertTrue(hasattr(a_ , '''image_std''' ) ) self.assertTrue(hasattr(a_ , '''do_normalize''' ) ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
364
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
0
'''simple docstring''' from __future__ import annotations import numpy as np def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: UpperCAmelCase_ , UpperCAmelCase_ : int = np.shape(SCREAMING_SNAKE_CASE__ ) if rows != columns: UpperCAmelCase_ : Any = ( '''\'table\' has to be of square shaped array but got a ''' F"""{rows}x{columns} array:\n{table}""" ) raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = np.zeros((rows, columns) ) UpperCAmelCase_ : Optional[int] = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : List[Any] = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE__ ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) UpperCAmelCase_ : str = (table[i][j] - total) / upper[j][j] UpperCAmelCase_ : Union[str, Any] = 1 for j in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Tuple = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
125
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Union[str, Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
125
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase__ : List[Any] = get_tests_dir("fixtures/dummy-config.json") class a__ ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = 0 def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(A , A ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = AutoConfig.from_pretrained(A ) self.assertIsInstance(A , A ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = AutoConfig.from_pretrained(A ) self.assertIsInstance(A , A ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = AutoConfig.for_model("roberta" ) self.assertIsInstance(A , A ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. a = os.path.join(A , "fake-roberta" ) os.makedirs(A , exist_ok=A ) with open(os.path.join(A , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) a = AutoConfig.from_pretrained(A ) self.assertEqual(type(A ) , A ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' try: AutoConfig.register("custom" , A ) # Wrong model type will raise an error with self.assertRaises(A ): AutoConfig.register("model" , A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A ): AutoConfig.register("bert" , A ) # Now that the config is registered, it can be used as any other config with the auto-API a = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) a = AutoConfig.from_pretrained(A ) self.assertIsInstance(A , A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( A , "bert-base is not a local folder and is not a valid model identifier" ): a = AutoConfig.from_pretrained("bert-base" ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( A , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): a = AutoConfig.from_pretrained(A , revision="aaaaaa" ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( A , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): a = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(A ): a = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(A ): a = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=A ) a = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=A ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) a = AutoConfig.from_pretrained(A , trust_remote_code=A ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' class a__ ( UpperCamelCase__ ): a : Any = """new-model""" try: AutoConfig.register("new-model" , A ) # If remote code is not set, the default is to use local a = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. a = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=A ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub a = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=A ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
180
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowercase__ : Optional[int] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) lowercase__ : List[str] = "sshleifer/student_marian_en_ro_6_1" lowercase__ : List[Any] = "sshleifer/tiny-mbart" @require_torch class a__ ( UpperCamelCase__ ): def lowerCAmelCase_ ( self , A=False , A=None , A=True , A=True , A=True , A=True , ) -> List[Any]: '''simple docstring''' a = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A , num_train_epochs=1 , distributed=A , extra_args_str=A , predict_with_generate=A , do_train=A , do_eval=A , do_predict=A , ) a = TrainerState.load_from_json(os.path.join(A , "trainer_state.json" ) ).log_history if not do_eval: return a = [log for log in logs if "eval_loss" in log.keys()] a = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats a = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , A ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' self.run_seqaseq_quick(distributed=A ) @require_torch_multi_gpu def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' self.run_seqaseq_quick(distributed=A ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=A ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' self.run_seqaseq_quick( distributed=A , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=A ) @require_apex @require_torch_gpu def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' self.run_seqaseq_quick(distributed=A , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def lowerCAmelCase_ ( self , A ) -> Dict: '''simple docstring''' a = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } a = experiments[experiment_id] a = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} a = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**A , extra_args_str=data["extra_args_str"] ) a = len(re.findall(A , cl.err ) ) self.assertEqual(A , data["n_matches"] ) @slow def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.run_trainer( eval_steps=2 , max_len=128 , model_name=A , learning_rate=3e-4 , num_train_epochs=10 , distributed=A , ) # Check metrics a = TrainerState.load_from_json(os.path.join(A , "trainer_state.json" ) ).log_history a = [log for log in logs if "eval_loss" in log.keys()] a = eval_metrics[0] a = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , A ) # test if do_predict saves generations and metrics a = os.listdir(A ) a = {os.path.basename(A ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(A ) -> Tuple[int, float]: a = "--skip_memory_metrics 0" a = self.run_trainer( max_len=128 , model_name=A , learning_rate=3e-4 , num_train_epochs=1 , optim=A , distributed=A , extra_args_str=A , do_eval=A , do_predict=A , n_gpus_to_use=1 , ) # Check metrics a = TrainerState.load_from_json(Path(A , "trainer_state.json" ) ).log_history a = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) a = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) a = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss a , a , a = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) a , a , a = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) a = gpu_alloc_mem_orig - gpu_alloc_mem_bnb a = gpu_peak_mem_orig + gpu_alloc_mem_orig a = gpu_peak_mem_bnb + gpu_alloc_mem_bnb a = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings a = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A , A , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( A , A , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( A , A , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase_ ( self , A , A , A , A = 3e-3 , A = "adafactor" , A = False , A = None , A = 0 , A = True , A = True , A = True , A = True , A = None , ) -> Tuple: '''simple docstring''' a = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" a = self.get_auto_remove_tmp_dir() a = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(A )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(A )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() a = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(A )} '''.split() a = "\n --do_predict\n ".split() a = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: a = get_gpu_count() a = get_torch_dist_unique_port() a = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() a = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A , env=self.get_env() ) else: a = ["run_translation.py"] + args with patch.object(A , "argv" , A ): main() return output_dir
180
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase__( unittest.TestCase): @property def lowerCAmelCase__ ( self: Optional[int] ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self: Optional[Any] ): torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self: Any ): torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = DDIMScheduler() __lowerCamelCase = self.dummy_vq_model __lowerCamelCase = LDMPipeline(unet=UpperCamelCase_ , vqvae=UpperCamelCase_ , scheduler=UpperCamelCase_ ) ldm.to(UpperCamelCase_ ) ldm.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = ldm(generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""numpy""" ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = ldm(generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=UpperCamelCase_ )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) __lowerCamelCase = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(UpperCamelCase_ ) ldm.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = ldm(generator=UpperCamelCase_ , num_inference_steps=5 , output_type="""numpy""" ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) __lowerCamelCase = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
12
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
1
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _UpperCAmelCase ( a ): '''simple docstring''' def __init__( self , A , A , A=1_0_2_4 , A=1_0_2_4 , A=3.6 ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = tokenizer _UpperCAmelCase : str = tokenizer.bos_token_id _UpperCAmelCase : Optional[Any] = dataset _UpperCAmelCase : Any = seq_length _UpperCAmelCase : Dict = seq_length * chars_per_token * num_of_sequences def __iter__( self ) -> Tuple: _UpperCAmelCase : List[Any] = iter(self.dataset ) _UpperCAmelCase : Optional[Any] = True while more_examples: _UpperCAmelCase , _UpperCAmelCase : str = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: _UpperCAmelCase : int = False break _UpperCAmelCase : Dict = tokenizer(A , truncation=A )['''input_ids'''] _UpperCAmelCase : Dict = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(A ) , self.seq_length ): _UpperCAmelCase : Any = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): _UpperCAmelCase : int = {'''streaming''': True} _UpperCAmelCase : List[str] = load_dataset(args.dataset_name , split='''train''' , **UpperCamelCase__ ) _UpperCAmelCase : Any = ConstantLengthDataset(UpperCamelCase__ , UpperCamelCase__ , seq_length=args.seq_length ) _UpperCAmelCase : str = DataLoader(UpperCamelCase__ , batch_size=args.batch_size ) return eval_dataloader def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): model.eval() _UpperCAmelCase : Tuple = [] for step, batch in enumerate(UpperCamelCase__ ): with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) _UpperCAmelCase : int = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(UpperCamelCase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _UpperCAmelCase : Union[str, Any] = torch.mean(torch.cat(UpperCamelCase__ ) ) try: _UpperCAmelCase : Dict = torch.exp(UpperCamelCase__ ) except OverflowError: _UpperCAmelCase : List[Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _lowerCAmelCase :str = Accelerator() # Parse configuration _lowerCAmelCase :List[Any] = HfArgumentParser(EvaluationArguments) _lowerCAmelCase :Any = parser.parse_args() set_seed(args.seed) # Logging _lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _lowerCAmelCase :Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _lowerCAmelCase :List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _lowerCAmelCase :Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _lowerCAmelCase,_lowerCAmelCase :Any = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _lowerCAmelCase,_lowerCAmelCase :List[Any] = evaluate(args) logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
68
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ): _UpperCAmelCase : str = tau * frequency / samplerate _UpperCAmelCase : int = sin(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = cos(UpperCamelCase__ ) _UpperCAmelCase : Any = _sin / (2 * q_factor) _UpperCAmelCase : Any = (1 - _cos) / 2 _UpperCAmelCase : Tuple = 1 - _cos _UpperCAmelCase : List[str] = 1 + alpha _UpperCAmelCase : Union[str, Any] = -2 * _cos _UpperCAmelCase : Optional[Any] = 1 - alpha _UpperCAmelCase : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ): _UpperCAmelCase : List[str] = tau * frequency / samplerate _UpperCAmelCase : Dict = sin(UpperCamelCase__ ) _UpperCAmelCase : Dict = cos(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = _sin / (2 * q_factor) _UpperCAmelCase : Dict = (1 + _cos) / 2 _UpperCAmelCase : Dict = -1 - _cos _UpperCAmelCase : Optional[Any] = 1 + alpha _UpperCAmelCase : str = -2 * _cos _UpperCAmelCase : Union[str, Any] = 1 - alpha _UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ): _UpperCAmelCase : List[Any] = tau * frequency / samplerate _UpperCAmelCase : Optional[int] = sin(UpperCamelCase__ ) _UpperCAmelCase : Dict = cos(UpperCamelCase__ ) _UpperCAmelCase : str = _sin / (2 * q_factor) _UpperCAmelCase : Tuple = _sin / 2 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Dict = -ba _UpperCAmelCase : str = 1 + alpha _UpperCAmelCase : List[str] = -2 * _cos _UpperCAmelCase : str = 1 - alpha _UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 / sqrt(2 ) ): _UpperCAmelCase : Tuple = tau * frequency / samplerate _UpperCAmelCase : Dict = sin(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = cos(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) _UpperCAmelCase : Optional[Any] = 1 - alpha _UpperCAmelCase : Optional[int] = -2 * _cos _UpperCAmelCase : str = 1 + alpha _UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ): _UpperCAmelCase : List[str] = tau * frequency / samplerate _UpperCAmelCase : Union[str, Any] = sin(UpperCamelCase__ ) _UpperCAmelCase : int = cos(UpperCamelCase__ ) _UpperCAmelCase : Dict = _sin / (2 * q_factor) _UpperCAmelCase : int = 10 ** (gain_db / 40) _UpperCAmelCase : Union[str, Any] = 1 + alpha * big_a _UpperCAmelCase : int = -2 * _cos _UpperCAmelCase : Any = 1 - alpha * big_a _UpperCAmelCase : Dict = 1 + alpha / big_a _UpperCAmelCase : str = -2 * _cos _UpperCAmelCase : Union[str, Any] = 1 - alpha / big_a _UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ): _UpperCAmelCase : str = tau * frequency / samplerate _UpperCAmelCase : List[Any] = sin(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = cos(UpperCamelCase__ ) _UpperCAmelCase : Dict = _sin / (2 * q_factor) _UpperCAmelCase : List[str] = 10 ** (gain_db / 40) _UpperCAmelCase : int = (big_a + 1) - (big_a - 1) * _cos _UpperCAmelCase : List[str] = (big_a + 1) + (big_a - 1) * _cos _UpperCAmelCase : List[Any] = (big_a - 1) - (big_a + 1) * _cos _UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos _UpperCAmelCase : Optional[int] = 2 * sqrt(UpperCamelCase__ ) * alpha _UpperCAmelCase : Optional[Any] = big_a * (pmc + aaa) _UpperCAmelCase : List[Any] = 2 * big_a * mpc _UpperCAmelCase : Any = big_a * (pmc - aaa) _UpperCAmelCase : Union[str, Any] = ppmc + aaa _UpperCAmelCase : Dict = -2 * pmpc _UpperCAmelCase : str = ppmc - aaa _UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float = 1 / sqrt(2 ) , ): _UpperCAmelCase : Tuple = tau * frequency / samplerate _UpperCAmelCase : Dict = sin(UpperCamelCase__ ) _UpperCAmelCase : str = cos(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) _UpperCAmelCase : str = 10 ** (gain_db / 40) _UpperCAmelCase : Any = (big_a + 1) - (big_a - 1) * _cos _UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCAmelCase : Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos _UpperCAmelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCAmelCase : Union[str, Any] = 2 * sqrt(UpperCamelCase__ ) * alpha _UpperCAmelCase : str = big_a * (ppmc + aaa) _UpperCAmelCase : List[str] = -2 * big_a * pmpc _UpperCAmelCase : Any = big_a * (ppmc - aaa) _UpperCAmelCase : str = pmc + aaa _UpperCAmelCase : Any = 2 * mpc _UpperCAmelCase : Tuple = pmc - aaa _UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
68
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __A : '''simple docstring''' def __init__( self : List[Any] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : int ) -> Tuple: """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) lowercase__ : Dict = img lowercase__ : List[Any] = img.shape[1] lowercase__ : Optional[Any] = img.shape[0] lowercase__ : List[Any] = dst_width lowercase__ : Any = dst_height lowercase__ : Union[str, Any] = self.src_w / self.dst_w lowercase__ : str = self.src_h / self.dst_h lowercase__ : Any = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): lowercase__ : Optional[int] = self.img[self.get_y(_snake_case )][self.get_x(_snake_case )] def UpperCAmelCase ( self : Dict ,_snake_case : int ) -> int: """simple docstring""" return int(self.ratio_x * x ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : int ) -> int: """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowerCAmelCase_ ,lowerCAmelCase_ = 800, 600 lowerCAmelCase_ = imread('image_data/lena.jpg', 1) lowerCAmelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
16
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( A_ ): '''simple docstring''' __magic_name__ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(A_, A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ , __magic_name__ = emb.weight.shape __magic_name__ = nn.Linear(A_, A_, bias=A_ ) __magic_name__ = emb.weight.data return lin_layer def a__ ( A_ ): '''simple docstring''' __magic_name__ = torch.load(A_, map_location="""cpu""" ) __magic_name__ = Namespace(**checkpoint["""cfg"""]["""model"""] ) __magic_name__ = checkpoint["""model"""] remove_ignore_keys_(A_ ) __magic_name__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] __magic_name__ = {key.replace("""decoder""", """model""" ): val for key, val in state_dict.items()} __magic_name__ = XGLMConfig( vocab_size=A_, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="""gelu""", scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) __magic_name__ = XGLMForCausalLM(A_ ) __magic_name__ = model.load_state_dict(A_, strict=A_ ) print(A_ ) __magic_name__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
88
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class A: '''simple docstring''' pass
357
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
208
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __a = trt.Logger(trt.Logger.WARNING) __a = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __a = logging.getLogger(__name__) __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __a = parser.parse_args() if args.tokenizer_name: __a = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __a = args.per_device_eval_batch_size __a = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __a = True __a = 'temp_engine/bert-fp32.engine' if args.fpaa: __a = 'temp_engine/bert-fp16.engine' if args.inta: __a = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __a = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __a = [network.get_input(i) for i in range(network.num_inputs)] __a = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __a = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __a = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __a = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def a ( snake_case__: str , snake_case__: Dict , snake_case__: Tuple , snake_case__: Any , snake_case__: Tuple , snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) lowercase_ = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) lowercase_ = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case_ ) # start time lowercase_ = time.time() # Run inference context.execute_async( bindings=[int(snake_case_ ) for d_inp in d_inputs] + [int(snake_case_ ), int(snake_case_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case_ , snake_case_ , snake_case_ ) cuda.memcpy_dtoh_async(snake_case_ , snake_case_ , snake_case_ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase_ = time.time() lowercase_ = end_time - start_time lowercase_ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __a = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __a = raw_datasets['validation'].column_names __a = 'question' if 'question' in column_names else column_names[0] __a = 'context' if 'context' in column_names else column_names[1] __a = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __a = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __a = min(args.max_seq_length, tokenizer.model_max_length) def a ( snake_case__: Dict ): '''simple docstring''' # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowercase_ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase_ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=snake_case_ , stride=args.doc_stride , return_overflowing_tokens=snake_case_ , return_offsets_mapping=snake_case_ , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase_ = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase_ = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase_ = tokenized_examples.sequence_ids(snake_case_ ) lowercase_ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase_ = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase_ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __a = raw_datasets['validation'] # Validation Feature Creation __a = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __a = default_data_collator __a = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __a = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def a ( snake_case__: Tuple , snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Optional[Any]="eval" ): '''simple docstring''' # Post-processing: we match the start logits and end logits to answers in the original context. lowercase_ = postprocess_qa_predictions( examples=snake_case_ , features=snake_case_ , predictions=snake_case_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase_ = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: lowercase_ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] lowercase_ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case_ , label_ids=snake_case_ ) __a = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def a ( snake_case__: int ): '''simple docstring''' return trt.volume(engine.get_binding_shape(snake_case_ ) ) * engine.get_binding_dtype(snake_case_ ).itemsize # Allocate device memory for inputs and outputs. __a = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __a = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __a = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __a = cuda.mem_alloc(h_outputa.nbytes) __a = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __a = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") __a = 0.0 __a = 0 __a = timeit.default_timer() __a = None for step, batch in enumerate(eval_dataloader): __a , __a = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __a , __a = outputs __a = torch.tensor(start_logits) __a = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __a = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) __a = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) __a = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __a = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: __a = nested_truncate(all_preds, len(eval_dataset)) __a = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) __a = post_processing_function(eval_examples, eval_dataset, all_preds) __a = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
30
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
0
"""simple docstring""" import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : List[str]=None, _lowerCAmelCase : Optional[Any]=None, _lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" _a = True while ask_again: _a = input(_lowerCAmelCase ) try: if default is not None and len(_lowerCAmelCase ) == 0: return default return convert_value(_lowerCAmelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : Optional[Any]=[], _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Dict=0 ): """simple docstring""" _a = BulletMenu(_lowerCAmelCase, _lowerCAmelCase ) _a = menu.run(default_choice=_lowerCAmelCase ) return convert_value(_lowerCAmelCase ) if convert_value is not None else result def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = int(_lowerCAmelCase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _a = int(_lowerCAmelCase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = int(_lowerCAmelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _a = int(_lowerCAmelCase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = int(_lowerCAmelCase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def A_ ( _lowerCAmelCase : Any ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class __lowerCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = super()._format_usage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
366
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _UpperCAmelCase ( self ) -> str: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__UpperCAmelCase , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
0
import math def snake_case ( snake_case__ :Optional[Any] , snake_case__ :Tuple) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(snake_case__) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""") if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _SCREAMING_SNAKE_CASE = 'Enter the base and the power separated by a comma: ' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input(prompt).split(',')) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _SCREAMING_SNAKE_CASE = res(xa, ya) _SCREAMING_SNAKE_CASE = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
180
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): """simple docstring""" lowerCamelCase :Tuple = JukeboxTokenizer lowerCamelCase :str = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def UpperCAmelCase ( self ) -> Tuple: import torch _A = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _A = tokenizer(**self.metas )["""input_ids"""] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> List[str]: import torch _A = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _A = tokenizer(**self.metas )["""input_ids"""] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
180
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Tuple = "deberta-v2" def __init__( self , a__=128_100 , a__=1_536 , a__=24 , a__=24 , a__=6_144 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=0 , a__=0.0_2 , a__=1e-7 , a__=False , a__=-1 , a__=0 , a__=True , a__=None , a__=0 , a__="gelu" , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = relative_attention snake_case_ = max_relative_positions snake_case_ = pad_token_id snake_case_ = position_biased_input # Backwards compatibility if type(a__ ) == str: snake_case_ = [x.strip() for x in pos_att_type.lower().split("|" )] snake_case_ = pos_att_type snake_case_ = vocab_size snake_case_ = layer_norm_eps snake_case_ = kwargs.get("pooler_hidden_size" , a__ ) snake_case_ = pooler_dropout snake_case_ = pooler_hidden_act class _snake_case ( lowercase_ ): @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case_ = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return 12 def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = -1 , a__ = False , a__ = None , a__ = 3 , a__ = 40 , a__ = 40 , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ = super().generate_dummy_inputs(preprocessor=a__ , framework=a__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
367
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = int(snake_case ) assert noofclusters < len(snake_case ) # Find out the dimensionality snake_case_ = len(vectors[0] ) # Will help select random centroids from among the available vectors snake_case_ = list(range(len(snake_case ) ) ) shuffle(snake_case ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. snake_case_ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION snake_case_ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points snake_case_ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(snake_case ) ] ##These nodes will assign the centroid Variables the appropriate ##values snake_case_ = tf.placeholder("float64" , [dim] ) snake_case_ = [] for centroid in centroids: cent_assigns.append(tf.assign(snake_case , snake_case ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) snake_case_ = [tf.Variable(0 ) for i in range(len(snake_case ) )] ##These nodes will assign an assignment Variable the appropriate ##value snake_case_ = tf.placeholder("int32" ) snake_case_ = [] for assignment in assignments: cluster_assigns.append(tf.assign(snake_case , snake_case ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input snake_case_ = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors snake_case_ = tf.reduce_mean(snake_case , 0 ) ##Node for computing Euclidean distances # Placeholders for input snake_case_ = tf.placeholder("float" , [dim] ) snake_case_ = tf.placeholder("float" , [dim] ) snake_case_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(snake_case , snake_case ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input snake_case_ = tf.placeholder("float" , [noofclusters] ) snake_case_ = tf.argmin(snake_case , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. snake_case_ = tf.initialize_all_variables() # Initialize all variables sess.run(snake_case ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. snake_case_ = 1_0_0 for _ in range(snake_case ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(snake_case ) ): snake_case_ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. snake_case_ = [ sess.run(snake_case , feed_dict={va: vect, va: sess.run(snake_case )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input snake_case_ = sess.run( snake_case , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(snake_case ): # Collect all the vectors assigned to this cluster snake_case_ = [ vectors[i] for i in range(len(snake_case ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location snake_case_ = sess.run( snake_case , feed_dict={mean_input: array(snake_case )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments snake_case_ = sess.run(snake_case ) snake_case_ = sess.run(snake_case ) return centroids, assignments
92
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = [[1, 2, 4], [1, 2, 3, 4]] A__ = DisjunctiveConstraint(lowercase ) self.assertTrue(isinstance(dc.token_ids , lowercase ) ) with self.assertRaises(lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase ): DisjunctiveConstraint(lowercase ) # fails here def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = [[1, 2, 3], [1, 2, 4]] A__ = DisjunctiveConstraint(lowercase ) A__ , A__ , A__ = dc.update(1 ) A__ = stepped is True and completed is False and reset is False self.assertTrue(lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) A__ = stepped is True and completed is False and reset is False self.assertTrue(lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(3 ) A__ = stepped is True and completed is True and reset is False self.assertTrue(lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] A__ = DisjunctiveConstraint(lowercase ) A__ , A__ , A__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) A__ , A__ , A__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() A__ , A__ , A__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
import datasets from .evaluate import evaluate lowerCAmelCase__ = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ lowerCAmelCase__ = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ lowerCAmelCase__ = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def UpperCamelCase ( self , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=lowercase , predictions=lowercase ) return score
68
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( _lowercase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = LDMTextToImagePipeline __lowercase : Optional[int] = TEXT_TO_IMAGE_PARAMS - { 'negative_prompt', 'negative_prompt_embeds', 'cross_attention_kwargs', 'prompt_embeds', } __lowercase : Any = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'callback', 'callback_steps', } __lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase : Union[str, Any] = False def __A ( self ) -> List[str]: torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ = CLIPTextModel(__UpperCamelCase ) A_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ = { '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> int: if str(__UpperCamelCase ).startswith('''mps''' ): A_ = torch.manual_seed(__UpperCamelCase ) else: A_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self ) -> Optional[int]: A_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = LDMTextToImagePipeline(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A_ = self.get_dummy_inputs(__UpperCamelCase ) A_ = pipe(**__UpperCamelCase ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A_ = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 ) -> Optional[int]: A_ = torch.manual_seed(__UpperCamelCase ) A_ = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 32, 32) ) A_ = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) A_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self ) -> Optional[int]: A_ = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A_ = self.get_inputs(__UpperCamelCase ) A_ = pipe(**__UpperCamelCase ).images A_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A_ = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) A_ = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 ) -> int: A_ = torch.manual_seed(__UpperCamelCase ) A_ = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 32, 32) ) A_ = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) A_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self ) -> Optional[int]: A_ = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A_ = self.get_inputs(__UpperCamelCase ) A_ = pipe(**__UpperCamelCase ).images[0] A_ = load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) A_ = np.abs(expected_image - image ).max() assert max_diff < 1E-3
359
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
0
__A = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
90
'''simple docstring''' def a_ ( _lowerCAmelCase ) -> list: if n_term == "": return [] __lowerCamelCase : list = [] for temp in range(int(_lowerCAmelCase ) ): series.append(F'1/{temp + 1}' if series else '1' ) return series if __name__ == "__main__": _UpperCamelCase = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
208
0
'''simple docstring''' from collections.abc import Callable class _A : def __init__( self : List[Any] , __magic_name__ : Callable | None = None ) -> None: """simple docstring""" __snake_case : list = [] # Stores indexes of each item for supporting updates and deletion. __snake_case : dict = {} # Stores current size of heap. __snake_case : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __snake_case : Union[str, Any] = key or (lambda __magic_name__ : x) def lowercase__ ( self : Any , __magic_name__ : int ) -> int | None: """simple docstring""" return int((i - 1) / 2 ) if i > 0 else None def lowercase__ ( self : Optional[int] , __magic_name__ : int ) -> int | None: """simple docstring""" __snake_case : Optional[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def lowercase__ ( self : Tuple , __magic_name__ : int ) -> int | None: """simple docstring""" __snake_case : List[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" __snake_case , __snake_case : List[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __snake_case , __snake_case : str = self.arr[j], self.arr[i] def lowercase__ ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int ) -> bool: """simple docstring""" return self.arr[i][1] < self.arr[j][1] def lowercase__ ( self : Dict , __magic_name__ : int ) -> int: """simple docstring""" __snake_case : Any = self._left(__magic_name__ ) __snake_case : Optional[int] = self._right(__magic_name__ ) __snake_case : str = i if left is not None and not self._cmp(__magic_name__ , __magic_name__ ): __snake_case : Dict = left if right is not None and not self._cmp(__magic_name__ , __magic_name__ ): __snake_case : List[Any] = right return valid_parent def lowercase__ ( self : List[Any] , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : Dict = self._parent(__magic_name__ ) while parent is not None and not self._cmp(__magic_name__ , __magic_name__ ): self._swap(__magic_name__ , __magic_name__ ) __snake_case , __snake_case : Optional[int] = parent, self._parent(__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : Dict = self._get_valid_parent(__magic_name__ ) while valid_parent != index: self._swap(__magic_name__ , __magic_name__ ) __snake_case , __snake_case : Dict = valid_parent, self._get_valid_parent(__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" if item not in self.pos_map: return __snake_case : int = self.pos_map[item] __snake_case : Union[str, Any] = [item, self.key(__magic_name__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__magic_name__ ) self._heapify_down(__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : int ) -> None: """simple docstring""" if item not in self.pos_map: return __snake_case : List[str] = self.pos_map[item] del self.pos_map[item] __snake_case : List[str] = self.arr[self.size - 1] __snake_case : Dict = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__magic_name__ ) self._heapify_down(__magic_name__ ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : Optional[Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__magic_name__ )] ) else: __snake_case : Dict = [item, self.key(__magic_name__ )] __snake_case : Dict = self.size self.size += 1 self._heapify_up(self.size - 1 ) def lowercase__ ( self : str ) -> tuple | None: """simple docstring""" return self.arr[0] if self.size else None def lowercase__ ( self : Optional[Any] ) -> tuple | None: """simple docstring""" __snake_case : Optional[Any] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _a ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
1
def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Dict: if exponent == 1: return base if exponent % 2 == 0: __A : Dict = _modexpt(_SCREAMING_SNAKE_CASE , exponent // 2 , _SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_SCREAMING_SNAKE_CASE , exponent - 1 , _SCREAMING_SNAKE_CASE )) % modulo_value def _SCREAMING_SNAKE_CASE ( a = 17_77 , a = 18_55 , a = 8 ) -> str: __A : Any = base for _ in range(1 , _SCREAMING_SNAKE_CASE ): __A : Tuple = _modexpt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
280
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return x.sum() def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _lowerCamelCase : UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> Optional[int]: UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": [1, 2], "b": [3, 4]} UpperCamelCase = {"a": {"1": 1}, "b": 2} UpperCamelCase = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"a": 2, "b": 3} UpperCamelCase = {"a": [2, 3], "b": [4, 5]} UpperCamelCase = {"a": {"1": 2}, "b": 3} UpperCamelCase = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) UpperCamelCase = 2 self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) UpperCamelCase = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} UpperCamelCase = {"a": 2, "b": 0, "c": 2} UpperCamelCase = { "a": np.eye(2 ).astype(__a ), "b": np.zeros(3 ).astype(__a ), "c": np.ones(2 ).astype(__a ), } self.assertEqual(map_nested(__a , __a , map_numpy=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__a , __a , map_numpy=__a , num_proc=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a , num_proc=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__a ): # can't pickle a local lambda map_nested(lambda __a : x + 1 , __a , num_proc=__a ) def snake_case_ (self ) -> Tuple: UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": 3, "b": 4} UpperCamelCase = {"a": 5, "b": 6} UpperCamelCase = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__a , __a , __a ) ) , __a ) def snake_case_ (self ) -> Dict: class _lowerCamelCase : UpperCAmelCase_ = "bar" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__a , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(_SCREAMING_SNAKE_CASE )} UpperCamelCase = map_nested(lambda _SCREAMING_SNAKE_CASE : x + 10 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _lowerCamelCase ( _lowercase ): @require_tf def snake_case_ (self ) -> str: import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(__a ).numpy() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def snake_case_ (self ) -> Tuple: import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(__a ).detach().numpy() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def snake_case_ (self ) -> Tuple: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def a__ ( ): """simple docstring""" UpperCamelCase = A(x=1 , y="foobar" ) UpperCamelCase = {"x": 1, "y": "foobar"} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output UpperCamelCase = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} UpperCamelCase = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(_SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y="foo" )] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return text.split() def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def a__ ( ): """simple docstring""" with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( _SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_SCREAMING_SNAKE_CASE ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(_SCREAMING_SNAKE_CASE ) == 4
153
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( UpperCAmelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
157
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( UpperCAmelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
157
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self , A ) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): lowerCamelCase = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_A ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """sgugger/tiny-distilbert-classification""" lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , only_pretrain_model=_A , ) lowerCamelCase = PyTorchBenchmark(_A ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , torchscript=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , fpaa=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" lowerCamelCase = AutoConfig.from_pretrained(_A ) # set architectures equal to `None` lowerCamelCase = None lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A , configs=[config] ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_A , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" lowerCamelCase = AutoConfig.from_pretrained(_A ) lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A , configs=[config] ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = """sshleifer/tinier_bart""" lowerCamelCase = AutoConfig.from_pretrained(_A ) lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A , configs=[config] ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" lowerCamelCase = AutoConfig.from_pretrained(_A ) lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A , configs=[config] ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = """sshleifer/tinier_bart""" lowerCamelCase = AutoConfig.from_pretrained(_A ) lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A , configs=[config] ) lowerCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , save_to_csv=_A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_A , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_A , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_A , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_A , """train_time.csv""" ) , env_info_csv_file=os.path.join(_A , """env.csv""" ) , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A ) benchmark.run() self.assertTrue(Path(os.path.join(_A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_A , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_A , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_A , """env.csv""" ) ).exists() ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(A ): self.assertTrue(hasattr(_A , """sequential""" ) ) self.assertTrue(hasattr(_A , """cumulative""" ) ) self.assertTrue(hasattr(_A , """current""" ) ) self.assertTrue(hasattr(_A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_A , """log.txt""" ) , log_print=_A , trace_memory_line_by_line=_A , multi_process=_A , ) lowerCamelCase = PyTorchBenchmark(_A ) lowerCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_A , """log.txt""" ) ).exists() )
252
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : str = StableUnCLIPPipeline _a : Union[str, Any] = TEXT_TO_IMAGE_PARAMS _a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _a : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _a : Optional[Any] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = 3_2 __lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) __lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) __lowerCAmelCase = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) __lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) __lowerCAmelCase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) __lowerCAmelCase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL() __lowerCAmelCase = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __SCREAMING_SNAKE_CASE( self , _A , _A=0 ): """simple docstring""" if str(_A ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(_A ) else: __lowerCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) __lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) __lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase = pipe("anime turle" , generator=_A , output_type="np" ) __lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCAmelCase = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
92
0
"""simple docstring""" from __future__ import annotations import math def a_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(_lowercase ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) return min( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) def a_ ( ): _UpperCamelCase : Dict = [90, 23, 6, 33, 21, 65, 123, 3_4423] _UpperCamelCase : int = math.log(len(_lowercase ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , _lowercase , _lowercase , _lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
358
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : List[str], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase : Any = False super().__init__(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Tuple = self.image_processor def __call__( self : str, lowerCAmelCase__ : ImageInput = None, lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False, lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : int = 0, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : Optional[bool] = None, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Optional[Union[str, TensorType]] = None, **lowerCAmelCase__ : Optional[Any], ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase : int = self.tokenizer _UpperCamelCase : List[str] = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) return text_encoding # add pixel_values _UpperCamelCase : List[str] = self.image_processor(lowerCAmelCase__, return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase : Any = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) else: _UpperCamelCase : List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case ( self : List[Any], *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__, **lowerCAmelCase__ ) def snake_case ( self : List[Any], *lowerCAmelCase__ : Dict, **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__, **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = self.tokenizer.model_input_names _UpperCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
128
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : Any , __A : int = 7_6_8 , ): super().__init__() __UpperCamelCase = nn.Parameter(torch.zeros(1 , __A ) ) __UpperCamelCase = nn.Parameter(torch.ones(1 , __A ) ) def _lowerCamelCase ( self : Optional[Any] , __A : Optional[Union[str, torch.device]] = None , __A : Optional[torch.dtype] = None , ): __UpperCamelCase = nn.Parameter(self.mean.to(__A ).to(__A ) ) __UpperCamelCase = nn.Parameter(self.std.to(__A ).to(__A ) ) return self def _lowerCamelCase ( self : Optional[int] , __A : Optional[int] ): __UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def _lowerCamelCase ( self : Optional[int] , __A : Tuple ): __UpperCamelCase = (embeds * self.std) + self.mean return embeds
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCamelCase_ = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) lowerCamelCase_ = dataset.iloc[:, 1:2].values lowerCamelCase_ = dataset.iloc[:, 2].values lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCamelCase_ = PolynomialFeatures(degree=4) lowerCamelCase_ = poly_reg.fit_transform(X) lowerCamelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def lowerCamelCase ( ) -> List[str]: plt.scatter(a_ , a_ , color='red' ) plt.plot(a_ , pol_reg.predict(poly_reg.fit_transform(a_ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
14
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( a_ ): '''simple docstring''' __a: str = ['''vqvae'''] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowerCAmelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowerCAmelCase_ = noise lowerCAmelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ ) lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample'] else: lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] if isinstance(self.scheduler , lowercase_ ): lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample'] else: lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample'] if mask is not None: if mask_start > 0: lowerCAmelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample'] lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' ) lowerCAmelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) ) lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
14
1
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find('patch' ) lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1_024 lowerCAmelCase_ = 4_096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase ( a_ ) -> List[str]: # text encoder if name == "token_embedding.weight": lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase_ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase ( a_ , a_ ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(a_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( a_ ) -> List[str]: if num_frames == 8: lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase_ = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy' lowerCAmelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , ) lowerCAmelCase_ = np.load(a_ ) return list(a_ ) def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]: lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = 'pytorch_model.bin' gdown.cached_download(a_ , a_ , quiet=a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model'] lowerCAmelCase_ = convert_state_dict(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ ) lowerCAmelCase_ = prepare_video(a_ ) lowerCAmelCase_ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print('Probs:' , a_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(a_ , a_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(a_ , organization='nielsr' ) processor.push_to_hub(a_ , organization='nielsr' ) slow_tokenizer.push_to_hub(a_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: List[Any]=32 , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: Optional[int]=10 , __lowerCamelCase: Union[str, Any]=[10, 20, 30, 40] , __lowerCamelCase: str=[1, 1, 2, 1] , __lowerCamelCase: Tuple=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: List[Any]="relu" , __lowerCamelCase: Optional[int]=3 , __lowerCamelCase: Union[str, Any]=None , ) -> int: __UpperCAmelCase : Any = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Any = num_channels __UpperCAmelCase : List[Any] = embeddings_size __UpperCAmelCase : Optional[int] = hidden_sizes __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Any = num_labels __UpperCAmelCase : List[str] = scope __UpperCAmelCase : str = len(__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values def _lowerCamelCase ( self: List[Any] ) -> Dict: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : int = FlaxRegNetModel(config=__lowerCamelCase ) __UpperCAmelCase : Dict = model(__lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : int = FlaxRegNetForImageClassification(config=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Dict ) -> Tuple: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: int = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase__: Optional[int] = False lowerCamelCase__: str = False lowerCamelCase__: List[Any] = False def _lowerCamelCase ( self: Any ) -> None: __UpperCAmelCase : Optional[int] = FlaxRegNetModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: Optional[int] ) -> Any: return def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> Union[str, Any]: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: pass def _lowerCamelCase ( self: Optional[int] ) -> int: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Tuple = [*signature.parameters.keys()] __UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] ): __UpperCAmelCase : int = model_class(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Tuple ): return model(pixel_values=__lowerCamelCase , **__lowerCamelCase ) with self.subTest("JIT Enabled" ): __UpperCAmelCase : int = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCAmelCase : int = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[Any] ) -> Any: return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: Tuple ) -> int: __UpperCAmelCase : Tuple = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) __UpperCAmelCase : Optional[Any] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : str = image_processor(images=__lowerCamelCase , return_tensors="np" ) __UpperCAmelCase : Optional[int] = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Any = (1, 10_00) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
157
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = abs(snake_case__ ) __UpperCAmelCase : Dict = 0 while n > 0: res += n % 10 n //= 10 return res def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Tuple = abs(snake_case__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _UpperCamelCase ( snake_case__ ) -> int: return sum(int(snake_case__ ) for c in str(abs(snake_case__ ) ) ) def _UpperCamelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case__, snake_case__ ) -> None: __UpperCAmelCase : Union[str, Any] = f'''{func.__name__}({value})''' __UpperCAmelCase : List[str] = timeit(f'''__main__.{call}''', setup="import __main__" ) print(f'''{call:56} = {func(snake_case__ )} -- {timing:.4f} seconds''' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case__, snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
157
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' def __init__( self : List[Any] , *_a : Dict , **_a : int ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
35
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[Any] ): UpperCamelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCamelCase__ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_a ) , torch_builtin(_a ) ) ) self.assertFalse(torch.allclose(gelu_python(_a ) , gelu_new(_a ) ) ) def A_ ( self : Tuple ): UpperCamelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCamelCase__ = get_activation('''gelu''' ) UpperCamelCase__ = get_activation('''gelu_10''' ) UpperCamelCase__ = torch_builtin(_a ) UpperCamelCase__ = geluaa(_a ) UpperCamelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def A_ ( self : str ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_a ): get_activation('''bogus''' ) with self.assertRaises(_a ): get_activation(_a ) def A_ ( self : List[Any] ): UpperCamelCase__ = get_activation('''gelu''' ) UpperCamelCase__ = 1 UpperCamelCase__ = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_a ): UpperCamelCase__ = acta.a
35
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowercase = logging.get_logger(__name__) lowercase = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class UpperCamelCase_ ( a_ ): '''simple docstring''' @add_start_docstrings(snake_case__ ) def __call__( self , a , a , **a ) -> str: raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class UpperCamelCase_ ( a_ ): '''simple docstring''' def __init__( self , a , a = None ) -> Any: snake_case_ = max_length snake_case_ = max_position_embeddings @add_start_docstrings(snake_case__ ) def __call__( self , a , a , **a ) -> Union[str, Any]: snake_case_ = input_ids.shape[-1] snake_case_ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' 'exceptions, performance degradation, or nothing at all.' ) return is_done class UpperCamelCase_ ( a_ ): '''simple docstring''' def __init__( self , a , a ) -> Union[str, Any]: warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' 'with `max_length = start_length + max_new_tokens` instead.' , snake_case__ , ) snake_case_ = start_length snake_case_ = max_new_tokens snake_case_ = start_length + max_new_tokens @add_start_docstrings(snake_case__ ) def __call__( self , a , a , **a ) -> Dict: return input_ids.shape[-1] >= self.max_length class UpperCamelCase_ ( a_ ): '''simple docstring''' def __init__( self , a , a = None ) -> Optional[int]: snake_case_ = max_time snake_case_ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(snake_case__ ) def __call__( self , a , a , **a ) -> List[str]: return time.time() - self.initial_timestamp > self.max_time class UpperCamelCase_ ( a_ ): '''simple docstring''' @add_start_docstrings(snake_case__ ) def __call__( self , a , a , **a ) -> Optional[Any]: return any(criteria(snake_case__ , snake_case__ ) for criteria in self ) @property def _UpperCamelCase ( self ) -> Union[str, Any]: for stopping_criterium in self: if isinstance(snake_case__ , snake_case__ ): return stopping_criterium.max_length elif isinstance(snake_case__ , snake_case__ ): return stopping_criterium.max_length return None def __UpperCAmelCase ( a_ , a_): snake_case_ = stopping_criteria.max_length snake_case_ = deepcopy(_lowerCAmelCase) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , _lowerCAmelCase) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCAmelCase)) return new_stopping_criteria
178
UpperCAmelCase : Optional[Any] ={ """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
128
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A_ ( A__ ) -> Dict: if isinstance(A__ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : """simple docstring""" def __lowercase ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' pass def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> List[Any]: '''simple docstring''' a__ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase , lowercase) a__ : Any = TFVisionTextDualEncoderModel(lowercase) a__ : Dict = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> List[Any]: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : List[str] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Dict = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Tuple: '''simple docstring''' a__ , a__ : Any = self.get_vision_text_model(lowercase , lowercase) a__ : Tuple = {'vision_model': vision_model, 'text_model': text_model} a__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase) a__ : Any = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[Any]: '''simple docstring''' a__ , a__ : int = self.get_vision_text_model(lowercase , lowercase) a__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Optional[Any] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) a__ : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase) a__ : str = TFVisionTextDualEncoderModel.from_pretrained(lowercase) a__ : List[str] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) a__ : str = after_output[0].numpy() a__ : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowercase , 1e-5) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[int]: '''simple docstring''' a__ , a__ : Optional[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : Dict = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Optional[int] = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase) a__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(lowercase) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[Any] = to_atuple(vision_model.config.image_size) a__ : Dict = to_atuple(vision_model.config.patch_size) a__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) a__ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__ : str = np.abs((a - b)).max() self.assertLessEqual(lowercase , lowercase , F'Difference between torch and flax is {diff} (>= {tol}).') def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : int = self.prepare_config_and_inputs() self.check_save_load(**lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.get_pretrained_model_and_inputs() a__ : Optional[int] = model_a(**lowercase) a__ : int = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase) a__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(lowercase) a__ : int = model_a(**lowercase) a__ : str = after_outputs[0].numpy() a__ : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowercase , 1e-5) @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert') a__ : str = 13 a__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : Optional[int] = random_attention_mask([batch_size, 4]) a__ : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__ : Optional[Any] = TFViTModel(lowercase , name='vision_model') a__ : Tuple = TFBertModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = TFViTModelTester(self) a__ : int = TFBertModelTester(self) a__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs() a__ : Any = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ : Optional[int] = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta') a__ : Union[str, Any] = 13 a__ : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : Any = random_attention_mask([batch_size, 4]) a__ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[Any]: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : Any = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : int = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase) a__ : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(lowercase) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : Optional[int] = to_atuple(vision_model.config.image_size) a__ : str = to_atuple(vision_model.config.patch_size) a__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ : List[str] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) a__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(lowercase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : List[str] = TFDeiTModel(lowercase , name='vision_model') a__ : Optional[int] = TFRobertaModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[int] = TFDeiTModelTester(self) a__ : str = TFRobertaModelTester(self) a__ : str = vit_model_tester.prepare_config_and_inputs() a__ : Dict = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ : Any = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Any: '''simple docstring''' a__ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert') a__ : Optional[int] = 13 a__ : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : str = random_attention_mask([batch_size, 4]) a__ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : str = TFCLIPVisionModel(lowercase , name='vision_model') a__ : str = TFBertModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[str] = TFCLIPVisionModelTester(self) a__ : Dict = TFBertModelTester(self) a__ : Optional[Any] = clip_model_tester.prepare_config_and_inputs() a__ : List[Any] = bert_model_tester.prepare_config_and_inputs() a__ , a__ : Union[str, Any] = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowercase) a__ : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') a__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') a__ : Optional[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowercase , padding=lowercase , return_tensors='np') a__ : int = model(**lowercase) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a__ : List[str] = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowercase , atol=1e-3))
225
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCamelCase : Dict = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) _lowerCamelCase : Any = dataset.iloc[:, 1:2].values _lowerCamelCase : List[Any] = dataset.iloc[:, 2].values _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCamelCase : List[Any] = PolynomialFeatures(degree=4) _lowerCamelCase : Optional[Any] = poly_reg.fit_transform(X) _lowerCamelCase : Tuple = LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" plt.scatter(lowercase_ , lowercase_ , color='''red''' ) plt.plot(lowercase_ , pol_reg.predict(poly_reg.fit_transform(lowercase_ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
"""simple docstring""" def lowercase ( A_ = 1_000_000 )-> int: '''simple docstring''' a : List[Any] = set(range(3 , A_ , 2 ) ) primes.add(2 ) for p in range(3 , A_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , A_ , A_ ) ) ) a : str = [float(A_ ) for n in range(limit + 1 )] for p in primes: for n in range(A_ , limit + 1 , A_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
353
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __lowercase = logging.get_logger(__name__) class _A ( _a ): """simple docstring""" def __init__( self : List[Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : List[Any]): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
226
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = XCLIPTextConfig() # derive patch size from model name A__ = model_name.find('''patch''' ) A__ = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) A__ = XCLIPVisionConfig(patch_size=lowercase_ , num_frames=lowercase_ ) if "large" in model_name: A__ = 768 A__ = 3_072 A__ = 12 A__ = 1_024 A__ = 4_096 A__ = 16 A__ = 24 A__ = 768 A__ = 3_072 if model_name == "xclip-large-patch14-16-frames": A__ = 336 A__ = XCLIPConfig.from_text_vision_configs(lowercase_ , lowercase_ ) if "large" in model_name: A__ = 768 return config def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" if name == "token_embedding.weight": A__ = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": A__ = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: A__ = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: A__ = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: A__ = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: A__ = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): A__ = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: A__ = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: A__ = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": A__ = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": A__ = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): A__ = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: A__ = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: A__ = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: A__ = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: A__ = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: A__ = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: A__ = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: A__ = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": A__ = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): A__ = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): A__ = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "attn.in_proj" in key: A__ = key.split('''.''' ) if key.startswith('''visual''' ): A__ = key_split[3] A__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: A__ = val[ :dim, : ] A__ = val[ dim : dim * 2, : ] A__ = val[ -dim:, : ] else: A__ = val[ :dim ] A__ = val[ dim : dim * 2 ] A__ = val[ -dim: ] else: if "weight" in key: A__ = val[ :dim, : ] A__ = val[ dim : dim * 2, : ] A__ = val[ -dim:, : ] else: A__ = val[:dim] A__ = val[ dim : dim * 2 ] A__ = val[-dim:] elif key.startswith('''mit''' ): A__ = key_split[2] A__ = config.vision_config.mit_hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = key_split[2] A__ = config.text_config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[ dim : dim * 2 ] A__ = val[-dim:] else: A__ = rename_key(lowercase_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: A__ = val.T A__ = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if num_frames == 8: A__ = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: A__ = '''eating_spaghetti.npy''' elif num_frames == 32: A__ = '''eating_spaghetti_32_frames.npy''' A__ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=lowercase_ , repo_type='''dataset''' , ) A__ = np.load(lowercase_ ) return list(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> str: """simple docstring""" A__ = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } A__ = model_to_url[model_name] A__ = 8 if "16-frames" in model_name: A__ = 16 elif "shot" in model_name: A__ = 32 A__ = get_xclip_config(lowercase_ , lowercase_ ) A__ = XCLIPModel(lowercase_ ) model.eval() if "drive" in checkpoint_url: A__ = '''pytorch_model.bin''' gdown.cached_download(lowercase_ , lowercase_ , quiet=lowercase_ ) A__ = torch.load(lowercase_ , map_location='''cpu''' )['''model'''] else: A__ = torch.hub.load_state_dict_from_url(lowercase_ )['''model'''] A__ = convert_state_dict(lowercase_ , lowercase_ ) A__ = XCLIPModel(lowercase_ ) A__ , A__ = model.load_state_dict(lowercase_ , strict=lowercase_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() A__ = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 A__ = VideoMAEImageProcessor(size=lowercase_ ) A__ = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) A__ = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) A__ = XCLIPProcessor(image_processor=lowercase_ , tokenizer=lowercase_ ) A__ = prepare_video(lowercase_ ) A__ = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=lowercase_ , return_tensors='''pt''' , padding=lowercase_ ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): A__ = model(**lowercase_ ) # Verify outputs A__ = outputs.logits_per_video A__ = logits_per_video.softmax(dim=1 ) print('''Probs:''' , lowercase_ ) # kinetics-400 if model_name == "xclip-base-patch32": A__ = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": A__ = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": A__ = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": A__ = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": A__ = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": A__ = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": A__ = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": A__ = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": A__ = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": A__ = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": A__ = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": A__ = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": A__ = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": A__ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": A__ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": A__ = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": A__ = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": A__ = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(lowercase_ , organization='''nielsr''' ) processor.push_to_hub(lowercase_ , organization='''nielsr''' ) slow_tokenizer.push_to_hub(lowercase_ , organization='''nielsr''' ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase : List[str] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Tuple , snake_case :Optional[int] , snake_case :List[Any] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=None ): '''simple docstring''' super().__init__( snake_case , question_encoder_tokenizer=snake_case , generator_tokenizer=snake_case , index=snake_case , init_retrieval=snake_case , ) A_ : Optional[Any] = None def SCREAMING_SNAKE_CASE ( self :int , snake_case :int ): '''simple docstring''' logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually A_ : str = self._infer_socket_ifname() # avoid clash with the NCCL port A_ : Dict = str(distributed_port + 1 ) A_ : Optional[int] = dist.new_group(ranks=snake_case , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Optional[int] , snake_case :Tuple , snake_case :List[Any]=torch.floataa ): '''simple docstring''' A_ : str = torch.empty(snake_case , dtype=snake_case ) dist.scatter(snake_case , src=0 , scatter_list=snake_case , group=self.process_group ) return target_tensor def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A_ : str = next((addr for addr in addrs if addr.startswith("e" )) , snake_case ) return ifname def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :np.ndarray , snake_case :int ): '''simple docstring''' if not dist.is_initialized(): A_ , A_ : List[str] = self._main_retrieve(snake_case , snake_case ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case ) # distributed training A_ : List[str] = dist.get_world_size(group=self.process_group ) # gather logic A_ : List[str] = None if self._is_main(): A_ : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(snake_case )] dist.gather(torch.tensor(snake_case ) , dst=0 , gather_list=snake_case , group=self.process_group ) # scatter logic A_ : Optional[Any] = question_hidden_states.shape[0] A_ : List[str] = [] A_ : Dict = [] if self._is_main(): assert len(snake_case ) == world_size A_ , A_ : int = self._main_retrieve(torch.cat(snake_case ).numpy() , snake_case ) A_ , A_ : Tuple = torch.tensor(snake_case ), torch.tensor(snake_case ) A_ : Tuple = self._chunk_tensor(snake_case , snake_case ) A_ : Any = self._chunk_tensor(snake_case , snake_case ) A_ : List[Any] = self._scattered(snake_case , [n_queries, n_docs] , target_type=torch.intaa ) A_ : Union[str, Any] = self._scattered(snake_case , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(snake_case )
70
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
70
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __a = TypeVar("T") __a = TypeVar("U") class UpperCAmelCase_ ( Generic[T, U] ): """simple docstring""" def __init__( self : Any , snake_case_ : T | None , snake_case_ : U | None ): snake_case__ : Dict = key snake_case__ : Tuple = val snake_case__ : DoubleLinkedListNode[T, U] | None = None snake_case__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : int ): return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class UpperCAmelCase_ ( Generic[T, U] ): """simple docstring""" def __init__( self : Tuple ): snake_case__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case_ , snake_case_ ) snake_case__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case_ , snake_case_ ) snake_case__ , snake_case__ : Tuple = self.rear, self.head def __repr__( self : List[str] ): snake_case__ : Dict = ["""DoubleLinkedList"""] snake_case__ : Any = self.head while node.next is not None: rep.append(str(snake_case_ ) ) snake_case__ : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : DoubleLinkedListNode[T, U] ): snake_case__ : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None snake_case__ : Tuple = node snake_case__ : Optional[Any] = previous snake_case__ : int = node snake_case__ : List[str] = self.rear def lowerCamelCase ( self : List[str] , snake_case_ : DoubleLinkedListNode[T, U] ): if node.prev is None or node.next is None: return None snake_case__ : Optional[int] = node.next snake_case__ : List[str] = node.prev snake_case__ : Optional[int] = None snake_case__ : Optional[Any] = None return node class UpperCAmelCase_ ( Generic[T, U] ): """simple docstring""" lowercase = {} def __init__( self : str , snake_case_ : int ): snake_case__ : DoubleLinkedList[T, U] = DoubleLinkedList() snake_case__ : Tuple = capacity snake_case__ : Dict = 0 snake_case__ : Dict = 0 snake_case__ : List[Any] = 0 snake_case__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Tuple ): return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self : Optional[int] , snake_case_ : T ): return key in self.cache def lowerCamelCase ( self : Dict , snake_case_ : T ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 snake_case__ : DoubleLinkedListNode[T, U] = self.cache[key] snake_case__ : List[str] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case_ ) return node.val self.miss += 1 return None def lowerCamelCase ( self : List[str] , snake_case_ : T , snake_case_ : U ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity snake_case__ : Tuple = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 snake_case__ : Optional[int] = DoubleLinkedListNode(snake_case_ , snake_case_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value snake_case__ : List[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list snake_case__ : int = value self.list.add(snake_case_ ) @classmethod def lowerCamelCase ( cls : Dict , snake_case_ : int = 128 ): def cache_decorator_inner(snake_case_ : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case_ : T ) -> U: if func not in cls.decorator_function_to_instance_map: snake_case__ : Union[str, Any] = LRUCache(snake_case_ ) snake_case__ : str = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: snake_case__ : Any = func(*snake_case_ ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case_ , """cache_info""" , snake_case_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
1
from ... import PretrainedConfig __UpperCAmelCase : Any = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __UpperCamelCase : Optional[int] = "nezha" def __init__( self , __SCREAMING_SNAKE_CASE=21_128 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = vocab_size UpperCamelCase : int = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : int = hidden_act UpperCamelCase : Any = intermediate_size UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : List[Any] = max_relative_position UpperCamelCase : str = type_vocab_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Union[str, Any] = layer_norm_eps UpperCamelCase : Dict = classifier_dropout UpperCamelCase : List[Any] = use_cache
315
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a ( SCREAMING_SNAKE_CASE_ : dict ): """simple docstring""" return (data["data"], data["target"]) def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" UpperCamelCase : Optional[Any] = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Predict target for test data UpperCamelCase : Any = xgb.predict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = predictions.reshape(len(SCREAMING_SNAKE_CASE_ ) , 1 ) return predictions def a ( ): """simple docstring""" UpperCamelCase : Tuple = fetch_california_housing() UpperCamelCase , UpperCamelCase : Tuple = data_handling(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = train_test_split( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , test_size=0.25 , random_state=1 ) UpperCamelCase : Optional[Any] = xgboost(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
315
1
from math import sqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( __UpperCAmelCase : int = 1_00_01 ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 while count != nth and number < 3: number += 1 if is_prime(__UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
225
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Any=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=512 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Union[str, Any]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Optional[int] ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = LlamaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , ): SCREAMING_SNAKE_CASE_ = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase_ = (LlamaForCausalLM,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 'single_label_classification' SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 'multi_label_classification' SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self : int ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ids_tensor([1, 10] , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowerCAmelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=_lowerCAmelCase ) # greedy generation outputs SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , max_new_tokens=64 , top_p=_lowerCAmelCase , temperature=1 , do_sample=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
225
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCamelCase : def __init__(self ) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def snake_case_ (self ) -> list[float]: UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(__a , __a ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
244
0
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) class lowerCAmelCase_ (__UpperCamelCase ): """simple docstring""" __UpperCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__(self , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__=1_25 , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [F'''<extra_id_{i}>''' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens SCREAMING_SNAKE_CASE__ : Optional[Any] = len(set(filter(lambda SCREAMING_SNAKE_CASE__ : bool("""extra_id""" in str(a_ ) ) , a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) SCREAMING_SNAKE_CASE__ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token SCREAMING_SNAKE_CASE__ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token SCREAMING_SNAKE_CASE__ : int = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else unk_token super().__init__( eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , ) SCREAMING_SNAKE_CASE__ : Dict = extra_ids SCREAMING_SNAKE_CASE__ : Any = 2**8 # utf is 8 bits # define special tokens dict SCREAMING_SNAKE_CASE__ : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } SCREAMING_SNAKE_CASE__ : Optional[int] = len(self.special_tokens_encoder ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(a_ ) for i, token in enumerate(a_ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.vocab_size + i - n SCREAMING_SNAKE_CASE__ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> Any: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a_ )) + [1] return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" if len(a_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._add_eos_if_not_present(a_ ) if token_ids_a is None: return token_ids_a else: SCREAMING_SNAKE_CASE__ : List[str] = self._add_eos_if_not_present(a_ ) return token_ids_a + token_ids_a def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [chr(a_ ) for i in text.encode("""utf-8""" )] return tokens def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" if token in self.special_tokens_encoder: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.added_tokens_encoder[token] elif len(a_ ) != 1: SCREAMING_SNAKE_CASE__ : int = self.unk_token_id else: SCREAMING_SNAKE_CASE__ : List[str] = ord(a_ ) + self._num_special_tokens return token_id def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" if index in self.special_tokens_decoder: SCREAMING_SNAKE_CASE__ : Dict = self.special_tokens_decoder[index] else: SCREAMING_SNAKE_CASE__ : List[Any] = chr(index - self._num_special_tokens ) return token def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = b'''''' for token in tokens: if token in self.special_tokens_decoder: SCREAMING_SNAKE_CASE__ : Optional[int] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: SCREAMING_SNAKE_CASE__ : List[str] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: SCREAMING_SNAKE_CASE__ : Tuple = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: SCREAMING_SNAKE_CASE__ : int = token.encode("""utf-8""" ) else: SCREAMING_SNAKE_CASE__ : Any = bytes([ord(a_ )] ) bstring += tok_string SCREAMING_SNAKE_CASE__ : Dict = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Union[str, Any]: """simple docstring""" return ()
25
def a ( _UpperCAmelCase : Any ): '''simple docstring''' __UpperCAmelCase : Any = 0 __UpperCAmelCase : str = len(_UpperCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , _UpperCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a ( _UpperCAmelCase : str ): '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return arr, 0 __UpperCAmelCase : Dict = len(_UpperCAmelCase ) // 2 __UpperCAmelCase : Union[str, Any] = arr[0:mid] __UpperCAmelCase : Optional[Any] = arr[mid:] __UpperCAmelCase , __UpperCAmelCase : Tuple = count_inversions_recursive(_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = count_inversions_recursive(_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = _count_cross_inversions(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[str] = inversion_p + inversions_q + cross_inversions return c, num_inversions def a ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ): '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Any = 0 while i < len(_UpperCAmelCase ) and j < len(_UpperCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_UpperCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_UpperCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __UpperCAmelCase : List[str] = count_inversions_bf(_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , _UpperCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __UpperCAmelCase : Any = count_inversions_bf(_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , _UpperCAmelCase ) # an empty list should also have zero inversions __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Union[str, Any] = count_inversions_bf(_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , _UpperCAmelCase ) if __name__ == "__main__": main()
226
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } _lowerCamelCase = { 'allenai/led-base-16384': 1_63_84, } class a ( _A ): '''simple docstring''' lowerCAmelCase : Tuple = VOCAB_FILES_NAMES lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[int] = LEDTokenizer lowerCAmelCase : List[str] = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] , __snake_case : List[str]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Dict="replace" , __snake_case : Tuple="<s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Optional[int]="</s>" , __snake_case : int="<s>" , __snake_case : Any="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Optional[Any]="<mask>" , __snake_case : Optional[int]=False , __snake_case : Optional[Any]=True , **__snake_case : List[str] , ): super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , **__snake_case , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __snake_case ) != add_prefix_space: UpperCAmelCase_ = getattr(__snake_case , pre_tok_state.pop('''type''' ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**__snake_case ) UpperCAmelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase_ = '''post_processor''' UpperCAmelCase_ = getattr(self.backend_tokenizer , __snake_case , __snake_case ) if tokenizer_component_instance: UpperCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_ = tuple(state['''sep'''] ) if "cls" in state: UpperCAmelCase_ = tuple(state['''cls'''] ) UpperCAmelCase_ = False if state.get('''add_prefix_space''' , __snake_case ) != add_prefix_space: UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = True if state.get('''trim_offsets''' , __snake_case ) != trim_offsets: UpperCAmelCase_ = trim_offsets UpperCAmelCase_ = True if changes_to_apply: UpperCAmelCase_ = getattr(__snake_case , state.pop('''type''' ) ) UpperCAmelCase_ = component_class(**__snake_case ) setattr(self.backend_tokenizer , __snake_case , __snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : int , __snake_case : Any ): UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else value UpperCAmelCase_ = value def lowerCamelCase_ ( self : Tuple , *__snake_case : Union[str, Any] , **__snake_case : int ): UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def lowerCamelCase_ ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[Any] ): UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__snake_case , **__snake_case ) def lowerCamelCase_ ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): UpperCAmelCase_ = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowerCamelCase_ ( self : str , __snake_case : Any , __snake_case : str=None ): UpperCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Optional[int] , __snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): UpperCAmelCase_ = super()._pad( encoded_inputs=__snake_case , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ = len(encoded_inputs['''global_attention_mask'''] ) != len(__snake_case ) if needs_to_be_padded: UpperCAmelCase_ = len(__snake_case ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
177
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ = len(__UpperCamelCase ) while cur > 1: # Find the maximum number in arr UpperCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__UpperCamelCase )] # Reverse whole list UpperCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__UpperCamelCase )] cur -= 1 return arr if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
177
1
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase : def __init__( self : int ) -> Optional[Any]: _lowerCAmelCase = [] def lowercase__ ( self : List[str] , __snake_case : Dict ) -> List[Any]: return self.node_position[vertex] def lowercase__ ( self : List[Any] , __snake_case : int , __snake_case : Optional[Any] ) -> List[Any]: _lowerCAmelCase = pos def lowercase__ ( self : Optional[int] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ) -> Dict: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _lowerCAmelCase = 2 * start + 1 else: _lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _lowerCAmelCase , _lowerCAmelCase = heap[smallest_child], positions[smallest_child] _lowerCAmelCase , _lowerCAmelCase = ( heap[start], positions[start], ) _lowerCAmelCase , _lowerCAmelCase = temp, tempa _lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __snake_case ) self.top_to_bottom(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[int] ) -> Union[str, Any]: _lowerCAmelCase = position[index] while index != 0: _lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _lowerCAmelCase = heap[parent] _lowerCAmelCase = position[parent] self.set_position(position[parent] , __snake_case ) else: _lowerCAmelCase = val _lowerCAmelCase = temp self.set_position(__snake_case , __snake_case ) break _lowerCAmelCase = parent else: _lowerCAmelCase = val _lowerCAmelCase = temp self.set_position(__snake_case , 0 ) def lowercase__ ( self : Any , __snake_case : int , __snake_case : List[Any] ) -> Dict: _lowerCAmelCase = len(__snake_case ) // 2 - 1 for i in range(__snake_case , -1 , -1 ): self.top_to_bottom(__snake_case , __snake_case , len(__snake_case ) , __snake_case ) def lowercase__ ( self : List[Any] , __snake_case : Dict , __snake_case : Tuple ) -> Optional[Any]: _lowerCAmelCase = positions[0] _lowerCAmelCase = sys.maxsize self.top_to_bottom(__snake_case , 0 , len(__snake_case ) , __snake_case ) return temp def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = Heap() _lowerCAmelCase = [0] * len(lowerCAmelCase ) _lowerCAmelCase = [-1] * len(lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _lowerCAmelCase = [] for vertex in range(len(lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(lowerCAmelCase ) heap.node_position.append(lowerCAmelCase ) _lowerCAmelCase = [] _lowerCAmelCase = 1 _lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _lowerCAmelCase = 0 _lowerCAmelCase = distance heap.heapify(lowerCAmelCase , lowerCAmelCase ) for _ in range(1 , len(lowerCAmelCase ) ): _lowerCAmelCase = heap.delete_minimum(lowerCAmelCase , lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowerCAmelCase )] ): _lowerCAmelCase = distance heap.bottom_to_top( lowerCAmelCase , heap.get_position(lowerCAmelCase ) , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple =int(input('''Enter number of edges: ''').strip()) A__ : Dict =defaultdict(list) for _ in range(edges_number): A__ : Any =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
70
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A__ : Dict ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A__ : Tuple =concatenate_datasets A__ : Dict =DownloadConfig A__ : int =DownloadManager A__ : Union[str, Any] =DownloadMode A__ : Tuple =DownloadConfig A__ : Optional[Any] =DownloadMode A__ : str =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
70
1
"""simple docstring""" from timeit import timeit def UpperCamelCase (lowercase_: int ) -> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) A__ : List[str] = 0 while number: number &= number - 1 result += 1 return result def UpperCamelCase (lowercase_: int ) -> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) A__ : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCamelCase () -> None: def do_benchmark(lowercase_: int ) -> None: A__ : List[Any] = """import __main__ as z""" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(lowercase_ ) = }""" ) A__ : Union[str, Any] = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=lowercase_ ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(lowercase_ ) = }""" ) A__ : List[Any] = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=lowercase_ , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(lowercase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
368
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase (lowercase_: str , lowercase_: Optional[int] ) -> str: A__ : Union[str, Any] = old_name if "patch_embed" in old_name: A__ , A__ , A__ : Any = old_name.split(""".""" ) if layer == "0": A__ : List[Any] = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": A__ : Optional[int] = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": A__ : int = old_name.replace("""3""" , """convolution2""" ) else: A__ : Dict = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , lowercase_ ): A__ : str = r"""\b\d{2}\b""" if bool(re.search(lowercase_ , lowercase_ ) ): A__ : Optional[Any] = re.search(r"""\d\.\d\d.""" , lowercase_ ).group() else: A__ : int = re.search(r"""\d\.\d.""" , lowercase_ ).group() if int(match[0] ) < 6: A__ : Optional[Any] = old_name.replace(lowercase_ , """""" ) A__ : Tuple = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) A__ : int = """intermediate_stages.""" + trimmed_name else: A__ : Dict = old_name.replace(lowercase_ , """""" ) if int(match[2] ) < num_meta4D_last_stage: A__ : Optional[int] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: A__ : Optional[Any] = str(int(match[2] ) - num_meta4D_last_stage ) A__ : Dict = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: A__ : str = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: A__ : Optional[int] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: A__ : List[Any] = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: A__ : Optional[Any] = trimmed_name.replace("""fc2""" , """linear_out""" ) A__ : str = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , lowercase_ ): A__ : List[str] = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: A__ : Optional[int] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A__ : Optional[int] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A__ : int = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: A__ : Tuple = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: A__ : Optional[int] = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: A__ : Optional[Any] = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: A__ : Optional[Any] = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A__ : Union[str, Any] = new_name.replace("""norm""" , """layernorm""" ) A__ : Union[str, Any] = """efficientformer.""" + new_name else: A__ : int = """efficientformer.encoder.""" + new_name return new_name def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Union[str, Any] ) -> Tuple: for key in checkpoint.copy().keys(): A__ : List[Any] = checkpoint.pop(lowercase_ ) A__ : Dict = val return checkpoint def UpperCamelCase () -> Optional[int]: A__ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : List[str] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return image def UpperCamelCase (lowercase_: Path , lowercase_: Path , lowercase_: Path , lowercase_: bool ) -> Tuple: A__ : Any = torch.load(lowercase_ , map_location="""cpu""" )["""model"""] A__ : List[Any] = EfficientFormerConfig.from_json_file(lowercase_ ) A__ : Any = EfficientFormerForImageClassificationWithTeacher(lowercase_ ) A__ : List[str] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) A__ : Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 A__ : Any = convert_torch_checkpoint(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image A__ : Optional[int] = prepare_img() A__ : Optional[Any] = 256 A__ : str = 224 A__ : List[str] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) A__ : Tuple = processor(images=lowercase_ , return_tensors="""pt""" ).pixel_values # original processing pipeline A__ : List[Any] = Compose( [ Resize(lowercase_ , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(lowercase_ ), ToTensor(), Normalize(lowercase_ , lowercase_ ), ] ) A__ : Any = image_transforms(lowercase_ ).unsqueeze(0 ) assert torch.allclose(lowercase_ , lowercase_ ) A__ : Optional[int] = model(lowercase_ ) A__ : List[str] = outputs.logits A__ : Tuple = (1, 1000) if "l1" in model_name: A__ : List[str] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A__ : Any = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A__ : Union[str, Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase_ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add model""" , use_temp_dir=lowercase_ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add image processor""" , use_temp_dir=lowercase_ , ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) A_ : List[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
141
0
"""simple docstring""" import math class lowercase_ : '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : list[list[float]] , _UpperCAmelCase : list[int] ): _A = 0.0 _A = 0.0 for i in range(len(_UpperCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self : str , _UpperCAmelCase : list[list[int | float]] , _UpperCAmelCase : list[int] , _UpperCAmelCase : int , _UpperCAmelCase : float ): for i in range(len(_UpperCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _snake_case ( ) -> None: '''simple docstring''' _A = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _A = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _A = SelfOrganizingMap() _A = 3 _A = 0.5 for _ in range(_snake_case ): for j in range(len(_snake_case ) ): # training sample _A = training_samples[j] # Compute the winning vector _A = self_organizing_map.get_winner(_snake_case , _snake_case ) # Update the winning vector _A = self_organizing_map.update(_snake_case , _snake_case , _snake_case , _snake_case ) # classify test sample _A = [0, 0, 0, 1] _A = self_organizing_map.get_winner(_snake_case , _snake_case ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
315
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : Optional[int] = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] UpperCAmelCase : Tuple = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] UpperCAmelCase : Optional[Any] = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): UpperCAmelCase : Dict = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
148
UpperCAmelCase : Dict = [0, 2, 4, 6, 8] UpperCAmelCase : Tuple = [1, 3, 5, 7, 9] def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 a__ : str =0 for digit in range(10 ): a__ : int =digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result a__ : List[str] =0 for digita in range(10 ): a__ : Optional[int] =digita if (remainder + digita) % 2 == 0: a__ : Dict =ODD_DIGITS else: a__ : Any =EVEN_DIGITS for digita in other_parity_digits: a__ : Union[str, Any] =digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return result def _A ( SCREAMING_SNAKE_CASE : int = 9 ): """simple docstring""" a__ : List[str] =0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(F"""{solution() = }""")
148
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_flax class lowercase : def _snake_case ( self , lowercase , lowercase ) -> List[str]: pass def _snake_case ( self ) -> Any: pass def _snake_case ( self ) -> Union[str, Any]: pass def _snake_case ( self , lowercase , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(lowercase , lowercase , f'Difference between torch and flax is {diff} (>= {tol}).' ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> Optional[int]: lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase , lowercase ) lowerCAmelCase = FlaxVisionTextDualEncoderModel(lowercase ) lowerCAmelCase = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.get_vision_text_model(lowercase , lowercase ) lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase ) lowerCAmelCase = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.get_vision_text_model(lowercase , lowercase ) lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase ) lowerCAmelCase = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) lowerCAmelCase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase ) lowerCAmelCase = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) lowerCAmelCase = after_output[0] lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase , 1e-3 ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> Optional[int]: lowerCAmelCase , lowerCAmelCase = self.get_vision_text_model(lowercase , lowercase ) lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase ) lowerCAmelCase = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase ) lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase = to_atuple(vision_model.config.image_size ) lowerCAmelCase = to_atuple(vision_model.config.patch_size ) lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Dict: pt_model.to(lowercase ) pt_model.eval() # prepare inputs lowerCAmelCase = inputs_dict lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowerCAmelCase = pt_model(**lowercase ).to_tuple() lowerCAmelCase = fx_model(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase ) lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase , from_pt=lowercase ) lowerCAmelCase = fx_model_loaded(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase ) lowerCAmelCase = VisionTextDualEncoderModel.from_pretrained(lowercase , from_flax=lowercase ) pt_model_loaded.to(lowercase ) pt_model_loaded.eval() with torch.no_grad(): lowerCAmelCase = pt_model_loaded(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase , pt_output_loaded.numpy() , 4e-2 ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Dict: lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase , lowercase ) lowerCAmelCase = VisionTextDualEncoderModel(lowercase ) lowerCAmelCase = FlaxVisionTextDualEncoderModel(lowercase ) lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase ) lowerCAmelCase = fx_state self.check_pt_flax_equivalence(lowercase , lowercase , lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Any: lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase , lowercase ) lowerCAmelCase = VisionTextDualEncoderModel(lowercase ) lowerCAmelCase = FlaxVisionTextDualEncoderModel(lowercase ) lowerCAmelCase = load_flax_weights_in_pytorch_model(lowercase , fx_model.params ) self.check_pt_flax_equivalence(lowercase , lowercase , lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase ) def _snake_case ( self ) -> Dict: lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**lowercase ) def _snake_case ( self ) -> Dict: lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase ) @is_pt_flax_cross_test def _snake_case ( self ) -> str: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = config_inputs_dict.pop("""vision_config""" ) lowerCAmelCase = config_inputs_dict.pop("""text_config""" ) lowerCAmelCase = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase , lowercase , lowercase ) self.check_equivalence_flax_to_pt(lowercase , lowercase , lowercase ) @slow def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.get_pretrained_model_and_inputs() lowerCAmelCase = model_a(**lowercase ) lowerCAmelCase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase ) lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase ) lowerCAmelCase = model_a(**lowercase ) lowerCAmelCase = after_outputs[0] lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase , 1e-5 ) @require_flax class lowercase ( _UpperCAmelCase , unittest.TestCase ): def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase , text_from_pt=lowercase , ) lowerCAmelCase = 13 lowerCAmelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCAmelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowerCAmelCase = random_attention_mask([batch_size, 4] ) lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _snake_case ( self , lowercase , lowercase ) -> Dict: lowerCAmelCase = FlaxViTModel(lowercase ) lowerCAmelCase = FlaxBertModel(lowercase ) return vision_model, text_model def _snake_case ( self ) -> Tuple: lowerCAmelCase = FlaxViTModelTester(self ) lowerCAmelCase = FlaxBertModelTester(self ) lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase = vision_config_and_inputs lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowercase ( _UpperCAmelCase , unittest.TestCase ): def _snake_case ( self ) -> str: lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase , text_from_pt=lowercase , ) lowerCAmelCase = 13 lowerCAmelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCAmelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowerCAmelCase = random_attention_mask([batch_size, 4] ) lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _snake_case ( self , lowercase , lowercase ) -> Optional[Any]: lowerCAmelCase = FlaxCLIPVisionModel(lowercase ) lowerCAmelCase = FlaxBertModel(lowercase ) return vision_model, text_model def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = FlaxCLIPVisionModelTester(self ) lowerCAmelCase = FlaxBertModelTester(self ) lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase = vision_config_and_inputs lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> int: lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase , padding=lowercase , return_tensors="""np""" ) lowerCAmelCase = model(**lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) )
46
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def UpperCAmelCase_ (self ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """this is a test""" UpperCamelCase__ = """this is a test""" return input_text, output_text def UpperCAmelCase_ (self ): UpperCamelCase__ = """<pad>""" UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3_00_01 ) def UpperCAmelCase_ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """This is a test""" UpperCamelCase__ = [13, 1, 43_98, 25, 21, 12_89] UpperCamelCase__ = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] UpperCamelCase__ = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode("""sequence builders""" ) UpperCamelCase__ = tokenizer.encode("""multi-sequence build""" ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ , ) @slow def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = {"""input_ids""": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
244
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Optional[int] = """▁""" _a : Any = {"""vocab_file""": """sentencepiece.bpe.model"""} _a : List[Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } _a : Tuple = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) + self.fairseq_offset __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE,""" """ ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
46
'''simple docstring''' import sys def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] for chain_length in range(2 , lowercase ): for a in range(1 , n - chain_length + 1 ): __lowerCAmelCase = a + chain_length - 1 __lowerCAmelCase = sys.maxsize for c in range(lowercase , lowercase ): __lowerCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCAmelCase = cost __lowerCAmelCase = c return matrix, sol def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]: if i == j: print("""A""" + str(lowercase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(lowercase , lowercase , optimal_solution[i][j] ) print_optiomal_solution(lowercase , optimal_solution[i][j] + 1 , lowercase ) print(""")""" , end=""" """ ) def _lowerCAmelCase ( ) -> Dict: __lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCAmelCase = len(lowercase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCAmelCase , __lowerCAmelCase = matrix_chain_order(lowercase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase , 1 , n - 1 ) if __name__ == "__main__": main()
46
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=0 ) -> Optional[int]: return sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[column] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=float('''inf''' ) ) -> List[Any]: for i in range(points_counts - 1 ): for j in range(i + 1 , __UpperCAmelCase ): lowercase__: List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowercase__: Union[str, Any] = current_dis return min_dis def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=float('''inf''' ) ) -> Tuple: for i in range(min(6 , points_counts - 1 ) , __UpperCAmelCase ): for j in range(max(0 , i - 6 ) , __UpperCAmelCase ): lowercase__: List[str] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowercase__: Tuple = current_dis return min_dis def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: # base case if points_counts <= 3: return dis_between_closest_pair(__UpperCAmelCase , __UpperCAmelCase ) # recursion lowercase__: List[Any] = points_counts // 2 lowercase__: int = closest_pair_of_points_sqr( __UpperCAmelCase , points_sorted_on_y[:mid] , __UpperCAmelCase ) lowercase__: List[Any] = closest_pair_of_points_sqr( __UpperCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) lowercase__: List[str] = min(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[Any] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__UpperCAmelCase ) lowercase__: Any = dis_between_closest_in_strip( __UpperCAmelCase , len(__UpperCAmelCase ) , __UpperCAmelCase ) return min(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__: int = column_based_sort(__UpperCAmelCase , column=0 ) lowercase__: Optional[Any] = column_based_sort(__UpperCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) ** 0.5 if __name__ == "__main__": __A = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
177
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = "deta" _UpperCAmelCase :Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=900 , _UpperCAmelCase=2048 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=1024 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=True , _UpperCAmelCase=300 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.25 , **_UpperCAmelCase , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase__: str = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = backbone_config.pop('''model_type''' ) lowercase__: str = CONFIG_MAPPING[backbone_model_type] lowercase__: Optional[int] = config_class.from_dict(_UpperCAmelCase ) lowercase__: int = backbone_config lowercase__: Any = num_queries lowercase__: List[str] = max_position_embeddings lowercase__: Optional[Any] = d_model lowercase__: List[Any] = encoder_ffn_dim lowercase__: Tuple = encoder_layers lowercase__: Dict = encoder_attention_heads lowercase__: Any = decoder_ffn_dim lowercase__: Union[str, Any] = decoder_layers lowercase__: List[Any] = decoder_attention_heads lowercase__: int = dropout lowercase__: List[str] = attention_dropout lowercase__: Tuple = activation_dropout lowercase__: Tuple = activation_function lowercase__: int = init_std lowercase__: Optional[Any] = init_xavier_std lowercase__: Optional[Any] = encoder_layerdrop lowercase__: Optional[int] = auxiliary_loss lowercase__: Union[str, Any] = position_embedding_type # deformable attributes lowercase__: List[str] = num_feature_levels lowercase__: Optional[Any] = encoder_n_points lowercase__: int = decoder_n_points lowercase__: str = two_stage lowercase__: Optional[int] = two_stage_num_proposals lowercase__: Tuple = with_box_refine lowercase__: str = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase__: Union[str, Any] = class_cost lowercase__: Optional[int] = bbox_cost lowercase__: int = giou_cost # Loss coefficients lowercase__: Optional[int] = mask_loss_coefficient lowercase__: List[str] = dice_loss_coefficient lowercase__: str = bbox_loss_coefficient lowercase__: Union[str, Any] = giou_loss_coefficient lowercase__: Optional[int] = eos_coefficient lowercase__: str = focal_alpha super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def _snake_case ( self ): return self.encoder_attention_heads @property def _snake_case ( self ): return self.d_model def _snake_case ( self ): lowercase__: Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase__: Dict = self.backbone_config.to_dict() lowercase__: Union[str, Any] = self.__class__.model_type return output
177
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
362
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['prompt'] __SCREAMING_SNAKE_CASE : str = ['prompt'] __SCREAMING_SNAKE_CASE : Dict = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : Union[str, Any] = False @property def _a (self ): return 32 @property def _a (self ): return 32 @property def _a (self ): return self.time_input_dim * 4 @property def _a (self ): return 8 @property def _a (self ): A_ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _a (self ): torch.manual_seed(0 ) A_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase ) @property def _a (self ): torch.manual_seed(0 ) A_ : Any = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A_ : List[str] = PriorTransformer(**lowercase ) return model @property def _a (self ): torch.manual_seed(0 ) A_ : str = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A_ : Dict = ShapERenderer(**lowercase ) return model def _a (self ): A_ : Optional[int] = self.dummy_prior A_ : Optional[int] = self.dummy_text_encoder A_ : int = self.dummy_tokenizer A_ : Dict = self.dummy_renderer A_ : Tuple = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) A_ : Union[str, Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _a (self , lowercase , lowercase=0 ): if str(lowercase ).startswith("""mps""" ): A_ : Any = torch.manual_seed(lowercase ) else: A_ : str = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : List[str] = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a (self ): A_ : str = """cpu""" A_ : Union[str, Any] = self.get_dummy_components() A_ : Optional[int] = self.pipeline_class(**lowercase ) A_ : str = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Dict = pipe(**self.get_dummy_inputs(lowercase ) ) A_ : Dict = output.images[0] A_ : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A_ : Tuple = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a (self ): A_ : Tuple = torch_device == """cpu""" A_ : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def _a (self ): A_ : List[Any] = self.get_dummy_components() A_ : Any = self.pipeline_class(**lowercase ) A_ : Any = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = 1 A_ : Union[str, Any] = 2 A_ : Dict = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: A_ : Optional[Any] = batch_size * [inputs[key]] A_ : List[Any] = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) A_ : Tuple = ShapEPipeline.from_pretrained("""openai/shap-e""" ) A_ : int = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = torch.Generator(device=lowercase ).manual_seed(0 ) A_ : List[str] = pipe( """a shark""" , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
135
0
from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = "tiny-wmt19-en-ru" # Build # borrowed from a test _lowerCAmelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _lowerCAmelCase : int = dict(zip(vocab, range(len(vocab)))) _lowerCAmelCase : List[str] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Any = Path(tmpdirname) _lowerCAmelCase : int = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] _lowerCAmelCase : Dict = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] _lowerCAmelCase : List[Any] = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) _lowerCAmelCase : int = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _lowerCAmelCase : List[str] = FSMTConfig( langs=["ru", "en"], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _lowerCAmelCase : Optional[Any] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _lowerCAmelCase : List[str] = tokenizer(["Making tiny model"], return_tensors="pt") _lowerCAmelCase : Union[str, Any] = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
169
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFImgaImgSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case ( self : int ): """simple docstring""" return self._get_superresolution_dummy_components() def snake_case ( self : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : List[str]=0 ): """simple docstring""" if str(__lowercase ).startswith('mps' ): __lowercase =torch.manual_seed(__lowercase ) else: __lowercase =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase =floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case ( self : Union[str, Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case ( self : int ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case ( self : str ): """simple docstring""" self._test_save_load_local() def snake_case ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
141
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = """deformable_detr""" A__ : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=3_0_0 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=6 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_5_6 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase=False , __UpperCamelCase=3_0_0 , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , __UpperCamelCase=0.25 , __UpperCamelCase=False , **__UpperCamelCase , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = backbone_config.get("""model_type""" ) UpperCamelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase_ = config_class.from_dict(__UpperCamelCase ) UpperCamelCase_ = use_timm_backbone UpperCamelCase_ = backbone_config UpperCamelCase_ = num_channels UpperCamelCase_ = num_queries UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = d_model UpperCamelCase_ = encoder_ffn_dim UpperCamelCase_ = encoder_layers UpperCamelCase_ = encoder_attention_heads UpperCamelCase_ = decoder_ffn_dim UpperCamelCase_ = decoder_layers UpperCamelCase_ = decoder_attention_heads UpperCamelCase_ = dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = activation_dropout UpperCamelCase_ = activation_function UpperCamelCase_ = init_std UpperCamelCase_ = init_xavier_std UpperCamelCase_ = encoder_layerdrop UpperCamelCase_ = auxiliary_loss UpperCamelCase_ = position_embedding_type UpperCamelCase_ = backbone UpperCamelCase_ = use_pretrained_backbone UpperCamelCase_ = dilation # deformable attributes UpperCamelCase_ = num_feature_levels UpperCamelCase_ = encoder_n_points UpperCamelCase_ = decoder_n_points UpperCamelCase_ = two_stage UpperCamelCase_ = two_stage_num_proposals UpperCamelCase_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCamelCase_ = class_cost UpperCamelCase_ = bbox_cost UpperCamelCase_ = giou_cost # Loss coefficients UpperCamelCase_ = mask_loss_coefficient UpperCamelCase_ = dice_loss_coefficient UpperCamelCase_ = bbox_loss_coefficient UpperCamelCase_ = giou_loss_coefficient UpperCamelCase_ = eos_coefficient UpperCamelCase_ = focal_alpha UpperCamelCase_ = disable_custom_kernels super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.encoder_attention_heads @property def lowerCamelCase_ ( self ): """simple docstring""" return self.d_model def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase_ = self.backbone_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
261
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Union[str, Any] = ["""pixel_values"""] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BICUBIC , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_5_5 , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} UpperCamelCase_ = get_size_dict(__UpperCamelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} UpperCamelCase_ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase , param_name="""crop_size""" ) UpperCamelCase_ = do_resize UpperCamelCase_ = do_rescale UpperCamelCase_ = do_normalize UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = rescale_factor UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(__UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase_ = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase ): """simple docstring""" return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(__UpperCamelCase , param_name="""crop_size""" , default_to_square=__UpperCamelCase ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if not is_batched(__UpperCamelCase ): UpperCamelCase_ = [images] if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: UpperCamelCase_ = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: UpperCamelCase_ = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: UpperCamelCase_ = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: UpperCamelCase_ = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] UpperCamelCase_ = {"""pixel_values""": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
261
1
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def UpperCamelCase__ ( lowercase__ : str ): return "".join(sorted(lowercase__ ) ) def UpperCamelCase__ ( lowercase__ : str ): return word_by_signature[signature(lowercase__ )] __A = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __A = sorted({word.strip().lower() for word in data.splitlines()}) __A = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __A = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
148
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline __A = "path-to-your-trained-model" __A = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") __A = "A photo of sks dog in a bucket" __A = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
148
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase(self : Tuple , _A : List[Any]=0 ) -> str: snake_case = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(_A ) ) snake_case = np.random.RandomState(_A ) snake_case = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase(self : Any ) -> Tuple: snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_A ) snake_case = self.get_dummy_inputs() snake_case = pipe(**_A ).images snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCAmelCase(self : str ) -> Dict: snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_A ) pipe.set_progress_bar_config(disable=_A ) snake_case = self.get_dummy_inputs() snake_case = pipe(**_A ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase(self : Optional[Any] ) -> Tuple: snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) # warmup pass to apply optimizations snake_case = pipe(**self.get_dummy_inputs() ) snake_case = self.get_dummy_inputs() snake_case = pipe(**_A ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase(self : List[str] ) -> Any: snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) snake_case = self.get_dummy_inputs() snake_case = pipe(**_A ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase(self : List[Any] ) -> int: snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) snake_case = self.get_dummy_inputs() snake_case = pipe(**_A ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase(self : Optional[int] ) -> Union[str, Any]: snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) snake_case = self.get_dummy_inputs() snake_case = pipe(**_A ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): @property def UpperCAmelCase(self : Optional[Any] ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase(self : List[str] ) -> int: snake_case = ort.SessionOptions() snake_case = False return options def UpperCAmelCase(self : str ) -> List[str]: snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) snake_case = "A fantasy landscape, trending on artstation" snake_case = np.random.RandomState(0 ) snake_case = pipe( prompt=_A , image=_A , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_A , output_type="np" , ) snake_case = output.images snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) snake_case = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCAmelCase(self : Any ) -> Any: snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case = init_image.resize((7_6_8, 5_1_2) ) snake_case = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=_A , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) snake_case = "A fantasy landscape, trending on artstation" snake_case = np.random.RandomState(0 ) snake_case = pipe( prompt=_A , image=_A , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_A , output_type="np" , ) snake_case = output.images snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) snake_case = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
137
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _A = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } _A = { "bert-base-uncased": 5_12, "bert-large-uncased": 5_12, "bert-base-cased": 5_12, "bert-large-cased": 5_12, "bert-base-multilingual-uncased": 5_12, "bert-base-multilingual-cased": 5_12, "bert-base-chinese": 5_12, "bert-base-german-cased": 5_12, "bert-large-uncased-whole-word-masking": 5_12, "bert-large-cased-whole-word-masking": 5_12, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_12, "bert-large-cased-whole-word-masking-finetuned-squad": 5_12, "bert-base-cased-finetuned-mrpc": 5_12, "bert-base-german-dbmdz-cased": 5_12, "bert-base-german-dbmdz-uncased": 5_12, "TurkuNLP/bert-base-finnish-cased-v1": 5_12, "TurkuNLP/bert-base-finnish-uncased-v1": 5_12, "wietsedv/bert-base-dutch-cased": 5_12, } _A = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = BertTokenizer def __init__(self : Union[str, Any] , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : List[str]=True , _A : List[Any]="[UNK]" , _A : Union[str, Any]="[SEP]" , _A : List[Any]="[PAD]" , _A : List[Any]="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : int=True , _A : Tuple=None , **_A : Optional[int] , ) -> int: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _A ) != do_lower_case or normalizer_state.get("strip_accents" , _A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars ): snake_case = getattr(_A , normalizer_state.pop("type" ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**_A ) snake_case = do_lower_case def UpperCAmelCase(self : str , _A : Union[str, Any] , _A : int=None ) -> Any: snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase(self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase(self : Union[str, Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
137
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'conditional_detr' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , lowercase=True , lowercase=None , lowercase=3 , lowercase=300 , lowercase=6 , lowercase=2_048 , lowercase=8 , lowercase=6 , lowercase=2_048 , lowercase=8 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=256 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , lowercase=False , lowercase="sine" , lowercase="resnet50" , lowercase=True , lowercase=False , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=1 , lowercase=1 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.25 , **lowercase , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase , lowercase ): lowerCAmelCase = backbone_config.get("""model_type""" ) lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase = config_class.from_dict(lowercase ) lowerCAmelCase = use_timm_backbone lowerCAmelCase = backbone_config lowerCAmelCase = num_channels lowerCAmelCase = num_queries lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = init_xavier_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = encoder_layers lowerCAmelCase = auxiliary_loss lowerCAmelCase = position_embedding_type lowerCAmelCase = backbone lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = dilation # Hungarian matcher lowerCAmelCase = class_cost lowerCAmelCase = bbox_cost lowerCAmelCase = giou_cost # Loss coefficients lowerCAmelCase = mask_loss_coefficient lowerCAmelCase = dice_loss_coefficient lowerCAmelCase = cls_loss_coefficient lowerCAmelCase = bbox_loss_coefficient lowerCAmelCase = giou_loss_coefficient lowerCAmelCase = focal_alpha super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
46
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'longformer' def __init__( self , lowercase = 512 , lowercase = 2 , lowercase = 1 , lowercase = 0 , lowercase = 2 , lowercase = 30_522 , lowercase = 768 , lowercase = 12 , lowercase = 12 , lowercase = 3_072 , lowercase = "gelu" , lowercase = 0.1 , lowercase = 0.1 , lowercase = 512 , lowercase = 2 , lowercase = 0.02 , lowercase = 1e-12 , lowercase = False , **lowercase , ) -> Optional[int]: super().__init__(pad_token_id=lowercase , **lowercase ) lowerCAmelCase = attention_window lowerCAmelCase = sep_token_id lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = onnx_export class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase = "default" , lowercase = None ) -> Tuple: super().__init__(lowercase , lowercase , lowercase ) lowerCAmelCase = True @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase = super().outputs if self.task == "default": lowerCAmelCase = {0: """batch"""} return outputs @property def _snake_case ( self ) -> float: return 1e-4 @property def _snake_case ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _snake_case ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: lowerCAmelCase = super().generate_dummy_inputs( preprocessor=lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCAmelCase = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global lowerCAmelCase = 1 return inputs
46
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __UpperCAmelCase = get_tests_dir('''fixtures''') class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: # A mock response for an HTTP head request to emulate server down UpperCamelCase : Dict = mock.Mock() UpperCamelCase : Optional[Any] = 500 UpperCamelCase : Union[str, Any] = {} UpperCamelCase : Union[str, Any] = HTTPError UpperCamelCase : Any = {} # Download this model to make sure it's in the cache. UpperCamelCase : Tuple = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=SCREAMING_SNAKE_CASE_ ) as mock_head: UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 UpperCamelCase : Optional[int] = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def snake_case_ ( self ) -> List[Any]: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase : Dict = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) UpperCamelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): @classmethod def snake_case_ ( cls ) -> Dict: UpperCamelCase : List[Any] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def snake_case_ ( cls ) -> List[Any]: try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def snake_case_ ( self ) -> Tuple: UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) UpperCamelCase : Any = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_, getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE_, repo_id='test-image-processor', push_to_hub=SCREAMING_SNAKE_CASE_, use_auth_token=self._token ) UpperCamelCase : List[str] = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_, getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : List[Any] = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) UpperCamelCase : List[str] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_, getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE_, repo_id='valid_org/test-image-processor-org', push_to_hub=SCREAMING_SNAKE_CASE_, use_auth_token=self._token ) UpperCamelCase : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_, getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: CustomImageProcessor.register_for_auto_class() UpperCamelCase : str = CustomImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) UpperCamelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""", trust_remote_code=SCREAMING_SNAKE_CASE_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
356
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Dict: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase : Optional[int] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
103
0