code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = name __SCREAMING_SNAKE_CASE : Any = value __SCREAMING_SNAKE_CASE : List[Any] = weight def __repr__( self :List[Any] ) -> List[str]: return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def __magic_name__( self :Union[str, Any] ) -> List[str]: return self.value def __magic_name__( self :Any ) -> Dict: return self.name def __magic_name__( self :str ) -> int: return self.weight def __magic_name__( self :Optional[int] ) -> Tuple: return self.value / self.weight def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(lowercase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = sorted(lowercase__ , key=lowercase__ , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = 0.0, 0.0 for i in range(len(lowercase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
9
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _snake_case ( a__ ): snake_case__ = 42 class _snake_case ( a__ , a__ ): @register_to_config def __init__( self : List[Any] , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 3 , UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase : Tuple[int] = (64,) , UpperCAmelCase : int = 1 , UpperCAmelCase : str = "silu" , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 256 , UpperCAmelCase : int = 32 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : float = 0.1_8_2_1_5 , UpperCAmelCase : str = "group" , ): super().__init__() # pass init params to Encoder __lowerCamelCase : Tuple = Encoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , down_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , double_z=UpperCAmelCase , ) __lowerCamelCase : Optional[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowerCamelCase : List[str] = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) __lowerCamelCase : List[Any] = VectorQuantizer(UpperCAmelCase , UpperCAmelCase , beta=0.2_5 , remap=UpperCAmelCase , sane_index_shape=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) # pass init params to Decoder __lowerCamelCase : int = Decoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , up_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , norm_type=UpperCAmelCase , ) @apply_forward_hook def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ): __lowerCamelCase : List[Any] = self.encoder(UpperCAmelCase ) __lowerCamelCase : int = self.quant_conv(UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase ) @apply_forward_hook def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True ): # also go through quantization layer if not force_not_quantize: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = self.quantize(UpperCAmelCase ) else: __lowerCamelCase : Optional[Any] = h __lowerCamelCase : int = self.post_quant_conv(UpperCAmelCase ) __lowerCamelCase : str = self.decoder(UpperCAmelCase , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ): __lowerCamelCase : Dict = sample __lowerCamelCase : Optional[Any] = self.encode(UpperCAmelCase ).latents __lowerCamelCase : Optional[Any] = self.decode(UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase )
135
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : snake_case__ : Union[str, Any] = LEDConfig snake_case__ : Any = {} snake_case__ : int = '''gelu''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int=1_3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : int=3_7 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Dict=2_0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Any=4 , ) -> List[str]: a_ : Tuple = parent a_ : Dict = batch_size a_ : Tuple = seq_length a_ : Optional[Any] = is_training a_ : Tuple = use_labels a_ : Union[str, Any] = vocab_size a_ : List[str] = hidden_size a_ : Union[str, Any] = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : Optional[Any] = intermediate_size a_ : Any = hidden_dropout_prob a_ : Optional[Any] = attention_probs_dropout_prob a_ : Dict = max_position_embeddings a_ : int = eos_token_id a_ : Any = pad_token_id a_ : Optional[int] = bos_token_id a_ : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a_ : str = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a_ : Optional[int] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a_ : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a_ : Union[str, Any] = prepare_led_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : str = tf.concat( [tf.zeros_like(SCREAMING_SNAKE_CASE__ )[:, :-1], tf.ones_like(SCREAMING_SNAKE_CASE__ )[:, -1:]] , axis=-1 , ) a_ : Union[str, Any] = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: a_ : Dict = TFLEDModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder() a_ : Union[str, Any] = inputs_dict['input_ids'] a_ : Tuple = input_ids[:1, :] a_ : Union[str, Any] = inputs_dict['attention_mask'][:1, :] a_ : Tuple = 1 # first forward pass a_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) a_ , a_ : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) a_ : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a_ : Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) a_ : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a_ : Any = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] a_ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a_ : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a_ : Tuple = output_from_no_past[:, -3:, random_slice_idx] a_ : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-3 ) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Union[str, Any] , __A : Optional[int] , __A : Optional[int]=None , __A : Dict=None , __A : Union[str, Any]=None , __A : str=None , ) -> Dict: """simple docstring""" if attention_mask is None: a_ : Any = tf.cast(tf.math.not_equal(__A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a_ : Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a_ : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a_ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () snake_case__ : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () snake_case__ : str = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) snake_case__ : str = True snake_case__ : List[str] = False snake_case__ : Any = False snake_case__ : List[Any] = False def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : List[str] = TFLEDModelTester(self ) a_ : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: a_ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a_ : Tuple = tf.zeros_like(inputs_dict['attention_mask'] ) a_ : Optional[int] = 2 a_ : int = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) a_ : Dict = True a_ : Union[str, Any] = self.model_tester.seq_length a_ : str = self.model_tester.encoder_seq_length def check_decoder_attentions_output(SCREAMING_SNAKE_CASE__ : Any ): a_ : Optional[Any] = outputs.decoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ : Optional[Any] ): a_ : Any = [t.numpy() for t in outputs.encoder_attentions] a_ : Any = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a_ : Optional[int] = True a_ : List[str] = False a_ : int = False a_ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) a_ : Any = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a_ : Any = len(SCREAMING_SNAKE_CASE__ ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) if self.is_encoder_decoder: a_ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_decoder_attentions_output(SCREAMING_SNAKE_CASE__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a_ : str = True a_ : str = model_class(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) # Check attention is always last and order is fine a_ : str = True a_ : Optional[int] = True a_ : Any = model_class(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(model.config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: # TODO: Head-masking not yet implement pass def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> Union[str, Any]: """simple docstring""" return tf.constant(__A , dtype=tf.intaa ) UpperCAmelCase_ : Union[str, Any] = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: a_ : Tuple = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here a_ : str = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a_ : int = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a_ : Tuple = prepare_led_inputs_dict(model.config , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model(**SCREAMING_SNAKE_CASE__ )[0] a_ : str = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # change to expected output here a_ : str = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ : str = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here a_ : List[Any] = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a_ : Any = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a_ : List[Any] = prepare_led_inputs_dict(model.config , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model(**SCREAMING_SNAKE_CASE__ )[0] a_ : int = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # change to expected output here a_ : str = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-3 , rtol=1E-3 )
120
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
120
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__:int = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] SCREAMING_SNAKE_CASE__:str = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE__:Dict = {F'''funnel-transformer/{name}''': 512 for name in _model_names} SCREAMING_SNAKE_CASE__:str = {F'''funnel-transformer/{name}''': {"""do_lower_case""": True} for name in _model_names} class snake_case__ ( snake_case_ ): _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_INIT_CONFIGURATION _snake_case : Union[str, Any] = FunnelTokenizer _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : int = 2 def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="<unk>" , lowerCamelCase="<sep>" , lowerCamelCase="<pad>" , lowerCamelCase="<cls>" , lowerCamelCase="<mask>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase="##" , **lowerCamelCase , ): super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , clean_text=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , wordpieces_prefix=lowerCamelCase , **lowerCamelCase , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase ) != tokenize_chinese_chars ): __a = getattr(lowerCamelCase , normalizer_state.pop("type" ) ) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**lowerCamelCase ) __a = do_lower_case def a__ ( self , lowerCamelCase , lowerCamelCase=None ): __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
261
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=50 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = use_labels __a = scope def a__ ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.get_config() return config, input_ids, input_mask, token_labels def a__ ( self ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def a__ ( self ): ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.prepare_config_and_inputs() __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ): __a = BertGenerationEncoder(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase ) __a = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ): __a = True __a = BertGenerationEncoder(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ): __a = True __a = True __a = BertGenerationDecoder(config=lowerCamelCase ).to(lowerCamelCase ).eval() # first forward pass __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , use_cache=lowerCamelCase , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([input_mask, next_mask] , dim=-1 ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase , ): __a = BertGenerationDecoder(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ): __a , __a , __a , __a = self.prepare_config_and_inputs() __a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case__ ( snake_case_, snake_case_, snake_case_, unittest.TestCase ): _snake_case : Union[str, Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _snake_case : Any = (BertGenerationDecoder,) if is_torch_available() else () _snake_case : Union[str, Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def a__ ( self ): __a = BertGenerationEncoderTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def a__ ( self ): self.config_tester.run_common_tests() def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def a__ ( self ): __a , __a , __a , __a = self.model_tester.prepare_config_and_inputs() __a = "bert" self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase ) def a__ ( self ): # This regression test was failing with PyTorch < 1.3 ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __a = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) @slow def a__ ( self ): __a = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(lowerCamelCase ) @require_torch class snake_case__ ( unittest.TestCase ): @slow def a__ ( self ): __a = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __a = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): __a = model(lowerCamelCase )[0] __a = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , lowerCamelCase ) __a = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=1E-4 ) ) @require_torch class snake_case__ ( unittest.TestCase ): @slow def a__ ( self ): __a = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __a = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): __a = model(lowerCamelCase )[0] __a = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , lowerCamelCase ) __a = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=1E-4 ) )
261
1
__A : str = '''Tobias Carryer''' from time import time class __A : def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=int(time() ) ): # noqa: B008 lowerCAmelCase : Optional[int] = multiplier lowerCAmelCase : Dict = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[int] = seed def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __A : Optional[Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix SCREAMING_SNAKE_CASE = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError('This matrix has no inverse.') # Creates a copy of the matrix with swapped positions of the elements SCREAMING_SNAKE_CASE = [[0.0, 0.0], [0.0, 0.0]] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = matrix[1][1], matrix[0][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule SCREAMING_SNAKE_CASE = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError('This matrix has no inverse.') # Creating cofactor matrix SCREAMING_SNAKE_CASE = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] SCREAMING_SNAKE_CASE = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) SCREAMING_SNAKE_CASE = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) SCREAMING_SNAKE_CASE = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) SCREAMING_SNAKE_CASE = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) SCREAMING_SNAKE_CASE = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) SCREAMING_SNAKE_CASE = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) SCREAMING_SNAKE_CASE = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) SCREAMING_SNAKE_CASE = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) SCREAMING_SNAKE_CASE = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) SCREAMING_SNAKE_CASE = array(_UpperCAmelCase) for i in range(3): for j in range(3): SCREAMING_SNAKE_CASE = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix SCREAMING_SNAKE_CASE = array(_UpperCAmelCase) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(_UpperCAmelCase) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.')
137
import os from datetime import datetime as dt from github import Github a_ : Tuple = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Github(os.environ['GITHUB_TOKEN']) SCREAMING_SNAKE_CASE = g.get_repo('huggingface/diffusers') SCREAMING_SNAKE_CASE = repo.get_issues(state='open') for issue in open_issues: SCREAMING_SNAKE_CASE = sorted(issue.get_comments() , key=lambda _UpperCAmelCase: i.created_at , reverse=_UpperCAmelCase) SCREAMING_SNAKE_CASE = comments[0] if len(_UpperCAmelCase) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed') elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open') issue.remove_from_labels('stale') elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.') issue.add_to_labels('stale') if __name__ == "__main__": main()
137
1
"""simple docstring""" def lowercase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Any , _lowerCamelCase: str ) -> List[Any]: '''simple docstring''' if len(_lowercase ) != len(_lowercase ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowerCamelCase : List[str] = [p / w for p, w in zip(_lowercase , _lowercase )] # Creating a copy of the list and sorting profit/weight in ascending order __lowerCamelCase : int = sorted(_lowercase ) # declaring useful variables __lowerCamelCase : Any = len(_lowercase ) __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : int = 0 __lowerCamelCase : Any = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowerCamelCase : str = sorted_profit_by_weight[length - i - 1] __lowerCamelCase : Dict = profit_by_weight.index(_lowercase ) __lowerCamelCase : Optional[int] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) __A = [int(x) for x in input('''Input profits separated by spaces: ''').split()] __A = [int(x) for x in input('''Input weights separated by spaces: ''').split()] __A = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
358
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _A : int = logging.get_logger(__name__) @dataclass class a__ : __lowerCAmelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) __lowerCAmelCase = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __lowerCAmelCase = field( default=128, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) __lowerCAmelCase = field( default=UpperCamelCase_, metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __magic_name__ ( self ): lowercase : List[str] = self.task_name.lower() class a__ ( UpperCamelCase_ ): __lowerCAmelCase = """train""" __lowerCAmelCase = """dev""" __lowerCAmelCase = """test""" class a__ ( UpperCamelCase_ ): __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 def __init__( self , _a , _a , _a = None , _a = Split.train , _a = None , ): warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , A_ , ) lowercase : Dict = args lowercase : Optional[int] = glue_processors[args.task_name]() lowercase : Optional[Any] = glue_output_modes[args.task_name] if isinstance(A_ , A_ ): try: lowercase : Optional[Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file lowercase : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) lowercase : Optional[int] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase : Dict = label_list[2], label_list[1] lowercase : Tuple = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase : Union[str, Any] = cached_features_file + '''.lock''' with FileLock(A_ ): if os.path.exists(A_ ) and not args.overwrite_cache: lowercase : str = time.time() lowercase : int = torch.load(A_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: lowercase : Tuple = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowercase : Tuple = self.processor.get_test_examples(args.data_dir ) else: lowercase : Optional[int] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowercase : Tuple = examples[:limit_length] lowercase : Any = glue_convert_examples_to_features( A_ , A_ , max_length=args.max_seq_length , label_list=A_ , output_mode=self.output_mode , ) lowercase : Optional[int] = time.time() torch.save(self.features , A_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): return len(self.features ) def __getitem__( self , _a ): return self.features[i] def __magic_name__ ( self ): return self.label_list
202
A__ : Any = '''Tobias Carryer''' from time import time class __snake_case : def __init__( self : Any , A_ : Tuple , A_ : Dict , A_ : Tuple , A_ : str=int(time())): # noqa: B008 lowerCAmelCase_ : int = multiplier lowerCAmelCase_ : int = increment lowerCAmelCase_ : str = modulo lowerCAmelCase_ : str = seed def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. A__ : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
103
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : List[str] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['ConvNextFeatureExtractor'] __A : Optional[int] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
8
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,): snake_case_ : str = parent snake_case_ : int = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : List[Any] = is_training snake_case_ : Union[str, Any] = use_input_mask snake_case_ : List[str] = use_labels snake_case_ : int = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = projection_dim snake_case_ : Dict = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : int = dropout snake_case_ : int = attention_dropout snake_case_ : Dict = max_position_embeddings snake_case_ : Union[str, Any] = initializer_range snake_case_ : Dict = scope snake_case_ : Union[str, Any] = bos_token_id def a__ ( self :Any ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case_ : int = input_mask.numpy() snake_case_ , snake_case_ : Tuple = input_mask.shape snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): snake_case_ : Optional[int] = 1 snake_case_ : List[str] = 0 snake_case_ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def a__ ( self :str ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ): snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase ) snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () lowercase : int = False lowercase : List[Any] = False lowercase : Dict = False def a__ ( self :List[Any] ): snake_case_ : List[str] = BlipTextModelTester(self ) snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 ) def a__ ( self :Union[str, Any] ): self.config_tester.run_common_tests() def a__ ( self :Union[str, Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :Tuple ): pass def a__ ( self :Tuple ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def a__ ( self :Any ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :Tuple ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :List[Any] ): pass @slow def a__ ( self :Any ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
8
1
'''simple docstring''' from collections import Counter from timeit import timeit def UpperCamelCase_ ( A__ : str = "" , ): '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def UpperCamelCase_ ( A__ : str = "" ): '''simple docstring''' if len(A__ ) == 0: return True lowerCAmelCase_ : Optional[int] = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase_ : dict[str, int] = {} for character in lower_case_input_str: lowerCAmelCase_ : Dict = character_freq_dict.get(A__ , 0 ) + 1 lowerCAmelCase_ : Optional[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def UpperCamelCase_ ( A__ : str = "" ): '''simple docstring''' print("""\nFor string = """ , A__ , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(A__ ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(A__ ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": __A : Dict = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) __A : int = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {'' if status else 'not '}be rearranged as a palindrome''')
120
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : str ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCAmelCase_ : int = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCamelCase , cache_dir=lowerCamelCase ) lowerCAmelCase_ : Dict = [t[-1] for t in os.walk(os.path.join(lowerCamelCase , os.listdir(lowerCamelCase )[0] , """snapshots""" ) )] lowerCAmelCase_ : List[Any] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Any ) -> Optional[int]: lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCamelCase ) lowerCAmelCase_ : List[str] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : Tuple = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Optional[Any] = 4 lowerCAmelCase_ : Dict = jax.device_count() lowerCAmelCase_ : Tuple = num_samples * [prompt] lowerCAmelCase_ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : Optional[Any] = replicate(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : int = shard(lowerCamelCase ) lowerCAmelCase_ : str = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 lowerCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase ) == num_samples def __lowercase ( self : Optional[int] ) -> List[str]: lowerCAmelCase_, lowerCAmelCase_ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=lowerCamelCase ) lowerCAmelCase_ : Dict = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[Any] = 50 lowerCAmelCase_ : str = jax.device_count() lowerCAmelCase_ : Optional[Any] = num_samples * [prompt] lowerCAmelCase_ : Dict = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : Optional[Any] = replicate(lowerCamelCase ) lowerCAmelCase_ : str = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = shard(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def __lowercase ( self : List[Any] ) -> List[Any]: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase ) lowerCAmelCase_ : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Union[str, Any] = 50 lowerCAmelCase_ : Dict = jax.device_count() lowerCAmelCase_ : List[Any] = num_samples * [prompt] lowerCAmelCase_ : Tuple = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : Optional[int] = replicate(lowerCamelCase ) lowerCAmelCase_ : Any = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Optional[int] = shard(lowerCamelCase ) lowerCAmelCase_ : Any = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __lowercase ( self : int ) -> Optional[int]: lowerCAmelCase_, lowerCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) lowerCAmelCase_ : List[str] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : str = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[Any] = 50 lowerCAmelCase_ : Union[str, Any] = jax.device_count() lowerCAmelCase_ : Optional[Any] = num_samples * [prompt] lowerCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : List[Any] = replicate(lowerCamelCase ) lowerCAmelCase_ : List[str] = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = shard(lowerCamelCase ) lowerCAmelCase_ : Tuple = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __lowercase ( self : List[str] ) -> Any: lowerCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) lowerCAmelCase_, lowerCAmelCase_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , ) lowerCAmelCase_ : Any = scheduler.create_state() lowerCAmelCase_ : Optional[Any] = scheduler_state lowerCAmelCase_ : List[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : int = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[str] = 50 lowerCAmelCase_ : str = jax.device_count() lowerCAmelCase_ : List[Any] = num_samples * [prompt] lowerCAmelCase_ : int = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : List[str] = replicate(lowerCamelCase ) lowerCAmelCase_ : Any = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = shard(lowerCamelCase ) lowerCAmelCase_ : Tuple = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def __lowercase ( self : Any ) -> Union[str, Any]: lowerCAmelCase_ : int = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : Any = jax.device_count() lowerCAmelCase_ : Optional[Any] = num_samples * [prompt] lowerCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase , ) lowerCAmelCase_ : Optional[int] = replicate(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = shard(lowerCamelCase ) lowerCAmelCase_ : Tuple = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) lowerCAmelCase_ : Dict = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention lowerCAmelCase_, lowerCAmelCase_ : Any = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase , use_memory_efficient_attention=lowerCamelCase , ) lowerCAmelCase_ : List[str] = replicate(lowerCamelCase ) lowerCAmelCase_ : Dict = pipeline.prepare_inputs(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = shard(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) lowerCAmelCase_ : List[Any] = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
120
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } lowercase__ = {"bert_for_seq_generation": 5_1_2} class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = [] lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]="<s>" , UpperCamelCase__ : List[str]="</s>" , UpperCamelCase__ : Union[str, Any]="<unk>" , UpperCamelCase__ : Tuple="<pad>" , UpperCamelCase__ : Optional[Any]="<::::>" , UpperCamelCase__ : Optional[Dict[str, Any]] = None , **UpperCamelCase__ : Tuple , ) -> None: """simple docstring""" snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) snake_case : Optional[Any] = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return self.sp_model.get_piece_size() def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case : Any = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[int] = self.__dict__.copy() snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[int] , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case : Any = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def lowerCAmelCase ( self : str , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.sp_model.piece_to_id(UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : List[str] ) -> int: """simple docstring""" snake_case : Union[str, Any] = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" snake_case : Any = [] snake_case : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token snake_case : List[Any] = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : int = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
83
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) lowercase__ = logging.getLogger(__name__) lowercase__ = {"facebook/bart-base": BartForConditionalGeneration} lowercase__ = {"facebook/bart-base": BartTokenizer} def _UpperCamelCase ( ) -> int: '''simple docstring''' snake_case : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=SCREAMING_SNAKE_CASE__ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=SCREAMING_SNAKE_CASE__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=SCREAMING_SNAKE_CASE__ , ) parser.add_argument( '''--config_name''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=SCREAMING_SNAKE_CASE__ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''Where to store the final ONNX file.''' ) snake_case : List[str] = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="cpu" ) -> int: '''simple docstring''' snake_case : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case : Any = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ) if model_name in ["facebook/bart-base"]: snake_case : Dict = 0 snake_case : Optional[Any] = None snake_case : int = 0 return huggingface_model, tokenizer def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: '''simple docstring''' model.eval() snake_case : List[Any] = None snake_case : Tuple = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE__ ) ) with torch.no_grad(): snake_case : Optional[int] = '''My friends are cool but they eat too many carbs.''' snake_case : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) snake_case : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , early_stopping=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE__ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE__ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=SCREAMING_SNAKE_CASE__ , ) logger.info('''Model exported to {}'''.format(SCREAMING_SNAKE_CASE__ ) ) snake_case : Any = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE__ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(SCREAMING_SNAKE_CASE__ ) ) snake_case : int = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[int] = ort_sess.run( SCREAMING_SNAKE_CASE__ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(SCREAMING_SNAKE_CASE__ ), '''max_length''': np.array(SCREAMING_SNAKE_CASE__ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _UpperCamelCase ( ) -> Any: '''simple docstring''' snake_case : List[str] = parse_args() snake_case : Tuple = 5 snake_case : int = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case : str = torch.device(args.device ) snake_case ,snake_case : Any = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE__ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(SCREAMING_SNAKE_CASE__ ) if args.max_length: snake_case : Tuple = args.max_length if args.num_beams: snake_case : List[Any] = args.num_beams if args.output_file_path: snake_case : str = args.output_file_path else: snake_case : int = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
83
1
import gc import threading import time import psutil import torch class snake_case__ : """simple docstring""" def __init__( self : Any ) -> Optional[int]: a = psutil.Process() a = False def __UpperCAmelCase ( self : str ) -> str: a = -1 while True: a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a = True a = threading.Thread(target=self.peak_monitor ) a = True self.thread.start() def __UpperCAmelCase ( self : Any ) -> Optional[int]: a = False self.thread.join() return self.cpu_memory_peak __lowerCAmelCase : List[str] = PeakCPUMemory() def __magic_name__ ( ): '''simple docstring''' a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): a = torch.cuda.memory_allocated(A ) torch.cuda.reset_peak_memory_stats() return measures def __magic_name__ ( A : List[str] ): '''simple docstring''' a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): a = (torch.cuda.memory_allocated(A ) - start_measures[str(A )]) / 2**20 a = (torch.cuda.max_memory_allocated(A ) - start_measures[str(A )]) / 2**20 return measures def __magic_name__ ( A : List[Any], A : Any ): '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(A )]:.2f}MiB""" ) a = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
107
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : List[Any] = {} if prompt is not None: SCREAMING_SNAKE_CASE : List[Any] = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE : Optional[Any] = None return model_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): SCREAMING_SNAKE_CASE : List[str] = None if generate_kwargs is None: SCREAMING_SNAKE_CASE : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name ) SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE : List[Any] = { """generated_text""": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Optional[Any] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( snake_case_ : int ): for param in module.parameters(): snake_case__ : Tuple = False def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case__ : List[Any] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[str] = plt.imshow(snake_case_ ) fig.axes.get_xaxis().set_visible(snake_case_ ) fig.axes.get_yaxis().set_visible(snake_case_ ) plt.show() def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = datetime.now() snake_case__ : Optional[Any] = current_time.strftime("%H:%M:%S" ) return timestamp
286
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class A_ : _UpperCAmelCase : torch.Tensor # [batch_size x 3] _UpperCAmelCase : torch.Tensor # [batch_size x 3] _UpperCAmelCase : torch.Tensor # [batch_size x 3] _UpperCAmelCase : torch.Tensor # [batch_size x 3] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float _UpperCAmelCase : float _UpperCAmelCase : Tuple[int] def lowerCAmelCase ( self : Optional[int]): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def lowerCAmelCase ( self : str): return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa)) def lowerCAmelCase ( self : int): return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa)) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : int = torch.arange(self.height * self.width) __lowerCamelCase : Optional[Any] = torch.stack( [ pixel_indices % self.width, torch.div(SCREAMING_SNAKE_CASE__ ,self.width ,rounding_mode='trunc'), ] ,axis=1 ,) return coords @property def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase , *__lowerCamelCase : Union[str, Any] = self.shape __lowerCamelCase : Optional[Any] = int(np.prod(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : str = self.get_image_coords() __lowerCamelCase : List[str] = torch.broadcast_to(coords.unsqueeze(0) ,[batch_size * inner_batch_size, *coords.shape]) __lowerCamelCase : Any = self.get_camera_rays(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = rays.view(SCREAMING_SNAKE_CASE__ ,inner_batch_size * self.height * self.width ,2 ,3) return rays def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : torch.Tensor): __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase : List[str] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCamelCase : Tuple = coords.view(SCREAMING_SNAKE_CASE__ ,-1 ,2) __lowerCamelCase : Optional[int] = self.resolution() __lowerCamelCase : Optional[int] = self.fov() __lowerCamelCase : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 __lowerCamelCase : int = fracs * torch.tan(fov / 2) __lowerCamelCase : int = fracs.view(SCREAMING_SNAKE_CASE__ ,-1 ,2) __lowerCamelCase : Union[str, Any] = ( self.z.view(SCREAMING_SNAKE_CASE__ ,1 ,3) + self.x.view(SCREAMING_SNAKE_CASE__ ,1 ,3) * fracs[:, :, :1] + self.y.view(SCREAMING_SNAKE_CASE__ ,1 ,3) * fracs[:, :, 1:] ) __lowerCamelCase : Tuple = directions / directions.norm(dim=-1 ,keepdim=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = torch.stack( [ torch.broadcast_to(self.origin.view(SCREAMING_SNAKE_CASE__ ,1 ,3) ,[batch_size, directions.shape[1], 3]), directions, ] ,dim=2 ,) return rays.view(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,2 ,3) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=SCREAMING_SNAKE_CASE__ ,height=SCREAMING_SNAKE_CASE__ ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> DifferentiableProjectiveCamera: __lowerCamelCase : Dict = [] __lowerCamelCase : List[Any] = [] __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Optional[Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): __lowerCamelCase : Dict = np.array([np.sin(lowerCamelCase__ ), np.cos(lowerCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCamelCase : List[str] = -z * 4 __lowerCamelCase : List[str] = np.array([np.cos(lowerCamelCase__ ), -np.sin(lowerCamelCase__ ), 0.0] ) __lowerCamelCase : int = np.cross(lowerCamelCase__ , lowerCamelCase__ ) origins.append(lowerCamelCase__ ) xs.append(lowerCamelCase__ ) ys.append(lowerCamelCase__ ) zs.append(lowerCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCamelCase__ )) , )
73
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } A_ = { '''Salesforce/codegen-350M-mono''': 20_48, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = CodeGenTokenizer def __init__( self: Union[str, Any], a_: List[Any]=None, a_: str=None, a_: str=None, a_: Dict="<|endoftext|>", a_: Tuple="<|endoftext|>", a_: str="<|endoftext|>", a_: List[Any]=False, **a_: List[str], ): '''simple docstring''' super().__init__( a_, a_, tokenizer_file=a_, unk_token=a_, bos_token=a_, eos_token=a_, add_prefix_space=a_, **a_, ) if kwargs.pop("""add_bos_token""", a_ ): _snake_case : str = kwargs.pop("""name_or_path""", """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) _snake_case : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", a_ ) != add_prefix_space: _snake_case : Dict = getattr(a_, pre_tok_state.pop("""type""" ) ) _snake_case : Dict = add_prefix_space _snake_case : str = pre_tok_class(**a_ ) _snake_case : List[Any] = add_prefix_space def UpperCamelCase_ ( self: Any, *a_: Any, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], *a_: Any, **a_: List[str] ): '''simple docstring''' _snake_case : Dict = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[int], a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : List[Any] = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ ) def UpperCamelCase_ ( self: str, a_: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], a_: bool = False, a_: bool = None, a_: Optional[List[str]] = None, **a_: List[str], ): '''simple docstring''' _snake_case : Any = super().decode( token_ids=a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_, **a_, ) if truncate_before_pattern is not None and len(a_ ) > 0: _snake_case : List[str] = self.truncate(a_, a_ ) return decoded_text def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Optional[Any] ): '''simple docstring''' def find_re(a_: Dict, a_: str, a_: Union[str, Any] ): _snake_case : Any = pattern.search(a_, a_ ) return m.start() if m else -1 _snake_case : Tuple = [re.compile(a_, re.MULTILINE ) for pattern in truncate_before_pattern] _snake_case : List[Any] = list(re.finditer("""^print""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : int = completion[: prints[1].start()] _snake_case : List[str] = list(re.finditer("""^def""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : List[Any] = completion[: defs[1].start()] _snake_case : int = 0 _snake_case : List[Any] = [ pos for pos in [find_re(a_, a_, a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
64
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''bert''' def __init__( self : int , lowercase_ : int=30522 , lowercase_ : Any=768 , lowercase_ : Dict=12 , lowercase_ : Any=12 , lowercase_ : List[Any]=3072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : int=0.1 , lowercase_ : Dict=512 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1e-1_2 , lowercase_ : Tuple=0 , lowercase_ : int="absolute" , lowercase_ : Optional[Any]=True , lowercase_ : List[Any]=None , **lowercase_ : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowercase_ , **lowercase_) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' @property def __UpperCAmelCase ( self : Tuple) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCamelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
63
import math class _UpperCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self : Dict , lowercase_ : list[list[float]] , lowercase_ : list[int]) -> int: """simple docstring""" _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(lowercase_)): da += math.pow((sample[i] - weights[0][i]) , 2) da += math.pow((sample[i] - weights[1][i]) , 2) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self : Any , lowercase_ : list[list[int | float]] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : float) -> list[list[int | float]]: """simple docstring""" for i in range(len(lowercase_)): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase__ ( ) ->None: '''simple docstring''' _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(a__ ): for j in range(len(a__ ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(a__ , a__ , a__ , a__ ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''ConvNextFeatureExtractor'''] lowerCAmelCase_ = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { '''post_extract_proj''': '''feature_projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.upsample.0''': '''encoder.upsample.projection''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" for attribute in key.split('''.''' ): _snake_case = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: _snake_case = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: _snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value else: _snake_case = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" _snake_case = [] _snake_case = fairseq_model.state_dict() _snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _snake_case = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) _snake_case = True else: for key, mapped_key in MAPPING.items(): _snake_case = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _snake_case = True if "*" in mapped_key: _snake_case = name.split(_UpperCamelCase )[0].split('''.''' )[-2] _snake_case = mapped_key.replace('''*''' , _UpperCamelCase ) if "weight_g" in name: _snake_case = '''weight_g''' elif "weight_v" in name: _snake_case = '''weight_v''' elif "weight" in name: _snake_case = '''weight''' elif "bias" in name: _snake_case = '''bias''' else: _snake_case = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" _snake_case = full_name.split('''conv_layers.''' )[-1] _snake_case = name.split('''.''' ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _snake_case = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _snake_case = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _snake_case = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _snake_case = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" _snake_case = SEWConfig() if is_finetuned: _snake_case = model.wav_encoder.wav_model.cfg else: _snake_case = model.cfg _snake_case = fs_config.conv_bias _snake_case = eval(fs_config.conv_feature_layers ) _snake_case = [x[0] for x in conv_layers] _snake_case = [x[1] for x in conv_layers] _snake_case = [x[2] for x in conv_layers] _snake_case = '''gelu''' _snake_case = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _snake_case = 0.0 _snake_case = fs_config.activation_fn.name _snake_case = fs_config.encoder_embed_dim _snake_case = 0.02 _snake_case = fs_config.encoder_ffn_embed_dim _snake_case = 1E-5 _snake_case = fs_config.encoder_layerdrop _snake_case = fs_config.encoder_attention_heads _snake_case = fs_config.conv_pos_groups _snake_case = fs_config.conv_pos _snake_case = len(_UpperCamelCase ) _snake_case = fs_config.encoder_layers _snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _snake_case = model.cfg _snake_case = fs_config.final_dropout _snake_case = fs_config.layerdrop _snake_case = fs_config.activation_dropout _snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _snake_case = fs_config.attention_dropout _snake_case = fs_config.dropout_input _snake_case = fs_config.dropout _snake_case = fs_config.mask_channel_length _snake_case = fs_config.mask_channel_prob _snake_case = fs_config.mask_length _snake_case = fs_config.mask_prob _snake_case = '''Wav2Vec2FeatureExtractor''' _snake_case = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True ) -> List[Any]: """simple docstring""" if is_finetuned: _snake_case, _snake_case, _snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _snake_case, _snake_case, _snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _snake_case = SEWConfig.from_pretrained(_UpperCamelCase ) else: _snake_case = convert_config(model[0] , _UpperCamelCase ) _snake_case = model[0].eval() _snake_case = True if config.feat_extract_norm == '''layer''' else False _snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) if is_finetuned: if dict_path: _snake_case = Dictionary.load(_UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case = target_dict.pad_index _snake_case = target_dict.bos_index _snake_case = target_dict.pad_index _snake_case = target_dict.bos_index _snake_case = target_dict.eos_index _snake_case = len(target_dict.symbols ) _snake_case = os.path.join(_UpperCamelCase , '''vocab.json''' ) if not os.path.isdir(_UpperCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_UpperCamelCase ) ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase ) _snake_case = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_UpperCamelCase , ) _snake_case = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) _snake_case = SEWForCTC(_UpperCamelCase ) else: _snake_case = SEWModel(_UpperCamelCase ) feature_extractor.save_pretrained(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __A = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
355
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A = {'''allegro/herbert-base-cased''': 5_14} __A = {} class lowercase_ ( __lowercase ): UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = HerbertTokenizer def __init__( self : Tuple , A__ : str=None , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Optional[int]="<s>" , A__ : Optional[int]="<unk>" , A__ : str="<pad>" , A__ : List[Any]="<mask>" , A__ : Dict="</s>" , **A__ : Optional[int] , ) -> Optional[int]: super().__init__( A__ , A__ , tokenizer_file=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , sep_token=A__ , **A__ , ) def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def UpperCamelCase_ ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
278
0
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Optional[int] = logging.get_logger(__name__) def A__ ( UpperCAmelCase_ ): print('Loading config file...' ) def flatten_yaml_as_dict(UpperCAmelCase_ , UpperCAmelCase_="" , UpperCAmelCase_="." ): _UpperCamelCase : int = [] for k, v in d.items(): _UpperCamelCase : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase_ , UpperCAmelCase_ , sep=UpperCAmelCase_ ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase_ ) _UpperCamelCase : Tuple = argparse.Namespace() with open(UpperCAmelCase_ , 'r' ) as yaml_file: try: _UpperCamelCase : int = yaml.load(UpperCAmelCase_ , Loader=yaml.FullLoader ) _UpperCamelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase_ ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(UpperCAmelCase_ , str(UpperCAmelCase_ ) ) ) return config def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = MobileViTVaConfig() _UpperCamelCase : Union[str, Any] = False # dataset if task_name.startswith('imagenet1k_' ): _UpperCamelCase : Dict = 1_0_0_0 if int(task_name.strip().split('_' )[-1] ) == 3_8_4: _UpperCamelCase : List[str] = 3_8_4 else: _UpperCamelCase : Union[str, Any] = 2_5_6 _UpperCamelCase : Union[str, Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): _UpperCamelCase : Optional[int] = 2_1_0_0_0 if int(task_name.strip().split('_' )[-1] ) == 3_8_4: _UpperCamelCase : Tuple = 3_8_4 else: _UpperCamelCase : Dict = 2_5_6 _UpperCamelCase : Any = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): _UpperCamelCase : Optional[Any] = 1_5_1 _UpperCamelCase : Any = 5_1_2 _UpperCamelCase : Optional[Any] = 'ade20k-id2label.json' _UpperCamelCase : Optional[int] = True elif task_name.startswith('voc_' ): _UpperCamelCase : Any = 2_1 _UpperCamelCase : List[str] = 5_1_2 _UpperCamelCase : Union[str, Any] = 'pascal-voc-id2label.json' _UpperCamelCase : Optional[Any] = True # orig_config _UpperCamelCase : Dict = load_orig_config_file(UpperCAmelCase_ ) assert getattr(UpperCAmelCase_ , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" _UpperCamelCase : Dict = getattr(UpperCAmelCase_ , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(UpperCAmelCase_ , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _UpperCamelCase : Tuple = getattr(UpperCAmelCase_ , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _UpperCamelCase : List[str] = getattr(UpperCAmelCase_ , 'model.segmentation.output_stride' , 1_6 ) if "_deeplabv3" in task_name: _UpperCamelCase : Optional[Any] = getattr(UpperCAmelCase_ , 'model.segmentation.deeplabv3.aspp_rates' , [1_2, 2_4, 3_6] ) _UpperCamelCase : str = getattr(UpperCAmelCase_ , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_1_2 ) _UpperCamelCase : List[str] = getattr(UpperCAmelCase_ , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label _UpperCamelCase : Dict = 'huggingface/label-files' _UpperCamelCase : Any = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _UpperCamelCase : Tuple = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Optional[Any] = idalabel _UpperCamelCase : int = {v: k for k, v in idalabel.items()} return config def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[Any] = dct.pop(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = val def A__ ( UpperCAmelCase_ , UpperCAmelCase_=False ): if base_model: _UpperCamelCase : Optional[int] = '' else: _UpperCamelCase : Union[str, Any] = 'mobilevitv2.' _UpperCamelCase : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": _UpperCamelCase : int = k[8:] else: _UpperCamelCase : Any = k if ".block." in k: _UpperCamelCase : Optional[int] = k_new.replace('.block.' , '.' ) if ".conv." in k: _UpperCamelCase : Union[str, Any] = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: _UpperCamelCase : List[Any] = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: _UpperCamelCase : Union[str, Any] = k_new.replace('conv_1.' , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: _UpperCamelCase : Optional[int] = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: _UpperCamelCase : Dict = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: _UpperCamelCase : List[str] = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: _UpperCamelCase : Tuple = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: _UpperCamelCase : str = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: _UpperCamelCase : Optional[Any] = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: _UpperCamelCase : List[Any] = [0, 1] elif i == 4: _UpperCamelCase : Any = [0, 1, 2, 3] elif i == 5: _UpperCamelCase : List[Any] = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: _UpperCamelCase : Tuple = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: _UpperCamelCase : Tuple = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: _UpperCamelCase : List[str] = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: _UpperCamelCase : str = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: _UpperCamelCase : Optional[int] = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: _UpperCamelCase : Tuple = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: _UpperCamelCase : Any = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: _UpperCamelCase : Any = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: _UpperCamelCase : Optional[int] = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: _UpperCamelCase : str = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: _UpperCamelCase : Dict = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: _UpperCamelCase : Union[str, Any] = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(UpperCAmelCase_ ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( ): _UpperCamelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _UpperCamelCase : str = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase_ , UpperCAmelCase_ ) # load original state_dict _UpperCamelCase : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): _UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation(UpperCAmelCase_ ).eval() _UpperCamelCase : Optional[int] = False else: _UpperCamelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase_ ).eval() _UpperCamelCase : str = False # remove and rename some keys of load the original model _UpperCamelCase : Tuple = checkpoint remove_unused_keys(UpperCAmelCase_ ) _UpperCamelCase : Tuple = create_rename_keys(UpperCAmelCase_ , base_model=UpperCAmelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # load modified state_dict model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _UpperCamelCase : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) _UpperCamelCase : Any = image_processor(images=prepare_img() , return_tensors='pt' ) _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase_ ) # verify classification model if task_name.startswith('imagenet' ): _UpperCamelCase : List[str] = outputs.logits _UpperCamelCase : List[Any] = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant _UpperCamelCase : List[str] = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) snake_case_ : int = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
83
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case_ : Tuple = random.Random() def A__ ( UpperCAmelCase_ , UpperCAmelCase_=1.0 , UpperCAmelCase_=None , UpperCAmelCase_=None ): if rng is None: _UpperCamelCase : Dict = global_rng _UpperCamelCase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase__ ( unittest.TestCase ): def __init__( self : Tuple ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int=7 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : int=2000 ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : Union[str, Any]=16000 ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Optional[int]=True ,): '''simple docstring''' _UpperCamelCase : Optional[int] = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : List[str] = min_seq_length _UpperCamelCase : Optional[int] = max_seq_length _UpperCamelCase : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCamelCase : List[str] = feature_size _UpperCamelCase : List[str] = padding_value _UpperCamelCase : List[Any] = sampling_rate _UpperCamelCase : Dict = return_attention_mask _UpperCamelCase : Tuple = do_normalize def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : Tuple=False ): '''simple docstring''' def _flatten(lowerCamelCase__ : Optional[Any] ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: _UpperCamelCase : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCamelCase : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _UpperCamelCase : int = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = WavaVecaFeatureExtractor def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' self.assertTrue(np.all(np.mean(lowerCamelCase__ ,axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ ,axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCamelCase : int = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Tuple = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input _UpperCamelCase : Tuple = feat_extract(speech_inputs[0] ,return_tensors='np' ).input_values _UpperCamelCase : Any = feat_extract(np_speech_inputs[0] ,return_tensors='np' ).input_values self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) # Test batched _UpperCamelCase : Union[str, Any] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values _UpperCamelCase : Optional[int] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCamelCase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCamelCase : str = np.asarray(lowerCamelCase__ ) _UpperCamelCase : List[str] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values _UpperCamelCase : int = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] _UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = feat_extract(lowerCamelCase__ ,padding=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors='np' ) _UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : List[str] = range(800 ,1400 ,200 ) _UpperCamelCase : List[str] = [floats_list((1, x) )[0] for x in lengths] _UpperCamelCase : Optional[Any] = ['longest', 'max_length', 'do_not_pad'] _UpperCamelCase : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : List[str] = feat_extract(lowerCamelCase__ ,max_length=lowerCamelCase__ ,padding=lowerCamelCase__ ) _UpperCamelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Union[str, Any] = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=1000 ,padding='max_length' ,return_tensors='np' ) _UpperCamelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : int = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=1000 ,padding='longest' ,return_tensors='np' ) _UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Any = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=2000 ,padding='longest' ,return_tensors='np' ) _UpperCamelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCamelCase_ ( self : Any ): '''simple docstring''' import torch _UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = np.random.rand(100 ).astype(np.floataa ) _UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCamelCase : Optional[int] = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCamelCase : Tuple = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _UpperCamelCase : Optional[int] = WavaVecaConfig.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Any = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask ,config.feat_extract_norm == 'layer' )
83
1
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> str: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , UpperCAmelCase__ ) lowercase_ : List[str] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase_ : List[Any] = dataset_size < in_memory_max_size else: lowercase_ : Optional[int] = False lowercase_ : Any = is_small_dataset(UpperCAmelCase__ ) assert result == expected
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __A : int = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase ( ): lowercase_ : Optional[Any] = os.path.dirname(os.path.realpath(__snake_case ) ) lowercase_ : int = os.path.join(__snake_case , '''words.txt''' ) lowercase_ : Tuple = '''''' with open(__snake_case ) as f: lowercase_ : Union[str, Any] = f.readline() lowercase_ : Any = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] lowercase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
33
"""simple docstring""" import qiskit def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) A_ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator A_ : Optional[Any] = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = half_adder(1, 1) print(F"Half Adder Output Qubit Counts: {counts}")
286
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowercase_ = logging.getLogger(__name__) @dataclass class _snake_case : UpperCamelCase__ : Optional[Any] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""}) UpperCamelCase__ : Union[str, Any] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) UpperCamelCase__ : str =field( default=1_0_2_4 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase__ : Any =field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""}) UpperCamelCase__ : Optional[Any] =field( default=_UpperCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) UpperCamelCase__ : str =field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase__ : Any =field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase__ : Tuple =field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) UpperCamelCase__ : Optional[Any] =field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the training data."""}) UpperCamelCase__ : Optional[int] =field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the validation data."""}) UpperCamelCase__ : Union[str, Any] =field(default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the test data."""}) def A__ ( self : Dict ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: lowercase__ = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase__ = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _snake_case : UpperCamelCase__ : Optional[int] =field( default=_UpperCAmelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) UpperCamelCase__ : Optional[Any] =field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) UpperCamelCase__ : Optional[int] =field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) UpperCamelCase__ : List[str] =field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase__ : List[str] =field( default=_UpperCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase__ : List[str] =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase__ : Union[str, Any] =field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) datasets.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase__ = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase__ = data_args.train_file.split("." )[-1] lowercase__ = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase__ = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(f'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files lowercase__ = load_dataset("csv" , data_files=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase__ = load_dataset("json" , data_files=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase__ = raw_datasets["""train"""].features["""label"""].names lowercase__ = len(UpperCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase__ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=UpperCAmelCase__ , ) lowercase__ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase__ = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase__ = {"""Refused""": 0, """Entailed""": 1} lowercase__ = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase__ = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(SCREAMING_SNAKE_CASE_ ): # Tokenize the texts def _convert_table_text_to_pandas(SCREAMING_SNAKE_CASE_ ): lowercase__ = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] lowercase__ = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase__ = examples["""statement"""] lowercase__ = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) lowercase__ = tokenizer(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ ) lowercase__ = examples["""label"""] return result with training_args.main_process_first(desc="dataset map pre-processing" ): lowercase__ = raw_datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) lowercase__ = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowercase__ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) lowercase__ = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowercase__ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) lowercase__ = raw_datasets["""test"""] if data_args.max_predict_samples is not None: lowercase__ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(UpperCAmelCase__ ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE_ ): lowercase__ = p.predictions[0] if isinstance(p.predictions , UpperCAmelCase__ ) else p.predictions lowercase__ = np.argmax(UpperCAmelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__ = default_data_collator elif training_args.fpaa: lowercase__ = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) else: lowercase__ = None # Initialize our Trainer lowercase__ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) lowercase__ = train_result.metrics lowercase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase__ ) ) lowercase__ = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , UpperCAmelCase__ ) trainer.save_metrics("train" , UpperCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate(eval_dataset=UpperCAmelCase__ ) lowercase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase__ ) lowercase__ = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.log_metrics("eval" , UpperCAmelCase__ ) trainer.save_metrics("eval" , UpperCAmelCase__ ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase__ = predict_dataset.remove_columns("label" ) lowercase__ = trainer.predict(UpperCAmelCase__ , metric_key_prefix="predict" ).predictions lowercase__ = np.argmax(UpperCAmelCase__ , axis=1 ) lowercase__ = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(UpperCAmelCase__ ): lowercase__ = label_list[item] writer.write(f'''{index}\t{item}\n''' ) lowercase__ = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class _snake_case ( lowercase__): UpperCamelCase__ : str ="""dpr""" def __init__( self : int, __lowercase : List[str]=3_0522, __lowercase : Any=768, __lowercase : Union[str, Any]=12, __lowercase : Optional[int]=12, __lowercase : List[Any]=3072, __lowercase : List[str]="gelu", __lowercase : Union[str, Any]=0.1, __lowercase : str=0.1, __lowercase : List[str]=512, __lowercase : Optional[int]=2, __lowercase : Dict=0.02, __lowercase : Any=1e-1_2, __lowercase : List[Any]=0, __lowercase : str="absolute", __lowercase : int = 0, **__lowercase : str, ): super().__init__(pad_token_id=__lowercase, **__lowercase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = projection_dim lowercase__ = position_embedding_type
224
0
import math def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase ( SCREAMING_SNAKE_CASE = 0.1 ): '''simple docstring''' __UpperCamelCase :str = 3 __UpperCamelCase :Tuple = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def _lowercase ( _lowercase ): """simple docstring""" raise NotImplementedError() @abstractmethod def _lowercase ( self ): """simple docstring""" raise NotImplementedError()
365
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _lowercase = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _lowercase = concatenate_datasets _lowercase = DownloadConfig _lowercase = DownloadManager _lowercase = DownloadMode _lowercase = DownloadConfig _lowercase = DownloadMode _lowercase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
229
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) lowerCAmelCase : str = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products lowerCAmelCase : int = numbers[i] if number < 0: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = min_till_now, max_till_now lowerCAmelCase : List[Any] = max(SCREAMING_SNAKE_CASE , max_till_now * number ) lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now lowerCAmelCase : str = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
108
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A ( __UpperCAmelCase ): __snake_case = (UnCLIPScheduler,) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**UpperCamelCase__ ) return config def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__, prev_timestep=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config(variance_type='''learned_range''' ) lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) lowerCAmelCase_ = 0.5 assert scheduler._get_variance(1, predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487, predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999, predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config() lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) lowerCAmelCase_ = scheduler.timesteps lowerCAmelCase_ = self.dummy_model() lowerCAmelCase_ = self.dummy_sample_deter lowerCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowerCAmelCase_ = model(UpperCamelCase__, UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase_ = scheduler.step(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, generator=UpperCamelCase__ ).prev_sample lowerCAmelCase_ = pred_prev_sample lowerCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config() lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowerCAmelCase_ = scheduler.timesteps lowerCAmelCase_ = self.dummy_model() lowerCAmelCase_ = self.dummy_sample_deter lowerCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowerCAmelCase_ = model(UpperCamelCase__, UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowerCAmelCase_ = None else: lowerCAmelCase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase_ = scheduler.step( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, prev_timestep=UpperCamelCase__, generator=UpperCamelCase__ ).prev_sample lowerCAmelCase_ = pred_prev_sample lowerCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass
278
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a ( lowercase__ , unittest.TestCase ): snake_case_ = BertJapaneseTokenizer snake_case_ = False snake_case_ = True def A_ ( self : Optional[Any] ): super().setUp() snake_case_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A_ ( self : Dict , lowercase_ : Optional[Any] ): snake_case_ = """こんにちは、世界。 \nこんばんは、世界。""" snake_case_ = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def A_ ( self : List[Any] , lowercase_ : Optional[int] ): snake_case_ = self.get_input_output_texts(_UpperCamelCase ) snake_case_ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) return text, ids def A_ ( self : Tuple ): pass # TODO add if relevant def A_ ( self : Optional[Any] ): pass # TODO add if relevant def A_ ( self : Dict ): pass # TODO add if relevant def A_ ( self : List[str] ): snake_case_ = self.tokenizer_class(self.vocab_file ) snake_case_ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A_ ( self : int ): snake_case_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_UpperCamelCase ) snake_case_ = """こんにちは、世界。\nこんばんは、世界。""" snake_case_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_UpperCamelCase , '''wb''' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , '''rb''' ) as handle: snake_case_ = pickle.load(_UpperCamelCase ) snake_case_ = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def A_ ( self : int ): snake_case_ = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A_ ( self : Optional[Any] ): try: snake_case_ = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A_ ( self : Union[str, Any] ): try: snake_case_ = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A_ ( self : Optional[int] ): snake_case_ = MecabTokenizer(do_lower_case=_UpperCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A_ ( self : List[str] ): try: snake_case_ = MecabTokenizer( do_lower_case=_UpperCamelCase , normalize_text=_UpperCamelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def A_ ( self : int ): snake_case_ = MecabTokenizer(normalize_text=_UpperCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def A_ ( self : Union[str, Any] ): snake_case_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_UpperCamelCase ) snake_case_ = """こんにちは、世界。\nこんばんは、世界。""" snake_case_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_UpperCamelCase , '''wb''' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , '''rb''' ) as handle: snake_case_ = pickle.load(_UpperCamelCase ) snake_case_ = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_sudachi def A_ ( self : str ): snake_case_ = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A_ ( self : Dict ): snake_case_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def A_ ( self : List[Any] ): snake_case_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def A_ ( self : List[str] ): snake_case_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def A_ ( self : str ): snake_case_ = SudachiTokenizer(do_lower_case=_UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A_ ( self : Any ): snake_case_ = SudachiTokenizer(normalize_text=_UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A_ ( self : List[Any] ): snake_case_ = SudachiTokenizer(trim_whitespace=_UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def A_ ( self : Tuple ): snake_case_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_UpperCamelCase ) snake_case_ = """こんにちは、世界。\nこんばんは、世界。""" snake_case_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_UpperCamelCase , '''wb''' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , '''rb''' ) as handle: snake_case_ = pickle.load(_UpperCamelCase ) snake_case_ = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_jumanpp def A_ ( self : Any ): snake_case_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A_ ( self : Optional[Any] ): snake_case_ = JumanppTokenizer(do_lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A_ ( self : List[Any] ): snake_case_ = JumanppTokenizer(normalize_text=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A_ ( self : Tuple ): snake_case_ = JumanppTokenizer(trim_whitespace=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def A_ ( self : Any ): snake_case_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def A_ ( self : Dict ): snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] snake_case_ = {} for i, token in enumerate(_UpperCamelCase ): snake_case_ = i snake_case_ = WordpieceTokenizer(vocab=_UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def A_ ( self : Any ): snake_case_ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) snake_case_ = tokenizer.subword_tokenizer snake_case_ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_UpperCamelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) snake_case_ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_UpperCamelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def A_ ( self : Optional[int] ): snake_case_ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) snake_case_ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a ( lowercase__ , unittest.TestCase ): snake_case_ = BertJapaneseTokenizer snake_case_ = False def A_ ( self : List[Any] ): super().setUp() snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A_ ( self : List[Any] , **lowercase_ : Optional[int] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_UpperCamelCase ) def A_ ( self : Union[str, Any] , lowercase_ : int ): snake_case_ = """こんにちは、世界。 \nこんばんは、世界。""" snake_case_ = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def A_ ( self : Optional[int] ): pass # TODO add if relevant def A_ ( self : Union[str, Any] ): pass # TODO add if relevant def A_ ( self : Optional[Any] ): pass # TODO add if relevant def A_ ( self : Optional[Any] ): snake_case_ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) snake_case_ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _UpperCamelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A_ ( self : List[str] ): snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] snake_case_ = {} for i, token in enumerate(_UpperCamelCase ): snake_case_ = i snake_case_ = CharacterTokenizer(vocab=_UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def A_ ( self : Any ): snake_case_ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) snake_case_ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a ( unittest.TestCase ): def A_ ( self : Dict ): snake_case_ = """cl-tohoku/bert-base-japanese""" snake_case_ = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) class a ( unittest.TestCase ): def A_ ( self : Any ): snake_case_ = """cl-tohoku/bert-base-japanese""" with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) snake_case_ = """bert-base-cased""" with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
358
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Optional[Any] = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class a ( _lowerCamelCase ): snake_case_ = "xlm-roberta-xl" def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=25_0880 , lowercase_ : Tuple=2560 , lowercase_ : str=36 , lowercase_ : List[str]=32 , lowercase_ : Optional[Any]=1_0240 , lowercase_ : List[str]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=514 , lowercase_ : Any=1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Dict=1e-05 , lowercase_ : List[Any]=1 , lowercase_ : str=0 , lowercase_ : Dict=2 , lowercase_ : Optional[Any]="absolute" , lowercase_ : str=True , lowercase_ : str=None , **lowercase_ : Tuple , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class a ( _lowerCamelCase ): @property def A_ ( self : Optional[Any] ): if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
72
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __UpperCAmelCase = get_logger() __UpperCAmelCase = None class lowerCamelCase (TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> List[Any]: super().__init__(features=_UpperCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( f"Expected {device} to be a `str` not {type(_UpperCamelCase )}, as `jaxlib.xla_extension.Device` " 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) UpperCAmelCase_ : int = device if isinstance(_UpperCamelCase , _UpperCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ : List[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " f"device: {str(jax.devices()[0] )}." ) UpperCAmelCase_ : Dict = str(jax.devices()[0] ) UpperCAmelCase_ : str = jnp_array_kwargs @staticmethod def __UpperCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(_UpperCamelCase ): device for device in jax.devices()} def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: import jax import jax.numpy as jnp if isinstance(_UpperCamelCase , _UpperCamelCase ) and column: if all( isinstance(_UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_UpperCamelCase , axis=0 ) return column def __UpperCAmelCase ( self , _UpperCamelCase ) -> Union[str, Any]: import jax import jax.numpy as jnp if isinstance(_UpperCamelCase , (str, bytes, type(_UpperCamelCase )) ): return value elif isinstance(_UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ : Any = {} if isinstance(_UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ : Dict = {'dtype': jnp.intaa} else: UpperCAmelCase_ : List[str] = {'dtype': jnp.intaa} elif isinstance(_UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ : Tuple = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ : List[str] = np.asarray(_UpperCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ : Any = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_UpperCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_UpperCamelCase , '__array__' ) and not isinstance(_UpperCamelCase , jax.Array ): UpperCAmelCase_ : Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_UpperCamelCase ) for substruct in data_struct] ) elif isinstance(_UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> int: return map_nested(self._recursive_tensorize , _UpperCamelCase , map_list=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Mapping: UpperCAmelCase_ : Dict = self.numpy_arrow_extractor().extract_row(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.python_features_decoder.decode_row(_UpperCamelCase ) return self.recursive_tensorize(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> "jax.Array": UpperCAmelCase_ : Optional[Any] = self.numpy_arrow_extractor().extract_column(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = self.python_features_decoder.decode_column(_UpperCamelCase , pa_table.column_names[0] ) UpperCAmelCase_ : List[str] = self.recursive_tensorize(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self._consolidate(_UpperCamelCase ) return column def __UpperCAmelCase ( self , _UpperCamelCase ) -> Mapping: UpperCAmelCase_ : str = self.numpy_arrow_extractor().extract_batch(_UpperCamelCase ) UpperCAmelCase_ : Dict = self.python_features_decoder.decode_batch(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.recursive_tensorize(_UpperCamelCase ) for column_name in batch: UpperCAmelCase_ : str = self._consolidate(batch[column_name] ) return batch
29
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase( unittest.TestCase ): lowercase_ : Dict = JukeboxTokenizer lowercase_ : Dict = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" import torch _lowercase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics') _lowercase : Optional[Any] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" import torch _lowercase : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics') _lowercase : List[str] = tokenizer(**self.metas)['input_ids'] # fmt: off _lowercase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
21
0
'''simple docstring''' import torch from torch import nn class a ( nn.Module ): def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=1 , __magic_name__=False ) -> str: super().__init__() _a = n_token _a = d_embed _a = d_proj _a = cutoffs + [n_token] _a = [0] + self.cutoffs _a = div_val _a = self.cutoffs[0] _a = len(self.cutoffs ) - 1 _a = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _a = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _a = nn.Parameter(torch.zeros(self.n_clusters ) ) _a = nn.ModuleList() _a = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__magic_name__ , __magic_name__ ) ) ) else: self.out_projs.append(__magic_name__ ) self.out_layers.append(nn.Linear(__magic_name__ , __magic_name__ ) ) else: for i in range(len(self.cutoffs ) ): _a , _a = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__magic_name__ , __magic_name__ ) ) ) self.out_layers.append(nn.Linear(__magic_name__ , r_idx - l_idx ) ) _a = keep_order def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: if proj is None: _a = nn.functional.linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _a = nn.functional.linear(__magic_name__ , proj.t().contiguous() ) _a = nn.functional.linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=None , __magic_name__=False ) -> List[Any]: if labels is not None: # Shift so that tokens < n predict n _a = hidden[..., :-1, :].contiguous() _a = labels[..., 1:].contiguous() _a = hidden.view(-1 , hidden.size(-1 ) ) _a = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: _a = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _a = self._compute_logit(__magic_name__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _a = labels != -1_00 _a = torch.zeros_like(__magic_name__ , dtype=hidden.dtype , device=hidden.device ) _a = ( -nn.functional.log_softmax(__magic_name__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _a = nn.functional.log_softmax(__magic_name__ , dim=-1 ) else: # construct weights and biases _a , _a = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _a , _a = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a = self.out_layers[0].weight[l_idx:r_idx] _a = self.out_layers[0].bias[l_idx:r_idx] else: _a = self.out_layers[i].weight _a = self.out_layers[i].bias if i == 0: _a = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _a = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__magic_name__ ) biases.append(__magic_name__ ) _a , _a , _a = weights[0], biases[0], self.out_projs[0] _a = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = nn.functional.log_softmax(__magic_name__ , dim=1 ) if labels is None: _a = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _a = torch.zeros_like(__magic_name__ , dtype=hidden.dtype , device=hidden.device ) _a = 0 _a = [0] + self.cutoffs for i in range(len(__magic_name__ ) - 1 ): _a , _a = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _a = (labels >= l_idx) & (labels < r_idx) _a = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _a = labels.index_select(0 , __magic_name__ ) - l_idx _a = head_logprob.index_select(0 , __magic_name__ ) _a = hidden.index_select(0 , __magic_name__ ) else: _a = hidden if i == 0: if labels is not None: _a = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _a = head_logprob[:, : self.cutoffs[0]] else: _a , _a , _a = weights[i], biases[i], self.out_projs[i] _a = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = nn.functional.log_softmax(__magic_name__ , dim=1 ) _a = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _a = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _a = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _a = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , __magic_name__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __UpperCAmelCase ( self , __magic_name__ ) -> Tuple: if self.n_clusters == 0: _a = self._compute_logit(__magic_name__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__magic_name__ , dim=-1 ) else: # construct weights and biases _a , _a = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _a , _a = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a = self.out_layers[0].weight[l_idx:r_idx] _a = self.out_layers[0].bias[l_idx:r_idx] else: _a = self.out_layers[i].weight _a = self.out_layers[i].bias if i == 0: _a = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _a = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__magic_name__ ) biases.append(__magic_name__ ) _a , _a , _a = weights[0], biases[0], self.out_projs[0] _a = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _a = nn.functional.log_softmax(__magic_name__ , dim=1 ) _a = [0] + self.cutoffs for i in range(len(__magic_name__ ) - 1 ): _a , _a = cutoff_values[i], cutoff_values[i + 1] if i == 0: _a = head_logprob[:, : self.cutoffs[0]] else: _a , _a , _a = weights[i], biases[i], self.out_projs[i] _a = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = nn.functional.log_softmax(__magic_name__ , dim=1 ) _a = head_logprob[:, -i] + tail_logprob_i _a = logprob_i return out
104
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a_ : Optional[Any] = TypeVar("T") def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (position - 1) // 2 def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (2 * position) + 1 def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (2 * position) + 2 class a ( Generic[T] ): def __init__( self ) -> None: _a = [] _a = {} _a = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def __UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _a = self.elements self.elements += 1 self._bubble_up(__magic_name__ ) def __UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _a , _a = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _a , _a = self.heap[0] self._bubble_down(__magic_name__ ) return elem def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Update the weight of the given key _a = self.position_map[elem] _a = (elem, weight) if position > 0: _a = get_parent_position(__magic_name__ ) _a , _a = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__magic_name__ ) else: self._bubble_down(__magic_name__ ) else: self._bubble_down(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _a = self.position_map[elem] if curr_pos == 0: return None _a = get_parent_position(__magic_name__ ) _a , _a = self.heap[curr_pos] _a , _a = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_up(__magic_name__ ) return None def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _a = self.position_map[elem] _a , _a = self.heap[curr_pos] _a = get_child_left_position(__magic_name__ ) _a = get_child_right_position(__magic_name__ ) if child_left_position < self.elements and child_right_position < self.elements: _a , _a = self.heap[child_left_position] _a , _a = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) if child_left_position < self.elements: _a , _a = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) else: return None if child_right_position < self.elements: _a , _a = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) return None def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: # Swap the nodes at the given positions _a = self.heap[nodea_pos][0] _a = self.heap[nodea_pos][0] _a , _a = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _a = nodea_pos _a = nodea_pos class a ( Generic[T] ): def __init__( self ) -> None: _a = {} _a = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def __UpperCAmelCase ( self , __magic_name__ ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _a = {} self.nodes += 1 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__magic_name__ ) self.add_node(__magic_name__ ) _a = weight _a = weight def _A (lowerCAmelCase__ :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' _a = {node: maxsize for node in graph.connections} _a = {node: None for node in graph.connections} _a = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization _a = priority_queue.extract_min() _a = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) _a = node # running prim's algorithm while not priority_queue.is_empty(): _a = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) _a = node return dist, parent
104
1
"""simple docstring""" from math import loga def __UpperCAmelCase ( __lowerCamelCase ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ : List[str] = logging.getLogger() def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Dict: """simple docstring""" lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'all_results.json' ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'r' ) as f: lowerCAmelCase_ : Any = json.load(lowerCAmelCase__ ) else: raise ValueError(f"can't find {path}" ) return results lowercase__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Any ): import xla_spawn lowerCAmelCase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Optional[Any] = time() xla_spawn.main() lowerCAmelCase_ : Any = time() lowerCAmelCase_ : Dict = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): import xla_spawn lowerCAmelCase_ : Dict = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): xla_spawn.main()
224
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCamelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
61
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
188
'''simple docstring''' import numpy as np import qiskit def UpperCamelCase_ ( snake_case_ : int = 8 , snake_case_ : int | None = None ) -> str: '''simple docstring''' __lowerCAmelCase = np.random.default_rng(seed=snake_case_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __lowerCAmelCase = 6 * key_len # Measurement basis for Alice's qubits. __lowerCAmelCase = rng.integers(2 , size=snake_case_ ) # The set of states Alice will prepare. __lowerCAmelCase = rng.integers(2 , size=snake_case_ ) # Measurement basis for Bob's qubits. __lowerCAmelCase = rng.integers(2 , size=snake_case_ ) # Quantum Circuit to simulate BB84 __lowerCAmelCase = qiskit.QuantumCircuit(snake_case_ , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(snake_case_ ): if alice_state[index] == 1: bbaa_circ.x(snake_case_ ) if alice_basis[index] == 1: bbaa_circ.h(snake_case_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(snake_case_ ): if bob_basis[index] == 1: bbaa_circ.h(snake_case_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __lowerCAmelCase = qiskit.execute(snake_case_ , snake_case_ , shots=1 , seed_simulator=snake_case_ ) # Returns the result of measurement. __lowerCAmelCase = job.result().get_counts(snake_case_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __lowerCAmelCase = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( snake_case_ , snake_case_ , snake_case_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __lowerCAmelCase = gen_key[:key_len] if len(snake_case_ ) >= key_len else gen_key.ljust(snake_case_ , """0""" ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
229
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline SCREAMING_SNAKE_CASE__ : Optional[Any] = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "hopper-medium-v2" SCREAMING_SNAKE_CASE__ : Union[str, Any] = gym.make(env_name) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) SCREAMING_SNAKE_CASE__ : Optional[int] = env.reset() SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : int = 1_000 SCREAMING_SNAKE_CASE__ : List[str] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy SCREAMING_SNAKE_CASE__ : List[str] = pipeline(obs, planning_horizon=32) # execute action in environment SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = env.step(denorm_actions) SCREAMING_SNAKE_CASE__ : List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' F' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) SCREAMING_SNAKE_CASE__ : List[str] = next_observation except KeyboardInterrupt: pass print(F'Total reward: {total_reward}')
339
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = ScoreSdeVeScheduler() __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Tuple ) -> str: __lowerCamelCase = '''google/ncsnpp-church-256''' __lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
339
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin A : Tuple = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class __A( unittest.TestCase , a ): def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.tool(_snake_case , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_snake_case , '''launched the BigScience Research Workshop''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.remote_tool(_snake_case , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_snake_case , '''launched the BigScience Research Workshop''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.tool(text=_snake_case , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_snake_case , '''launched the BigScience Research Workshop''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.remote_tool(text=_snake_case , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_snake_case , '''launched the BigScience Research Workshop''' )
6
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :CommonSchedulerState # setable values SCREAMING_SNAKE_CASE__ :jnp.ndarray SCREAMING_SNAKE_CASE__ :jnp.ndarray SCREAMING_SNAKE_CASE__ :Optional[int] = None @classmethod def __SCREAMING_SNAKE_CASE ( cls : Tuple , __a : CommonSchedulerState , __a : jnp.ndarray , __a : jnp.ndarray ) -> List[Any]: return cls(common=__a , init_noise_sigma=__a , timesteps=__a ) @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :DDPMSchedulerState class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = [e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE__ :jnp.dtype @property def __SCREAMING_SNAKE_CASE ( self : str ) -> str: return True @register_to_config def __init__( self : Union[str, Any] , __a : int = 1000 , __a : float = 0.00_01 , __a : float = 0.02 , __a : str = "linear" , __a : Optional[jnp.ndarray] = None , __a : str = "fixed_small" , __a : bool = True , __a : str = "epsilon" , __a : jnp.dtype = jnp.floataa , ) -> str: _UpperCamelCase : List[str] = dtype def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: if common is None: _UpperCamelCase : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _UpperCamelCase : Dict = jnp.array(1.0 , dtype=self.dtype ) _UpperCamelCase : Dict = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__a , init_noise_sigma=__a , timesteps=__a , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : DDPMSchedulerState , __a : jnp.ndarray , __a : Optional[int] = None ) -> jnp.ndarray: return sample def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : DDPMSchedulerState , __a : int , __a : Tuple = () ) -> DDPMSchedulerState: _UpperCamelCase : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _UpperCamelCase : Any = (jnp.arange(0 , __a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__a , timesteps=__a , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : DDPMSchedulerState , __a : List[str] , __a : Optional[Any]=None , __a : List[str]=None ) -> Optional[int]: _UpperCamelCase : List[Any] = state.common.alphas_cumprod[t] _UpperCamelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _UpperCamelCase : Dict = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _UpperCamelCase : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _UpperCamelCase : List[Any] = jnp.clip(__a , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _UpperCamelCase : Dict = jnp.log(jnp.clip(__a , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": _UpperCamelCase : Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _UpperCamelCase : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _UpperCamelCase : str = variance _UpperCamelCase : int = state.common.betas[t] _UpperCamelCase : Dict = (predicted_variance + 1) / 2 _UpperCamelCase : Any = frac * max_log + (1 - frac) * min_log return variance def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : DDPMSchedulerState , __a : jnp.ndarray , __a : int , __a : jnp.ndarray , __a : Optional[jax.random.KeyArray] = None , __a : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _UpperCamelCase : int = timestep if key is None: _UpperCamelCase : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _UpperCamelCase, _UpperCamelCase : List[str] = jnp.split(__a , sample.shape[1] , axis=1 ) else: _UpperCamelCase : Dict = None # 1. compute alphas, betas _UpperCamelCase : Tuple = state.common.alphas_cumprod[t] _UpperCamelCase : Dict = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _UpperCamelCase : str = 1 - alpha_prod_t _UpperCamelCase : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _UpperCamelCase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _UpperCamelCase : Optional[Any] = model_output elif self.config.prediction_type == "v_prediction": _UpperCamelCase : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _UpperCamelCase : Union[str, Any] = jnp.clip(__a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _UpperCamelCase : int = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _UpperCamelCase : int = jax.random.split(__a , num=1 ) _UpperCamelCase : int = jax.random.normal(__a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__a , __a , predicted_variance=__a ) ** 0.5) * noise _UpperCamelCase : List[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _UpperCamelCase : Dict = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__a , state=__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : DDPMSchedulerState , __a : jnp.ndarray , __a : jnp.ndarray , __a : jnp.ndarray , ) -> jnp.ndarray: return add_noise_common(state.common , __a , __a , __a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : DDPMSchedulerState , __a : jnp.ndarray , __a : jnp.ndarray , __a : jnp.ndarray , ) -> jnp.ndarray: return get_velocity_common(state.common , __a , __a , __a ) def __len__( self : Optional[Any] ) -> Any: return self.config.num_train_timesteps
310
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
1
'''simple docstring''' import os import string import sys lowerCAmelCase__ = 1 << 8 lowerCAmelCase__ = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } lowerCAmelCase__ = KEYMAP['''up'''] lowerCAmelCase__ = KEYMAP['''left'''] if sys.platform == "win32": lowerCAmelCase__ = [] lowerCAmelCase__ = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase__ = ord(str(i)) def _A ( ): """simple docstring""" if os.name == "nt": import msvcrt __lowercase = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(A__ ) == 0: # Read the keystroke __lowercase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowercase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowercase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(A__ ) if ord(A__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __lowercase = chr(KEYMAP['''esc'''] ) except KeyError: __lowercase = cha[1] else: __lowercase = ch.decode(A__ ) else: __lowercase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowercase = sys.stdin.fileno() __lowercase = termios.tcgetattr(A__ ) try: tty.setraw(A__ ) __lowercase = sys.stdin.read(1 ) finally: termios.tcsetattr(A__ , termios.TCSADRAIN , A__ ) return ch def _A ( ): """simple docstring""" __lowercase = get_raw_chars() if ord(A__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(A__ ) == KEYMAP["esc"]: __lowercase = get_raw_chars() if ord(A__ ) == KEYMAP["mod_int"]: __lowercase = get_raw_chars() if ord(A__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(A__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(A__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
104
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('''https://huggingface.co''' )
104
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCAmelCase__ = logging.get_logger(__name__) @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : List[Any] ,**lowercase__ : List[Any] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowercase = deprecated_arg[3:] setattr(self ,snake_case__ ,not kwargs.pop(snake_case__ ) ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) __lowercase = kwargs.pop('''torchscript''' ,self.torchscript ) __lowercase = kwargs.pop('''torch_xla_tpu_print_metrics''' ,self.torch_xla_tpu_print_metrics ) __lowercase = kwargs.pop('''fp16_opt_level''' ,self.fpaa_opt_level ) super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE : bool = field(default=lowerCamelCase__ , metadata={'help': 'Trace the models using torchscript'} ) SCREAMING_SNAKE_CASE : bool = field(default=lowerCamelCase__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) SCREAMING_SNAKE_CASE : str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def SCREAMING_SNAKE_CASE ( self : str ): requires_backends(self ,['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __lowercase = torch.device('''cpu''' ) __lowercase = 0 elif is_torch_tpu_available(): __lowercase = xm.xla_device() __lowercase = 0 else: __lowercase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __lowercase = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE ( self : Any ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE ( self : Dict ): requires_backends(self ,['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): requires_backends(self ,['''torch'''] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE ( self : Tuple ): requires_backends(self ,['''torch'''] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE ( self : Dict ): return self.n_gpu > 0
361
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowercase = [2, 4, 6, 8, 1_0, 1_2] __lowercase = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ ,lowercase__ ,lowercase__ ) ,2_1_0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.assertRaisesRegex(lowercase__ ,'''Weight can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.assertRaisesRegex(lowercase__ ,'''Profit can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : int ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertRaisesRegex( lowercase__ ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
0
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _a = logging.get_logger('transformers.models.speecht5') def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): hf_model.apply_weight_norm() UpperCAmelCase_ : int = checkpoint["input_conv.weight_g"] UpperCAmelCase_ : int = checkpoint["input_conv.weight_v"] UpperCAmelCase_ : Tuple = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): UpperCAmelCase_ : Optional[int] = checkpoint[f"""upsamples.{i}.1.weight_g"""] UpperCAmelCase_ : Tuple = checkpoint[f"""upsamples.{i}.1.weight_v"""] UpperCAmelCase_ : str = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase_ : int = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase_ : List[str] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase_ : Optional[int] = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase_ : Optional[int] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase_ : Optional[int] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase_ : Tuple = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase_ : Optional[Any] = checkpoint["output_conv.1.weight_g"] UpperCAmelCase_ : Dict = checkpoint["output_conv.1.weight_v"] UpperCAmelCase_ : Dict = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, ): if config_path is not None: UpperCAmelCase_ : List[str] = SpeechTaHifiGanConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase_ : Any = SpeechTaHifiGanConfig() UpperCAmelCase_ : Union[str, Any] = SpeechTaHifiGan(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = torch.load(__lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"], __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Any = np.load(__lowerCamelCase ) UpperCAmelCase_ : str = stats[0].reshape(-1 ) UpperCAmelCase_ : str = stats[1].reshape(-1 ) UpperCAmelCase_ : int = torch.from_numpy(__lowerCamelCase ).float() UpperCAmelCase_ : Dict = torch.from_numpy(__lowerCamelCase ).float() model.save_pretrained(__lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _a = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
61
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_=3 , lowercase_=None , lowercase_=2 , ): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase_ : int = (image_size // patch_size) ** 2 UpperCAmelCase_ : Optional[Any] = num_patches + 2 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = DeiTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = DeiTForMaskedImageModeling(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Optional[Any] = DeiTForMaskedImageModeling(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = self.type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = DeiTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[int] = DeiTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Dict = config_and_inputs UpperCAmelCase_ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Tuple = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : List[str] = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = DeiTModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowercase_ ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=False ): """simple docstring""" UpperCAmelCase_ : Tuple = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCAmelCase_ : Dict = model(**lowercase_ ).loss loss.backward() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase_ : List[str] = model_class(lowercase_ ) model.gradient_checkpointing_enable() model.to(lowercase_ ) model.train() UpperCAmelCase_ : Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCAmelCase_ : Any = model(**lowercase_ ).loss loss.backward() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_ ), *get_values(lowercase_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): UpperCAmelCase_ : str = problem_type["title"] UpperCAmelCase_ : List[Any] = problem_type["num_labels"] UpperCAmelCase_ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase_ : int = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if problem_type["num_labels"] > 1: UpperCAmelCase_ : List[Any] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase_ : Tuple = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_ ) as warning_list: UpperCAmelCase_ : List[str] = model(**lowercase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = DeiTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __a ( ): UpperCAmelCase_ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( lowercase_ ) UpperCAmelCase_ : List[str] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : int = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowercase_ ) # verify the logits UpperCAmelCase_ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase_ : str = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase_ : str = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=lowercase_ , return_tensors="pt" ) UpperCAmelCase_ : List[str] = inputs.pixel_values.to(lowercase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ : int = model(lowercase_ )
61
1
def _lowercase ( __A ): '''simple docstring''' if not isinstance(__a ,__a ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) __UpperCamelCase = 0 __UpperCamelCase = str(__a ) while len(__a ) != 1: __UpperCamelCase = [int(__a ) for i in num_string] __UpperCamelCase = 1 for i in range(0 ,len(__a ) ): total *= numbers[i] __UpperCamelCase = str(__a ) steps += 1 return steps def _lowercase ( __A ): '''simple docstring''' if not isinstance(__a ,__a ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) __UpperCamelCase = 0 __UpperCamelCase = str(__a ) while len(__a ) != 1: __UpperCamelCase = [int(__a ) for i in num_string] __UpperCamelCase = 0 for i in range(0 ,len(__a ) ): total += numbers[i] __UpperCamelCase = str(__a ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' from PIL import Image def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = image.size __UpperCamelCase = 0 __UpperCamelCase = image.load() for i in range(__A ): for j in range(__A ): __UpperCamelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__A ): for i in range(__A ): __UpperCamelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": a__ : Optional[int] = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
243
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline UpperCAmelCase__ = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": UpperCAmelCase__ = "hopper-medium-v2" UpperCAmelCase__ = gym.make(env_name) UpperCAmelCase__ = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) UpperCAmelCase__ = env.reset() UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 1000 UpperCAmelCase__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy UpperCAmelCase__ = pipeline(obs, planning_horizon=32) # execute action in environment UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = env.step(denorm_actions) UpperCAmelCase__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) UpperCAmelCase__ = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
339
from __future__ import annotations def A ( _UpperCAmelCase : list[int] ) -> bool: '''simple docstring''' return len(set(_UpperCAmelCase ) ) == len(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE_ ( __snake_case ): __magic_name__: Dict = 'gptj' __magic_name__: int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[Any] , _A : str=50400 , _A : Optional[Any]=2048 , _A : Optional[int]=4096 , _A : Tuple=28 , _A : Tuple=16 , _A : Union[str, Any]=64 , _A : int=None , _A : Dict="gelu_new" , _A : Any=0.0 , _A : Tuple=0.0 , _A : Union[str, Any]=0.0 , _A : int=1E-5 , _A : int=0.0_2 , _A : int=True , _A : int=50256 , _A : Optional[int]=50256 , _A : int=False , **_A : Dict , ) -> int: """simple docstring""" snake_case_ : Dict = vocab_size snake_case_ : Union[str, Any] = n_positions snake_case_ : Optional[Any] = n_embd snake_case_ : Union[str, Any] = n_layer snake_case_ : Union[str, Any] = n_head snake_case_ : Optional[Any] = n_inner snake_case_ : List[str] = rotary_dim snake_case_ : Optional[int] = activation_function snake_case_ : List[Any] = resid_pdrop snake_case_ : Optional[Any] = embd_pdrop snake_case_ : Optional[Any] = attn_pdrop snake_case_ : Dict = layer_norm_epsilon snake_case_ : List[Any] = initializer_range snake_case_ : Optional[int] = use_cache snake_case_ : Optional[int] = bos_token_id snake_case_ : Optional[Any] = eos_token_id super().__init__( bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A ) class SCREAMING_SNAKE_CASE_ ( __snake_case ): def __init__( self : Dict , _A : int , _A : Optional[int] = "default" , _A : Tuple = None , _A : Optional[int] = False , ) -> Union[str, Any]: """simple docstring""" super().__init__(_A , task=_A , patching_specs=_A , use_past=_A ) if not getattr(self._config , 'pad_token_id' , _A ): # TODO: how to do that better? snake_case_ : Any = 0 @property def UpperCAmelCase_ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" snake_case_ : Dict = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction='inputs' ) snake_case_ : Optional[Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: snake_case_ : str = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase_ ( self : Any ) -> int: """simple docstring""" return self._config.n_layer @property def UpperCAmelCase_ ( self : str ) -> int: """simple docstring""" return self._config.n_head def UpperCAmelCase_ ( self : Tuple , _A : Optional[int] , _A : Dict = -1 , _A : List[str] = -1 , _A : Optional[Any] = False , _A : Dict = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case_ : Dict = super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() snake_case_ : str = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch snake_case_ ,snake_case_ : Union[str, Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case_ : int = seqlen + 2 snake_case_ : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ : str = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] snake_case_ : Union[str, Any] = common_inputs['attention_mask'] if self.use_past: snake_case_ : Tuple = ordered_inputs['attention_mask'].dtype snake_case_ : Any = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" return 13
362
from decimal import Decimal, getcontext from math import ceil, factorial def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) snake_case_ : Dict = precision snake_case_ : str = ceil(precision / 14 ) snake_case_ : str = 42_68_80 * Decimal(1_00_05 ).sqrt() snake_case_ : Tuple = 1 snake_case_ : int = 13_59_14_09 snake_case_ : Tuple = Decimal(__a ) for k in range(1 , __a ): snake_case_ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__a ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
88
0
def _A ( _lowercase , _lowercase , _lowercase ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowercase ) ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool: """simple docstring""" if index == len(_lowercase ): return True # Recursive Step for i in range(_lowercase ): if valid_coloring(graph[index] , _lowercase , _lowercase ): # Color current vertex __UpperCamelCase = i # Validate coloring if util_color(_lowercase , _lowercase , _lowercase , index + 1 ): return True # Backtrack __UpperCamelCase = -1 return False def _A ( _lowercase , _lowercase ) -> list[int]: """simple docstring""" __UpperCamelCase = [-1] * len(_lowercase ) if util_color(_lowercase , _lowercase , _lowercase , 0 ): return colored_vertices return []
310
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
1
"""simple docstring""" def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> Any: """simple docstring""" if collection == []: return [] # get some information about the collection a__ : Union[str, Any] = len(UpperCamelCase__) a__ : Tuple = max(UpperCamelCase__) a__ : Optional[int] = min(UpperCamelCase__) # create the counting array a__ : Optional[Any] = coll_max + 1 - coll_min a__ : str = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__): a__ : List[Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection a__ : List[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__)): a__ : List[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase_ ( _lowercase : Dict) -> Tuple: """simple docstring""" return "".join([chr(UpperCamelCase__) for i in counting_sort([ord(UpperCamelCase__) for c in string])]) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" _lowercase : str =input("Enter numbers separated by a comma:\n").strip() _lowercase : Union[str, Any] =[int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
363
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase_ ( _lowercase : List[str]) -> Union[str, Any]: """simple docstring""" a__ : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : List[Any]) -> Optional[Any]: """simple docstring""" a__ , a__ : Union[str, Any] = emb.weight.shape a__ : str = nn.Linear(_lowercase , _lowercase , bias=_lowercase) a__ : Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( _lowercase : int , _lowercase : int=None) -> List[Any]: """simple docstring""" a__ : List[str] = {} for old_key in state_dict.keys(): a__ : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: a__ : Dict = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''') else: a__ : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""") if "gate" in key: a__ : Tuple = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""") if "fc2" and "experts" not in key: a__ : Optional[int] = key.replace(""".fc2.""" , """.ffn.fc2.""") if "fc1" and "experts" not in key: a__ : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""") if ".encoder_attn." in key: a__ : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""") if "encoder_attn_layer_norm" in key: a__ : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""") if "final_layer_norm" in key: a__ : List[str] = key.replace("""final_layer_norm""" , """ff_layer_norm""") a__ : str = state_dict[old_key] return new_dict def lowerCAmelCase_ ( _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Dict , _lowercase : str = WEIGHTS_NAME) -> Tuple: """simple docstring""" a__ : Tuple = [] a__ : Optional[Any] = 0 os.makedirs(_lowercase , exist_ok=_lowercase) for expert in range(_lowercase): a__ : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowercase): a__ : List[str] = torch.load(_lowercase)["""model"""] remove_ignore_keys_(_lowercase) a__ : Tuple = rename_fairseq_keys(_lowercase , _lowercase) a__ : str = os.path.join( _lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase)+1:05d}-of-???.bin''')) torch.save(_lowercase , _lowercase) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(_lowercase)[0]].dtype) # Add the last block a__ : int = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase)+1:05d}-of-???.bin''')) a__ : Union[str, Any] = torch.load(switch_checkpoint_path + """-shared.pt""")["""model"""] remove_ignore_keys_(_lowercase) a__ : List[str] = rename_fairseq_keys(_lowercase , _lowercase) a__ : int = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowercase) == 1: a__ : Optional[int] = os.path.join(_lowercase , _lowercase) torch.save(_lowercase , _lowercase) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowercase , _lowercase) # Otherwise, let's build the index a__ : List[str] = {} for idx, shard in enumerate(_lowercase): a__ : Union[str, Any] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowercase):05d}.bin''') a__ : List[str] = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''')) os.rename(_lowercase , os.path.join(_lowercase , _lowercase)) for key in shard: a__ : Tuple = shard_file # Add the metadata a__ : Tuple = {"""total_size""": total_size} a__ : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowercase , _lowercase) , """w""" , encoding="""utf-8""") as f: a__ : Dict = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase) + """\n""" f.write(_lowercase) return metadata, index if __name__ == "__main__": _lowercase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) _lowercase : Tuple =parser.parse_args() _lowercase , _lowercase : List[Any] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowercase : int =NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowercase : List[str] =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
266
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Any = tokenizer(example["content"] , truncation=_a)["input_ids"] SCREAMING_SNAKE_CASE : Dict = len(example["content"]) / len(output["input_ids"]) return output a_ = HfArgumentParser(PretokenizationArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) a_ = time.time() a_ = load_dataset(args.dataset_name, split='train') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') a_ = time.time() a_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') a_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
76
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCamelCase : List[Any] = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase : Optional[int] = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ __lowerCamelCase : str = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def A_ ( _lowerCAmelCase ) -> str: def remove_articles(_lowerCAmelCase ): UpperCamelCase : Tuple = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCAmelCase , " " , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): UpperCamelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = [any(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 100 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Optional[int] = Counter(_lowerCAmelCase ) UpperCamelCase : List[Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCamelCase : Tuple = scount * numref UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Tuple = Counter() for cgram, ccount in cgramcounter.items(): UpperCamelCase : Dict = ccount * numref # KEEP UpperCamelCase : List[Any] = sgramcounter_rep & cgramcounter_rep UpperCamelCase : Union[str, Any] = keepgramcounter_rep & rgramcounter UpperCamelCase : Dict = sgramcounter_rep & rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Any = 1 UpperCamelCase : Any = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCamelCase : Union[str, Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCamelCase : Any = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCamelCase : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCamelCase : Any = sgramcounter_rep - cgramcounter_rep UpperCamelCase : str = delgramcounter_rep - rgramcounter UpperCamelCase : Any = sgramcounter_rep - rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Union[str, Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Dict = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : str = deltmpscorea / len(_lowerCAmelCase ) # ADDITION UpperCamelCase : List[str] = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : List[str] = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) UpperCamelCase : Dict = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Tuple = 1 UpperCamelCase : Tuple = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Tuple = addtmpscore / len(_lowerCAmelCase ) UpperCamelCase : List[str] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCamelCase : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: UpperCamelCase : int = len(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = ssent.split(" " ) UpperCamelCase : Dict = csent.split(" " ) UpperCamelCase : str = [] UpperCamelCase : Any = [] UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] UpperCamelCase : str = [] UpperCamelCase : str = [] UpperCamelCase : Dict = [] UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [] UpperCamelCase : Tuple = [] for rsent in rsents: UpperCamelCase : List[Any] = rsent.split(" " ) UpperCamelCase : List[str] = [] UpperCamelCase : int = [] UpperCamelCase : Tuple = [] ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : List[Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : List[str] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Optional[int] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[Any] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : str = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCamelCase : str = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCamelCase : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCamelCase : Union[str, Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = "13a" , _lowerCAmelCase = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCamelCase : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCamelCase : str = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: UpperCamelCase : Dict = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": UpperCamelCase : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase , escape=_lowerCAmelCase ) elif tokenizer == "penn": UpperCamelCase : str = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase ) else: UpperCamelCase : Union[str, Any] = sentence if not return_str: UpperCamelCase : Tuple = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError("Sources length must match predictions and references lengths." ) UpperCamelCase : Optional[Any] = 0 for src, pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ) , normalize(_lowerCAmelCase ) , [normalize(_lowerCAmelCase ) for sent in refs] ) UpperCamelCase : Optional[int] = sari_score / len(_lowerCAmelCase ) return 100 * sari_score def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="exp" , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> List[str]: UpperCamelCase : Optional[Any] = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase : Optional[int] = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] UpperCamelCase : Tuple = sacrebleu.corpus_bleu( _lowerCAmelCase , _lowerCAmelCase , smooth_method=_lowerCAmelCase , smooth_value=_lowerCAmelCase , force=_lowerCAmelCase , lowercase=_lowerCAmelCase , use_effective_order=_lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = {} result.update({"sari": compute_sari(sources=A_ , predictions=A_ , references=A_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=A_ , references=A_ )} ) result.update({"exact": compute_em(predictions=A_ , references=A_ )} ) return result
52
0
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowercase : Any = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , *lowercase , **lowercase) -> None: '''simple docstring''' warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase)
368
import re from filelock import FileLock try: import nltk lowercase : List[str] = True except (ImportError, ModuleNotFoundError): lowercase : Tuple = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def A_ ( A__ ) -> str: re.sub('<n>' , '' , A__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A__ ) )
225
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Tuple: a_ = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") a_ = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") model.to(__UpperCAmelCase) from datasets import load_dataset a_ = load_dataset("nielsr/rvlcdip-demo") a_ = dataset["train"][0]["image"].convert("RGB") a_ = image_processor(__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(**__UpperCAmelCase) a_ = outputs.logits a_ = torch.Size((1, 16)) self.assertEqual(logits.shape , __UpperCAmelCase) a_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4))
243
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Optional[int] = tmp_path / """file.csv""" lowercase : Dict = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: lowercase : Optional[Any] = tmp_path / """malformed_file.csv""" lowercase : Tuple = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Dict = tmp_path / """csv_with_image.csv""" lowercase : Optional[int] = textwrap.dedent( f"\\n image\n {image_file}\n " ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Union[str, Any] = tmp_path / """csv_with_label.csv""" lowercase : List[Any] = textwrap.dedent( """\ label good bad good """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Dict = tmp_path / """csv_with_int_list.csv""" lowercase : Union[str, Any] = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Any = Csv() lowercase : Tuple = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(SCREAMING_SNAKE_CASE__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(SCREAMING_SNAKE_CASE__ ) in record.message for record in caplog.records ) @require_pil def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as f: lowercase : List[Any] = f.read().splitlines()[1] lowercase : List[str] = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase : int = csv._generate_tables([[csv_file_with_image]] ) lowercase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase : str = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as f: lowercase : List[Any] = f.read().splitlines()[1:] lowercase : List[Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase : Optional[int] = csv._generate_tables([[csv_file_with_label]] ) lowercase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase : Optional[int] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(SCREAMING_SNAKE_CASE__ ) for label in labels] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Tuple = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda SCREAMING_SNAKE_CASE__ : [int(SCREAMING_SNAKE_CASE__ ) for i in x.split()]} ) lowercase : Tuple = csv._generate_tables([[csv_file_with_int_list]] ) lowercase : Any = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase : int = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
285
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
285
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def SCREAMING_SNAKE_CASE_ ( *__A : str , __A : Optional[Union[Dict, Any]] = None , __A : Tuple=True , __A : int=2 ) -> Optional[Any]: """simple docstring""" from .. import __version__ a_ : Dict = take_from a_ : List[str] = () if not isinstance(args[0] , __A ): a_ : Optional[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__A ).base_version ) >= version.parse(__A ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) a_ : Optional[Any] = None if isinstance(__A , __A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__A ),) a_ : Optional[int] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__A , __A ): values += (getattr(__A , __A ),) a_ : int = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: a_ : Union[str, Any] = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: a_ : str = warning + ' ' if standard_warn else '' warnings.warn(warning + message , __A , stacklevel=__A ) if isinstance(__A , __A ) and len(__A ) > 0: a_ : List[Any] = inspect.getouterframes(inspect.currentframe() )[1] a_ : Dict = call_frame.filename a_ : Union[str, Any] = call_frame.lineno a_ : Union[str, Any] = call_frame.function a_ , a_ : Dict = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__A ) == 0: return elif len(__A ) == 1: return values[0] return values
32
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __lowerCAmelCase : Any = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def a__ ( A_=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_A ) ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = None a__ = None def _lowercase ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" with TemporaryDirectory() as tmp_dir: __magic_name__ = dataset_module_factory(UpperCamelCase__ , cache_dir=UpperCamelCase__ ) __magic_name__ = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) __magic_name__ = builder_cls( cache_dir=UpperCamelCase__ , config_name=UpperCamelCase__ , hash=dataset_module.hash , ) __magic_name__ = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCamelCase__ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __magic_name__ = cached_path(UpperCamelCase__ , cache_dir=UpperCamelCase__ ) self.assertTrue(os.path.exists(UpperCamelCase__ ) ) @pytest.mark.integration def a__ ( A_ ): '''simple docstring''' __magic_name__ = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __magic_name__ = dataset_module_factory("""wikipedia""", cache_dir=A_ ) __magic_name__ = import_main_class(dataset_module.module_path ) __magic_name__ = builder_cls( cache_dir=A_, config_name="""20220301.frr""", hash=dataset_module.hash, ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __magic_name__ = None builder_instance.download_and_prepare() __magic_name__ = builder_instance.as_dataset() assert ds @pytest.mark.integration def a__ ( A_ ): '''simple docstring''' __magic_name__ = dataset_module_factory("""wikipedia""", cache_dir=A_ ) __magic_name__ = import_main_class(dataset_module.module_path, dataset=A_ ) __magic_name__ = builder_cls( cache_dir=A_, config_name="""20220301.frr""", hash=dataset_module.hash, ) __magic_name__ = builder_instance.as_streaming_dataset() assert ds assert isinstance(A_, A_ ) assert "train" in ds assert isinstance(ds["""train"""], A_ ) assert next(iter(ds["""train"""] ) )
88
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int] ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _a = flax_key_tuple[:-1] + ('''weight''',) _a = torch.permute(_lowerCAmelCase, (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _a = flax_key_tuple[:-1] + ('''weight''',) _a = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _a = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict ): """simple docstring""" if "metadata" in layer: _a = layer.split('''metadata''' ) _a = ''''''.join(split_layer[0] )[:-1] _a = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: _a = layer.split('''kvstore''' ) _a = ''''''.join(split_layer[0] )[:-1] _a = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: _a = layer.split('''/''' ) _a = '''/'''.join(split_layer[:-1] ) _a = (split_layer[-1],) if "kvstore/path" in layer: _a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _a = '''file''' else: _a = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : List[Any] ): """simple docstring""" _a = rename_keys(_lowerCAmelCase ) _a = {} for k, v in current_block.items(): _a = v _a = new_current_block torch.save(_lowerCAmelCase, _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int], _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _a = convert_file_size_to_int(_lowerCAmelCase ) _a = [] _a = {} _a = 0 _a = 0 os.makedirs(_lowerCAmelCase, exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''', '''rb''' ) as fp: _a = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] _a = flatten_dict(_lowerCAmelCase, sep='''/''' ) _a = {} for layer in checkpoint_info.keys(): _a , _a , _a = get_key_and_tensorstore_dict( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) if curr_real_layer_name in all_layers: _a = content else: _a = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _a = torch.tensor(_lowerCAmelCase ) _a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _a , _a = rename_base_flax_keys(tuple(key.split('''/''' ) ), _lowerCAmelCase ) _a = '''/'''.join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _a = os.path.join( _lowerCAmelCase, weights_name.replace('''.bin''', f'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase, _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _a = {} _a = 0 _a = raw_weights.to(getattr(_lowerCAmelCase, _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _a = os.path.join(_lowerCAmelCase, weights_name.replace('''.bin''', f'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase, _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _a = {} _a = {} for idx, shard in enumerate(_lowerCAmelCase ): _a = weights_name.replace( '''.bin''', f'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _a = os.path.join(_lowerCAmelCase, weights_name.replace('''.bin''', f'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase, os.path.join(_lowerCAmelCase, _lowerCAmelCase ) ) _a = shard for key in shard: _a = shard_file # Add the metadata _a = {'''total_size''': total_size} _a = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_lowerCAmelCase, _lowerCAmelCase ), '''w''', encoding='''utf-8''' ) as f: _a = json.dumps(_lowerCAmelCase, indent=2, sort_keys=_lowerCAmelCase ) + '''\n''' f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) __snake_case = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _a = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) _a = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''', device_map='''auto''' ) _a = TaTokenizer.from_pretrained('''t5-small''' ) _a = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' _a = tokenizer(_lowerCAmelCase, return_tensors='''pt''' ).input_ids _a = model.generate(_lowerCAmelCase, decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
153
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
153
1
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(UpperCamelCase__ ): UpperCamelCase = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(UpperCamelCase__ ): UpperCamelCase = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def A ( self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase = FlaxBertModel.from_pretrained(UpperCamelCase__ ) UpperCamelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase__ : str ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() @slow def A ( self : List[Any] ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase = FlaxRobertaModel.from_pretrained(UpperCamelCase__ ) UpperCamelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase__ : str ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() def A ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCamelCase = FlaxAutoModel.from_pretrained('bert-base' ) def A ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCamelCase = FlaxAutoModel.from_pretrained(UpperCamelCase__ , revision='aaaaaa' ) def A ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): UpperCamelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def A ( self : str ): """simple docstring""" with self.assertRaisesRegex(UpperCamelCase__ , 'Use `from_pt=True` to load this model' ): UpperCamelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
28
"""simple docstring""" import re def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return [char.split() for char in re.split(r'''[^ a-z A-Z 0-9 \s]''' , str_ )] def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" try: __A = split_input(__UpperCamelCase ) if upper: __A = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __A = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return to_simple_case(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: __A = to_simple_case(__UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return to_complex_case(__UpperCamelCase , __UpperCamelCase , '''_''' ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return to_complex_case(__UpperCamelCase , __UpperCamelCase , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
266
0
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: while a != 0: UpperCAmelCase__ : int = b % a, a return b def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if gcd(lowerCAmelCase__ , lowerCAmelCase__ ) != 1: UpperCAmelCase__ : List[str] = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowerCAmelCase__ ) UpperCAmelCase__ : int = 1, 0, a UpperCAmelCase__ : List[str] = 0, 1, m while va != 0: UpperCAmelCase__ : Tuple = ua // va UpperCAmelCase__ : List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
358
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a_ : int = logging.get_logger(__name__) class snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _lowerCamelCase = ["pixel_values"] def __init__( self , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = PILImageResampling.BILINEAR , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = True , UpperCamelCase = 1 / 255 , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) lowerCamelCase_ = size if size is not None else {"shortest_edge": 256} lowerCamelCase_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) lowerCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCamelCase_ = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = PILImageResampling.BICUBIC , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ = get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , **UpperCamelCase ): """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = ChannelDimension.FIRST , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] lowerCamelCase_ = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_lowerCAmelCase ): lowerCamelCase_ = target_sizes.numpy() lowerCamelCase_ = [] for idx in range(len(_lowerCAmelCase ) ): lowerCamelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_lowerCAmelCase ) lowerCamelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowerCAmelCase ) else: lowerCamelCase_ = logits.argmax(dim=1 ) lowerCamelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
55
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowerCamelCase__ : List[str] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Optional[Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
225
0
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = data _lowerCAmelCase = None def __iter__( self ): """simple docstring""" _lowerCAmelCase = self _lowerCAmelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(_lowercase ) yield node.data _lowerCAmelCase = node.next_node @property def _lowercase ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _lowercase = Node(1) _lowercase = Node(2) _lowercase = Node(3) _lowercase = Node(4) print(root_node.has_loop) # False _lowercase = root_node.next_node print(root_node.has_loop) # True _lowercase = Node(5) _lowercase = Node(6) _lowercase = Node(5) _lowercase = Node(6) print(root_node.has_loop) # False _lowercase = Node(1) print(root_node.has_loop) # False
229
'''simple docstring''' from ...configuration_utils import PretrainedConfig class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = '''bert-generation''' def __init__( self , _lowercase=50_358 , _lowercase=1_024 , _lowercase=24 , _lowercase=16 , _lowercase=4_096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase=2 , _lowercase=1 , _lowercase="absolute" , _lowercase=True , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache
229
1
from __future__ import annotations from typing import Any class lowercase : def __init__( self , snake_case = 6 ): snake_case_ = None snake_case_ = None self.create_linked_list(snake_case ) def a ( self , snake_case ): snake_case_ = Node() snake_case_ = current_node snake_case_ = current_node snake_case_ = current_node for _ in range(1 , snake_case ): snake_case_ = Node() snake_case_ = current_node snake_case_ = previous_node snake_case_ = current_node snake_case_ = self.front snake_case_ = previous_node def a ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def a ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def a ( self , snake_case ): if self.rear is None: return self.check_is_full() if not self.is_empty(): snake_case_ = self.rear.next if self.rear: snake_case_ = data def a ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: snake_case_ = self.front.data snake_case_ = None return data snake_case_ = self.front snake_case_ = old_front.next snake_case_ = old_front.data snake_case_ = None return data def a ( self ): if self.is_empty(): raise Exception('Empty Queue' ) def a ( self ): if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class lowercase : def __init__( self ): snake_case_ = None snake_case_ = None snake_case_ = None if __name__ == "__main__": import doctest doctest.testmod()
285
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( lowercase_ ): @staticmethod @abstractmethod def a ( snake_case ): raise NotImplementedError() @abstractmethod def a ( self ): raise NotImplementedError()
285
1
import string def __magic_name__ ( __a : str ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): UpperCamelCase__ = """""" for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase__ = string.ascii_uppercase.find(__a ) UpperCamelCase__ = num - key if num < 0: UpperCamelCase__ = num + len(string.ascii_uppercase ) UpperCamelCase__ = translated + string.ascii_uppercase[num] else: UpperCamelCase__ = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = input("""Encrypted message: """ ) UpperCamelCase__ = message.upper() decrypt(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
178
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
178
1
"""simple docstring""" from __future__ import annotations import time lowerCAmelCase__ = list[tuple[int, int]] lowerCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _lowerCamelCase : def __init__(self , __a , __a , __a , __a , __a ) -> Union[str, Any]: UpperCamelCase = pos_x UpperCamelCase = pos_y UpperCamelCase = (pos_y, pos_x) UpperCamelCase = goal_x UpperCamelCase = goal_y UpperCamelCase = parent class _lowerCamelCase : def __init__(self , __a , __a ) -> Optional[Any]: UpperCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , __a ) UpperCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , __a ) UpperCamelCase = [self.start] UpperCamelCase = False def snake_case_ (self ) -> Path | None: while self.node_queue: UpperCamelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase = True return self.retrace_path(__a ) UpperCamelCase = self.get_successors(__a ) for node in successors: self.node_queue.append(__a ) if not self.reached: return [self.start.pos] return None def snake_case_ (self , __a ) -> list[Node]: UpperCamelCase = [] for action in delta: UpperCamelCase = parent.pos_x + action[1] UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__a , __a , self.target.pos_y , self.target.pos_x , __a ) ) return successors def snake_case_ (self , __a ) -> Path: UpperCamelCase = node UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase = current_node.parent path.reverse() return path class _lowerCamelCase : def __init__(self , __a , __a ) -> Any: UpperCamelCase = BreadthFirstSearch(__a , __a ) UpperCamelCase = BreadthFirstSearch(__a , __a ) UpperCamelCase = False def snake_case_ (self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCamelCase = self.fwd_bfs.node_queue.pop(0 ) UpperCamelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCamelCase = True return self.retrace_bidirectional_path( __a , __a ) UpperCamelCase = current_bwd_node UpperCamelCase = current_fwd_node UpperCamelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(__a ), self.bwd_bfs: self.bwd_bfs.get_successors(__a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case_ (self , __a , __a ) -> Path: UpperCamelCase = self.fwd_bfs.retrace_path(__a ) UpperCamelCase = self.bwd_bfs.retrace_path(__a ) bwd_path.pop() bwd_path.reverse() UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase__ = time.time() lowerCAmelCase__ = BreadthFirstSearch(init, goal) lowerCAmelCase__ = bfs.search() lowerCAmelCase__ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) lowerCAmelCase__ = time.time() lowerCAmelCase__ = BidirectionalBreadthFirstSearch(init, goal) lowerCAmelCase__ = bd_bfs.search() lowerCAmelCase__ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
153
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE = 4_000_000 ): """simple docstring""" UpperCamelCase = [] UpperCamelCase , UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = b, a + b return sum(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
153
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if "cls_token" in name: _lowerCAmelCase = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: _lowerCAmelCase = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: _lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _lowerCAmelCase = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: _lowerCAmelCase = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: _lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: _lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: _lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(lowerCAmelCase ) if "qkv" in key: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_split[1] ) if "decoder_blocks" in key: _lowerCAmelCase = config.decoder_hidden_size _lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] elif "bias" in key: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = config.hidden_size _lowerCAmelCase = """vit.encoder.layer.""" if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] elif "bias" in key: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ViTMAEConfig() if "large" in checkpoint_url: _lowerCAmelCase = 10_24 _lowerCAmelCase = 40_96 _lowerCAmelCase = 24 _lowerCAmelCase = 16 elif "huge" in checkpoint_url: _lowerCAmelCase = 14 _lowerCAmelCase = 12_80 _lowerCAmelCase = 51_20 _lowerCAmelCase = 32 _lowerCAmelCase = 16 _lowerCAmelCase = ViTMAEForPreTraining(lowerCAmelCase ) _lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" )["""model"""] _lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) _lowerCAmelCase = convert_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() _lowerCAmelCase = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" _lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) _lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) _lowerCAmelCase = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _lowerCAmelCase = model(**lowerCAmelCase ) _lowerCAmelCase = outputs.logits if "large" in checkpoint_url: _lowerCAmelCase = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: _lowerCAmelCase = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: _lowerCAmelCase = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": A__ : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : str =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
220
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = cva.getAffineTransform(lowerCAmelCase , lowerCAmelCase ) return cva.warpAffine(lowerCAmelCase , lowerCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image A__ : Any =cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value A__ : Any =cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A__ , A__ : Tuple =gray_img.shape # set different points to rotate image A__ : Optional[int] =np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) A__ : Tuple =np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) A__ : List[str] =np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) A__ : Dict =np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list A__ : List[Any] =[ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A__ : Tuple =plt.figure(1) A__ : int =['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
220
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
148
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : int = 1_0_0_0 ): '''simple docstring''' _UpperCAmelCase : List[str] =2**power _UpperCAmelCase : Optional[int] =str(__lowerCamelCase ) _UpperCAmelCase : List[str] =list(__lowerCamelCase ) _UpperCAmelCase : List[Any] =0 for i in list_num: sum_of_num += int(__lowerCamelCase ) return sum_of_num if __name__ == "__main__": lowercase =int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) lowercase =solution(power) print('Sum of the digits is: ', result)
355
'''simple docstring''' from string import ascii_uppercase lowercase ={str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 3_6: raise ValueError('base must be <= 36' ) _UpperCAmelCase : Union[str, Any] ='' _UpperCAmelCase : Optional[int] =0 _UpperCAmelCase : str =0 while div != 1: _UpperCAmelCase , _UpperCAmelCase : int =divmod(__lowerCamelCase , __lowerCamelCase ) if base >= 1_1 and 9 < mod < 3_6: _UpperCAmelCase : str =ALPHABET_VALUES[str(__lowerCamelCase )] else: _UpperCAmelCase : Any =str(__lowerCamelCase ) new_value += actual_value _UpperCAmelCase : Union[str, Any] =num // base _UpperCAmelCase : Dict =div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__lowerCamelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
242
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str=7 , SCREAMING_SNAKE_CASE__ : Dict=30 , SCREAMING_SNAKE_CASE__ : Dict=4_00 , SCREAMING_SNAKE_CASE__ : int=3 , ) -> List[str]: __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {"""shortest_edge""": 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def a ( self : Optional[Any] ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> int: if not batched: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) > max_size: __lowerCAmelCase = max_size / max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0] __lowerCAmelCase = max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowercase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = BridgeTowerImageProcessor if is_vision_available() else None def a ( self : Any ) -> int: __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def a ( self : Optional[Any] ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a ( self : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """image_mean""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """image_std""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """do_normalize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """size_divisor""" ) ) def a ( self : Dict ) -> Optional[int]: pass def a ( self : int ) -> List[Any]: # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self : List[str] ) -> Union[str, Any]: # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self : int ) -> Optional[Any]: # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
229
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : int = logging.get_logger(__name__) _A : Any = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = """ctrl""" _SCREAMING_SNAKE_CASE : Optional[Any] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=24_65_34 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_56 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12_80 , SCREAMING_SNAKE_CASE__ : str=81_92 , SCREAMING_SNAKE_CASE__ : List[str]=48 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=1e-6 , SCREAMING_SNAKE_CASE__ : Any=0.0_2 , SCREAMING_SNAKE_CASE__ : Tuple=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Tuple: __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = dff __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache super().__init__(**SCREAMING_SNAKE_CASE__ )
229
1
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase_ ( lowerCAmelCase__ : str = "" ): """simple docstring""" __UpperCAmelCase : List[Any] = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" __UpperCAmelCase : Dict = BeautifulSoup(requests.get(lowerCAmelCase__ ).text , """html.parser""" ) __UpperCAmelCase : int = soup.find_all("""td""" , attrs="""titleColumn""" ) __UpperCAmelCase : Tuple = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowerCAmelCase__ , lowerCAmelCase__ ) } def lowercase_ ( lowerCAmelCase__ : str = "IMDb_Top_250_Movies.csv" ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = get_imdb_top_aaa_movies() with open(lowerCAmelCase__ , """w""" , newline="""""" ) as out_file: __UpperCAmelCase : Optional[int] = csv.writer(lowerCAmelCase__ ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
367
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
0
import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def __UpperCAmelCase ( a_): if hor == 1_28: snake_case_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') snake_case_ = (32, 1_28, 2_56) snake_case_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: snake_case_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') snake_case_ = (32, 64, 1_28, 2_56) snake_case_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') snake_case_ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''') snake_case_ = model.state_dict() snake_case_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } snake_case_ = UNetaDModel(**a_) print(f'''length of state dict: {len(state_dict.keys())}''') print(f'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') snake_case_ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): snake_case_ = state_dict.pop(a_) hf_value_function.load_state_dict(a_) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''') with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w') as f: json.dump(a_ , a_) def __UpperCAmelCase ( ): snake_case_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } snake_case_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch') snake_case_ = model snake_case_ = UNetaDModel(**a_) print(f'''length of state dict: {len(state_dict.keys())}''') print(f'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') snake_case_ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): snake_case_ = state_dict.pop(a_) hf_value_function.load_state_dict(a_) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin') with open('hub/hopper-medium-v2/value_function/config.json' , 'w') as f: json.dump(a_ , a_) if __name__ == "__main__": unet(32) # unet(128) value_function()
178
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def __UpperCAmelCase ( a_ , a_=False): snake_case_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head'): snake_case_ = 'segformer.encoder.' + key if key.startswith('backbone'): snake_case_ = key.replace('backbone' , 'segformer.encoder') if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case_ = key[key.find('patch_embed') + len('patch_embed')] snake_case_ = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(a_)-1}''') if "norm" in key: snake_case_ = key.replace('norm' , 'layer_norm') if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case_ = key[key.find('segformer.encoder.layer_norm') + len('segformer.encoder.layer_norm')] snake_case_ = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(a_)-1}''') if "layer_norm1" in key: snake_case_ = key.replace('layer_norm1' , 'layer_norm_1') if "layer_norm2" in key: snake_case_ = key.replace('layer_norm2' , 'layer_norm_2') if "block" in key: # replace for example block1 by block.0 snake_case_ = key[key.find('block') + len('block')] snake_case_ = key.replace(f'''block{idx}''' , f'''block.{int(a_)-1}''') if "attn.q" in key: snake_case_ = key.replace('attn.q' , 'attention.self.query') if "attn.proj" in key: snake_case_ = key.replace('attn.proj' , 'attention.output.dense') if "attn" in key: snake_case_ = key.replace('attn' , 'attention.self') if "fc1" in key: snake_case_ = key.replace('fc1' , 'dense1') if "fc2" in key: snake_case_ = key.replace('fc2' , 'dense2') if "linear_pred" in key: snake_case_ = key.replace('linear_pred' , 'classifier') if "linear_fuse" in key: snake_case_ = key.replace('linear_fuse.conv' , 'linear_fuse') snake_case_ = key.replace('linear_fuse.bn' , 'batch_norm') if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case_ = key[key.find('linear_c') + len('linear_c')] snake_case_ = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(a_)-1}''') if key.startswith('head'): snake_case_ = key.replace('head' , 'classifier') snake_case_ = value return new_state_dict def __UpperCAmelCase ( a_ , a_): # for each of the encoder blocks: for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case_ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''') snake_case_ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''') # next, add keys and values (in that order) to the state dict snake_case_ = kv_weight[ : config.hidden_sizes[i], : ] snake_case_ = kv_bias[: config.hidden_sizes[i]] snake_case_ = kv_weight[ config.hidden_sizes[i] :, : ] snake_case_ = kv_bias[ config.hidden_sizes[i] : ] def __UpperCAmelCase ( ): snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(a_ , stream=a_).raw) return image @torch.no_grad() def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = SegformerConfig() snake_case_ = False # set attributes based on model_name snake_case_ = 'huggingface/label-files' if "segformer" in model_name: snake_case_ = model_name[len('segformer.') : len('segformer.') + 2] if "ade" in model_name: snake_case_ = 1_50 snake_case_ = 'ade20k-id2label.json' snake_case_ = (1, 1_50, 1_28, 1_28) elif "city" in model_name: snake_case_ = 19 snake_case_ = 'cityscapes-id2label.json' snake_case_ = (1, 19, 1_28, 1_28) else: raise ValueError(f'''Model {model_name} not supported''') elif "mit" in model_name: snake_case_ = True snake_case_ = model_name[4:6] snake_case_ = 10_00 snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = (1, 10_00) else: raise ValueError(f'''Model {model_name} not supported''') # set config attributes snake_case_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset') , 'r')) snake_case_ = {int(a_): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 2_56 elif size == "b2": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 7_68 snake_case_ = [3, 4, 6, 3] elif size == "b3": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 7_68 snake_case_ = [3, 4, 18, 3] elif size == "b4": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 7_68 snake_case_ = [3, 8, 27, 3] elif size == "b5": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 7_68 snake_case_ = [3, 6, 40, 3] else: raise ValueError(f'''Size {size} not supported''') # load image processor (only resize + normalize) snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=a_ , align=a_ , do_random_crop=a_) # prepare image snake_case_ = prepare_img() snake_case_ = image_processor(images=a_ , return_tensors='pt').pixel_values logger.info(f'''Converting model {model_name}...''') # load original state dict if encoder_only: snake_case_ = torch.load(a_ , map_location=torch.device('cpu')) else: snake_case_ = torch.load(a_ , map_location=torch.device('cpu'))['state_dict'] # rename keys snake_case_ = rename_keys(a_ , encoder_only=a_) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_) # create HuggingFace model and load state dict if encoder_only: snake_case_ = False snake_case_ = SegformerForImageClassification(a_) else: snake_case_ = SegformerForSemanticSegmentation(a_) model.load_state_dict(a_) model.eval() # forward pass snake_case_ = model(a_) snake_case_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]) elif model_name == "segformer.b1.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ]) elif model_name == "segformer.b2.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ]) elif model_name == "segformer.b3.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ]) elif model_name == "segformer.b4.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ]) elif model_name == "segformer.b5.640x640.ade.160k": snake_case_ = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ]) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ]) elif model_name == "segformer.b0.512x1024.city.160k": snake_case_ = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ]) elif model_name == "segformer.b0.640x1280.city.160k": snake_case_ = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ]) elif model_name == "segformer.b0.768x768.city.160k": snake_case_ = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ]) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ]) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ]) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ]) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ]) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ]) else: snake_case_ = logits.argmax(-1).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx]) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1E-2) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(a_).mkdir(exist_ok=a_) model.save_pretrained(a_) image_processor.save_pretrained(a_) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowercase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
178
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __lowerCamelCase (UpperCAmelCase__ : Dict ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __lowerCamelCase (): with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" SCREAMING_SNAKE_CASE = [1, 2, 3] with pytest.raises(UpperCAmelCase__ ): with parallel_backend("unsupported backend" ): map_nested(UpperCAmelCase__ , UpperCAmelCase__ , num_proc=2 ) with pytest.raises(UpperCAmelCase__ ): with parallel_backend("unsupported backend" ): map_nested(UpperCAmelCase__ , UpperCAmelCase__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = [1, 2] SCREAMING_SNAKE_CASE = {"a": 1, "b": 2} SCREAMING_SNAKE_CASE = {"a": [1, 2], "b": [3, 4]} SCREAMING_SNAKE_CASE = {"a": {"1": 1}, "b": 2} SCREAMING_SNAKE_CASE = {"a": 1, "b": 2, "c": 3, "d": 4} SCREAMING_SNAKE_CASE = [2, 3] SCREAMING_SNAKE_CASE = {"a": 2, "b": 3} SCREAMING_SNAKE_CASE = {"a": [2, 3], "b": [4, 5]} SCREAMING_SNAKE_CASE = {"a": {"1": 2}, "b": 3} SCREAMING_SNAKE_CASE = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(UpperCAmelCase__ , UpperCAmelCase__ , num_proc=UpperCAmelCase__ ) == expected_map_nested_sa assert map_nested(UpperCAmelCase__ , UpperCAmelCase__ , num_proc=UpperCAmelCase__ ) == expected_map_nested_sa assert map_nested(UpperCAmelCase__ , UpperCAmelCase__ , num_proc=UpperCAmelCase__ ) == expected_map_nested_sa assert map_nested(UpperCAmelCase__ , UpperCAmelCase__ , num_proc=UpperCAmelCase__ ) == expected_map_nested_sa assert map_nested(UpperCAmelCase__ , UpperCAmelCase__ , num_proc=UpperCAmelCase__ ) == expected_map_nested_sa
363
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : List[Any] = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : Any = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names} _lowerCamelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {'''do_lower_case''': True} for name in _model_names} class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = FunnelTokenizer lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : int = 2 def __init__( self : str , _UpperCamelCase : str=None , _UpperCamelCase : str=None , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : str="<unk>" , _UpperCamelCase : Optional[Any]="<sep>" , _UpperCamelCase : Optional[int]="<pad>" , _UpperCamelCase : int="<cls>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : Union[str, Any]="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Any=None , _UpperCamelCase : Dict="##" , **_UpperCamelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , clean_text=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , wordpieces_prefix=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
206
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = [1] for i in range(2 , __snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowercase = [] lowercase = list(range(__snake_case ) ) # Find permutation while factorials: lowercase = factorials.pop() lowercase , lowercase = divmod(__snake_case , __snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
220
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__snake_case ) # Let's go lowercase = parser.parse_args() if not hasattr(__snake_case , 'func' ): parser.print_help() exit(1 ) # Run lowercase = args.func(__snake_case ) service.run() if __name__ == "__main__": main()
220
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( A__): snake_case__ : Optional[Any] = 'poolformer' def __init__( self : Union[str, Any] , __lowerCAmelCase : Any=3 , __lowerCAmelCase : str=1_6 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[str]=4.0 , __lowerCAmelCase : Tuple=[2, 2, 6, 2] , __lowerCAmelCase : Any=[6_4, 1_2_8, 3_2_0, 5_1_2] , __lowerCAmelCase : Optional[int]=[7, 3, 3, 3] , __lowerCAmelCase : int=[4, 2, 2, 2] , __lowerCAmelCase : Optional[int]=[2, 1, 1, 1] , __lowerCAmelCase : str=4 , __lowerCAmelCase : List[str]=0.0 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Optional[Any]=1E-5 , __lowerCAmelCase : Dict=0.02 , **__lowerCAmelCase : Tuple , ): """simple docstring""" _lowerCamelCase : str = num_channels _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Tuple = stride _lowerCamelCase : str = padding _lowerCamelCase : Any = pool_size _lowerCamelCase : List[str] = hidden_sizes _lowerCamelCase : List[Any] = mlp_ratio _lowerCamelCase : List[str] = depths _lowerCamelCase : Optional[int] = patch_sizes _lowerCamelCase : Tuple = strides _lowerCamelCase : Tuple = num_encoder_blocks _lowerCamelCase : List[Any] = drop_path_rate _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Tuple = use_layer_scale _lowerCamelCase : Optional[Any] = layer_scale_init_value _lowerCamelCase : int = initializer_range super().__init__(**lowerCamelCase__ ) class __snake_case ( A__): snake_case__ : str = version.parse("1.11") @property def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return 2E-3
357
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Optional[int] = BlenderbotSmallTokenizer snake_case__ : List[str] = False def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" super().setUp() _lowerCamelCase : str = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowerCamelCase : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Any = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowerCamelCase : List[str] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Tuple = '''adapt act apte''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Optional[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowerCamelCase : List[str] = '''I am a small frog.''' _lowerCamelCase : str = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Any = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowerCamelCase : Optional[Any] = '''I am a small frog .''' _lowerCamelCase : str = '''.''' _lowerCamelCase : str = tok(__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Dict = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
175
0
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> float: '''simple docstring''' UpperCAmelCase__ = 0.00 UpperCAmelCase__ = 0 for resistor in resistors: if resistor <= 0: UpperCAmelCase__ = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def lowerCAmelCase_ ( __A ) -> float: '''simple docstring''' UpperCAmelCase__ = 0.00 UpperCAmelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase__ = f"""Resistor at index {index} has a negative value!""" raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _A = logging.get_logger(__name__) class _lowerCamelCase : def __init__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : int ) -> str: """simple docstring""" lowerCAmelCase__ : List[Any] = question_encoder lowerCAmelCase__ : Optional[int] = generator lowerCAmelCase__ : Optional[int] = self.question_encoder def _lowerCAmelCase ( self : Dict , UpperCamelCase : Optional[Any] ) -> str: """simple docstring""" if os.path.isfile(UpperCamelCase ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , """question_encoder_tokenizer""" ) lowerCAmelCase__ : List[Any] = os.path.join(UpperCamelCase , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase ) self.generator.save_pretrained(UpperCamelCase ) @classmethod def _lowerCAmelCase ( cls : Union[str, Any] , UpperCamelCase : List[str] , **UpperCamelCase : List[str] ) -> Dict: """simple docstring""" # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer lowerCAmelCase__ : Dict = kwargs.pop("""config""" , UpperCamelCase ) if config is None: lowerCAmelCase__ : int = RagConfig.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained( UpperCamelCase , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained( UpperCamelCase , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase , generator=UpperCamelCase ) def __call__( self : Dict , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ) -> int: """simple docstring""" return self.current_tokenizer(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Dict , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" return self.generator.batch_decode(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ) -> str: """simple docstring""" return self.generator.decode(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.question_encoder def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.generator def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[str] , UpperCamelCase : Optional[List[str]] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "longest" , UpperCamelCase : str = None , UpperCamelCase : bool = True , **UpperCamelCase : Union[str, Any] , ) -> BatchEncoding: """simple docstring""" warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase , ) if max_length is None: lowerCAmelCase__ : Any = self.current_tokenizer.model_max_length lowerCAmelCase__ : Tuple = self( UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , max_length=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , **UpperCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCAmelCase__ : Tuple = self.current_tokenizer.model_max_length lowerCAmelCase__ : Tuple = self( text_target=UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , **UpperCamelCase , ) lowerCAmelCase__ : Any = labels["""input_ids"""] return model_inputs
242
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
365
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "image" _SCREAMING_SNAKE_CASE : str = "labels" def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.label_schema.copy() __UpperCAmelCase : Optional[Any] = features[self.label_column] __UpperCAmelCase : Optional[int] = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
16
0
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __lowercase : int = logging.get_logger(__name__) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None ): return field(default_factory=lambda: default , metadata=__lowerCamelCase ) @dataclass class __UpperCamelCase : A_ = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) A_ = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) A_ = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) A_ = field( default=A_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) A_ = field( default=A_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) A_ = field( default=A_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) A_ = field(default=A_ , metadata={"help": "Use FP16 to accelerate inference."} ) A_ = field(default=A_ , metadata={"help": "Benchmark training of model"} ) A_ = field(default=A_ , metadata={"help": "Verbose memory tracing"} ) A_ = field( default=A_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) A_ = field( default=A_ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) A_ = field(default=A_ , metadata={"help": "Trace memory line by line"} ) A_ = field(default=A_ , metadata={"help": "Save result to a CSV file"} ) A_ = field(default=A_ , metadata={"help": "Save all print statements in a log file"} ) A_ = field(default=A_ , metadata={"help": "Whether to print environment information"} ) A_ = field( default=A_ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) A_ = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv."} , ) A_ = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) A_ = field( default=f"""train_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) A_ = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) A_ = field( default=f"""env_info_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving environment information."} , ) A_ = field( default=f"""log_{round(time() )}.csv""" , metadata={"help": "Log filename used if print statements are saved in log."} , ) A_ = field(default=3 , metadata={"help": "Times an experiment will be run."} ) A_ = field( default=A_ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , _snake_case , ) def __UpperCAmelCase ( self ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __UpperCAmelCase ( self ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def __UpperCAmelCase ( self ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
27
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
0
"""simple docstring""" import sys lowerCAmelCase_ : List[str] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _lowerCAmelCase ( lowerCAmelCase = N ): '''simple docstring''' UpperCAmelCase = -sys.maxsize - 1 for i in range(len(_lowerCAmelCase ) - 12 ): UpperCAmelCase = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: UpperCAmelCase = product return largest_product if __name__ == "__main__": print(F'{solution() = }')
354
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class UpperCamelCase_ ( a_ ): _A : List[Any] = 'layoutlmv3' def __init__( self , snake_case__=5_02_65 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=5_12 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=10_24 , snake_case__=1_28 , snake_case__=1_28 , snake_case__=True , snake_case__=32 , snake_case__=1_28 , snake_case__=64 , snake_case__=2_56 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=2_24 , snake_case__=3 , snake_case__=16 , snake_case__=None , **snake_case__ , ) -> Tuple: """simple docstring""" super().__init__( vocab_size=snake_case__ , hidden_size=snake_case__ , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , intermediate_size=snake_case__ , hidden_act=snake_case__ , hidden_dropout_prob=snake_case__ , attention_probs_dropout_prob=snake_case__ , max_position_embeddings=snake_case__ , type_vocab_size=snake_case__ , initializer_range=snake_case__ , layer_norm_eps=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) UpperCAmelCase = max_ad_position_embeddings UpperCAmelCase = coordinate_size UpperCAmelCase = shape_size UpperCAmelCase = has_relative_attention_bias UpperCAmelCase = rel_pos_bins UpperCAmelCase = max_rel_pos UpperCAmelCase = has_spatial_attention_bias UpperCAmelCase = rel_ad_pos_bins UpperCAmelCase = max_rel_ad_pos UpperCAmelCase = text_embed UpperCAmelCase = visual_embed UpperCAmelCase = input_size UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = classifier_dropout class UpperCamelCase_ ( a_ ): _A : str = version.parse('1.12' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1e-5 @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 12 def UpperCamelCase_ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 40 , snake_case__ = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , snake_case__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(snake_case__ ) UpperCAmelCase = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase = dict( processor( snake_case__ , text=snake_case__ , boxes=snake_case__ , return_tensors=snake_case__ , ) ) return inputs
248
0
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" if not sentence: return "" lowerCAmelCase_ : Optional[int] = dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
224
'''simple docstring''' import argparse import struct import unittest class _lowerCAmelCase : def __init__(self , lowercase ): A_ : List[str] = data # Initialize hash values A_ : Tuple = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants A_ : List[Any] = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] A_ : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def _a (lowercase ): A_ : Any = b"""\x80""" + (b"""\x00""" * (63 - (len(lowercase ) + 8) % 64)) A_ : Optional[Any] = struct.pack(""">Q""" , (len(lowercase ) * 8) ) return data + padding + big_endian_integer def _a (self ): # Convert into blocks of 64 bytes A_ : str = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A_ : Tuple = list(struct.unpack(""">16L""" , lowercase ) ) # add 48 0-ed integers words += [0] * 48 A_, A_, A_, A_, A_, A_, A_, A_ : Dict = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A_ : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A_ : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A_ : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression A_ : Union[str, Any] = self.ror(lowercase , 6 ) ^ self.ror(lowercase , 11 ) ^ self.ror(lowercase , 25 ) A_ : List[Any] = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) A_ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 A_ : List[str] = self.ror(lowercase , 2 ) ^ self.ror(lowercase , 13 ) ^ self.ror(lowercase , 22 ) A_ : str = (a & b) ^ (a & c) ^ (b & c) A_ : int = (sa + maj) % 0X1_0000_0000 A_, A_, A_, A_, A_, A_, A_, A_ : List[Any] = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) A_ : int = [a, b, c, d, e, f, g, h] # Modify final values A_ : Dict = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] A_ : Any = """""".join([hex(lowercase )[2:].zfill(8 ) for value in self.hashes] ) def _a (self , lowercase , lowercase ): return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): import hashlib A_ : Optional[Any] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowercase ).hash , hashlib.shaaaa(lowercase ).hexdigest() ) def a ( ): '''simple docstring''' import doctest doctest.testmod() A_ : Any = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) A_ : List[str] = parser.parse_args() A_ : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: A_ : Union[str, Any] = f.read() else: A_ : Optional[Any] = bytes(lowerCamelCase__ , """utf-8""" ) print(SHAaaa(lowerCamelCase__ ).hash ) if __name__ == "__main__": main()
206
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _a ( unittest.TestCase ): def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0.0_2 ,) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = (image_size // patch_size) ** 2 _snake_case = num_patches + 1 def _lowercase ( self ) -> Optional[int]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,) return config, pixel_values def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: _snake_case = FlaxViTModel(config=_SCREAMING_SNAKE_CASE ) _snake_case = model(_SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _snake_case = (self.image_size, self.image_size) _snake_case = (self.patch_size, self.patch_size) _snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: _snake_case = self.type_sequence_label_size _snake_case = FlaxViTForImageClassification(config=_SCREAMING_SNAKE_CASE ) _snake_case = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = FlaxViTForImageClassification(_SCREAMING_SNAKE_CASE ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> int: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _a ( __lowerCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase ( self ) -> None: _snake_case = FlaxViTModelTester(self ) _snake_case = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,has_text_modality=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def _lowercase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Optional[int]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_SCREAMING_SNAKE_CASE ) _snake_case = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Any: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ): return model(pixel_values=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) with self.subTest("JIT Enabled" ): _snake_case = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _snake_case = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def _lowercase ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained("google/vit-base-patch16-224" ) _snake_case = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
142
'''simple docstring''' import pprint import requests UpperCamelCase_ : Tuple = '''https://zenquotes.io/api''' def __a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + "/today" ).json() def __a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": UpperCamelCase_ : Any = random_quotes() pprint.pprint(response)
142
1
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(1_00, 0.25) = }""") print(F"""{price_plus_tax(125.50, 0.05) = }""")
70
def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Dict = 0 for ch in input_str: UpperCamelCase_ : Tuple = ord(lowerCamelCase ) UpperCamelCase_ : str = pow(2 , lowerCamelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
175
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ViTFeatureExtractor"] lowercase_ = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
from __future__ import annotations def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int = None ) -> list[list[str]]: UpperCAmelCase : List[str] = word_bank or [] # create a table UpperCAmelCase : int = len(__lowerCamelCase ) + 1 UpperCAmelCase : list[list[list[str]]] = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value UpperCAmelCase : Union[str, Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: UpperCAmelCase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
336
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE_ = _symbol_database.Default() SCREAMING_SNAKE_CASE_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) SCREAMING_SNAKE_CASE_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE_ = 45 SCREAMING_SNAKE_CASE_ = 1581 SCREAMING_SNAKE_CASE_ = 1517 SCREAMING_SNAKE_CASE_ = 1570 SCREAMING_SNAKE_CASE_ = 1584 SCREAMING_SNAKE_CASE_ = 1793 SCREAMING_SNAKE_CASE_ = 1795 SCREAMING_SNAKE_CASE_ = 1916 SCREAMING_SNAKE_CASE_ = 1864 SCREAMING_SNAKE_CASE_ = 1905 SCREAMING_SNAKE_CASE_ = 1919 SCREAMING_SNAKE_CASE_ = 2429 SCREAMING_SNAKE_CASE_ = 2208 SCREAMING_SNAKE_CASE_ = 2418 SCREAMING_SNAKE_CASE_ = 2323 SCREAMING_SNAKE_CASE_ = 2407 # @@protoc_insertion_point(module_scope)
358
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a ( UpperCAmelCase ): _lowercase = ["image_processor", "tokenizer"] _lowercase = "OwlViTImageProcessor" _lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): _UpperCAmelCase : Optional[int] = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): _UpperCAmelCase : Optional[int] = [] # Maximum number of queries across batch _UpperCAmelCase : Optional[Any] = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: _UpperCAmelCase : Optional[int] = t + [" "] * (max_num_queries - len(A_ )) _UpperCAmelCase : str = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase : Union[str, Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase : Optional[int] = BatchEncoding() _UpperCAmelCase : str = input_ids _UpperCAmelCase : Optional[Any] = attention_mask if query_images is not None: _UpperCAmelCase : int = BatchEncoding() _UpperCAmelCase : str = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values _UpperCAmelCase : Optional[Any] = query_pixel_values if images is not None: _UpperCAmelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: _UpperCAmelCase : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
189
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 25_00_04 A_ = 25_00_20 @require_sentencepiece @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = MBartaaTokenizer lowercase__ = MBartaaTokenizerFast lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self: str ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : List[str] = MBartaaTokenizer(a_, src_lang="""en_XX""", tgt_lang="""ro_RO""", keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = """<s>""" _snake_case : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<s>""" ) self.assertEqual(vocab_keys[1], """<pad>""" ) self.assertEqual(vocab_keys[-1], """<mask>""" ) self.assertEqual(len(a_ ), 1_054 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_054 ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = MBartaaTokenizer(a_, src_lang="""en_XX""", tgt_lang="""ro_RO""", keep_accents=a_ ) _snake_case : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a_, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _snake_case : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a_, [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""], ) _snake_case : Any = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _snake_case : Any = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""], ) @slow def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = {"""input_ids""": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_, model_name="""facebook/mbart-large-50""", revision="""d3913889c59cd5c9e456b269c376325eabad57e2""", ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _snake_case : Dict = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : Dict = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : List[str] = self.tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : List[str] = tempfile.mkdtemp() _snake_case : Tuple = tokenizer_r.save_pretrained(a_ ) _snake_case : Tuple = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _snake_case : List[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(a_, a_ ) # Checks everything loads correctly in the same way _snake_case : List[Any] = tokenizer_r.from_pretrained(a_ ) _snake_case : Any = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_, a_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=True _snake_case : Any = tempfile.mkdtemp() _snake_case : List[str] = tokenizer_r.save_pretrained(a_, legacy_format=a_ ) _snake_case : List[str] = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files self.assertSequenceEqual(a_, a_ ) # Checks everything loads correctly in the same way _snake_case : Any = tokenizer_r.from_pretrained(a_ ) _snake_case : List[Any] = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_, a_ ) ) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=False _snake_case : List[str] = tempfile.mkdtemp() _snake_case : Dict = tokenizer_r.save_pretrained(a_, legacy_format=a_ ) _snake_case : Optional[Any] = tokenizer_p.save_pretrained(a_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _snake_case : Dict = tokenizer_r.from_pretrained(a_ ) _snake_case : int = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_, a_ ) ) shutil.rmtree(a_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase( unittest.TestCase ): '''simple docstring''' lowercase__ = "facebook/mbart-large-50-one-to-many-mmt" lowercase__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowercase__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowercase__ = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def UpperCamelCase_ ( cls: Optional[Any] ): '''simple docstring''' _snake_case : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang="""en_XX""", tgt_lang="""ro_RO""" ) _snake_case : Union[str, Any] = 1 return cls def UpperCamelCase_ ( self: int ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""], 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""], 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""], 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""], 250_038 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.assertIn(a_, self.tokenizer.all_special_ids ) _snake_case : Dict = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] _snake_case : Dict = self.tokenizer.decode(a_, skip_special_tokens=a_ ) _snake_case : Tuple = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=a_ ) self.assertEqual(a_, a_ ) self.assertNotIn(self.tokenizer.eos_token, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0], a_ ) _snake_case : Any = 10 _snake_case : List[Any] = self.tokenizer(a_, max_length=a_, truncation=a_ ).input_ids[0] self.assertEqual(ids[0], a_ ) self.assertEqual(ids[-1], 2 ) self.assertEqual(len(a_ ), a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ), [250_053, 250_001] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = tempfile.mkdtemp() _snake_case : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a_ ) _snake_case : Any = MBartaaTokenizer.from_pretrained(a_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, a_ ) @require_torch def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=a_, return_tensors="""pt""" ) _snake_case : Any = shift_tokens_right(batch["""labels"""], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Any = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=a_, truncation=a_, max_length=len(self.expected_src_tokens ), return_tensors="""pt""", ) _snake_case : List[Any] = shift_tokens_right(batch["""labels"""], self.tokenizer.pad_token_id ) self.assertIsInstance(a_, a_ ) self.assertEqual((2, 14), batch.input_ids.shape ) self.assertEqual((2, 14), batch.attention_mask.shape ) _snake_case : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, a_ ) self.assertEqual(2, batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.tokenizer(self.src_text, padding=a_, truncation=a_, max_length=3, return_tensors="""pt""" ) _snake_case : int = self.tokenizer( text_target=self.tgt_text, padding=a_, truncation=a_, max_length=10, return_tensors="""pt""" ) _snake_case : Union[str, Any] = targets["""input_ids"""] _snake_case : Optional[int] = shift_tokens_right(a_, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Tuple = self.tokenizer._build_translation_inputs( """A test""", return_tensors="""pt""", src_lang="""en_XX""", tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(a_ ), { # en_XX, A, test, EOS """input_ids""": [[250_004, 62, 3_034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250_001, }, )
64
# Algorithm for the pigeonhole sorting def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[Any] = min(a__) # min() finds the minimum value a_ : List[str] = max(a__) # max() finds the maximum value a_ : str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size a_ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(a__ , a__), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. a_ : Tuple = 0 for count in range(a__): while holes[count] > 0: holes[count] -= 1 a_ : Optional[Any] = count + min_val i += 1 def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a__) print("""Sorted order is:""" , """ """.join(a__)) if __name__ == "__main__": main()
248
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return EnvironmentCommand() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class _a ( UpperCamelCase__ ): @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> List[str]: """simple docstring""" lowercase__ = parser.add_parser('''env''' ) download_parser.set_defaults(func=UpperCamelCase_ ) download_parser.add_argument( '''--accelerate-config_file''' , default=UpperCamelCase_ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self: Dict , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = accelerate_config_file def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = '''not installed''' if is_safetensors_available(): import safetensors lowercase__ = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors lowercase__ = f'{safetensors.__version__} but is ignored because of PyTorch version too old.' lowercase__ = '''not installed''' lowercase__ = lowercase__ = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowercase__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase_ ): lowercase__ = load_config_from_file(self._accelerate_config_file ).to_dict() lowercase__ = ( '''\n'''.join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else f'\t{accelerate_config}' ) lowercase__ = '''not installed''' lowercase__ = '''NA''' if is_torch_available(): import torch lowercase__ = torch.__version__ lowercase__ = torch.cuda.is_available() lowercase__ = '''not installed''' lowercase__ = '''NA''' if is_tf_available(): import tensorflow as tf lowercase__ = tf.__version__ try: # deprecated in v2.1 lowercase__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowercase__ = bool(tf.config.list_physical_devices('''GPU''' ) ) lowercase__ = '''not installed''' lowercase__ = '''not installed''' lowercase__ = '''not installed''' lowercase__ = '''NA''' if is_flax_available(): import flax import jax import jaxlib lowercase__ = flax.__version__ lowercase__ = jax.__version__ lowercase__ = jaxlib.__version__ lowercase__ = jax.lib.xla_bridge.get_backend().platform lowercase__ = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f'{safetensors_version}', '''Accelerate version''': f'{accelerate_version}', '''Accelerate config''': f'{accelerate_config_str}', '''PyTorch version (GPU?)''': f'{pt_version} ({pt_cuda_available})', '''Tensorflow version (GPU?)''': f'{tf_version} ({tf_cuda_available})', '''Flax version (CPU?/GPU?/TPU?)''': f'{flax_version} ({jax_backend})', '''Jax version''': f'{jax_version}', '''JaxLib version''': f'{jaxlib_version}', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(UpperCamelCase_ ) ) return info @staticmethod def lowerCamelCase_ ( UpperCamelCase_: List[Any] ) -> List[Any]: """simple docstring""" return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
359
from abc import ABC, abstractmethod from typing import List, Optional class _a ( UpperCamelCase__ ): def __init__( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" self.test() def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = 0 lowercase__ = False while not completed: if counter == 1: self.reset() lowercase__ = self.advance() if not self.does_advance(UpperCamelCase_ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) lowercase__ , lowercase__ , lowercase__ = self.update(UpperCamelCase_ ) counter += 1 if counter > 10_000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int ) -> Optional[int]: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: int ) -> str: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Any ) -> Tuple: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int=False ) -> Any: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class _a ( UpperCamelCase__ ): def __init__( self: str , UpperCamelCase_: List[int] ) -> Tuple: """simple docstring""" super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) lowercase__ = token_ids lowercase__ = len(self.token_ids ) lowercase__ = -1 # the index of the currently fulfilled step lowercase__ = False def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int ) -> Optional[Any]: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: int ) -> Dict: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) lowercase__ = False lowercase__ = False lowercase__ = False if self.does_advance(UpperCamelCase_ ): self.fulfilled_idx += 1 lowercase__ = True if self.fulfilled_idx == (self.seqlen - 1): lowercase__ = True lowercase__ = completed else: # failed to make progress. lowercase__ = True self.reset() return stepped, completed, reset def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = False lowercase__ = 0 def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any]=False ) -> Tuple: """simple docstring""" lowercase__ = PhrasalConstraint(self.token_ids ) if stateful: lowercase__ = self.seqlen lowercase__ = self.fulfilled_idx lowercase__ = self.completed return new_constraint class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: List[List[int]] , UpperCamelCase_: int=True ) -> int: """simple docstring""" lowercase__ = max([len(UpperCamelCase_ ) for one in nested_token_ids] ) lowercase__ = {} for token_ids in nested_token_ids: lowercase__ = root for tidx, token_id in enumerate(UpperCamelCase_ ): if token_id not in level: lowercase__ = {} lowercase__ = level[token_id] if no_subsets and self.has_subsets(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f' {nested_token_ids}.' ) lowercase__ = root def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> Any: """simple docstring""" lowercase__ = self.trie for current_token in current_seq: lowercase__ = start[current_token] lowercase__ = list(start.keys() ) return next_tokens def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = self.next_tokens(UpperCamelCase_ ) return len(UpperCamelCase_ ) == 0 def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Any] ) -> Any: """simple docstring""" lowercase__ = list(root.values() ) if len(UpperCamelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCamelCase_ ) for nn in next_nodes] ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int ) -> Tuple: """simple docstring""" lowercase__ = self.count_leaves(UpperCamelCase_ ) return len(UpperCamelCase_ ) != leaf_count class _a ( UpperCamelCase__ ): def __init__( self: Optional[int] , UpperCamelCase_: List[List[int]] ) -> List[Any]: """simple docstring""" super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(UpperCamelCase_ , UpperCamelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) lowercase__ = DisjunctiveTrie(UpperCamelCase_ ) lowercase__ = nested_token_ids lowercase__ = self.trie.max_height lowercase__ = [] lowercase__ = False def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = self.trie.next_tokens(self.current_seq ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def lowerCamelCase_ ( self: str , UpperCamelCase_: int ) -> Tuple: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) lowercase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase_ ( self: int , UpperCamelCase_: int ) -> Dict: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) lowercase__ = False lowercase__ = False lowercase__ = False if self.does_advance(UpperCamelCase_ ): self.current_seq.append(UpperCamelCase_ ) lowercase__ = True else: lowercase__ = True self.reset() lowercase__ = self.trie.reached_leaf(self.current_seq ) lowercase__ = completed return stepped, completed, reset def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = False lowercase__ = [] def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[Any]=False ) -> str: """simple docstring""" lowercase__ = DisjunctiveConstraint(self.token_ids ) if stateful: lowercase__ = self.seqlen lowercase__ = self.current_seq lowercase__ = self.completed return new_constraint class _a : def __init__( self: int , UpperCamelCase_: List[Constraint] ) -> Dict: """simple docstring""" lowercase__ = constraints # max # of steps required to fulfill a given constraint lowercase__ = max([c.seqlen for c in constraints] ) lowercase__ = len(UpperCamelCase_ ) lowercase__ = False self.init_state() def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = None lowercase__ = [constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.constraints] def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase__ = constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) else: lowercase__ = self.inprogress_constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[List[int]] ) -> Optional[int]: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase__ , lowercase__ = self.add(UpperCamelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> int: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' ) lowercase__ , lowercase__ = False, False if self.completed: lowercase__ = True lowercase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase__ , lowercase__ , lowercase__ = self.inprogress_constraint.update(UpperCamelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) ) lowercase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowercase__ = None if len(self.pending_constraints ) == 0: # we're done! lowercase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCamelCase_ ): lowercase__ , lowercase__ , lowercase__ = pending_constraint.update(UpperCamelCase_ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(UpperCamelCase_ ) lowercase__ = None if not complete and stepped: lowercase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[Any]=True ) -> Dict: """simple docstring""" lowercase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase__ = [ constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase__ = self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) lowercase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
93
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _A : Tuple = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : str , A : Tuple ) ->Tuple: super().__init__() lowerCamelCase__ : Optional[Any] = torchvision.models.resnetaaa(pretrained=A ) lowerCamelCase__ : List[Any] = list(model.children() )[:-2] lowerCamelCase__ : Tuple = nn.Sequential(*A ) lowerCamelCase__ : List[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __lowerCamelCase ( self : Any , A : Any ) ->str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCamelCase__ : Optional[Any] = self.pool(self.model(A ) ) lowerCamelCase__ : str = torch.flatten(A , start_dim=2 ) lowerCamelCase__ : Optional[int] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : List[Any] , A : Tuple , A : int , A : Optional[int] , A : List[str] , A : Dict ) ->Optional[Any]: lowerCamelCase__ : Union[str, Any] = [json.loads(A ) for l in open(A )] lowerCamelCase__ : List[Any] = os.path.dirname(A ) lowerCamelCase__ : Optional[Any] = tokenizer lowerCamelCase__ : Union[str, Any] = labels lowerCamelCase__ : Tuple = len(A ) lowerCamelCase__ : Optional[int] = max_seq_length lowerCamelCase__ : List[str] = transforms def __len__( self : Tuple ) ->int: return len(self.data ) def __getitem__( self : Tuple , A : int ) ->List[Any]: lowerCamelCase__ : str = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=A ) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase__ : Any = sentence[: self.max_seq_length] lowerCamelCase__ : int = torch.zeros(self.n_classes ) lowerCamelCase__ : str = 1 lowerCamelCase__ : Any = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) lowerCamelCase__ : Tuple = self.transforms(A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __lowerCamelCase ( self : Tuple ) ->Tuple: lowerCamelCase__ : Optional[Any] = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Dict = [len(row['''sentence'''] ) for row in batch] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = len(UpperCAmelCase ), max(UpperCAmelCase ) lowerCamelCase__ : List[str] = torch.zeros(UpperCAmelCase , UpperCAmelCase , dtype=torch.long ) lowerCamelCase__ : Optional[int] = torch.zeros(UpperCAmelCase , UpperCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(UpperCAmelCase , UpperCAmelCase ) ): lowerCamelCase__ : List[Any] = input_row['''sentence'''] lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Union[str, Any] = torch.stack([row['''image'''] for row in batch] ) lowerCamelCase__ : Optional[Any] = torch.stack([row['''label'''] for row in batch] ) lowerCamelCase__ : Optional[Any] = torch.stack([row['''image_start_token'''] for row in batch] ) lowerCamelCase__ : Optional[Any] = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _a ( ) -> str: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _a ( ) -> Optional[Any]: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
142
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : str = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) lowerCamelCase__ : Union[str, Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase__ : Dict = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) lowerCamelCase__ : Tuple = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase__ : int = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) lowerCamelCase__ : str = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase__ : Any = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) lowerCamelCase__ : Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: """simple docstring""" if split_mlp_wi: lowerCamelCase__ : Dict = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] lowerCamelCase__ : List[Any] = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] lowerCamelCase__ : str = (wi_a, wi_a) else: lowerCamelCase__ : Optional[int] = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] lowerCamelCase__ : Tuple = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def _a ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : List[str] = traverse_util.flatten_dict(variables['''target'''] ) lowerCamelCase__ : Union[str, Any] = {'''/'''.join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase__ : Any = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCAmelCase ) lowerCamelCase__ : List[str] = collections.OrderedDict() # Shared embeddings. lowerCamelCase__ : List[Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase__ : int = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''pre_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''attention''' ) lowerCamelCase__ : Optional[Any] = layer_norm lowerCamelCase__ : Tuple = k.T lowerCamelCase__ : Tuple = o.T lowerCamelCase__ : List[Any] = q.T lowerCamelCase__ : Optional[int] = v.T # Block i, layer 1 (MLP). lowerCamelCase__ : Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''pre_mlp_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ : Any = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , UpperCAmelCase ) lowerCamelCase__ : Any = layer_norm if split_mlp_wi: lowerCamelCase__ : Any = wi[0].T lowerCamelCase__ : Any = wi[1].T else: lowerCamelCase__ : Tuple = wi.T lowerCamelCase__ : List[str] = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase__ : Tuple = tax_relpos_bias_lookup( UpperCAmelCase , UpperCAmelCase , '''encoder''' ).T lowerCamelCase__ : List[Any] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: lowerCamelCase__ : Optional[Any] = tax_relpos_bias_lookup( UpperCAmelCase , 0 , '''encoder''' ).T lowerCamelCase__ : Any = tax_relpos_bias_lookup( UpperCAmelCase , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase__ : int = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_self_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''self_attention''' ) lowerCamelCase__ : Tuple = layer_norm lowerCamelCase__ : Tuple = k.T lowerCamelCase__ : List[Any] = o.T lowerCamelCase__ : List[Any] = q.T lowerCamelCase__ : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase__ : Dict = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_cross_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''encoder_decoder_attention''' ) lowerCamelCase__ : int = layer_norm lowerCamelCase__ : int = k.T lowerCamelCase__ : List[Any] = o.T lowerCamelCase__ : Dict = q.T lowerCamelCase__ : Union[str, Any] = v.T # Block i, layer 2 (MLP). lowerCamelCase__ : List[str] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_mlp_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ : int = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = layer_norm if split_mlp_wi: lowerCamelCase__ : List[str] = wi[0].T lowerCamelCase__ : Optional[int] = wi[1].T else: lowerCamelCase__ : List[str] = wi.T lowerCamelCase__ : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase__ : Dict = tax_relpos_bias_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' ).T lowerCamelCase__ : str = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase__ : Dict = old['''decoder/logits_dense/kernel'''].T return new def _a ( UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" lowerCamelCase__ : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase__ : str = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase__ : Optional[Any] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) lowerCamelCase__ : Dict = state_dict['''shared.weight'''] return state_dict def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" lowerCamelCase__ : str = checkpoints.load_tax_checkpoint(UpperCAmelCase ) lowerCamelCase__ : str = convert_tax_to_pytorch( UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase , scalable_attention=UpperCAmelCase ) lowerCamelCase__ : int = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = False , ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = MTaConfig.from_json_file(UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase__ : Optional[int] = UMTaEncoderModel(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = UMTaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print('''Done''' ) if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _A : str = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
142
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowercase ( _lowerCamelCase ): """simple docstring""" def __get__( self ,a_ ,a_=None ) -> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) _UpperCAmelCase : Dict = """__cached_""" + self.fget.__name__ _UpperCAmelCase : str = getattr(a_ ,a_ ,a_ ) if cached is None: _UpperCAmelCase : Tuple = self.fget(a_ ) setattr(a_ ,a_ ,a_ ) return cached def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' if is_torch_fx_proxy(lowerCAmelCase_ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase_ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase_ , np.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return isinstance(lowerCAmelCase_ , np.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' return _is_numpy(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' import torch return isinstance(lowerCAmelCase_ , torch.Tensor ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' import torch return isinstance(lowerCAmelCase_ , torch.device ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' import torch if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) else: return False return isinstance(lowerCAmelCase_ , torch.dtype ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' import tensorflow as tf return isinstance(lowerCAmelCase_ , tf.Tensor ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase_ , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(lowerCAmelCase_ ) return type(lowerCAmelCase_ ) == tf.Tensor def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase_ , jnp.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return False if not is_flax_available() else _is_jax(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase_ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase_ , (list, tuple) ): return [to_py_obj(lowerCAmelCase_ ) for o in obj] elif is_tf_tensor(lowerCAmelCase_ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase_ ): return np.asarray(lowerCAmelCase_ ).tolist() elif isinstance(lowerCAmelCase_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase_ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase_ , (list, tuple) ): return np.array(lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase_ ): return np.asarray(lowerCAmelCase_ ) else: return obj class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = fields(self ) # Safety and consistency checks if not len(a_ ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) _UpperCAmelCase : Tuple = getattr(self ,class_fields[0].name ) _UpperCAmelCase : Tuple = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(a_ ): if isinstance(a_ ,a_ ): _UpperCAmelCase : Union[str, Any] = first_field.items() _UpperCAmelCase : int = True else: try: _UpperCAmelCase : Optional[int] = iter(a_ ) _UpperCAmelCase : Tuple = True except TypeError: _UpperCAmelCase : int = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(a_ ): if ( not isinstance(a_ ,(list, tuple) ) or not len(a_ ) == 2 or not isinstance(element[0] ,a_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: _UpperCAmelCase : str = element[1] elif first_field is not None: _UpperCAmelCase : List[str] = first_field else: for field in class_fields: _UpperCAmelCase : Optional[Any] = getattr(self ,field.name ) if v is not None: _UpperCAmelCase : Any = v def __delitem__( self ,*a_ ,**a_ ) -> int: raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> Optional[Any]: raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> Union[str, Any]: raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> str: raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self ,a_ ) -> int: if isinstance(a_ ,a_ ): _UpperCAmelCase : Any = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self ,a_ ,a_ ) -> Union[str, Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(a_ ,a_ ) super().__setattr__(a_ ,a_ ) def __setitem__( self ,a_ ,a_ ) -> str: # Will raise a KeyException if needed super().__setitem__(a_ ,a_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(a_ ,a_ ) def _snake_case ( self ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class lowercase ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" @classmethod def _snake_case ( cls ,a_ ) -> Union[str, Any]: raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """longest""" UpperCAmelCase = """max_length""" UpperCAmelCase = """do_not_pad""" class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """pt""" UpperCAmelCase = """tf""" UpperCAmelCase = """np""" UpperCAmelCase = """jax""" class lowercase : """simple docstring""" def __init__( self ,a_ ) -> Union[str, Any]: _UpperCAmelCase : List[str] = context_managers _UpperCAmelCase : Union[str, Any] = ExitStack() def __enter__( self ) -> List[Any]: for context_manager in self.context_managers: self.stack.enter_context(a_ ) def __exit__( self ,*a_ ,**a_ ) -> List[str]: self.stack.__exit__(*a_ ,**a_ ) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Dict = infer_framework(lowerCAmelCase_ ) if framework == "tf": _UpperCAmelCase : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Any = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Optional[int] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : List[Any] = model_class.__name__ _UpperCAmelCase : Dict = infer_framework(lowerCAmelCase_ ) if framework == "tf": _UpperCAmelCase : Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "" , lowerCAmelCase_ = "." )-> Tuple: '''simple docstring''' def _flatten_dict(lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_="." ): for k, v in d.items(): _UpperCAmelCase : List[Any] = str(lowerCAmelCase_ ) + delimiter + str(lowerCAmelCase_ ) if parent_key else k if v and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): yield from flatten_dict(lowerCAmelCase_ , lowerCAmelCase_ , delimiter=lowerCAmelCase_ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) @contextmanager def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = False )-> Tuple: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None )-> Union[str, Any]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.transpose(lowerCAmelCase_ , axes=lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.T if axes is None else array.permute(*lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.transpose(lowerCAmelCase_ , perm=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.transpose(lowerCAmelCase_ , axes=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for transpose: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.reshape(*lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for reshape: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None )-> Dict: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for squeeze: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.expand_dims(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.unsqueeze(dim=lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.expand_dims(lowerCAmelCase_ , axis=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for expand_dims: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.size(lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.numel() elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.size(lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' for key, value in auto_map.items(): if isinstance(lowerCAmelCase_ , (tuple, list) ): _UpperCAmelCase : Optional[Any] = [F'''{repo_id}--{v}''' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase : List[Any] = F'''{repo_id}--{value}''' return auto_map def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' for base_class in inspect.getmro(lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = base_class.__module__ _UpperCAmelCase : List[str] = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[str] = """The Nymphenburg Palace is a beautiful palace in Munich!""" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1_024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1_024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowercase : List[Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowercase : Union[str, Any] = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=SCREAMING_SNAKE_CASE__ , output_all_encodings=SCREAMING_SNAKE_CASE__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , SCREAMING_SNAKE_CASE__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowercase : Any = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowercase : Optional[int] = os.path.join(get_home_dir() , """models""" ) lowercase : List[Any] = _load_vocab(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cls=SCREAMING_SNAKE_CASE__ ) lowercase : int = nlp.model.BERTModel( SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=SCREAMING_SNAKE_CASE__ , use_token_type_embed=SCREAMING_SNAKE_CASE__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=SCREAMING_SNAKE_CASE__ , use_decoder=SCREAMING_SNAKE_CASE__ , ) original_bort.load_parameters(SCREAMING_SNAKE_CASE__ , cast_dtype=SCREAMING_SNAKE_CASE__ , ignore_extra=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 lowercase : Union[str, Any] = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(SCREAMING_SNAKE_CASE__ ), } lowercase : Dict = BertConfig.from_dict(SCREAMING_SNAKE_CASE__ ) lowercase : Any = BertForMaskedLM(SCREAMING_SNAKE_CASE__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(SCREAMING_SNAKE_CASE__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = hf_param.shape lowercase : int = to_torch(params[gluon_param] ) lowercase : str = gluon_param.shape assert ( shape_hf == shape_gluon ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param lowercase : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowercase : Dict = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowercase : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowercase : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowercase : Tuple = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowercase : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowercase : BertSelfAttention = layer.attention.self lowercase : Any = check_and_map_params( self_attn.key.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) lowercase : str = check_and_map_params( self_attn.key.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) lowercase : Any = check_and_map_params( self_attn.query.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) lowercase : List[str] = check_and_map_params( self_attn.query.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) lowercase : List[str] = check_and_map_params( self_attn.value.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) lowercase : Optional[Any] = check_and_map_params( self_attn.value.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output lowercase : BertSelfOutput = layer.attention.output lowercase : List[Any] = check_and_map_params( self_output.dense.bias , f"encoder.transformer_cells.{i}.proj.bias" ) lowercase : Optional[Any] = check_and_map_params( self_output.dense.weight , f"encoder.transformer_cells.{i}.proj.weight" ) lowercase : Union[str, Any] = check_and_map_params( self_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.layer_norm.beta" ) lowercase : List[str] = check_and_map_params( self_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate lowercase : BertIntermediate = layer.intermediate lowercase : Dict = check_and_map_params( intermediate.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) lowercase : str = check_and_map_params( intermediate.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output lowercase : BertOutput = layer.output lowercase : Optional[Any] = check_and_map_params( bert_output.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) lowercase : int = check_and_map_params( bert_output.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) lowercase : str = check_and_map_params( bert_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) lowercase : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowercase : List[Any] = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowercase : int = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ )["""input_ids"""] # Get gluon output lowercase : Any = mx.nd.array([input_ids] ) lowercase : List[Any] = original_bort(inputs=SCREAMING_SNAKE_CASE__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : str = BertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) hf_bort_model.eval() lowercase : Union[str, Any] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) lowercase : List[str] = hf_bort_model(**SCREAMING_SNAKE_CASE__ )[0] lowercase : str = output_gluon[0].asnumpy() lowercase : Optional[int] = output_hf[0].detach().numpy() lowercase : Optional[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowercase : List[str] = np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase : Union[str, Any] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) a__ : List[str] = Vector() def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Optional[Any] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase__ ) , """(0,0,0,0,0,1)""" ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Dict = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase__ ) , 4 ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : str = Vector([1, 2] ) a__ : Optional[Any] = Vector([1, 2, 3, 4, 5] ) a__ : int = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) a__ : Any = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Optional[Any] = Vector([1, 2, 3] ) a__ : Optional[Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Any = Vector([1, 2, 3] ) a__ : Optional[int] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Tuple = Vector([1, 2, 3] ) a__ : List[str] = Vector([2, -1, 4] ) # for test of dot product a__ : List[Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" self.assertEqual(str(zero_vector(1_0 ) ).count("""0""" ) , 1_0 ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Optional[Any] = Vector([1, 2, 3] ) a__ : List[str] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase__ , UpperCamelCase__ ) ) , """(3,4,7)""" ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Tuple = Vector([1, 0, 0, 0, 0, 0] ) a__ : Dict = x.copy() self.assertEqual(str(UpperCamelCase__ ) , str(UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Optional[int] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase__ ) , """(0,1,0)""" ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ : List[Any] = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase__ , UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ : Tuple = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase__ , UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : List[str] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) a__ : str = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ : Tuple = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
369
_lowercase : Optional[int] =[ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def lowerCAmelCase_ ( _lowercase : str) -> int: """simple docstring""" a__ : Union[str, Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} a__ : List[Any] = 0 a__ : Dict = 0 while place < len(_lowercase): if (place + 1 < len(_lowercase)) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCAmelCase_ ( _lowercase : int) -> str: """simple docstring""" a__ : Optional[Any] = [] for arabic, roman in ROMAN: ((a__) , (a__)) : Optional[Any] = divmod(_lowercase , _lowercase) result.append(roman * factor) if number == 0: break return "".join(_lowercase) if __name__ == "__main__": import doctest doctest.testmod()
266
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Tuple = "ZinengTang/tvlt-base" lowerCAmelCase__ : Optional[int] = tempfile.mkdtemp() def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> Optional[Any]: return TvltImageProcessor.from_pretrained(self.checkpoint ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> Tuple: return TvltFeatureExtractor.from_pretrained(self.checkpoint ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : List[str] = self.get_image_processor() lowerCAmelCase__ : Optional[Any] = self.get_feature_extractor() lowerCAmelCase__ : Dict = TvltProcessor(image_processor=__UpperCAmelCase ,feature_extractor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor ,__UpperCAmelCase ) self.assertIsInstance(processor.image_processor ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : int = self.get_image_processor() lowerCAmelCase__ : List[str] = self.get_feature_extractor() lowerCAmelCase__ : Optional[int] = TvltProcessor(image_processor=__UpperCAmelCase ,feature_extractor=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = np.ones([1_2000] ) lowerCAmelCase__ : Dict = feature_extractor(__UpperCAmelCase ,return_tensors="""np""" ) lowerCAmelCase__ : Optional[int] = processor(audio=__UpperCAmelCase ,return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Any = self.get_image_processor() lowerCAmelCase__ : Any = self.get_feature_extractor() lowerCAmelCase__ : Union[str, Any] = TvltProcessor(image_processor=__UpperCAmelCase ,feature_extractor=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = np.ones([3, 224, 224] ) lowerCAmelCase__ : List[Any] = image_processor(__UpperCAmelCase ,return_tensors="""np""" ) lowerCAmelCase__ : List[Any] = processor(images=__UpperCAmelCase ,return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Optional[int] = self.get_image_processor() lowerCAmelCase__ : Any = self.get_feature_extractor() lowerCAmelCase__ : int = TvltProcessor(image_processor=__UpperCAmelCase ,feature_extractor=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = np.ones([1_2000] ) lowerCAmelCase__ : str = np.ones([3, 224, 224] ) lowerCAmelCase__ : Any = processor(audio=__UpperCAmelCase ,images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Dict = self.get_image_processor() lowerCAmelCase__ : Tuple = self.get_feature_extractor() lowerCAmelCase__ : Any = TvltProcessor(image_processor=__UpperCAmelCase ,feature_extractor=__UpperCAmelCase ) self.assertListEqual( processor.model_input_names ,image_processor.model_input_names + feature_extractor.model_input_names ,msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" ,)
37
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class __a ( A__ ): @require_beam def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : List[Any] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : Any ): '''simple docstring''' import apache_beam as beam UpperCamelCase__ : Any = beam.io.parquetio.WriteToParquet UpperCamelCase__ : Tuple = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : str = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCamelCase__ : Optional[Any] = partial(SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : int = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Any = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
189
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _UpperCamelCase (a__ :Union[dict, list, tuple, torch.Tensor] ): """simple docstring""" UpperCamelCase__ = [] if isinstance(a__ , a__ ): for v in tree.values(): shapes.extend(_fetch_dims(a__ ) ) elif isinstance(a__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(a__ ) ) elif isinstance(a__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def _UpperCamelCase (a__ :int , a__ :Tuple[int, ...] ): """simple docstring""" UpperCamelCase__ = [] for d in reversed(a__ ): idx.append(flat_idx % d ) UpperCamelCase__ = flat_idx // d return tuple(reversed(a__ ) ) @torch.jit.ignore def _UpperCamelCase (a__ :Sequence[int] , a__ :Sequence[int] , a__ :Sequence[int] , a__ :Optional[Sequence[bool]] = None , a__ :Optional[Sequence[bool]] = None , ): """simple docstring""" def reduce_edge_list(a__ :List[bool] ) -> None: UpperCamelCase__ = True for i in range(len(a__ ) ): UpperCamelCase__ = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ = l[reversed_idx] if start_edges is None: UpperCamelCase__ = [s == 0 for s in start] reduce_edge_list(a__ ) if end_edges is None: UpperCamelCase__ = [e == (d - 1) for e, d in zip(a__ , a__ )] reduce_edge_list(a__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(a__ ) == 0: return [()] elif len(a__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCamelCase__ = [] UpperCamelCase__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(a__ , a__ ): if s == e: path_list.append(slice(a__ , s + 1 ) ) else: break UpperCamelCase__ = tuple(a__ ) UpperCamelCase__ = len(a__ ) # start == end, and we're done if divergence_idx == len(a__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ = start[divergence_idx] return tuple( path + (slice(a__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ = end[divergence_idx] return tuple( path + (slice(a__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCamelCase__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _UpperCamelCase (a__ :torch.Tensor , a__ :int , a__ :int , a__ :int ): """simple docstring""" UpperCamelCase__ = t.shape[:no_batch_dims] UpperCamelCase__ = list(_flat_idx_to_idx(a__ , a__ ) ) # _get_minimal_slice_set is inclusive UpperCamelCase__ = list(_flat_idx_to_idx(flat_end - 1 , a__ ) ) # Get an ordered list of slices to perform UpperCamelCase__ = _get_minimal_slice_set( a__ , a__ , a__ , ) UpperCamelCase__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _UpperCamelCase (a__ :Callable , a__ :Dict[str, Any] , a__ :int , a__ :int , a__ :bool = False , a__ :Any = None , a__ :bool = False , ): """simple docstring""" if not (len(a__ ) > 0): raise ValueError("""Must provide at least one input""" ) UpperCamelCase__ = [shape[:no_batch_dims] for shape in _fetch_dims(a__ )] UpperCamelCase__ = tuple([max(a__ ) for s in zip(*a__ )] ) def _prep_inputs(a__ :torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCamelCase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCamelCase__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCamelCase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCamelCase__ = tensor_tree_map(_prep_inputs , a__ ) UpperCamelCase__ = None if _out is not None: UpperCamelCase__ = tensor_tree_map(lambda a__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCamelCase__ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(a__ :torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ = 0 UpperCamelCase__ = prepped_outputs for _ in range(a__ ): # Chunk the input if not low_mem: UpperCamelCase__ = _select_chunk else: UpperCamelCase__ = partial( _chunk_slice , flat_start=a__ , flat_end=min(a__ , i + chunk_size ) , no_batch_dims=len(a__ ) , ) UpperCamelCase__ = tensor_tree_map(a__ , a__ ) # Run the layer on the chunk UpperCamelCase__ = layer(**a__ ) # Allocate space for the output if out is None: UpperCamelCase__ = tensor_tree_map(lambda a__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , a__ ) # Put the chunk in its pre-allocated space if isinstance(a__ , a__ ): def assign(a__ :dict , a__ :dict ) -> None: for k, v in da.items(): if isinstance(a__ , a__ ): assign(a__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ = da[k] assign(a__ , a__ ) elif isinstance(a__ , a__ ): for xa, xa in zip(a__ , a__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ = xa elif isinstance(a__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size UpperCamelCase__ = tensor_tree_map(lambda a__ : t.view(orig_batch_dims + t.shape[1:] ) , a__ ) return out class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase = 512 , ): UpperCamelCase__ = max_chunk_size UpperCamelCase__ = None UpperCamelCase__ = None def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCamelCase__ = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__lowerCAmelCase ) -> bool: try: with torch.no_grad(): fn(*__lowerCamelCase , chunk_size=__lowerCamelCase ) return True except RuntimeError: return False UpperCamelCase__ = 0 UpperCamelCase__ = len(__lowerCamelCase ) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ = test_chunk_size(candidates[i] ) if not viable: UpperCamelCase__ = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ = i UpperCamelCase__ = (i + len(__lowerCamelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = True for aa, aa in zip(__lowerCamelCase , __lowerCamelCase ): assert type(__lowerCamelCase ) == type(__lowerCamelCase ) if isinstance(__lowerCamelCase , (list, tuple) ): consistent &= self._compare_arg_caches(__lowerCamelCase , __lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__ = [v for _, v in sorted(aa.items() , key=lambda __lowerCAmelCase : x[0] )] UpperCamelCase__ = [v for _, v in sorted(aa.items() , key=lambda __lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(__lowerCamelCase , __lowerCamelCase ) else: consistent &= aa == aa return consistent def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): UpperCamelCase__ = True UpperCamelCase__ = tree_map(lambda __lowerCAmelCase : a.shape if isinstance(__lowerCamelCase , torch.Tensor ) else a , __lowerCamelCase , __lowerCamelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__lowerCamelCase ) UpperCamelCase__ = self._compare_arg_caches(self.cached_arg_data , __lowerCamelCase ) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ = False if not consistent: UpperCamelCase__ = self._determine_favorable_chunk_size( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) UpperCamelCase__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
368
import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = """masked_bert""" def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="topK" , __lowerCAmelCase="constant" , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = pruning_method UpperCamelCase__ = mask_init UpperCamelCase__ = mask_scale
87
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : dict ) -> Dict: __a = set() # To detect a back edge, keep track of vertices currently in the recursion stack __a = set() return any( node not in visited and depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for node in graph ) def lowercase ( lowerCAmelCase__ : dict , lowerCAmelCase__ : int , lowerCAmelCase__ : set , lowerCAmelCase__ : set ) -> Optional[int]: visited.add(__SCREAMING_SNAKE_CASE ) rec_stk.add(__SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
45
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _lowercase : Union[str, Any] = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) _lowercase : int = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } _lowercase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Any = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } _lowercase : str = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : List[str] = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) _lowercase : Tuple = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Optional[Any] = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) _lowercase : Tuple = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Optional[int] = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." _lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." _lowercase : Optional[int] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" _lowercase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." _lowercase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" _lowercase : int = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." _lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" _lowercase : int = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." _lowercase : List[str] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : str = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." _lowercase : Dict = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" _lowercase : List[str] = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." _lowercase : str = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." _lowercase : List[Any] = "" _lowercase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." _lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _lowercase : Optional[Any] = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" assert ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path='''root''' ) ) ): lowercase_ : Optional[int] = ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , suppress_parsing_errors=__SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / '''README.md''' with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file: readme_file.write(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : str = Path(__SCREAMING_SNAKE_CASE ) / '''README.md''' with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file: readme_file.write(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = expected_error.format(path=__SCREAMING_SNAKE_CASE ) with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(__SCREAMING_SNAKE_CASE ) ): lowercase_ : int = ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = Path(__SCREAMING_SNAKE_CASE ) / '''README.md''' with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file: readme_file.write(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = expected_error.format(path=__SCREAMING_SNAKE_CASE ) with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(__SCREAMING_SNAKE_CASE ) ): ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / '''README.md''' with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file: readme_file.write(__SCREAMING_SNAKE_CASE ) ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , suppress_parsing_errors=__SCREAMING_SNAKE_CASE )
93
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ : List[str] = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
180
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowercase__ : Optional[int] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) lowercase__ : List[str] = "sshleifer/student_marian_en_ro_6_1" lowercase__ : List[Any] = "sshleifer/tiny-mbart" @require_torch class a__ ( UpperCamelCase__ ): def lowerCAmelCase_ ( self , A=False , A=None , A=True , A=True , A=True , A=True , ) -> List[Any]: '''simple docstring''' a = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A , num_train_epochs=1 , distributed=A , extra_args_str=A , predict_with_generate=A , do_train=A , do_eval=A , do_predict=A , ) a = TrainerState.load_from_json(os.path.join(A , "trainer_state.json" ) ).log_history if not do_eval: return a = [log for log in logs if "eval_loss" in log.keys()] a = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats a = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , A ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' self.run_seqaseq_quick(distributed=A ) @require_torch_multi_gpu def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' self.run_seqaseq_quick(distributed=A ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' self.run_seqaseq_quick(distributed=A , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=A ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' self.run_seqaseq_quick( distributed=A , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=A ) @require_apex @require_torch_gpu def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' self.run_seqaseq_quick(distributed=A , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def lowerCAmelCase_ ( self , A ) -> Dict: '''simple docstring''' a = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } a = experiments[experiment_id] a = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} a = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**A , extra_args_str=data["extra_args_str"] ) a = len(re.findall(A , cl.err ) ) self.assertEqual(A , data["n_matches"] ) @slow def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.run_trainer( eval_steps=2 , max_len=128 , model_name=A , learning_rate=3e-4 , num_train_epochs=10 , distributed=A , ) # Check metrics a = TrainerState.load_from_json(os.path.join(A , "trainer_state.json" ) ).log_history a = [log for log in logs if "eval_loss" in log.keys()] a = eval_metrics[0] a = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , A ) # test if do_predict saves generations and metrics a = os.listdir(A ) a = {os.path.basename(A ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(A ) -> Tuple[int, float]: a = "--skip_memory_metrics 0" a = self.run_trainer( max_len=128 , model_name=A , learning_rate=3e-4 , num_train_epochs=1 , optim=A , distributed=A , extra_args_str=A , do_eval=A , do_predict=A , n_gpus_to_use=1 , ) # Check metrics a = TrainerState.load_from_json(Path(A , "trainer_state.json" ) ).log_history a = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) a = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) a = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss a , a , a = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) a , a , a = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) a = gpu_alloc_mem_orig - gpu_alloc_mem_bnb a = gpu_peak_mem_orig + gpu_alloc_mem_orig a = gpu_peak_mem_bnb + gpu_alloc_mem_bnb a = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings a = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A , A , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( A , A , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( A , A , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase_ ( self , A , A , A , A = 3e-3 , A = "adafactor" , A = False , A = None , A = 0 , A = True , A = True , A = True , A = True , A = None , ) -> Tuple: '''simple docstring''' a = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" a = self.get_auto_remove_tmp_dir() a = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(A )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(A )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() a = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(A )} '''.split() a = "\n --do_predict\n ".split() a = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: a = get_gpu_count() a = get_torch_dist_unique_port() a = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() a = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A , env=self.get_env() ) else: a = ["run_translation.py"] + args with patch.object(A , "argv" , A ): main() return output_dir
180
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency SCREAMING_SNAKE_CASE_:Union[str, Any] = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } SCREAMING_SNAKE_CASE_:int = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' SCREAMING_SNAKE_CASE_:str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : Optional[int] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" return x[0] def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : int = get_letter_count(__A ) A : Tuple = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__A ) A : str = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__A ) A : Any = """""".join(freq_to_letter[freq] ) A : Tuple = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__A , reverse=__A ) A : Any = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__A ) def __UpperCamelCase ( _lowerCAmelCase ) -> int: """simple docstring""" A : Union[str, Any] = get_frequency_order(__A ) A : List[str] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
116
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : int = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['LayoutLMv3FeatureExtractor'] a__ : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase_ ( __snake_case ): _lowerCamelCase = field(default=__snake_case , metadata={'help': 'Whether to use SortishSampler or not.'} ) _lowerCamelCase = field( default=__snake_case , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _lowerCamelCase = field( default=__snake_case , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) _lowerCamelCase = field( default=__snake_case , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) _lowerCamelCase = field( default=__snake_case , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCamelCase ( self ): _snake_case : str = super().to_dict() for k, v in d.items(): if isinstance(lowercase_ , lowercase_ ): _snake_case : Dict = v.to_dict() return d
359
from __future__ import annotations def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' _snake_case : Any = sorted(numsa + numsa ) _snake_case ,_snake_case : Any = divmod(len(__lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Union[str, Any] = [float(x) for x in input('Enter the elements of first array: ').split()] __SCREAMING_SNAKE_CASE : List[Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
284
0
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" @register_to_config def __init__( self :List[str] , lowercase_ :bool , lowercase_ :Optional[int] = None , lowercase_ :Optional[int] = None ) -> List[Any]: super().__init__() UpperCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase = torch.zeros(lowercase_ , lowercase_ ) else: UpperCAmelCase = None UpperCAmelCase = torch.nn.Parameter(lowercase_ ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self :Union[str, Any] , lowercase_ :VQModel , lowercase_ :CLIPTextModel , lowercase_ :CLIPTokenizer , lowercase_ :TransformeraDModel , lowercase_ :VQDiffusionScheduler , lowercase_ :LearnedClassifierFreeSamplingEmbeddings , ) -> Union[str, Any]: super().__init__() self.register_modules( vqvae=lowercase_ , transformer=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , scheduler=lowercase_ , learned_classifier_free_sampling_embeddings=lowercase_ , ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :List[Any] , lowercase_ :str , lowercase_ :Optional[Any] ) -> Union[str, Any]: UpperCAmelCase = len(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else 1 # get prompt text embeddings UpperCAmelCase = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowercase_ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase = prompt_embeds.repeat_interleave(lowercase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(lowercase_ , 1 , 1 ) else: UpperCAmelCase = [''] * batch_size UpperCAmelCase = text_input_ids.shape[-1] UpperCAmelCase = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowercase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase = negative_prompt_embeds.shape[1] UpperCAmelCase = negative_prompt_embeds.repeat(1 , lowercase_ , 1 ) UpperCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self :str , lowercase_ :Union[str, List[str]] , lowercase_ :int = 1_00 , lowercase_ :float = 5.0 , lowercase_ :float = 1.0 , lowercase_ :int = 1 , lowercase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ :Optional[torch.FloatTensor] = None , lowercase_ :Optional[str] = "pil" , lowercase_ :bool = True , lowercase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ :int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = 1 elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = len(lowercase_ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}""" ) UpperCAmelCase = batch_size * num_images_per_prompt UpperCAmelCase = guidance_scale > 1.0 UpperCAmelCase = self._encode_prompt(lowercase_ , lowercase_ , lowercase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowercase_ )}.""" ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase = self.transformer.num_vector_embeds - 1 UpperCAmelCase = torch.full(lowercase_ , lowercase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) UpperCAmelCase = self.scheduler.timesteps.to(self.device ) UpperCAmelCase = latents for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase = self.transformer(lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = model_output.chunk(2 ) UpperCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowercase_ , dim=1 , keepdim=lowercase_ ) UpperCAmelCase = self.truncate(lowercase_ , lowercase_ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = self.vqvae.config.vq_embed_dim UpperCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase = self.vqvae.quantize.get_codebook_entry(lowercase_ , shape=lowercase_ ) UpperCAmelCase = self.vqvae.decode(lowercase_ , force_not_quantize=lowercase_ ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ ) def UpperCAmelCase__ ( self :int , lowercase_ :torch.FloatTensor , lowercase_ :float ) -> torch.FloatTensor: UpperCAmelCase , UpperCAmelCase = torch.sort(lowercase_ , 1 , descending=lowercase_ ) UpperCAmelCase = torch.exp(lowercase_ ) UpperCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , lowercase_ ) UpperCAmelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase = keep_mask[:, :-1, :] UpperCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase = log_p_x_0.clone() UpperCAmelCase = -torch.inf # -inf = log(0) return rv
78
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case ( ctypes.Structure ): '''simple docstring''' A_ : List[str] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowerCAmelCase ( ): """simple docstring""" if os.name == "nt": __A = CursorInfo() __A = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) __A = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def lowerCAmelCase ( ): """simple docstring""" if os.name == "nt": __A = CursorInfo() __A = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) __A = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def lowerCAmelCase ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
266
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Any = logging.get_logger(__name__) def _A (__a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1_44, 1_92, 2_40] SCREAMING_SNAKE_CASE_ : Any = [16, 32, 64, 96, 1_28, 1_60, 6_40] elif "mobilevit_xs" in mobilevit_name: SCREAMING_SNAKE_CASE_ : str = [96, 1_20, 1_44] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 3_84] elif "mobilevit_xxs" in mobilevit_name: SCREAMING_SNAKE_CASE_ : Tuple = [64, 80, 96] SCREAMING_SNAKE_CASE_ : str = [16, 16, 24, 48, 64, 80, 3_20] SCREAMING_SNAKE_CASE_ : str = 0.05 SCREAMING_SNAKE_CASE_ : str = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): SCREAMING_SNAKE_CASE_ : str = 5_12 SCREAMING_SNAKE_CASE_ : Optional[Any] = 16 SCREAMING_SNAKE_CASE_ : str = 21 SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''pascal-voc-id2label.json''' else: SCREAMING_SNAKE_CASE_ : List[str] = 10_00 SCREAMING_SNAKE_CASE_ : List[Any] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_ : str = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ : Optional[Any] = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE_ : Any = {int(__a ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def _A (__a , __a=False ) -> Any: """simple docstring""" for i in range(1 , 6 ): if f'layer_{i}.' in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace(f'layer_{i}.' , f'encoder.layer.{i - 1}.' ) if "conv_1." in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f'.{i}.{j}.' in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace(f'.{i}.{j}.' , f'.{i}.layer.{j}.' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f'.{i}.{j}.' in name: SCREAMING_SNAKE_CASE_ : str = name.replace(f'.{i}.{j}.' , f'.{i}.' ) if "expand_1x1" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if f'.global_rep.{i}.weight' in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace(f'.global_rep.{i}.weight' , '''.layernorm.weight''' ) if f'.global_rep.{i}.bias' in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace(f'.global_rep.{i}.bias' , '''.layernorm.bias''' ) if ".global_rep." in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): SCREAMING_SNAKE_CASE_ : str = '''mobilevit.''' + name return name def _A (__a , __a , __a=False ) -> Any: """simple docstring""" if base_model: SCREAMING_SNAKE_CASE_ : Optional[Any] = '''''' else: SCREAMING_SNAKE_CASE_ : Optional[int] = '''mobilevit.''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : str = orig_state_dict.pop(__a ) if key[:8] == "encoder.": SCREAMING_SNAKE_CASE_ : str = key[8:] if "qkv" in key: SCREAMING_SNAKE_CASE_ : Tuple = key.split('''.''' ) SCREAMING_SNAKE_CASE_ : int = int(key_split[0][6:] ) - 1 SCREAMING_SNAKE_CASE_ : Optional[int] = int(key_split[3] ) SCREAMING_SNAKE_CASE_ : Any = model.get_submodule(f'{model_prefix}encoder.layer.{layer_num}' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size SCREAMING_SNAKE_CASE_ : Dict = ( f'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: SCREAMING_SNAKE_CASE_ : str = val[:dim, :] SCREAMING_SNAKE_CASE_ : Union[str, Any] = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ : int = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ : int = val[:dim] SCREAMING_SNAKE_CASE_ : Tuple = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : List[str] = val[-dim:] else: SCREAMING_SNAKE_CASE_ : Tuple = val return orig_state_dict def _A () -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ : List[Any] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def _A (__a , __a , __a , __a=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = get_mobilevit_config(__a ) # load original state_dict SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(__a , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): SCREAMING_SNAKE_CASE_ : Dict = MobileViTForSemanticSegmentation(__a ).eval() else: SCREAMING_SNAKE_CASE_ : str = MobileViTForImageClassification(__a ).eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by MobileViTImageProcessor SCREAMING_SNAKE_CASE_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) SCREAMING_SNAKE_CASE_ : Dict = image_processor(images=prepare_img() , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**__a ) SCREAMING_SNAKE_CASE_ : int = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": SCREAMING_SNAKE_CASE_ : str = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3] , __a , atol=1e-4 ) else: assert logits.shape == (1, 10_00) if mobilevit_name == "mobilevit_s": SCREAMING_SNAKE_CASE_ : str = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": SCREAMING_SNAKE_CASE_ : str = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(f'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__a ) if push_to_hub: SCREAMING_SNAKE_CASE_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) SCREAMING_SNAKE_CASE_ : Tuple = model_mapping[mobilevit_name] image_processor.push_to_hub(__a , organization='''apple''' ) model.push_to_hub(__a , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = data SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None def _A () -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower() SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Optional[int] = q.get() SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node q.put(__a ) SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : int = right_node q.put(__a ) raise def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Tuple = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : str = [] while not q.empty(): SCREAMING_SNAKE_CASE_ : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE_ : Tuple = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE_ : str = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Any = node while n or stack: while n: stack.append(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left SCREAMING_SNAKE_CASE_ : Any = stack.pop() print(n.data , end=''',''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], [] SCREAMING_SNAKE_CASE_ : List[Any] = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _A (__a = "" , __a=50 , __a="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) UpperCAmelCase_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
318
1
"""simple docstring""" from math import factorial def _snake_case ( _snake_case : int = 100 ): return sum(int(_snake_case ) for x in str(factorial(_snake_case ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
60
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : Union[str, Any] = LEDTokenizer __A : Union[str, Any] = LEDTokenizerFast __A : Optional[Any] = True def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().setUp() lowercase__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Optional[int] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : Tuple = {"unk_token": "<unk>"} lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : int , **lowercase_ : str ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Any ) -> Tuple: return "lower newer", "lower newer" @cached_property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def __UpperCamelCase ( self : Tuple ) -> int: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : str = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" ) self.assertIn("input_ids" , lowercase_ ) self.assertIn("attention_mask" , lowercase_ ) self.assertNotIn("labels" , lowercase_ ) self.assertNotIn("decoder_attention_mask" , lowercase_ ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : Dict = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(text_target=lowercase_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=lowercase_ , truncation=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Any: lowercase__ : Union[str, Any] = ["A long paragraph for summarization."] lowercase__ : List[Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[Any] = tokenizer(lowercase_ , return_tensors="pt" ) lowercase__ : Dict = tokenizer(text_target=lowercase_ , return_tensors="pt" ) lowercase__ : Optional[int] = inputs["input_ids"] lowercase__ : str = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = ["Summary of the text.", "Another summary."] lowercase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ : Tuple = tokenizer(lowercase_ , padding=lowercase_ ) lowercase__ : int = [[0] * len(lowercase_ ) for x in encoded_output["input_ids"]] lowercase__ : Any = tokenizer.pad(lowercase_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowercase_ ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: pass def __UpperCamelCase ( self : int ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[Any] = "A, <mask> AllenNLP sentence." lowercase__ : Tuple = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase__ : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
87
0
# flake8: noqa # Lint as: python3 UpperCAmelCase__ : Union[str, Any] =[ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
262
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Union[str, Any] =logging.get_logger(__name__) UpperCAmelCase__ : Any ={ '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( a ): __A = """vit_msn""" def __init__( self , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-06 , UpperCAmelCase_=224 , UpperCAmelCase_=16 , UpperCAmelCase_=3 , UpperCAmelCase_=True , **UpperCAmelCase_ , ): super().__init__(**UpperCAmelCase_ ) lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =hidden_act lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =initializer_range lowerCamelCase =layer_norm_eps lowerCamelCase =image_size lowerCamelCase =patch_size lowerCamelCase =num_channels lowerCamelCase =qkv_bias
262
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure)
180
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): """simple docstring""" lowerCamelCase :Tuple = JukeboxTokenizer lowerCamelCase :str = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def UpperCAmelCase ( self ) -> Tuple: import torch _A = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _A = tokenizer(**self.metas )["""input_ids"""] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> List[str]: import torch _A = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _A = tokenizer(**self.metas )["""input_ids"""] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
180
1
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class UpperCamelCase_ (lowerCamelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Dict ): """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(_UpperCAmelCase ) def __call__( self : Tuple , _lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCamelCase : Tuple ): """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def _a ( self : Union[str, Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return {}, {}, {} def _a ( self : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : List[Any] = load_image(_UpperCAmelCase ) A_ : str = image.size A_ : Optional[Any] = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def _a ( self : List[Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : List[Any] = self.model(**_UpperCAmelCase ) return model_outputs def _a ( self : Optional[Any] , _lowerCamelCase : List[str] ): """simple docstring""" A_ : Optional[int] = model_outputs.predicted_depth A_ : Dict = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=_UpperCAmelCase ) A_ : Tuple = prediction.squeeze().cpu().numpy() A_ : Dict = (output * 255 / np.max(_UpperCAmelCase )).astype('''uint8''' ) A_ : List[str] = Image.fromarray(_UpperCAmelCase ) A_ : List[Any] = {} A_ : Union[str, Any] = predicted_depth A_ : Dict = depth return output_dict
366
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : Optional[Any] = list(lowerCAmelCase_ ) UpperCAmelCase : List[Any] = list(lowerCAmelCase_ ) UpperCAmelCase : str = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Union[str, Any] = """_""" if count > 1: return False else: return "".join(lowerCAmelCase_ ) def _snake_case ( UpperCamelCase : list[str] ): UpperCAmelCase : Dict = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(lowerCAmelCase_ ) UpperCAmelCase : Tuple = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): UpperCAmelCase : Tuple = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Dict = """*""" UpperCAmelCase : Tuple = """*""" temp.append("""X""" ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi UpperCAmelCase : Dict = list(set(lowerCAmelCase_ ) ) def _snake_case ( UpperCamelCase : int , UpperCamelCase : Sequence[float] ): UpperCAmelCase : List[Any] = [] for minterm in minterms: UpperCAmelCase : Union[str, Any] = """""" for _ in range(lowerCAmelCase_ ): UpperCAmelCase : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def _snake_case ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : int ): UpperCAmelCase : Tuple = list(lowerCAmelCase_ ) UpperCAmelCase : Optional[int] = list(lowerCAmelCase_ ) UpperCAmelCase : Optional[int] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _snake_case ( UpperCamelCase : list[list[int]] , UpperCamelCase : list[str] ): UpperCAmelCase : List[str] = [] UpperCAmelCase : List[Any] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : List[Any] = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : List[Any] = j if count == 1: UpperCAmelCase : List[Any] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : str = 0 UpperCAmelCase : List[Any] = -1 UpperCAmelCase : str = 0 for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase : Tuple = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Optional[int] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): UpperCAmelCase : Dict = 0 def _snake_case ( UpperCamelCase : list[str] , UpperCamelCase : list[str] ): UpperCAmelCase : str = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): UpperCAmelCase : Optional[Any] = 1 return chart def _snake_case ( ): UpperCAmelCase : Optional[int] = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : int = [ float(lowerCAmelCase_ ) for x in input( """Enter the decimal representation of Minterms \'Spaces Separated\'\n""" ).split() ] UpperCAmelCase : Dict = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase : Optional[Any] = check(lowerCAmelCase_ ) print("""Prime Implicants are:""" ) print(lowerCAmelCase_ ) UpperCAmelCase : int = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase : str = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print("""Essential Prime Implicants are:""" ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
109
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _snake_case : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _snake_case : list[int] = [ord(letter) for letter in string.ascii_lowercase] _snake_case : set[int] = {ord(char) for char in VALID_CHARS} _snake_case : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def a_ ( lowerCAmelCase_ : list[int], lowerCAmelCase_ : tuple[int, ...] ): __lowerCAmelCase = "" __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(lowerCAmelCase_ ), lowerCAmelCase_ ): __lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCAmelCase_ ) return decoded def a_ ( lowerCAmelCase_ : list[int] ): __lowerCAmelCase = [] for key in product(lowerCAmelCase_, repeat=3 ): __lowerCAmelCase = try_key(lowerCAmelCase_, lowerCAmelCase_ ) if encoded is not None: possibles.append(lowerCAmelCase_ ) return possibles def a_ ( lowerCAmelCase_ : list[str], lowerCAmelCase_ : str ): return [possible for possible in possibles if common_word in possible.lower()] def a_ ( lowerCAmelCase_ : str = "p059_cipher.txt" ): __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = Path(lowerCAmelCase_ ).parent.joinpath(lowerCAmelCase_ ).read_text(encoding='utf-8' ) __lowerCAmelCase = [int(lowerCAmelCase_ ) for number in data.strip().split(',' )] __lowerCAmelCase = filter_valid_chars(lowerCAmelCase_ ) for common_word in COMMON_WORDS: __lowerCAmelCase = filter_common_word(lowerCAmelCase_, lowerCAmelCase_ ) if len(lowerCAmelCase_ ) == 1: break __lowerCAmelCase = possibles[0] return sum(ord(lowerCAmelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
284
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str ,lowercase_ : Tuple ,lowercase_ : int ,lowercase_ : List[str] ,lowercase_ : Any=None ,lowercase_ : Any=None ): lowerCAmelCase__ : int = start lowerCAmelCase__ : int = end lowerCAmelCase__ : str = val lowerCAmelCase__ : Dict = (start + end) // 2 lowerCAmelCase__ : List[str] = left lowerCAmelCase__ : List[Any] = right def __repr__( self : Tuple ): return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int ,lowercase_ : Sequence ,lowercase_ : List[str] ): lowerCAmelCase__ : Dict = collection lowerCAmelCase__ : int = function if self.collection: lowerCAmelCase__ : List[str] = self._build_tree(0 ,len(lowercase_ ) - 1 ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Union[str, Any] ,lowercase_ : str ): self._update_tree(self.root ,lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[Any] ,lowercase_ : Tuple ): return self._query_range(self.root ,lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : int ,lowercase_ : Dict ): if start == end: return SegmentTreeNode(lowercase_ ,lowercase_ ,self.collection[start] ) lowerCAmelCase__ : Dict = (start + end) // 2 lowerCAmelCase__ : str = self._build_tree(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Dict = self._build_tree(mid + 1 ,lowercase_ ) return SegmentTreeNode(lowercase_ ,lowercase_ ,self.fn(left.val ,right.val ) ,lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Optional[int] ,lowercase_ : List[Any] ,lowercase_ : Tuple ): if node.start == i and node.end == i: lowerCAmelCase__ : List[Any] = val return if i <= node.mid: self._update_tree(node.left ,lowercase_ ,lowercase_ ) else: self._update_tree(node.right ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : int = self.fn(node.left.val ,node.right.val ) def __lowerCAmelCase ( self : int ,lowercase_ : Dict ,lowercase_ : Optional[Any] ,lowercase_ : Union[str, Any] ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left ,lowercase_ ,lowercase_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left ,lowercase_ ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,lowercase_ ) ,) else: # range in right child tree return self._query_range(node.right ,lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : List[str] ): if self.root is not None: lowerCAmelCase__ : int = Queue() queue.put(self.root ) while not queue.empty(): lowerCAmelCase__ : int = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 5_0) __UpperCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
367
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = [] for line in lines: lowerCAmelCase__ : int = re.sub(r'''#.*''' , '''''' , A_ ) # remove comments if line: filtered_lines.append(A_ ) lowerCAmelCase__ : Optional[int] = '''\n'''.join(A_ ) # Make a hash from all this code lowerCAmelCase__ : int = full_str.encode('''utf-8''' ) return shaaaa(A_ ).hexdigest() # get importable module names and hash for caching __UpperCamelCase : Any = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __UpperCamelCase : Optional[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __UpperCamelCase : Union[str, Any] = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name __UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
74
0
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase_ : def __init__( self : Any , A : str , A : Dict=1_3 , A : Optional[Any]=7 , A : Tuple=False , A : List[str]=True , A : Tuple=False , A : str=False , A : int=1_9 , A : Optional[int]=3_2 , A : Tuple=5 , A : Optional[Any]=4 , A : Optional[int]=3_7 , A : Tuple="gelu" , A : int=0.1 , A : Optional[int]=0.1 , A : Tuple=5_1_2 , A : List[Any]=1_6 , A : Dict=2 , A : Any=0.02 , A : Optional[Any]=3 , A : Union[str, Any]=4 , A : List[str]=None , ): _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Optional[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : int = use_input_mask _UpperCAmelCase : Optional[int] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : Any = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : List[Any] = num_labels _UpperCAmelCase : Dict = num_choices _UpperCAmelCase : Dict = scope def snake_case_ ( self : int ): _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Tuple = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[str] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : int ): _UpperCAmelCase : Any = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=A , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def snake_case_ ( self : List[Any] , A : Tuple , A : str , A : str , A : int , A : Dict , A : int ): _UpperCAmelCase : str = EsmForProteinFolding(config=A ).float() model.to(A ) model.eval() _UpperCAmelCase : int = model(A , attention_mask=A ) _UpperCAmelCase : Tuple = model(A ) _UpperCAmelCase : Tuple = model(A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self : Dict ): _UpperCAmelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Dict = (EsmForProteinFolding,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : int = () __SCREAMING_SNAKE_CASE : Union[str, Any] = {} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : str = False def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Optional[int] = EsmFoldModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=A , hidden_size=3_7 ) def snake_case_ ( self : Any ): self.config_tester.run_common_tests() def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip("Does not support attention outputs" ) def snake_case_ ( self : Dict ): pass @unittest.skip def snake_case_ ( self : str ): pass @unittest.skip("Esm does not support embedding resizing" ) def snake_case_ ( self : Union[str, Any] ): pass @unittest.skip("Esm does not support embedding resizing" ) def snake_case_ ( self : Optional[int] ): pass @unittest.skip("ESMFold does not support passing input embeds!" ) def snake_case_ ( self : Any ): pass @unittest.skip("ESMFold does not support head pruning." ) def snake_case_ ( self : List[Any] ): pass @unittest.skip("ESMFold does not support head pruning." ) def snake_case_ ( self : Union[str, Any] ): pass @unittest.skip("ESMFold does not support head pruning." ) def snake_case_ ( self : List[str] ): pass @unittest.skip("ESMFold does not support head pruning." ) def snake_case_ ( self : Optional[Any] ): pass @unittest.skip("ESMFold does not support head pruning." ) def snake_case_ ( self : Tuple ): pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def snake_case_ ( self : str ): pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def snake_case_ ( self : Union[str, Any] ): pass @unittest.skip("ESMFold only has one output format." ) def snake_case_ ( self : Optional[Any] ): pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def snake_case_ ( self : Union[str, Any] ): pass @unittest.skip("ESMFold does not support input chunking." ) def snake_case_ ( self : Optional[int] ): pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def snake_case_ ( self : Optional[Any] ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def snake_case_ ( self : List[Any] ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def snake_case_ ( self : Union[str, Any] ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def snake_case_ ( self : Dict ): pass @unittest.skip("ESMFold doesn't support data parallel." ) def snake_case_ ( self : Any ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case_ ( self : List[str] ): pass @require_torch class UpperCAmelCase_ ( _UpperCamelCase ): @slow def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : str = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() _UpperCAmelCase : Tuple = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _UpperCAmelCase : int = model(A )["positions"] _UpperCAmelCase : Dict = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , A , atol=1e-4 ) )
202
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = GPTSanJapaneseTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[str] = {'do_clean_text': False, 'add_prefix_space': False} def snake_case_ ( self : Any ): super().setUp() # fmt: off _UpperCAmelCase : Any = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Optional[int] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _UpperCAmelCase : List[Any] = {"unk_token": "<unk>"} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def snake_case_ ( self : int , **A : List[str] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : int , A : Any ): _UpperCAmelCase : Optional[Any] = "こんにちは、世界。 \nこんばんは、㔺界。😀" _UpperCAmelCase : List[Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def snake_case_ ( self : Optional[Any] , A : str ): _UpperCAmelCase , _UpperCAmelCase : str = self.get_input_output_texts(A ) _UpperCAmelCase : List[Any] = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def snake_case_ ( self : Any ): pass # TODO add if relevant def snake_case_ ( self : Union[str, Any] ): pass # TODO add if relevant def snake_case_ ( self : int ): pass # TODO add if relevant def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Optional[int] = "こんにちは、世界。 こんばんは、㔺界。" _UpperCAmelCase : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _UpperCAmelCase : List[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens _UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens _UpperCAmelCase : str = tokens + [tokenizer.unk_token] _UpperCAmelCase : Any = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Any ): _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Dict = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _UpperCAmelCase : Tuple = "こんにちは、、、、世界。こんばんは、、、、世界。" _UpperCAmelCase : int = tokenizer.encode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Dict ): _UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : List[Any] = "こんにちは、世界。" _UpperCAmelCase : List[str] = "こんばんは、㔺界。😀" _UpperCAmelCase : Any = "こんにちは、世界。こんばんは、世界。😀" _UpperCAmelCase : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) _UpperCAmelCase : Tuple = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _UpperCAmelCase : Optional[int] = tokenizer.encode(A , prefix_text=A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : Any = "こんにちは、世界。" _UpperCAmelCase : List[Any] = "こんばんは、㔺界。😀" _UpperCAmelCase : Optional[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[str] = [1] + [0] * (len_prefix + len_text + 1) _UpperCAmelCase : str = [1] * (len_prefix + len_text + 1) + [0] _UpperCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCAmelCase : Union[str, Any] = tokenizer(prefix_text + input_text ).token_type_ids _UpperCAmelCase : Any = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _UpperCAmelCase : List[Any] = tokenizer(A , prefix_text=A ).token_type_ids self.assertListEqual(A , A ) self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Dict = tokenizer.encode("あンいワ" ) _UpperCAmelCase : str = tokenizer.encode("" , prefix_text="あンいワ" ) _UpperCAmelCase : Dict = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertNotEqual(A , A ) self.assertNotEqual(A , A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _UpperCAmelCase : Tuple = tokenizer(A , padding=A ) _UpperCAmelCase : str = tokenizer.batch_encode_plus(A , padding=A ) # fmt: off _UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _UpperCAmelCase : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A ) self.assertListEqual(x_token.token_type_ids , A ) self.assertListEqual(x_token.attention_mask , A ) self.assertListEqual(x_token_a.input_ids , A ) self.assertListEqual(x_token_a.token_type_ids , A ) self.assertListEqual(x_token_a.attention_mask , A ) def snake_case_ ( self : List[Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def snake_case_ ( self : int ): # tokenizer has no padding token pass
202
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = BioGptTokenizer SCREAMING_SNAKE_CASE__ : int = False def lowercase_ ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCAmelCase_ : Dict = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) lowerCAmelCase_ : List[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowerCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__lowercase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def lowercase_ ( self , __lowercase ) -> Optional[int]: lowerCAmelCase_ : List[str] = '''lower newer''' lowerCAmelCase_ : str = '''lower newer''' return input_text, output_text def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : Tuple = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase_ : str = '''lower''' lowerCAmelCase_ : Optional[Any] = ['''low''', '''er</w>'''] lowerCAmelCase_ : Dict = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) lowerCAmelCase_ : Union[str, Any] = tokens + ['''<unk>'''] lowerCAmelCase_ : Dict = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) @slow def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : str = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowerCAmelCase_ : int = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) lowerCAmelCase_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) lowerCAmelCase_ : str = tokenizer.build_inputs_with_special_tokens(__lowercase ) lowerCAmelCase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
262
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _UpperCAmelCase : Optional[Any] =NewType("""DataClass""", Any) _UpperCAmelCase : Dict =NewType("""DataClassType""", Any) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCAmelCase ( lowerCAmelCase_ )-> Callable[[str], Any]: lowerCAmelCase_ : str = {str(lowerCAmelCase_ ): choice for choice in choices} return lambda lowerCAmelCase_ : str_to_choice.get(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( *, lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = None , **lowerCAmelCase_ , )-> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase_ : Dict = {} if aliases is not None: lowerCAmelCase_ : str = aliases if help is not None: lowerCAmelCase_ : Tuple = help return dataclasses.field(metadata=lowerCAmelCase_ , default=lowerCAmelCase_ , default_factory=lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Iterable[DataClassType] def __init__( self , __lowercase , **__lowercase ) -> List[str]: # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCAmelCase_ : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**__lowercase ) if dataclasses.is_dataclass(__lowercase ): lowerCAmelCase_ : Union[str, Any] = [dataclass_types] lowerCAmelCase_ : List[Any] = list(__lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowercase ) @staticmethod def lowercase_ ( __lowercase , __lowercase ) -> Union[str, Any]: lowerCAmelCase_ : Optional[Any] = f"""--{field.name}""" lowerCAmelCase_ : Tuple = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowercase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowerCAmelCase_ : List[str] = kwargs.pop('''aliases''' , [] ) if isinstance(__lowercase , __lowercase ): lowerCAmelCase_ : Optional[Any] = [aliases] lowerCAmelCase_ : Any = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__lowercase , '''UnionType''' ) and isinstance(__lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowercase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(__lowercase ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase_ : List[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase_ : Dict = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase_ : str = ( field.type.__args__[0] if isinstance(__lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase_ : List[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase_ : Dict = {} if origin_type is Literal or (isinstance(field.type , __lowercase ) and issubclass(field.type , __lowercase )): if origin_type is Literal: lowerCAmelCase_ : Optional[Any] = field.type.__args__ else: lowerCAmelCase_ : int = [x.value for x in field.type] lowerCAmelCase_ : str = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowerCAmelCase_ : str = field.default else: lowerCAmelCase_ : Tuple = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase_ : Tuple = copy(__lowercase ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase_ : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase_ : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase_ : List[str] = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase_ : int = '''?''' # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase_ : List[Any] = True elif isclass(__lowercase ) and issubclass(__lowercase , __lowercase ): lowerCAmelCase_ : Union[str, Any] = field.type.__args__[0] lowerCAmelCase_ : Dict = '''+''' if field.default_factory is not dataclasses.MISSING: lowerCAmelCase_ : Any = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase_ : Optional[int] = True else: lowerCAmelCase_ : List[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase_ : Dict = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase_ : List[Any] = field.default_factory() else: lowerCAmelCase_ : int = True parser.add_argument(__lowercase , *__lowercase , **__lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase_ : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowercase ) def lowercase_ ( self , __lowercase ) -> List[Any]: if hasattr(__lowercase , '''_argument_group_name''' ): lowerCAmelCase_ : str = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase_ : Dict = self try: lowerCAmelCase_ : Dict[str, type] = get_type_hints(__lowercase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__lowercase ): lowerCAmelCase_ : Any = '''.'''.join(map(__lowercase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__lowercase ): if not field.init: continue lowerCAmelCase_ : Optional[int] = type_hints[field.name] self._parse_dataclass_field(__lowercase , __lowercase ) def lowercase_ ( self , __lowercase=None , __lowercase=False , __lowercase=True , __lowercase=None , __lowercase=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase_ : str = [] if args_filename: args_files.append(Path(__lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase_ : str = ArgumentParser() args_file_parser.add_argument(__lowercase , type=__lowercase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = args_file_parser.parse_known_args(args=__lowercase ) lowerCAmelCase_ : int = vars(__lowercase ).get(args_file_flag.lstrip('''-''' ) , __lowercase ) if cmd_args_file_paths: args_files.extend([Path(__lowercase ) for p in cmd_args_file_paths] ) lowerCAmelCase_ : Dict = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase_ : Any = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.parse_known_args(args=__lowercase ) lowerCAmelCase_ : Any = [] for dtype in self.dataclass_types: lowerCAmelCase_ : str = {f.name for f in dataclasses.fields(__lowercase ) if f.init} lowerCAmelCase_ : str = {k: v for k, v in vars(__lowercase ).items() if k in keys} for k in keys: delattr(__lowercase , __lowercase ) lowerCAmelCase_ : Optional[int] = dtype(**__lowercase ) outputs.append(__lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: lowerCAmelCase_ : int = set(args.keys() ) lowerCAmelCase_ : str = [] for dtype in self.dataclass_types: lowerCAmelCase_ : int = {f.name for f in dataclasses.fields(__lowercase ) if f.init} lowerCAmelCase_ : List[str] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase_ : List[str] = dtype(**__lowercase ) outputs.append(__lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__lowercase )}""" ) return tuple(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: with open(Path(__lowercase ) , encoding='''utf-8''' ) as open_json_file: lowerCAmelCase_ : Dict = json.loads(open_json_file.read() ) lowerCAmelCase_ : str = self.parse_dict(__lowercase , allow_extra_keys=__lowercase ) return tuple(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: lowerCAmelCase_ : Optional[Any] = self.parse_dict(yaml.safe_load(Path(__lowercase ).read_text() ) , allow_extra_keys=__lowercase ) return tuple(__lowercase )
262
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _a ( unittest.TestCase ): def __init__( self: str , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int]=13 , UpperCamelCase_: Optional[int]=7 , UpperCamelCase_: int=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: int=99 , UpperCamelCase_: int=32 , UpperCamelCase_: Optional[int]=5 , UpperCamelCase_: int=4 , UpperCamelCase_: Any=37 , UpperCamelCase_: Dict="gelu" , UpperCamelCase_: str=0.1 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: int=512 , UpperCamelCase_: int=16 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: Tuple=0.02 , UpperCamelCase_: Tuple=4 , ) -> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _a ( a__ , unittest.TestCase ): _lowercase : List[str] = True _lowercase : Dict = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''roberta-base''' , from_pt=_lowerCamelCase ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase )
369
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[str] ) -> Union[str, Any]: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Dict=0.9 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: Optional[int]=0.5 ) -> Dict: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ = [ meteor_score.single_meteor_score( word_tokenize(UpperCamelCase_ ) , word_tokenize(UpperCamelCase_ ) , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , gamma=UpperCamelCase_ ) for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ) ] else: lowercase__ = [ meteor_score.single_meteor_score(UpperCamelCase_ , UpperCamelCase_ , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , gamma=UpperCamelCase_ ) for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return {"meteor": np.mean(UpperCamelCase_ )}
93
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a = False class A_ (unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : int = pipe.dual_guided( prompt="first prompt" , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Optional[int] = generator.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.dual_guided( prompt="first prompt" , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = "cyberpunk 2077" UpperCAmelCase_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCAmelCase_ : List[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCAmelCase_ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Any = "A painting of a squirrel eating a burger " UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images UpperCAmelCase_ : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : int = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Optional[Any] = pipe.image_variation(lowercase_ , generator=lowercase_ , output_type="numpy" ).images UpperCAmelCase_ : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
61
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowercase ( A_ , A_=False )-> int: '''simple docstring''' a : List[str] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowercase ( A_ , A_ , A_=False )-> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: a : Tuple = "" else: a : Dict = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : str = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a : Optional[int] = in_proj_weight[ : config.hidden_size, : ] a : Tuple = in_proj_bias[: config.hidden_size] a : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : int = in_proj_weight[ -config.hidden_size :, : ] a : int = in_proj_bias[-config.hidden_size :] def lowercase ( A_ )-> Dict: '''simple docstring''' a : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(A_ , A_ ) def lowercase ( A_ , A_ , A_ )-> List[Any]: '''simple docstring''' a : List[Any] = dct.pop(A_ ) a : str = val def lowercase ( )-> List[Any]: '''simple docstring''' a : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Tuple = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def lowercase ( A_ , A_ , A_=False )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=A_ , ) a : Union[str, Any] = ViTHybridConfig(backbone_config=A_ , image_size=384 , num_labels=1_000 ) a : Optional[Any] = False # load original model from timm a : Any = timm.create_model(A_ , pretrained=A_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys a : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(A_ ) a : int = create_rename_keys(A_ , A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , A_ , A_ ) a : Union[str, Any] = "huggingface/label-files" a : Optional[int] = "imagenet-1k-id2label.json" a : str = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : Optional[Any] = {int(A_ ): v for k, v in idalabel.items()} a : str = idalabel a : Any = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": a : List[Any] = ViTHybridModel(A_ ).eval() else: a : Optional[int] = ViTHybridForImageClassification(A_ ).eval() model.load_state_dict(A_ ) # create image processor a : Tuple = create_transform(**resolve_data_config({} , model=A_ ) ) a : List[Any] = transform.transforms a : int = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } a : str = ViTHybridImageProcessor( do_resize=A_ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A_ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=A_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) a : List[Any] = prepare_img() a : Optional[Any] = transform(A_ ).unsqueeze(0 ) a : str = processor(A_ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(A_ , A_ ) # verify logits with torch.no_grad(): a : Dict = model(A_ ) a : Tuple = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: a : str = timm_model.forward_features(A_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A_ , outputs.pooler_output , atol=1e-3 ) else: a : int = timm_model(A_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A_ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) __lowercase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : int=18 , __UpperCAmelCase : int=30 , __UpperCAmelCase : Optional[int]=400 , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Union[str, Any]=True , ): a : Optional[int] = size if size is not None else {"height": 18, "width": 18} a : Any = parent a : int = batch_size a : str = num_channels a : Dict = image_size a : Dict = min_resolution a : Optional[int] = max_resolution a : Optional[int] = do_resize a : Any = size a : Dict = apply_ocr def __snake_case ( self : Optional[int]): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __snake_case ( self : List[Any]): a : Optional[int] = LayoutLMvaImageProcessingTester(self) @property def __snake_case ( self : Optional[int]): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : List[Any]): a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize")) self.assertTrue(hasattr(__UpperCAmelCase , "size")) self.assertTrue(hasattr(__UpperCAmelCase , "apply_ocr")) def __snake_case ( self : str): a : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 18, "width": 18}) a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"height": 42, "width": 42}) def __snake_case ( self : Union[str, Any]): pass def __snake_case ( self : List[str]): # Initialize image_processing a : Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images a : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image) # Test not batched input a : str = image_processing(image_inputs[0] , return_tensors="pt") self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __UpperCAmelCase) self.assertIsInstance(encoding.boxes , __UpperCAmelCase) # Test batched a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : Union[str, Any]): # Initialize image_processing a : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray) # Test not batched input a : Dict = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : List[str] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : List[str]): # Initialize image_processing a : str = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor) # Test not batched input a : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : List[str] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : List[str]): # with apply_OCR = True a : List[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset a : List[str] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test") a : int = Image.open(ds[0]["file"]).convert("RGB") a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt") self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a : Tuple = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 a : str = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCAmelCase) self.assertListEqual(encoding.boxes , __UpperCAmelCase) # with apply_OCR = False a : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase) a : Dict = image_processing(__UpperCAmelCase , return_tensors="pt") self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
226
1
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE : int = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowercase ( _snake_case : list[list[int]] , _snake_case : list[int] , _snake_case : list[int] , _snake_case : int , _snake_case : list[list[int]] , ) ->List[str]: """simple docstring""" __snake_case : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case : str = 1 __snake_case : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : str = init[1] __snake_case : List[str] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Optional[Any] = [[f, g, x, y]] __snake_case : Tuple = False # flag that is set when search is complete __snake_case : Dict = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : str = cell.pop() __snake_case : Tuple = next_cell[2] __snake_case : Union[str, Any] = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Any = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Dict = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[int] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[Any] = 1 __snake_case : int = i __snake_case : Dict = [] __snake_case : Tuple = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : Union[str, Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : List[str] = xa __snake_case : Union[str, Any] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] SCREAMING_SNAKE_CASE : Optional[int] = [0, 0] # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE : List[Any] = [len(grid) - 1, len(grid[0]) - 1] SCREAMING_SNAKE_CASE : Dict = 1 # the cost map which pushes the path closer to the goal SCREAMING_SNAKE_CASE : Optional[int] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): SCREAMING_SNAKE_CASE : str = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map SCREAMING_SNAKE_CASE : Union[str, Any] = 99 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
102
"""simple docstring""" import argparse import struct import unittest class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : bytes ) -> None: A = data # Initialize hash values A = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants A = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] A = self.preprocessing(self.data ) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : bytes ) -> bytes: A = B'\x80' + (B'\x00' * (63 - (len(A_ ) + 8) % 64)) A = struct.pack('>Q' ,(len(A_ ) * 8) ) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: # Convert into blocks of 64 bytes A = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A = list(struct.unpack('>16L' ,A_ ) ) # add 48 0-ed integers words += [0] * 48 A , A , A , A , A , A , A , A = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array A = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) A = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A = self.ror(A_ ,6 ) ^ self.ror(A_ ,11 ) ^ self.ror(A_ ,25 ) A = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A = self.ror(A_ ,2 ) ^ self.ror(A_ ,13 ) ^ self.ror(A_ ,22 ) A = (a & b) ^ (a & c) ^ (b & c) A = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A , A , A , A , A , A , A , A = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A = [a, b, c, d, e, f, g, h] # Modify final values A = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A = ''.join([hex(A_ )[2:].zfill(8 ) for value in self.hashes] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : int ) -> int: return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: import hashlib A = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(A_ ).hash ,hashlib.shaaaa(A_ ).hexdigest() ) def _snake_case ( ): import doctest doctest.testmod() A = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A = parser.parse_args() A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A = f.read() else: A = bytes(snake_case__ , 'utf-8' ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
74
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 42 @flax_register_to_config class a_ ( nn.Module , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 32 UpperCAmelCase_ = 4 UpperCAmelCase_ = 4 UpperCAmelCase_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCAmelCase_ = False UpperCAmelCase_ = (320, 640, 1_280, 1_280) UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = None UpperCAmelCase_ = 1_280 UpperCAmelCase_ = 0.0 UpperCAmelCase_ = False UpperCAmelCase_ = jnp.floataa UpperCAmelCase_ = True UpperCAmelCase_ = 0 UpperCAmelCase_ = False def __snake_case ( self : Optional[int] , lowercase__ : jax.random.KeyArray): '''simple docstring''' lowerCAmelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase__ = jnp.zeros(lowercase__ , dtype=jnp.floataa) lowerCAmelCase__ = jnp.ones((1,) , dtype=jnp.intaa) lowerCAmelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) lowerCAmelCase__ , lowerCAmelCase__ = jax.random.split(lowercase__) lowerCAmelCase__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase__ , lowercase__ , lowercase__ , lowercase__)["params"] def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.block_out_channels lowerCAmelCase__ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) lowerCAmelCase__ = FlaxTimestepEmbedding(lowercase__ , dtype=self.dtype) lowerCAmelCase__ = self.only_cross_attention if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = (only_cross_attention,) * len(self.down_block_types) if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = (num_attention_heads,) * len(self.down_block_types) # down lowerCAmelCase__ = [] lowerCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] lowerCAmelCase__ = i == len(lowercase__) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase__ = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase__) lowerCAmelCase__ = down_blocks # mid lowerCAmelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCAmelCase__ = [] lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): lowerCAmelCase__ = output_channel lowerCAmelCase__ = reversed_block_out_channels[i] lowerCAmelCase__ = reversed_block_out_channels[min(i + 1 , len(lowercase__) - 1)] lowerCAmelCase__ = i == len(lowercase__) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCAmelCase__ = FlaxCrossAttnUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase__) lowerCAmelCase__ = output_channel lowerCAmelCase__ = up_blocks # out lowerCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5) lowerCAmelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , lowercase__ : bool = True , lowercase__ : bool = False , ): '''simple docstring''' if not isinstance(lowercase__ , jnp.ndarray): lowerCAmelCase__ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(lowercase__ , jnp.ndarray) and len(timesteps.shape) == 0: lowerCAmelCase__ = timesteps.astype(dtype=jnp.floataa) lowerCAmelCase__ = jnp.expand_dims(lowercase__ , 0) lowerCAmelCase__ = self.time_proj(lowercase__) lowerCAmelCase__ = self.time_embedding(lowercase__) # 2. pre-process lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 2, 3, 1)) lowerCAmelCase__ = self.conv_in(lowercase__) # 3. down lowerCAmelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train) else: lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCAmelCase__ = () for down_block_res_sample, down_block_additional_residual in zip( lowercase__ , lowercase__): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase__ = new_down_block_res_samples # 4. mid lowerCAmelCase__ = self.mid_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCAmelCase__ = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCAmelCase__ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = up_block( lowercase__ , temb=lowercase__ , encoder_hidden_states=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train , ) else: lowerCAmelCase__ = up_block(lowercase__ , temb=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train) # 6. post-process lowerCAmelCase__ = self.conv_norm_out(lowercase__) lowerCAmelCase__ = nn.silu(lowercase__) lowerCAmelCase__ = self.conv_out(lowercase__) lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase__)
119
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 'xlm-roberta-xl' def __init__( self : int , lowercase__ : Optional[int]=250_880 , lowercase__ : Union[str, Any]=2_560 , lowercase__ : int=36 , lowercase__ : int=32 , lowercase__ : List[Any]=10_240 , lowercase__ : Union[str, Any]="gelu" , lowercase__ : Dict=0.1 , lowercase__ : Any=0.1 , lowercase__ : Any=514 , lowercase__ : Optional[int]=1 , lowercase__ : Any=0.02 , lowercase__ : List[str]=1e-05 , lowercase__ : Dict=1 , lowercase__ : Union[str, Any]=0 , lowercase__ : Dict=2 , lowercase__ : str="absolute" , lowercase__ : Dict=True , lowercase__ : List[Any]=None , **lowercase__ : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache lowerCAmelCase__ = classifier_dropout class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __snake_case ( self : int): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
119
1