code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=1024 )-> Union[str, Any]: UpperCamelCase = [], [] UpperCamelCase = list(zip(lowercase_ , lowercase_ ) ) UpperCamelCase = sorted_examples[0] def is_too_big(__UpperCamelCase ): return tok(lowercase_ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCamelCase = new_src + """ """ + src UpperCamelCase = new_tgt + """ """ + tgt if is_too_big(lowercase_ ) or is_too_big(lowercase_ ): # cant fit, finalize example finished_src.append(lowercase_ ) finished_tgt.append(lowercase_ ) UpperCamelCase = src, tgt else: # can fit, keep adding UpperCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowercase_ ) finished_tgt.append(lowercase_ ) return finished_src, finished_tgt def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCamelCase = Path(lowercase_ ) save_path.mkdir(exist_ok=lowercase_ ) for split in ["train"]: UpperCamelCase = data_dir / F"{split}.source", data_dir / F"{split}.target" UpperCamelCase = [x.rstrip() for x in Path(lowercase_ ).open().readlines()] UpperCamelCase = [x.rstrip() for x in Path(lowercase_ ).open().readlines()] UpperCamelCase = pack_examples(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) print(F"packed {split} split from {len(lowercase_ )} examples -> {len(lowercase_ )}." ) Path(save_path / F"{split}.source" ).open("""w""" ).write("""\n""".join(lowercase_ ) ) Path(save_path / F"{split}.target" ).open("""w""" ).write("""\n""".join(lowercase_ ) ) for split in ["val", "test"]: UpperCamelCase = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(lowercase_ , save_path / F"{split}.source" ) shutil.copyfile(lowercase_ , save_path / F"{split}.target" ) def lowercase__ ( )-> List[str]: UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=lowercase_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=lowercase_ , default=128 ) parser.add_argument("""--data_dir""" , type=lowercase_ ) parser.add_argument("""--save_path""" , type=lowercase_ ) UpperCamelCase = parser.parse_args() UpperCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowercase_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
321
import string def UpperCamelCase (lowercase_: str ) -> None: for key in range(len(string.ascii_uppercase ) ): A__ : Dict = """""" for symbol in message: if symbol in string.ascii_uppercase: A__ : Dict = string.ascii_uppercase.find(lowercase_ ) A__ : Optional[int] = num - key if num < 0: A__ : Optional[int] = num + len(string.ascii_uppercase ) A__ : Any = translated + string.ascii_uppercase[num] else: A__ : Optional[Any] = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def UpperCamelCase () -> None: A__ : Optional[Any] = input("""Encrypted message: """ ) A__ : Optional[Any] = message.upper() decrypt(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
192
0
def A_ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(A__ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"""{solution() = }""")
365
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase : Optional[Any] = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } lowercase : List[str] = { """RUCAIBox/mvp""": 1_0_2_4, } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Dict = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Any = ['''input_ids''', '''attention_mask'''] __A : Tuple = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> str: '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) a__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : Dict = getattr(lowercase , pre_tok_state.pop('type')) a__ : str = add_prefix_space a__ : Union[str, Any] = pre_tok_class(**lowercase) a__ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Optional[int] = 'post_processor' a__ : Optional[int] = getattr(self.backend_tokenizer , lowercase , lowercase) if tokenizer_component_instance: a__ : str = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Any = tuple(state['sep']) if "cls" in state: a__ : str = tuple(state['cls']) a__ : List[str] = False if state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : List[str] = add_prefix_space a__ : List[str] = True if state.get('trim_offsets' , lowercase) != trim_offsets: a__ : Optional[int] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : Optional[int] = getattr(lowercase , state.pop('type')) a__ : Tuple = component_class(**lowercase) setattr(self.backend_tokenizer , lowercase , lowercase) @property def __lowercase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __lowercase ( self , lowercase) -> Any: '''simple docstring''' a__ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else value a__ : str = value def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Optional[Any] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowercase , **lowercase) def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : List[str] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__ : List[str] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase) def __lowercase ( self , lowercase , lowercase=None) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : int = [self.sep_token_id] a__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
225
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCamelCase_ = get_logger() lowerCamelCase_ = None class _UpperCAmelCase ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : int=None , __UpperCAmelCase : List[str]=None , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' super().__init__(features=__UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(__UpperCAmelCase )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) _A = device if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _A = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) _A = str(jax.devices()[0] ) _A = jnp_array_kwargs @staticmethod def lowerCAmelCase ( ): '''simple docstring''' import jax return {str(__UpperCAmelCase ): device for device in jax.devices()} def lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and column: if all( isinstance(__UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCAmelCase , axis=0 ) return column def lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , (str, bytes, type(__UpperCAmelCase )) ): return value elif isinstance(__UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _A = {} if isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _A = {"dtype": jnp.intaa} else: _A = {"dtype": jnp.intaa} elif isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _A = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCAmelCase , PIL.Image.Image ): _A = np.asarray(__UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _A = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCAmelCase , "__array__" ) and not isinstance(__UpperCAmelCase , jax.Array ): _A = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , __UpperCAmelCase , map_list=__UpperCAmelCase ) def lowerCAmelCase ( self : str , __UpperCAmelCase : pa.Table ): '''simple docstring''' _A = self.numpy_arrow_extractor().extract_row(__UpperCAmelCase ) _A = self.python_features_decoder.decode_row(__UpperCAmelCase ) return self.recursive_tensorize(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : pa.Table ): '''simple docstring''' _A = self.numpy_arrow_extractor().extract_column(__UpperCAmelCase ) _A = self.python_features_decoder.decode_column(__UpperCAmelCase , pa_table.column_names[0] ) _A = self.recursive_tensorize(__UpperCAmelCase ) _A = self._consolidate(__UpperCAmelCase ) return column def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : pa.Table ): '''simple docstring''' _A = self.numpy_arrow_extractor().extract_batch(__UpperCAmelCase ) _A = self.python_features_decoder.decode_batch(__UpperCAmelCase ) _A = self.recursive_tensorize(__UpperCAmelCase ) for column_name in batch: _A = self._consolidate(batch[column_name] ) return batch
79
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def __lowercase ( __lowercase , __lowercase=False ) -> int: '''simple docstring''' _A = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _A = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def __lowercase ( __lowercase , __lowercase , __lowercase=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _A = "" else: _A = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[ : config.hidden_size, : ] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[ -config.hidden_size :, : ] _A = in_proj_bias[-config.hidden_size :] def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Tuple: '''simple docstring''' _A = dct.pop(__lowercase ) _A = val def __lowercase ( ) -> List[str]: '''simple docstring''' _A = "http://images.cocodataset.org/val2017/000000039769.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def __lowercase ( __lowercase , __lowercase , __lowercase=False ) -> Tuple: '''simple docstring''' _A = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=__lowercase , ) _A = ViTHybridConfig(backbone_config=__lowercase , image_size=384 , num_labels=1000 ) _A = False # load original model from timm _A = timm.create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _A = timm_model.state_dict() if base_model: remove_classification_head_(__lowercase ) _A = create_rename_keys(__lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase , __lowercase ) _A = "huggingface/label-files" _A = "imagenet-1k-id2label.json" _A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _A = ViTHybridModel(__lowercase ).eval() else: _A = ViTHybridForImageClassification(__lowercase ).eval() model.load_state_dict(__lowercase ) # create image processor _A = create_transform(**resolve_data_config({} , model=__lowercase ) ) _A = transform.transforms _A = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _A = ViTHybridImageProcessor( do_resize=__lowercase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowercase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=__lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _A = prepare_img() _A = transform(__lowercase ).unsqueeze(0 ) _A = processor(__lowercase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__lowercase , __lowercase ) # verify logits with torch.no_grad(): _A = model(__lowercase ) _A = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: _A = timm_model.forward_features(__lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowercase , outputs.pooler_output , atol=1e-3 ) else: _A = timm_model(__lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowercase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowerCamelCase_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
79
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction def snake_case (A_ :int , A_ :int ): '''simple docstring''' return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def snake_case (A_ :int ): '''simple docstring''' a : Dict = [] a : str = 1_1 a : Tuple = int('1' + '0' * digit_len ) for num in range(A_ , A_ ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(A_ , A_ ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 a : List[str] = 1_0 return solutions def snake_case (A_ :int = 2 ): '''simple docstring''' a : Optional[int] = 1.0 for fraction in fraction_list(A_ ): a : List[Any] = Fraction(A_ ) result *= frac.denominator / frac.numerator return int(A_ ) if __name__ == "__main__": print(solution())
186
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case (A_ :Dict ): '''simple docstring''' a : str = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def snake_case (A_ :Any , A_ :List[Any] ): '''simple docstring''' a : Union[str, Any] = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def snake_case (A_ :Dict ): '''simple docstring''' a : int = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def snake_case (): '''simple docstring''' a : int = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def snake_case (A_ :int , A_ :Optional[int] , A_ :Dict , A_ :Dict ): '''simple docstring''' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = 1_0_0_0 a : Tuple = 'huggingface/label-files' a : List[Any] = num_labels a : List[str] = json.load(open(cached_download(hf_hub_url(A_ , A_ , repo_type='dataset' ) ) , 'r' ) ) a : int = {int(A_ ): v for k, v in idalabel.items()} a : str = idalabel a : Optional[int] = {v: k for k, v in idalabel.items()} a : Tuple = CvtConfig(num_labels=A_ , idalabel=A_ , labelaid=A_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": a : int = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": a : List[Any] = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: a : Optional[int] = [2, 2, 2_0] a : Any = [3, 1_2, 1_6] a : str = [1_9_2, 7_6_8, 1_0_2_4] a : List[Any] = CvtForImageClassification(A_ ) a : Optional[int] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) a : Union[str, Any] = image_size a : Optional[Any] = torch.load(A_ , map_location=torch.device('cpu' ) ) a : int = OrderedDict() a : Any = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: a : Dict = list_of_state_dict + cls_token(A_ ) a : Any = list_of_state_dict + embeddings(A_ ) for cnt in range(config.depth[idx] ): a : Dict = list_of_state_dict + attention(A_ , A_ ) a : Any = list_of_state_dict + final() for gg in list_of_state_dict: print(A_ ) for i in range(len(A_ ) ): a : List[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A_ ) model.save_pretrained(A_ ) image_processor.save_pretrained(A_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _UpperCamelCase : int = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
186
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } _SCREAMING_SNAKE_CASE : Optional[int] = {"allegro/herbert-base-cased": 514} _SCREAMING_SNAKE_CASE : Any = {} class _snake_case ( lowercase_ ): lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : str = HerbertTokenizer def __init__( self , a__=None , a__=None , a__=None , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__="</s>" , **a__ , ) -> List[str]: '''simple docstring''' super().__init__( a__ , a__ , tokenizer_file=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , sep_token=a__ , **a__ , ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self , a__ , a__ = None , a__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
85
'''simple docstring''' from statistics import mean, stdev def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = min(snake_case ) snake_case_ = max(snake_case ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data] def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = mean(snake_case ) snake_case_ = stdev(snake_case ) # standardize data return [round((x - mu) / (sigma) , snake_case ) for x in data]
85
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants a :List[Any] = Mapping[str, np.ndarray] a :str = Mapping[str, Any] # Is a nested dict. a :Optional[Any] = 0.01 @dataclasses.dataclass(frozen=UpperCamelCase_) class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _SCREAMING_SNAKE_CASE :np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _SCREAMING_SNAKE_CASE :np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _SCREAMING_SNAKE_CASE :np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _SCREAMING_SNAKE_CASE :np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _SCREAMING_SNAKE_CASE :Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _SCREAMING_SNAKE_CASE :Optional[str] = None # Templates used to generate this protein (prediction-only) _SCREAMING_SNAKE_CASE :Optional[Sequence[str]] = None # Chain corresponding to each parent _SCREAMING_SNAKE_CASE :Optional[Sequence[int]] = None def _lowercase ( __lowerCAmelCase ) -> Protein: SCREAMING_SNAKE_CASE__ : str = r"""(\[[A-Z]+\]\n)""" SCREAMING_SNAKE_CASE__ : List[str] = [tag.strip() for tag in re.split(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0] SCREAMING_SNAKE_CASE__ : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) SCREAMING_SNAKE_CASE__ : List[str] = ["N", "CA", "C"] SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None for g in groups: if "[PRIMARY]" == g[0]: SCREAMING_SNAKE_CASE__ : str = g[1][0].strip() for i in range(len(__lowerCAmelCase ) ): if seq[i] not in residue_constants.restypes: SCREAMING_SNAKE_CASE__ : Tuple = """X""" # FIXME: strings are immutable SCREAMING_SNAKE_CASE__ : Any = np.array( [residue_constants.restype_order.get(__lowerCAmelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: SCREAMING_SNAKE_CASE__ : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCAmelCase , g[1][axis].split() ) ) ) SCREAMING_SNAKE_CASE__ : Any = np.array(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : int = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: SCREAMING_SNAKE_CASE__ : Any = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.zeros( ( len(__lowerCAmelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : int = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCAmelCase , atom_mask=__lowerCAmelCase , aatype=__lowerCAmelCase , residue_index=np.arange(len(__lowerCAmelCase ) ) , b_factors=__lowerCAmelCase , ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = 0 ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : List[str] = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) SCREAMING_SNAKE_CASE__ : int = prot.parents SCREAMING_SNAKE_CASE__ : Optional[Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: SCREAMING_SNAKE_CASE__ : List[Any] = [p for i, p in zip(__lowerCAmelCase , __lowerCAmelCase ) if i == chain_id] if parents is None or len(__lowerCAmelCase ) == 0: SCREAMING_SNAKE_CASE__ : Optional[int] = ["""N/A"""] pdb_headers.append(F'''PARENT {' '.join(__lowerCAmelCase )}''' ) return pdb_headers def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = pdb_str.split("""\n""" ) SCREAMING_SNAKE_CASE__ : List[Any] = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) SCREAMING_SNAKE_CASE__ : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: SCREAMING_SNAKE_CASE__ : int = [] if prot.parents_chain_index is not None: SCREAMING_SNAKE_CASE__ : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCAmelCase ) , [] ) parent_dict[str(__lowerCAmelCase )].append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = max([int(__lowerCAmelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): SCREAMING_SNAKE_CASE__ : str = parent_dict.get(str(__lowerCAmelCase ) , ["""N/A"""] ) parents_per_chain.append(__lowerCAmelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: SCREAMING_SNAKE_CASE__ : List[Any] = [["""N/A"""]] def make_parent_line(__lowerCAmelCase ) -> str: return F'''PARENT {' '.join(__lowerCAmelCase )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) SCREAMING_SNAKE_CASE__ : Tuple = 0 for i, l in enumerate(__lowerCAmelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCAmelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = parents_per_chain[chain_counter] else: SCREAMING_SNAKE_CASE__ : Any = ["""N/A"""] out_pdb_lines.append(make_parent_line(__lowerCAmelCase ) ) return "\n".join(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : int = residue_constants.restypes + ["""X"""] def res_atoa(__lowerCAmelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) SCREAMING_SNAKE_CASE__ : List[str] = residue_constants.atom_types SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : List[str] = prot.atom_mask SCREAMING_SNAKE_CASE__ : Optional[int] = prot.aatype SCREAMING_SNAKE_CASE__ : Optional[int] = prot.atom_positions SCREAMING_SNAKE_CASE__ : Optional[int] = prot.residue_index.astype(np.intaa ) SCREAMING_SNAKE_CASE__ : int = prot.b_factors SCREAMING_SNAKE_CASE__ : Union[str, Any] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) SCREAMING_SNAKE_CASE__ : Tuple = get_pdb_headers(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: pdb_lines.extend(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = aatype.shape[0] SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : str = string.ascii_uppercase SCREAMING_SNAKE_CASE__ : List[str] = None # Add all atom sites. for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCAmelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue SCREAMING_SNAKE_CASE__ : List[str] = """ATOM""" SCREAMING_SNAKE_CASE__ : Optional[Any] = atom_name if len(__lowerCAmelCase ) == 4 else F''' {atom_name}''' SCREAMING_SNAKE_CASE__ : List[Any] = """""" SCREAMING_SNAKE_CASE__ : int = """""" SCREAMING_SNAKE_CASE__ : List[Any] = 1.00 SCREAMING_SNAKE_CASE__ : List[Any] = atom_name[0] # Protein supports only C, N, O, S, this works. SCREAMING_SNAKE_CASE__ : int = """""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """A""" if chain_index is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! SCREAMING_SNAKE_CASE__ : Tuple = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(__lowerCAmelCase ) atom_index += 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Optional[int] = chain_index[i + 1] if should_terminate: # Close the chain. SCREAMING_SNAKE_CASE__ : Dict = """TER""" SCREAMING_SNAKE_CASE__ : int = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(__lowerCAmelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCAmelCase , __lowerCAmelCase ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ) -> Protein: return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=__lowerCAmelCase , remark=__lowerCAmelCase , parents=__lowerCAmelCase , parents_chain_index=__lowerCAmelCase , )
351
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __a (tf.keras.optimizers.schedules.LearningRateSchedule): '''simple docstring''' def __init__( self , _a , _a , _a , _a = 1.0 , _a = None , ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : List[Any] = initial_learning_rate SCREAMING_SNAKE_CASE__ : Tuple = warmup_steps SCREAMING_SNAKE_CASE__ : Optional[Any] = power SCREAMING_SNAKE_CASE__ : Optional[Any] = decay_schedule_fn SCREAMING_SNAKE_CASE__ : Any = name def __call__( self , _a ) -> List[Any]: """simple docstring""" with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(_a , tf.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) SCREAMING_SNAKE_CASE__ : str = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE__ : Optional[int] = self.initial_learning_rate * tf.math.pow(_a , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_a , ) def _a ( self ) -> List[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0.9 , __lowerCAmelCase = 0.999 , __lowerCAmelCase = 1E-8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = None , ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__lowerCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE__ : Dict = WarmUp( initial_learning_rate=__lowerCAmelCase , decay_schedule_fn=__lowerCAmelCase , warmup_steps=__lowerCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE__ : int = AdamWeightDecay( learning_rate=__lowerCAmelCase , weight_decay_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=__lowerCAmelCase , ) else: SCREAMING_SNAKE_CASE__ : int = tf.keras.optimizers.Adam( learning_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a = 0.001 , _a = 0.9 , _a = 0.999 , _a = 1E-7 , _a = False , _a = 0.0 , _a = None , _a = None , _a = "AdamWeightDecay" , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(_a , _a , _a , _a , _a , _a , **_a ) SCREAMING_SNAKE_CASE__ : Tuple = weight_decay_rate SCREAMING_SNAKE_CASE__ : Tuple = include_in_weight_decay SCREAMING_SNAKE_CASE__ : Dict = exclude_from_weight_decay @classmethod def _a ( cls , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = {"""WarmUp""": WarmUp} return super(_a , cls ).from_config(_a , custom_objects=_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" super(_a , self )._prepare_local(_a , _a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _a ( self , _a , _a=None , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = list(zip(*_a ) ) return super(_a , self ).apply_gradients(zip(_a , _a ) , name=_a , **_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE__ : Dict = apply_state or {} SCREAMING_SNAKE_CASE__ : List[str] = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._fallback_apply_state(_a , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _a ( self , _a , _a , _a=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Any = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_dense(_a , _a , **_a ) def _a ( self , _a , _a , _a , _a=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Dict = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_sparse(_a , _a , _a , **_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _a ( self , _a ) -> Tuple: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_a , _a ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_a , _a ) is not None: return False return True class __a (UpperCamelCase_): '''simple docstring''' def __init__( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : List[str] = None @property def _a ( self ) -> str: """simple docstring""" if self._accum_steps is None: SCREAMING_SNAKE_CASE__ : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _a ( self ) -> List[str]: """simple docstring""" if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , _a ) -> str: """simple docstring""" if not self._gradients: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_a ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_a ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(_a )}''' ) for accum_gradient, gradient in zip(self._gradients , _a ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_a ) self._accum_steps.assign_add(1 ) def _a ( self ) -> Any: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_a ) )
56
0
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool: # Base Case if index == len(_lowerCAmelCase ): return True # Recursive Step for i in range(_lowerCAmelCase ): if valid_coloring(graph[index] , _lowerCAmelCase , _lowerCAmelCase ): # Color current vertex snake_case__ : List[Any] = i # Validate coloring if util_color(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , index + 1 ): return True # Backtrack snake_case__ : Optional[Any] = -1 return False def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> list[int]: snake_case__ : Dict = [-1] * len(_lowerCAmelCase ) if util_color(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 0 ): return colored_vertices return []
35
'''simple docstring''' import numpy as np from transformers import Pipeline def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) snake_case__ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] , **snake_case_ : int ): snake_case__ : Optional[int] = {} if "second_text" in kwargs: snake_case__ : Union[str, Any] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any]=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCamelCase ( self : List[Any] , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = model_outputs.logits[0].numpy() snake_case__ : List[str] = softmax(snake_case_ ) snake_case__ : List[str] = np.argmax(snake_case_ ) snake_case__ : List[str] = self.model.config.idalabel[best_class] snake_case__ : Optional[int] = probabilities[best_class].item() snake_case__ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
35
1
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class snake_case ( _UpperCamelCase): __UpperCamelCase = ['image_processor', 'tokenizer'] __UpperCamelCase = 'OwlViTImageProcessor' __UpperCamelCase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , a__ : Union[str, Any]=None , a__ : Dict=None , **a__ : Dict ) -> Union[str, Any]: '''simple docstring''' _A = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a__ , ) _A = kwargs.pop("feature_extractor" ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a__ , a__ ) def __call__( self : List[Any] , a__ : Any=None , a__ : int=None , a__ : Optional[Any]=None , a__ : Union[str, Any]="max_length" , a__ : Optional[int]="np" , **a__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(a__ , a__ ) or (isinstance(a__ , a__ ) and not isinstance(text[0] , a__ )): _A = [self.tokenizer(a__ , padding=a__ , return_tensors=a__ , **a__ )] elif isinstance(a__ , a__ ) and isinstance(text[0] , a__ ): _A = [] # Maximum number of queries across batch _A = max([len(a__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(a__ ) != max_num_queries: _A = t + [" "] * (max_num_queries - len(a__ )) _A = self.tokenizer(a__ , padding=a__ , return_tensors=a__ , **a__ ) encodings.append(a__ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _A = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _A = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _A = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _A = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _A = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _A = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _A = BatchEncoding() _A = input_ids _A = attention_mask if query_images is not None: _A = BatchEncoding() _A = self.image_processor( a__ , return_tensors=a__ , **a__ ).pixel_values _A = query_pixel_values if images is not None: _A = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: _A = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a_ ( self : Dict , *a__ : Union[str, Any] , **a__ : Union[str, Any] ) -> str: '''simple docstring''' return self.image_processor.post_process(*a__ , **a__ ) def a_ ( self : List[Any] , *a__ : Any , **a__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.image_processor.post_process_object_detection(*a__ , **a__ ) def a_ ( self : Dict , *a__ : List[Any] , **a__ : Dict ) -> List[Any]: '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*a__ , **a__ ) def a_ ( self : Optional[Any] , *a__ : List[Any] , **a__ : Any ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*a__ , **a__ ) def a_ ( self : str , *a__ : List[Any] , **a__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*a__ , **a__ ) @property def a_ ( self : Dict ) -> int: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a__ , ) return self.image_processor_class @property def a_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a__ , ) return self.image_processor
163
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig a_ = logging.get_logger(__name__) # General docstring a_ = "PoolFormerConfig" # Base docstring a_ = "sail/poolformer_s12" a_ = [1, 5_12, 7, 7] # Image classification docstring a_ = "sail/poolformer_s12" a_ = "tabby, tabby cat" a_ = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def a__ ( __lowercase , __lowercase = 0.0 , __lowercase = False ) -> Dict: if drop_prob == 0.0 or not training: return input _A = 1 - drop_prob _A = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _A = keep_prob + torch.rand(__lowercase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _A = input.div(__lowercase ) * random_tensor return output class snake_case ( nn.Module): def __init__( self : Any , a__ : Optional[float] = None ) -> None: '''simple docstring''' super().__init__() _A = drop_prob def a_ ( self : Optional[Any] , a__ : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return drop_path(a__ , self.drop_prob , self.training ) def a_ ( self : List[str] ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class snake_case ( nn.Module): def __init__( self : Union[str, Any] , a__ : List[Any] , a__ : Any , a__ : List[Any] , a__ : Optional[int] , a__ : Dict , a__ : str=None ) -> Optional[Any]: '''simple docstring''' super().__init__() _A = patch_size if isinstance(a__ , collections.abc.Iterable ) else (patch_size, patch_size) _A = stride if isinstance(a__ , collections.abc.Iterable ) else (stride, stride) _A = padding if isinstance(a__ , collections.abc.Iterable ) else (padding, padding) _A = nn.Convad(a__ , a__ , kernel_size=a__ , stride=a__ , padding=a__ ) _A = norm_layer(a__ ) if norm_layer else nn.Identity() def a_ ( self : Dict , a__ : Any ) -> List[str]: '''simple docstring''' _A = self.projection(a__ ) _A = self.norm(a__ ) return embeddings class snake_case ( nn.GroupNorm): def __init__( self : Dict , a__ : Optional[int] , **a__ : Dict ) -> Optional[Any]: '''simple docstring''' super().__init__(1 , a__ , **a__ ) class snake_case ( nn.Module): def __init__( self : int , a__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__() _A = nn.AvgPoolad(a__ , stride=1 , padding=pool_size // 2 , count_include_pad=a__ ) def a_ ( self : List[str] , a__ : int ) -> str: '''simple docstring''' return self.pool(a__ ) - hidden_states class snake_case ( nn.Module): def __init__( self : Tuple , a__ : Optional[int] , a__ : Optional[Any] , a__ : List[str] , a__ : Optional[int] ) -> Any: '''simple docstring''' super().__init__() _A = nn.Convad(a__ , a__ , 1 ) _A = nn.Convad(a__ , a__ , 1 ) _A = PoolFormerDropPath(a__ ) if isinstance(config.hidden_act , a__ ): _A = ACTaFN[config.hidden_act] else: _A = config.hidden_act def a_ ( self : List[Any] , a__ : int ) -> Dict: '''simple docstring''' _A = self.conva(a__ ) _A = self.act_fn(a__ ) _A = self.drop(a__ ) _A = self.conva(a__ ) _A = self.drop(a__ ) return hidden_states class snake_case ( nn.Module): def __init__( self : Union[str, Any] , a__ : str , a__ : List[str] , a__ : List[Any] , a__ : List[str] , a__ : Optional[Any] , a__ : Tuple ) -> Dict: '''simple docstring''' super().__init__() _A = PoolFormerPooling(a__ ) _A = PoolFormerOutput(a__ , a__ , a__ , a__ ) _A = PoolFormerGroupNorm(a__ ) _A = PoolFormerGroupNorm(a__ ) # Useful for training neural nets _A = PoolFormerDropPath(a__ ) if drop_path > 0.0 else nn.Identity() _A = config.use_layer_scale if config.use_layer_scale: _A = nn.Parameter( config.layer_scale_init_value * torch.ones((a__) ) , requires_grad=a__ ) _A = nn.Parameter( config.layer_scale_init_value * torch.ones((a__) ) , requires_grad=a__ ) def a_ ( self : Union[str, Any] , a__ : Optional[int] ) -> Tuple: '''simple docstring''' if self.use_layer_scale: _A = self.pooling(self.before_norm(a__ ) ) _A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _A = hidden_states + self.drop_path(a__ ) _A = () _A = self.output(self.after_norm(a__ ) ) _A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _A = hidden_states + self.drop_path(a__ ) _A = (output,) + outputs return outputs else: _A = self.drop_path(self.pooling(self.before_norm(a__ ) ) ) # First residual connection _A = pooling_output + hidden_states _A = () # Second residual connection inside the PoolFormerOutput block _A = self.drop_path(self.output(self.after_norm(a__ ) ) ) _A = hidden_states + layer_output _A = (output,) + outputs return outputs class snake_case ( nn.Module): def __init__( self : str , a__ : int ) -> Any: '''simple docstring''' super().__init__() _A = config # stochastic depth decay rule _A = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _A = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _A = nn.ModuleList(a__ ) # Transformer blocks _A = [] _A = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _A = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( a__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(a__ ) ) _A = nn.ModuleList(a__ ) def a_ ( self : Tuple , a__ : Union[str, Any] , a__ : Tuple=False , a__ : List[str]=True ) -> List[Any]: '''simple docstring''' _A = () if output_hidden_states else None _A = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _A , _A = layers # Get patch embeddings from hidden_states _A = embedding_layer(a__ ) # Send the embeddings through the blocks for _, blk in enumerate(a__ ): _A = blk(a__ ) _A = layer_outputs[0] if output_hidden_states: _A = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=a__ , hidden_states=a__ ) class snake_case ( _UpperCamelCase): __UpperCamelCase = PoolFormerConfig __UpperCamelCase = 'poolformer' __UpperCamelCase = 'pixel_values' __UpperCamelCase = True def a_ ( self : Tuple , a__ : Dict ) -> Any: '''simple docstring''' if isinstance(a__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def a_ ( self : int , a__ : Dict , a__ : int=False ) -> str: '''simple docstring''' if isinstance(a__ , a__ ): _A = value a_ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" a_ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , _UpperCamelCase , ) class snake_case ( _UpperCamelCase): def __init__( self : int , a__ : Dict ) -> str: '''simple docstring''' super().__init__(a__ ) _A = config _A = PoolFormerEncoder(a__ ) # Initialize weights and apply final processing self.post_init() def a_ ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ ( self : Tuple , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[bool] = None , a__ : Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) _A = self.encoder( a__ , output_hidden_states=a__ , return_dict=a__ , ) _A = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=a__ , hidden_states=encoder_outputs.hidden_states , ) class snake_case ( nn.Module): def __init__( self : List[str] , a__ : Dict ) -> Optional[Any]: '''simple docstring''' super().__init__() _A = nn.Linear(config.hidden_size , config.hidden_size ) def a_ ( self : int , a__ : Tuple ) -> str: '''simple docstring''' _A = self.dense(a__ ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , _UpperCamelCase , ) class snake_case ( _UpperCamelCase): def __init__( self : Tuple , a__ : str ) -> Optional[int]: '''simple docstring''' super().__init__(a__ ) _A = config.num_labels _A = PoolFormerModel(a__ ) # Final norm _A = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _A = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ ( self : int , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.LongTensor] = None , a__ : Optional[bool] = None , a__ : Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.poolformer( a__ , output_hidden_states=a__ , return_dict=a__ , ) _A = outputs[0] _A = self.classifier(self.norm(a__ ).mean([-2, -1] ) ) _A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A = "single_label_classification" else: _A = "multi_label_classification" if self.config.problem_type == "regression": _A = MSELoss() if self.num_labels == 1: _A = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A = loss_fct(a__ , a__ ) elif self.config.problem_type == "single_label_classification": _A = CrossEntropyLoss() _A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A = BCEWithLogitsLoss() _A = loss_fct(a__ , a__ ) if not return_dict: _A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a__ , logits=a__ , hidden_states=outputs.hidden_states )
163
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
110
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ).to_dict() config_dict.pop('image_processor_type' ) SCREAMING_SNAKE_CASE_ = CLIPImageProcessor(**_lowerCAmelCase ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE_ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _lowerCAmelCase , 'clip-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('clip-base' ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : str ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCAmelCase_ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = CustomImageProcessor.from_pretrained(_lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self : Union[str, Any] ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True try: AutoConfig.register('custom' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(_lowerCAmelCase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
225
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Dict = '''wavlm''' def __init__( self : List[Any] ,_a : Any=32 ,_a : str=768 ,_a : List[str]=12 ,_a : Optional[Any]=12 ,_a : Union[str, Any]=3072 ,_a : Dict="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[Any]=0.1 ,_a : Optional[Any]=0.0 ,_a : Dict=0.1 ,_a : Optional[int]=0.1 ,_a : List[str]=0.02 ,_a : Any=1E-5 ,_a : str="group" ,_a : int="gelu" ,_a : str=(512, 512, 512, 512, 512, 512, 512) ,_a : Any=(5, 2, 2, 2, 2, 2, 2) ,_a : List[str]=(10, 3, 3, 3, 3, 2, 2) ,_a : List[str]=False ,_a : int=128 ,_a : Optional[Any]=16 ,_a : Tuple=320 ,_a : Optional[int]=800 ,_a : Tuple=False ,_a : Any=True ,_a : str=0.05 ,_a : Optional[Any]=10 ,_a : Any=2 ,_a : int=0.0 ,_a : int=10 ,_a : Optional[int]=320 ,_a : List[Any]=2 ,_a : Any=0.1 ,_a : Tuple=100 ,_a : Tuple=256 ,_a : int=256 ,_a : Tuple=0.1 ,_a : Optional[int]="mean" ,_a : List[str]=False ,_a : Union[str, Any]=False ,_a : Optional[int]=256 ,_a : Any=(512, 512, 512, 512, 1500) ,_a : Union[str, Any]=(5, 3, 3, 1, 1) ,_a : Union[str, Any]=(1, 2, 3, 1, 1) ,_a : Tuple=512 ,_a : Union[str, Any]=80 ,_a : int=0 ,_a : Dict=1 ,_a : Tuple=2 ,_a : str=False ,_a : Any=3 ,_a : Any=2 ,_a : Union[str, Any]=3 ,_a : List[str]=None ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ,pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ) _a : Any = hidden_size _a : Union[str, Any] = feat_extract_norm _a : List[str] = feat_extract_activation _a : Optional[int] = list(_a ) _a : str = list(_a ) _a : Dict = list(_a ) _a : int = conv_bias _a : Dict = num_buckets _a : Optional[Any] = max_bucket_distance _a : List[str] = num_conv_pos_embeddings _a : int = num_conv_pos_embedding_groups _a : Union[str, Any] = len(self.conv_dim ) _a : Optional[int] = num_hidden_layers _a : Any = intermediate_size _a : Any = hidden_act _a : Optional[int] = num_attention_heads _a : str = hidden_dropout _a : Tuple = attention_dropout _a : Union[str, Any] = activation_dropout _a : str = feat_proj_dropout _a : str = final_dropout _a : List[str] = layerdrop _a : List[str] = layer_norm_eps _a : str = initializer_range _a : str = num_ctc_classes _a : Union[str, Any] = vocab_size _a : Dict = do_stable_layer_norm _a : Optional[int] = use_weighted_layer_sum _a : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : List[str] = apply_spec_augment _a : Tuple = mask_time_prob _a : Optional[Any] = mask_time_length _a : List[str] = mask_time_min_masks _a : Tuple = mask_feature_prob _a : List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations _a : List[Any] = num_codevectors_per_group _a : Any = num_codevector_groups _a : Any = contrastive_logits_temperature _a : Union[str, Any] = num_negatives _a : Tuple = codevector_dim _a : Tuple = proj_codevector_dim _a : List[Any] = diversity_loss_weight # ctc loss _a : int = ctc_loss_reduction _a : List[Any] = ctc_zero_infinity # adapter _a : Optional[Any] = add_adapter _a : int = adapter_kernel_size _a : List[Any] = adapter_stride _a : Tuple = num_adapter_layers _a : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a : Optional[int] = list(_a ) _a : Dict = list(_a ) _a : str = list(_a ) _a : List[str] = xvector_output_dim @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
5
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
from pathlib import Path import fire def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = Path(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = Path(SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): A_ : Tuple = [x.rstrip() for x in list(path.open().readlines() )][:n] A_ : int = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE ) dest_path.open('''w''' ).write('''\n'''.join(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
186
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[Any] = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE ): A_ : List[str] = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE ): if magnitude == 0: A_ : Union[str, Any] = column continue A_ : Dict = column / magnitude # Subtract to cancel term A_ : Union[str, Any] = current_set[0] A_ : Tuple = [first_row] A_ : int = current_set[1::] for row in current_set: A_ : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE ) continue for column_index in range(len(SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: A_ : Optional[Any] = final_set[0] A_ : Any = [] A_ : str = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) A_ : Optional[Any] = simplify(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , SCREAMING_SNAKE_CASE ) A_ : List[Any] = resultant return final_set def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) A_ : str = len(SCREAMING_SNAKE_CASE ) + 1 if any(len(SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] A_ : Dict = equations.copy() if any(0 in row for row in data_set ): A_ : Tuple = data_set.copy() A_ : Optional[Any] = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE ): if 0 not in row: A_ : str = data_set.pop(SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , SCREAMING_SNAKE_CASE ) A_ : int = data_set.copy() A_ : Dict = simplify(SCREAMING_SNAKE_CASE ) A_ : Dict = simplified[::-1] A_ : list = [] for row in simplified: A_ : Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue A_ : Optional[Any] = row.copy()[: len(SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue A_ : int = temp_row[1::] A_ : int = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
186
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _lowercase ( __A ): '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __UpperCamelCase = key.replace("""heads.cmd.mim_head.cls.predictions""" ,"""mmm_image_head""" ) __UpperCamelCase = key.replace("""heads.cmd.mlm_head.cls.predictions""" ,"""mmm_text_head""" ) __UpperCamelCase = key.replace("""heads.cmd.itm_head.cls""" ,"""itm_head""" ) __UpperCamelCase = key.replace("""heads.cmd.itm_head.pooler""" ,"""itm_head.pooler""" ) __UpperCamelCase = key.replace("""heads.cmd.clip_head.logit_scale""" ,"""flava.logit_scale""" ) __UpperCamelCase = key.replace("""heads.fairseq_mlm.cls.predictions""" ,"""mlm_head""" ) __UpperCamelCase = key.replace("""heads.imagenet.mim_head.cls.predictions""" ,"""mim_head""" ) __UpperCamelCase = key.replace("""mm_text_projection""" ,"""flava.text_to_mm_projection""" ) __UpperCamelCase = key.replace("""mm_image_projection""" ,"""flava.image_to_mm_projection""" ) __UpperCamelCase = key.replace("""image_encoder.module""" ,"""flava.image_model""" ) __UpperCamelCase = key.replace("""text_encoder.module""" ,"""flava.text_model""" ) __UpperCamelCase = key.replace("""mm_encoder.module.encoder.cls_token""" ,"""flava.multimodal_model.cls_token""" ) __UpperCamelCase = key.replace("""mm_encoder.module""" ,"""flava.multimodal_model""" ) __UpperCamelCase = key.replace("""text_projection""" ,"""flava.text_projection""" ) __UpperCamelCase = key.replace("""image_projection""" ,"""flava.image_projection""" ) __UpperCamelCase = value.float() for key, value in codebook_state_dict.items(): __UpperCamelCase = value return upgrade @torch.no_grad() def _lowercase ( __A ,__A ,__A ,__A=None ): '''simple docstring''' if config_path is not None: __UpperCamelCase = FlavaConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: __UpperCamelCase = FlavaConfig() __UpperCamelCase = FlavaForPreTraining(__SCREAMING_SNAKE_CASE ).eval() __UpperCamelCase = convert_dalle_checkpoint(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,save_checkpoint=__SCREAMING_SNAKE_CASE ) if os.path.exists(__SCREAMING_SNAKE_CASE ): __UpperCamelCase = torch.load(__SCREAMING_SNAKE_CASE ,map_location="""cpu""" ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE ,map_location="""cpu""" ) __UpperCamelCase = upgrade_state_dict(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(__SCREAMING_SNAKE_CASE ) __UpperCamelCase = count_parameters(__SCREAMING_SNAKE_CASE ) + count_parameters(__SCREAMING_SNAKE_CASE ) assert torch.allclose(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,atol=1E-3 ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a__ : Tuple = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
370
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = DistilBertTokenizer __SCREAMING_SNAKE_CASE = DistilBertTokenizerFast __SCREAMING_SNAKE_CASE = True @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
243
0
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Dict , __UpperCAmelCase: List[str] ) -> Any: UpperCamelCase__ : str = start # add current to visited visited.append(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCamelCase__ : Optional[int] = topological_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # if all neighbors visited add current to sort sort.append(__UpperCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): for vertice in vertices: if vertice not in visited: UpperCamelCase__ : Optional[int] = topological_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
201
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a : Dict = logging.get_logger(__name__) a : List[str] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class a ( _lowerCamelCase ): snake_case_ = "marian" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , lowercase_ : Optional[Any]=5_8101 , lowercase_ : Dict=None , lowercase_ : List[str]=1024 , lowercase_ : Optional[Any]=12 , lowercase_ : int=4096 , lowercase_ : Any=16 , lowercase_ : Optional[int]=12 , lowercase_ : str=4096 , lowercase_ : Union[str, Any]=16 , lowercase_ : Dict=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Optional[Any]=True , lowercase_ : Union[str, Any]=True , lowercase_ : int="gelu" , lowercase_ : Dict=1024 , lowercase_ : int=0.1 , lowercase_ : Tuple=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Tuple=0.02 , lowercase_ : int=5_8100 , lowercase_ : Optional[Any]=False , lowercase_ : Any=5_8100 , lowercase_ : Optional[int]=0 , lowercase_ : Dict=0 , lowercase_ : List[str]=True , **lowercase_ : Any , ): snake_case_ = vocab_size snake_case_ = decoder_vocab_size or vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) class a ( _lowerCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A_ ( self : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: snake_case_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case_ = {0: '''batch'''} snake_case_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case_ = {0: '''batch''', 1: '''decoder_sequence'''} snake_case_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case_ ,snake_case_ = self.num_layers for i in range(lowercase_ ): snake_case_ = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case_ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A_ ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: snake_case_ = super().outputs else: snake_case_ = super(lowercase_ , self ).outputs if self.use_past: snake_case_ ,snake_case_ = self.num_layers for i in range(lowercase_ ): snake_case_ = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case_ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A_ ( self : Dict , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Generate decoder inputs snake_case_ = seq_length if not self.use_past else 1 snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} snake_case_ = dict(**lowercase_ , **lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case_ ,snake_case_ = common_inputs['''input_ids'''].shape snake_case_ = common_inputs['''decoder_input_ids'''].shape[1] snake_case_ ,snake_case_ = self.num_attention_heads snake_case_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ = decoder_seq_length + 3 snake_case_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case_ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase_ , lowercase_ )] , dim=1 ) snake_case_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case_ ,snake_case_ = self.num_layers snake_case_ = min(lowercase_ , lowercase_ ) snake_case_ = max(lowercase_ , lowercase_ ) - min_num_layers snake_case_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. snake_case_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase_ , lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def A_ ( self : Union[str, Any] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case_ ,snake_case_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case_ = seqlen + 2 snake_case_ ,snake_case_ = self.num_layers snake_case_ ,snake_case_ = self.num_attention_heads snake_case_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ = common_inputs['''attention_mask'''].dtype snake_case_ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) snake_case_ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def A_ ( self : List[str] , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ = tokenizer.num_special_tokens_to_add(lowercase_ ) snake_case_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence snake_case_ = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case_ = dict(tokenizer(lowercase_ , return_tensors=lowercase_ ) ) return common_inputs def A_ ( self : Any , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: snake_case_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) else: snake_case_ = self._generate_dummy_inputs_for_causal_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) return common_inputs def A_ ( self : Dict , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : List[str] ): if self.task in ["default", "seq2seq-lm"]: snake_case_ = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: snake_case_ = super(lowercase_ , self )._flatten_past_key_values_( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) @property def A_ ( self : List[str] ): return 1e-4
56
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
106
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: List[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ='Hello world! cécé herlolip' def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : bool ) -> Any: '''simple docstring''' UpperCAmelCase_ = FairseqRobertaModel.from_pretrained(snake_case_ ) roberta.eval() # disable dropout UpperCAmelCase_ = roberta.model.encoder.sentence_encoder UpperCAmelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , snake_case_ ) UpperCAmelCase_ = XLMRobertaXLForSequenceClassification(snake_case_ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ = model.roberta.encoder.layer[i] UpperCAmelCase_ = roberta_sent_encoder.layers[i] UpperCAmelCase_ = layer.attention UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ = roberta_layer.final_layer_norm.weight UpperCAmelCase_ = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # output UpperCAmelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"].dense.weight UpperCAmelCase_ = roberta.model.classification_heads["mnli"].dense.bias UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.weight UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ = roberta.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ = model(snake_case_ )[0] if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"](roberta.extract_features(snake_case_ ) ) else: UpperCAmelCase_ = roberta.model(snake_case_ )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCAmelCase_ = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
106
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _snake_case ( a__ , a__ ): @register_to_config def __init__( self , _lowerCamelCase = 128 , _lowerCamelCase = 256 , _lowerCamelCase = 2000.0 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = 64 , _lowerCamelCase = 2048 , _lowerCamelCase = 0.1 , ): super().__init__() UpperCAmelCase__ : Optional[int] = nn.Sequential( nn.Linear(_lowerCamelCase , d_model * 4 , bias=_lowerCamelCase) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowerCamelCase) , nn.SiLU() , ) UpperCAmelCase__ : Optional[Any] = nn.Embedding(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : str = False UpperCAmelCase__ : str = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) UpperCAmelCase__ : int = nn.Dropout(p=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = nn.ModuleList() for lyr_num in range(_lowerCamelCase): # FiLM conditional T5 decoder UpperCAmelCase__ : Union[str, Any] = DecoderLayer(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase) self.decoders.append(_lowerCamelCase) UpperCAmelCase__ : str = TaLayerNorm(_lowerCamelCase) UpperCAmelCase__ : List[str] = nn.Dropout(p=_lowerCamelCase) UpperCAmelCase__ : str = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : int = torch.mul(query_input.unsqueeze(-1) , key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase__ : Optional[int] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype) UpperCAmelCase__ : Dict = self.conditioning_emb(_lowerCamelCase).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase__ : int = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase__ : Optional[Any] = torch.broadcast_to( torch.arange(_lowerCamelCase , device=decoder_input_tokens.device) , (batch, seq_length) , ) UpperCAmelCase__ : Optional[int] = self.position_encoding(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = self.continuous_inputs_projection(_lowerCamelCase) inputs += position_encodings UpperCAmelCase__ : List[Any] = self.dropout(_lowerCamelCase) # decoder: No padding present. UpperCAmelCase__ : Tuple = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase__ : int = [(x, self.encoder_decoder_mask(_lowerCamelCase , _lowerCamelCase)) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase__ : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1) UpperCAmelCase__ : Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1) for lyr in self.decoders: UpperCAmelCase__ : List[str] = lyr( _lowerCamelCase , conditioning_emb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , )[0] UpperCAmelCase__ : List[Any] = self.decoder_norm(_lowerCamelCase) UpperCAmelCase__ : List[Any] = self.post_dropout(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = self.spec_out(_lowerCamelCase) return spec_out class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-6): super().__init__() UpperCAmelCase__ : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , )) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): UpperCAmelCase__ : Optional[Any] = self.layer[0]( _lowerCamelCase , conditioning_emb=_lowerCamelCase , attention_mask=_lowerCamelCase , ) if encoder_hidden_states is not None: UpperCAmelCase__ : List[str] = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0).to( encoder_hidden_states.dtype) UpperCAmelCase__ : int = self.layer[1]( _lowerCamelCase , key_value_states=_lowerCamelCase , attention_mask=_lowerCamelCase , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase__ : Optional[Any] = self.layer[-1](_lowerCamelCase , _lowerCamelCase) return (hidden_states,) class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): super().__init__() UpperCAmelCase__ : List[Any] = TaLayerNorm(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase) UpperCAmelCase__ : Tuple = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = nn.Dropout(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): # pre_self_attention_layer_norm UpperCAmelCase__ : Tuple = self.layer_norm(_lowerCamelCase) if conditioning_emb is not None: UpperCAmelCase__ : str = self.FiLMLayer(_lowerCamelCase , _lowerCamelCase) # Self-attention block UpperCAmelCase__ : List[str] = self.attention(_lowerCamelCase) UpperCAmelCase__ : str = hidden_states + self.dropout(_lowerCamelCase) return hidden_states class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): super().__init__() UpperCAmelCase__ : str = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase) UpperCAmelCase__ : int = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase) UpperCAmelCase__ : Tuple = nn.Dropout(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): UpperCAmelCase__ : int = self.layer_norm(_lowerCamelCase) UpperCAmelCase__ : str = self.attention( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=attention_mask.squeeze(1) , ) UpperCAmelCase__ : Tuple = hidden_states + self.dropout(_lowerCamelCase) return layer_output class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): super().__init__() UpperCAmelCase__ : Tuple = TaDenseGatedActDense(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase) UpperCAmelCase__ : Dict = nn.Dropout(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None): UpperCAmelCase__ : Optional[int] = self.layer_norm(_lowerCamelCase) if conditioning_emb is not None: UpperCAmelCase__ : List[str] = self.film(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = self.DenseReluDense(_lowerCamelCase) UpperCAmelCase__ : List[str] = hidden_states + self.dropout(_lowerCamelCase) return hidden_states class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): super().__init__() UpperCAmelCase__ : List[str] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) UpperCAmelCase__ : str = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) UpperCAmelCase__ : int = nn.Dropout(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = NewGELUActivation() def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Tuple = self.act(self.wi_a(_lowerCamelCase)) UpperCAmelCase__ : Dict = self.wi_a(_lowerCamelCase) UpperCAmelCase__ : Tuple = hidden_gelu * hidden_linear UpperCAmelCase__ : List[Any] = self.dropout(_lowerCamelCase) UpperCAmelCase__ : List[Any] = self.wo(_lowerCamelCase) return hidden_states class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase=1e-6): super().__init__() UpperCAmelCase__ : Tuple = nn.Parameter(torch.ones(_lowerCamelCase)) UpperCAmelCase__ : str = eps def snake_case__ ( self , _lowerCamelCase): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCAmelCase__ : Union[str, Any] = hidden_states.to(torch.floataa).pow(2).mean(-1 , keepdim=_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase__ : int = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class _snake_case ( nn.Module ): def snake_case__ ( self , _lowerCamelCase): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(_lowerCamelCase , 3.0)))) class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase): super().__init__() UpperCAmelCase__ : List[Any] = nn.Linear(_lowerCamelCase , out_features * 2 , bias=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[Any] = self.scale_bias(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ : Any = torch.chunk(_lowerCamelCase , 2 , -1) UpperCAmelCase__ : int = x * (1 + scale) + shift return x
163
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = '''pegasus''' lowerCAmelCase :Optional[int] = ['''past_key_values'''] lowerCAmelCase :str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=1024 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=1024 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=0 , _lowerCamelCase=False , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=1 , **_lowerCamelCase , ): UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : List[Any] = d_model UpperCAmelCase__ : Union[str, Any] = encoder_ffn_dim UpperCAmelCase__ : Any = encoder_layers UpperCAmelCase__ : List[str] = encoder_attention_heads UpperCAmelCase__ : int = decoder_ffn_dim UpperCAmelCase__ : Any = decoder_layers UpperCAmelCase__ : Tuple = decoder_attention_heads UpperCAmelCase__ : Optional[int] = dropout UpperCAmelCase__ : Dict = attention_dropout UpperCAmelCase__ : Optional[int] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : str = use_cache UpperCAmelCase__ : Any = encoder_layers UpperCAmelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) @property def snake_case__ ( self): return self.encoder_attention_heads @property def snake_case__ ( self): return self.d_model
163
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _UpperCamelCase : Tuple = parse(importlib.metadata.version('torch')) def snake_case (A_ :Union[str, Version] , A_ :str , A_ :str ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) a : List[Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): a : Union[str, Any] = parse(importlib.metadata.version(__lowerCAmelCase ) ) return operation(__lowerCAmelCase , parse(__lowerCAmelCase ) ) def snake_case (A_ :str , A_ :str ): '''simple docstring''' return compare_versions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
371
"""simple docstring""" import argparse import os import re import packaging.version _UpperCamelCase : Optional[Any] = 'examples/' _UpperCamelCase : Any = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _UpperCamelCase : List[str] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _UpperCamelCase : List[str] = 'README.md' def snake_case (A_ :str , A_ :Optional[Any] , A_ :Any ): '''simple docstring''' with open(A_ , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.read() a, a : Any = REPLACE_PATTERNS[pattern] a : Dict = replace.replace('VERSION' , A_ ) a : Union[str, Any] = re_pattern.sub(A_ , A_ ) with open(A_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(A_ ) def snake_case (A_ :List[Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(A_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(A_ , A_ ) , A_ , pattern='examples' ) def snake_case (A_ :Tuple , A_ :Optional[Any]=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A_ , A_ , A_ ) if not patch: update_version_in_examples(A_ ) def snake_case (): '''simple docstring''' a : str = '🤗 Transformers currently provides the following architectures' a : Dict = '1. Want to contribute a new model?' with open(A_ , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Optional[Any] = f.readlines() # Find the start of the list. a : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): a : int = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(A_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(A_ ) def snake_case (): '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: a : List[str] = f.read() a : str = REPLACE_PATTERNS['init'][0].search(A_ ).groups()[0] return packaging.version.parse(A_ ) def snake_case (A_ :Optional[Any]=False ): '''simple docstring''' a : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: a : Tuple = default_version.base_version elif patch: a : Union[str, Any] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: a : Optional[Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. a : Union[str, Any] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(A_ ) == 0: a : int = default_version print(f'''Updating version to {version}.''' ) global_version_update(A_ , patch=A_ ) def snake_case (): '''simple docstring''' a : str = get_version() a : Optional[int] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' a : Optional[int] = current_version.base_version # Check with the user we got that right. a : str = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(A_ ) == 0: a : Union[str, Any] = dev_version print(f'''Updating version to {version}.''' ) global_version_update(A_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _UpperCamelCase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
186
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : '''simple docstring''' @staticmethod def _A ( *_A , **_A ): '''simple docstring''' pass def __lowercase ( a__ ) -> Tuple: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCAmelCase__ : Union[str, Any] =( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _A ( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model=_A , tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE = INVOICE_URL __SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(_A ) , _A , '' ) ) ) __SCREAMING_SNAKE_CASE = 'What is the placebo?' __SCREAMING_SNAKE_CASE = [ { 'image': load_image(_A ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def _A ( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = dqa_pipeline(_A , top_k=2 ) self.assertEqual( _A , [ [ {'score': ANY(_A ), 'answer': ANY(_A ), 'start': ANY(_A ), 'end': ANY(_A )}, {'score': ANY(_A ), 'answer': ANY(_A ), 'start': ANY(_A ), 'end': ANY(_A )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) __SCREAMING_SNAKE_CASE = INVOICE_URL __SCREAMING_SNAKE_CASE = 'How many cats are there?' __SCREAMING_SNAKE_CASE = [ {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] __SCREAMING_SNAKE_CASE = dqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual(nested_simplify(_A , decimals=4 ) , _A ) __SCREAMING_SNAKE_CASE = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(_A , decimals=4 ) , _A ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE = './tests/fixtures/tests_samples/COCO/000000039769.png' __SCREAMING_SNAKE_CASE = dqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual(_A , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE = './tests/fixtures/tests_samples/COCO/000000039769.png' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = dqa_pipeline(image=_A , question=_A , words=_A , boxes=_A , top_k=2 ) self.assertEqual(_A , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) __SCREAMING_SNAKE_CASE = INVOICE_URL __SCREAMING_SNAKE_CASE = 'What is the invoice number?' __SCREAMING_SNAKE_CASE = dqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __SCREAMING_SNAKE_CASE = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __SCREAMING_SNAKE_CASE = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE = INVOICE_URL __SCREAMING_SNAKE_CASE = 'What is the invoice number?' __SCREAMING_SNAKE_CASE = dqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __SCREAMING_SNAKE_CASE = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __SCREAMING_SNAKE_CASE = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_A ) __SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_A , revision='3dc6de3' , ) __SCREAMING_SNAKE_CASE = INVOICE_URL __SCREAMING_SNAKE_CASE = 'What is the invoice number?' __SCREAMING_SNAKE_CASE = dqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) __SCREAMING_SNAKE_CASE = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) __SCREAMING_SNAKE_CASE = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(_A ) , _A , '' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_A ) __SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_A , revision='3dc6de3' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE = INVOICE_URL __SCREAMING_SNAKE_CASE = 'What is the invoice number?' __SCREAMING_SNAKE_CASE = dqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __SCREAMING_SNAKE_CASE = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(_A ) , _A , '' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) __SCREAMING_SNAKE_CASE = INVOICE_URL __SCREAMING_SNAKE_CASE = 'What is the invoice number?' __SCREAMING_SNAKE_CASE = dqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual(nested_simplify(_A , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def _A ( self ): '''simple docstring''' pass
369
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : List[str] ={ '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =[ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10 ) -> int: """simple docstring""" A__ = [] for _ in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10 ) -> List[str]: """simple docstring""" A__ = [] for step in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(lowercase_ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , lowercase_ ) A__ = torch.load(lowercase_ ) scheduler.load_state_dict(lowercase_ ) return lrs @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) for a, b in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertAlmostEqual(UpperCAmelCase__ , UpperCAmelCase__ , delta=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase__) A__ = torch.tensor([0.4, 0.2, -0.5]) A__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A__ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0) for _ in range(100): A__ = criterion(UpperCAmelCase__ , UpperCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2) def SCREAMING_SNAKE_CASE ( self : str) ->Tuple: '''simple docstring''' A__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase__) A__ = torch.tensor([0.4, 0.2, -0.5]) A__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A__ = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase__ , weight_decay=0.0 , relative_step=UpperCAmelCase__ , scale_parameter=UpperCAmelCase__ , warmup_init=UpperCAmelCase__ , ) for _ in range(1_000): A__ = criterion(UpperCAmelCase__ , UpperCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase__ = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ = 10 def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]=None) ->Any: '''simple docstring''' self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) for a, b in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertAlmostEqual(UpperCAmelCase__ , UpperCAmelCase__ , delta=UpperCAmelCase__ , msg=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A__ , A__ = data A__ = scheduler_func(self.optimizer , **UpperCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) A__ = unwrap_schedule(UpperCAmelCase__ , self.num_steps) self.assertListAlmostEqual( UpperCAmelCase__ , UpperCAmelCase__ , tol=1e-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) A__ = scheduler_func(self.optimizer , **UpperCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase__) # wrap to test picklability of the schedule A__ = unwrap_and_save_reload_schedule(UpperCAmelCase__ , self.num_steps) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ , msg=f"""failed for {scheduler_func} in save and reload""") class UpperCamelCase_ : '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : int) ->Tuple: '''simple docstring''' A__ = fn def __call__( self : Optional[Any] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Dict) ->List[str]: '''simple docstring''' return self.fn(*UpperCAmelCase__ , **UpperCAmelCase__) @classmethod def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->str: '''simple docstring''' A__ = list(map(self , scheduler.lr_lambdas))
14
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } UpperCamelCase_ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models a_ = "lm_head" a_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: a_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: a_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a_ = value elif weight_type == "weight_g": a_ = value elif weight_type == "weight_v": a_ = value elif weight_type == "bias": a_ = value else: a_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" a_ = [] a_ = fairseq_model.state_dict() a_ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): a_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) a_ = True else: for key, mapped_key in MAPPING.items(): a_ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a_ = True if "*" in mapped_key: a_ = name.split(UpperCAmelCase )[0].split("." )[-2] a_ = mapped_key.replace("*" , UpperCAmelCase ) if "weight_g" in name: a_ = "weight_g" elif "weight_v" in name: a_ = "weight_v" elif "bias" in name: a_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ = "weight" else: a_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" a_ = full_name.split("conv_layers." )[-1] a_ = name.split("." ) a_ = int(items[0] ) a_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True ) ->Tuple: """simple docstring""" if config_path is not None: a_ = UniSpeechConfig.from_pretrained(UpperCAmelCase ) else: a_ = UniSpeechConfig() if is_finetuned: if dict_path: a_ = Dictionary.load_from_json(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ = target_dict.pad_index a_ = target_dict.bos_index a_ = target_dict.eos_index a_ = len(target_dict.symbols ) a_ = os.path.join(UpperCAmelCase , "vocab.json" ) if not os.path.isdir(UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = target_dict.indices # fairseq has the <pad> and <s> switched a_ = 42 a_ = 43 with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCAmelCase , UpperCAmelCase ) a_ = WavaVecaPhonemeCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase , ) a_ = True if config.feat_extract_norm == "layer" else False a_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) a_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) a_ = UniSpeechForCTC(UpperCAmelCase ) else: a_ = UniSpeechForPreTraining(UpperCAmelCase ) if is_finetuned: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a_ = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) hf_unispeech.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
243
0
'''simple docstring''' a_ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =[False] * len(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[s] SCREAMING_SNAKE_CASE__ : Any =True while queue: SCREAMING_SNAKE_CASE__ : Tuple =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) SCREAMING_SNAKE_CASE__ : Dict =True SCREAMING_SNAKE_CASE__ : Any =u return visited[t] def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Dict, UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =[-1] * (len(_a )) SCREAMING_SNAKE_CASE__ : List[str] =0 SCREAMING_SNAKE_CASE__ : Optional[int] =[] SCREAMING_SNAKE_CASE__ : str =[i[:] for i in graph] # Record original cut, copy. while bfs(_a, _a, _a, _a ): SCREAMING_SNAKE_CASE__ : Dict =float('''Inf''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE__ : List[str] =min(_a, graph[parent[s]][s] ) SCREAMING_SNAKE_CASE__ : int =parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE__ : int =sink while v != source: SCREAMING_SNAKE_CASE__ : List[Any] =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE__ : Any =parent[v] for i in range(len(_a ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
361
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : List[str] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE__ : str =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_euler''' ) SCREAMING_SNAKE_CASE__ : List[Any] ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =output.images SCREAMING_SNAKE_CASE__ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Any =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[str] =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : int =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_euler''' ) SCREAMING_SNAKE_CASE__ : Any ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Dict =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Dict =output.images SCREAMING_SNAKE_CASE__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : List[str] =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Any =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : Tuple =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) SCREAMING_SNAKE_CASE__ : Tuple ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] =sd_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] =output.images SCREAMING_SNAKE_CASE__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
0
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __UpperCamelCase : List[str] = False __UpperCamelCase : List[Any] = True __UpperCamelCase : Optional[Any] = False if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Tuple = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } __UpperCamelCase : Dict = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } __UpperCamelCase : int = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: __UpperCamelCase : int = reader.read() __UpperCamelCase : Tuple = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): __UpperCamelCase : int = UNetaDModel(**config) else: __UpperCamelCase : List[Any] = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel __UpperCamelCase : Tuple = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __UpperCamelCase : List[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __UpperCamelCase : Optional[int] = config[key] del config[key] __UpperCamelCase : Tuple = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] __UpperCamelCase : Tuple = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: __UpperCamelCase : List[Any] = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) __UpperCamelCase : int = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue __UpperCamelCase : Optional[Any] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: __UpperCamelCase : List[str] = param_value __UpperCamelCase : Any = True if not has_changed: __UpperCamelCase : Union[str, Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
106
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : Tuple = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Optional[int] = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Optional[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Union[str, Any] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : str = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
106
1
'''simple docstring''' import math def _a ( _lowercase : float , _lowercase : float ): '''simple docstring''' if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_lowercase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
356
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a : """simple docstring""" def __init__( self : List[str] , snake_case : Any , snake_case : Tuple=13 , snake_case : Any=10 , snake_case : Any=3 , snake_case : Dict=2 , snake_case : Optional[Any]=2 , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : List[Any]=32 , snake_case : Dict=5 , snake_case : List[str]=4 , snake_case : Dict=37 , snake_case : Any="gelu" , snake_case : Optional[int]=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : Optional[int]=10 , snake_case : Dict=0.02 , snake_case : Tuple="divided_space_time" , snake_case : List[Any]=None , ) -> Optional[int]: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_size __UpperCAmelCase : List[str] = num_frames __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : str = use_labels __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Any = attention_type __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = scope __UpperCAmelCase : List[str] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __UpperCAmelCase : str = (image_size // patch_size) ** 2 __UpperCAmelCase : int = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase__ ( self : List[Any] ) -> Tuple: __UpperCAmelCase : List[str] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase : str = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __UpperCAmelCase : Optional[int] = self.num_labels return config def lowerCamelCase__ ( self : Dict , snake_case : Any , snake_case : Optional[int] , snake_case : List[Any] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = TimesformerModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Tuple = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : int , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[Any] ) -> str: __UpperCAmelCase : Union[str, Any] = TimesformerForVideoClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case ) # verify the logits shape __UpperCAmelCase : List[str] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , snake_case ) def lowerCamelCase__ ( self : Any ) -> List[str]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[Any] = False def lowerCamelCase__ ( self : int ) -> str: __UpperCAmelCase : Tuple = TimesformerModelTester(self ) __UpperCAmelCase : str = ConfigTester( self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Dict , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = copy.deepcopy(snake_case ) if return_labels: if model_class in get_values(snake_case ): __UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Any ) -> Dict: pass def lowerCamelCase__ ( self : Optional[Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(snake_case ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : int = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Tuple ) -> Dict: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*snake_case ) @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> str: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = TimesformerModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[Any]: if not self.has_attentions: pass else: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = True for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = self.model_tester.seq_length __UpperCAmelCase : int = self.model_tester.num_frames __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : str = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : str = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : List[Any] = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __UpperCAmelCase : Tuple = len(snake_case ) # Check attention is always last and order is fine __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Union[str, Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(out_len + 1 , len(snake_case ) ) __UpperCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: def check_hidden_states_output(snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Tuple ): __UpperCAmelCase : str = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : int = outputs.hidden_states __UpperCAmelCase : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case ) , snake_case ) __UpperCAmelCase : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : str = True check_hidden_states_output(snake_case , snake_case , snake_case ) def _a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __UpperCAmelCase : int = np.load(_lowercase ) return list(_lowercase ) @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : Union[str, Any] ) -> str: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( snake_case ) __UpperCAmelCase : str = self.default_image_processor __UpperCAmelCase : Dict = prepare_video() __UpperCAmelCase : Union[str, Any] = image_processor(video[:8] , return_tensors='''pt''' ).to(snake_case ) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**snake_case ) # verify the logits __UpperCAmelCase : Optional[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , snake_case ) __UpperCAmelCase : List[Any] = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
240
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a : Any = logging.get_logger(__name__) # General docstring a : Optional[Any] = '''RegNetConfig''' # Base docstring a : str = '''facebook/regnet-y-040''' a : Optional[Any] = [1, 1088, 7, 7] # Image classification docstring a : Tuple = '''facebook/regnet-y-040''' a : Dict = '''tabby, tabby cat''' a : int = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = "relu" , ) -> Optional[Any]: super().__init__() a : Optional[Any] = nn.Convad( lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , ) a : int = nn.BatchNormad(lowerCAmelCase__ ) a : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def __a ( self , lowerCAmelCase__ ) -> int: a : List[str] = self.convolution(lowerCAmelCase__ ) a : Any = self.normalization(lowerCAmelCase__ ) a : Optional[Any] = self.activation(lowerCAmelCase__ ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ ) -> int: super().__init__() a : Union[str, Any] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) a : List[str] = config.num_channels def __a ( self , lowerCAmelCase__ ) -> Tuple: a : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) a : Any = self.embedder(lowerCAmelCase__ ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 2 ) -> List[Any]: super().__init__() a : List[Any] = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ ) a : Union[str, Any] = nn.BatchNormad(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> Tensor: a : List[Any] = self.convolution(lowerCAmelCase__ ) a : List[Any] = self.normalization(lowerCAmelCase__ ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: super().__init__() a : int = nn.AdaptiveAvgPoolad((1, 1) ) a : Dict = nn.Sequential( nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , nn.Sigmoid() , ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: # b c h w -> b c 1 1 a : int = self.pooler(lowerCAmelCase__ ) a : Optional[Any] = self.attention(lowerCAmelCase__ ) a : Any = hidden_state * attention return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 ) -> List[str]: super().__init__() a : str = in_channels != out_channels or stride != 1 a : str = max(1 , out_channels // config.groups_width ) a : int = ( RegNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) a : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , groups=lowerCAmelCase__ , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) a : List[Any] = ACTaFN[config.hidden_act] def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: a : Any = hidden_state a : int = self.layer(lowerCAmelCase__ ) a : Union[str, Any] = self.shortcut(lowerCAmelCase__ ) hidden_state += residual a : Tuple = self.activation(lowerCAmelCase__ ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 ) -> str: super().__init__() a : Optional[int] = in_channels != out_channels or stride != 1 a : str = max(1 , out_channels // config.groups_width ) a : int = ( RegNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) a : int = nn.Sequential( RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , groups=lowerCAmelCase__ , activation=config.hidden_act ) , RegNetSELayer(lowerCAmelCase__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) a : Optional[Any] = ACTaFN[config.hidden_act] def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: a : str = hidden_state a : int = self.layer(lowerCAmelCase__ ) a : Any = self.shortcut(lowerCAmelCase__ ) hidden_state += residual a : int = self.activation(lowerCAmelCase__ ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , ) -> int: super().__init__() a : Optional[int] = RegNetXLayer if config.layer_type == "x" else RegNetYLayer a : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for _ in range(depth - 1 )] , ) def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: a : Optional[Any] = self.layers(lowerCAmelCase__ ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ ) -> str: super().__init__() a : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) a : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ): self.stages.append(RegNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = True ) -> BaseModelOutputWithNoAttention: a : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a : Any = hidden_states + (hidden_state,) a : Any = stage_module(lowerCAmelCase__ ) if output_hidden_states: a : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ ) class __UpperCamelCase ( a__ ): lowerCamelCase : Union[str, Any] =RegNetConfig lowerCamelCase : Dict ="""regnet""" lowerCamelCase : Tuple ="""pixel_values""" lowerCamelCase : List[Any] =True def __a ( self , lowerCAmelCase__ ) -> List[Any]: if isinstance(lowerCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[Any]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Any = value a : str = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a : Optional[int] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , a__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ ) -> int: super().__init__(lowerCAmelCase__ ) a : Tuple = config a : Optional[int] = RegNetEmbeddings(lowerCAmelCase__ ) a : List[str] = RegNetEncoder(lowerCAmelCase__ ) a : Tuple = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> BaseModelOutputWithPoolingAndNoAttention: a : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a : str = return_dict if return_dict is not None else self.config.use_return_dict a : Tuple = self.embedder(lowerCAmelCase__ ) a : Any = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) a : Any = encoder_outputs[0] a : Union[str, Any] = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , a__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ ) -> str: super().__init__(lowerCAmelCase__ ) a : List[str] = config.num_labels a : Dict = RegNetModel(lowerCAmelCase__ ) # classification head a : Optional[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __a ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> ImageClassifierOutputWithNoAttention: a : Dict = return_dict if return_dict is not None else self.config.use_return_dict a : List[Any] = self.regnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) a : Any = outputs.pooler_output if return_dict else outputs[1] a : List[str] = self.classifier(lowerCAmelCase__ ) a : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a : Optional[int] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a : Optional[Any] = "single_label_classification" else: a : str = "multi_label_classification" if self.config.problem_type == "regression": a : Optional[Any] = MSELoss() if self.num_labels == 1: a : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: a : str = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": a : Union[str, Any] = CrossEntropyLoss() a : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a : Dict = BCEWithLogitsLoss() a : List[Any] = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: a : int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
105
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Union[str, Any] = None A_ : Any = 20 A_ : Any = self._get_uniform_logits(batch_size=2 , length=_SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore A_ : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch A_ : Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax A_ : List[str] = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) A_ : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) A_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) A_ : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Any = None A_ : List[Any] = 10 A_ : str = 2 # create ramp distribution A_ : Any = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() A_ : List[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size A_ : Any = FlaxTopKLogitsWarper(3 ) A_ : Tuple = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case A_ : Optional[int] = 5 A_ : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) A_ : Optional[Any] = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() A_ : Dict = top_k_warp_safety_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : str = None A_ : Optional[Any] = 10 A_ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A_ : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) A_ : str = FlaxTopPLogitsWarper(0.8 ) A_ : Optional[int] = np.exp(top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A_ : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # check edge cases with negative and extreme logits A_ : Union[str, Any] = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A_ : str = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept A_ : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) A_ : str = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : str = 20 A_ : Union[str, Any] = 4 A_ : Optional[Any] = 0 A_ : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 A_ : int = ids_tensor((batch_size, 20) , vocab_size=20 ) A_ : List[Any] = 5 A_ : Optional[int] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 A_ : Tuple = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = 15 A_ : int = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Optional[int] = 20 A_ : Optional[int] = 4 A_ : Optional[int] = 0 A_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score A_ : Optional[Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) A_ : str = 1 A_ : List[str] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[str] = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A_ : Optional[int] = 3 A_ : List[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Union[str, Any] = 20 A_ : str = 4 A_ : Dict = 0 A_ : Optional[int] = 5 A_ : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached A_ : List[Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) A_ : Any = 4 A_ : Optional[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A_ : int = 3 A_ : Union[str, Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Dict = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->str: '''simple docstring''' A_ : str = 4 A_ : Dict = 10 A_ : Union[str, Any] = 15 A_ : str = 2 A_ : int = 1 A_ : List[str] = 15 # dummy input_ids and scores A_ : Tuple = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) A_ : int = input_ids.copy() A_ : List[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = scores.copy() # instantiate all dist processors A_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Any = FlaxTopKLogitsWarper(3 ) A_ : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = 10 # no processor list A_ : int = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : List[str] = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Any = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Dict = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # with processor list A_ : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : List[str] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : str = 4 A_ : Dict = 10 A_ : Tuple = 15 A_ : List[str] = 2 A_ : List[str] = 1 A_ : Union[str, Any] = 15 # dummy input_ids and scores A_ : Any = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = input_ids.copy() A_ : Optional[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = scores.copy() # instantiate all dist processors A_ : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[Any] = FlaxTopKLogitsWarper(3 ) A_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : str = 10 # no processor list def run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : int = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Dict = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Any = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Optional[int] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : Optional[int] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores A_ : Optional[int] = jax.jit(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = jax.jit(_SCREAMING_SNAKE_CASE ) A_ : Dict = jitted_run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = jitted_run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
186
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
48
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """spiece.model"""} lowerCamelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowerCamelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowerCamelCase = 0 lowerCamelCase = 1 lowerCamelCase = 2 lowerCamelCase = 3 lowerCamelCase = 4 class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = """left""" def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : Union[str, Any]="</s>" , _lowerCAmelCase : int="<unk>" , _lowerCAmelCase : Union[str, Any]="<sep>" , _lowerCAmelCase : Union[str, Any]="<pad>" , _lowerCAmelCase : Union[str, Any]="<cls>" , _lowerCAmelCase : List[Any]="<mask>" , _lowerCAmelCase : List[Any]=["<eop>", "<eod>"] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : str , ): '''simple docstring''' __lowercase =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) if isinstance(_lowerCAmelCase , _lowerCAmelCase) else mask_token __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowercase =3 __lowercase =do_lower_case __lowercase =remove_space __lowercase =keep_accents __lowercase =vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' return len(self.sp_model) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : str): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None return state def __setstate__( self : List[Any] , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Any): '''simple docstring''' if self.remove_space: __lowercase =' '.join(inputs.strip().split()) else: __lowercase =inputs __lowercase =outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __lowercase =unicodedata.normalize('NFKD' , _lowerCAmelCase) __lowercase =''.join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase)]) if self.do_lower_case: __lowercase =outputs.lower() return outputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str): '''simple docstring''' __lowercase =self.preprocess_text(_lowerCAmelCase) __lowercase =self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase) __lowercase =[] for piece in pieces: if len(_lowerCAmelCase) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __lowercase =self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __lowercase =cur_pieces[1:] else: __lowercase =cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowerCAmelCase) else: new_pieces.append(_lowerCAmelCase) return new_pieces def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int]): '''simple docstring''' return self.sp_model.PieceToId(_lowerCAmelCase) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[str]): '''simple docstring''' return self.sp_model.IdToPiece(_lowerCAmelCase) def __lowerCamelCase ( self : Any , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =''.join(_lowerCAmelCase).replace(_lowerCAmelCase , ' ').strip() return out_string def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase =kwargs.pop('use_source_tokenizer' , _lowerCAmelCase) __lowercase =self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase =[] __lowercase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase)) __lowercase =[] sub_texts.append(_lowerCAmelCase) else: current_sub_text.append(_lowerCAmelCase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __lowercase =''.join(_lowerCAmelCase) __lowercase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase =self.clean_up_tokenization(_lowerCAmelCase) return clean_text else: return text def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase)) + [1] + ([0] * len(_lowerCAmelCase)) + [1, 1] return ([0] * len(_lowerCAmelCase)) + [1, 1] def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
48
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCamelCase__ : List[Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, 'r', encoding='utf-8') as f: lowerCamelCase__ : str = json.load(f) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Dict ): return FSMTTokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = FSMTForConditionalGeneration.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality SCREAMING_SNAKE_CASE_ = F"facebook/wmt19-{pair}" SCREAMING_SNAKE_CASE_ = self.get_tokenizer(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_model(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = bleu_data[pair]['src'] SCREAMING_SNAKE_CASE_ = bleu_data[pair]['tgt'] SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='pt' , truncation=_lowerCAmelCase , padding='longest' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = calculate_bleu(_lowerCAmelCase , _lowerCAmelCase ) print(_lowerCAmelCase ) self.assertGreaterEqual(scores['bleu'] , _lowerCAmelCase )
225
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = "utf-8" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 1_0 << 2_0 # 10MB lowerCamelCase__ = None class lowerCamelCase (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase__ = JsonConfig def __A ( self : Optional[int] ) -> Optional[int]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self : List[str] , __magic_name__ : str ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"files": files} ) ) return splits def __A ( self : str , __magic_name__ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(__magic_name__ ).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def __A ( self : List[str] , __magic_name__ : List[str] ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("utf-8" ) try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
118
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[Any] = "focalnet" def __init__( self : Any , lowerCamelCase__ : Any=2_24 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Any=96 , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : List[Any]=[1_92, 3_84, 7_68, 7_68] , lowerCamelCase__ : Optional[Any]=[2, 2, 6, 2] , lowerCamelCase__ : Dict=[2, 2, 2, 2] , lowerCamelCase__ : Dict=[3, 3, 3, 3] , lowerCamelCase__ : Optional[int]="gelu" , lowerCamelCase__ : List[Any]=4.0 , lowerCamelCase__ : str=0.0 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Optional[Any]=1E-4 , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Optional[int]=0.0_2 , lowerCamelCase__ : Optional[Any]=1E-5 , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Union[str, Any]=None , **lowerCamelCase__ : Optional[Any] , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = image_size _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : List[Any] = embed_dim _UpperCAmelCase : List[Any] = use_conv_embed _UpperCAmelCase : Optional[int] = hidden_sizes _UpperCAmelCase : List[str] = depths _UpperCAmelCase : int = focal_levels _UpperCAmelCase : Union[str, Any] = focal_windows _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Any = mlp_ratio _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : List[Any] = drop_path_rate _UpperCAmelCase : Tuple = use_layerscale _UpperCAmelCase : List[str] = layerscale_value _UpperCAmelCase : int = use_post_layernorm _UpperCAmelCase : Union[str, Any] = use_post_layernorm_in_modulation _UpperCAmelCase : int = normalize_modulator _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : List[str] = encoder_stride _UpperCAmelCase : Dict = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
359
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
0
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any=1_3 , __lowerCAmelCase : Dict=6_4 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : int=3 , __lowerCAmelCase : str=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Union[str, Any]=3_2 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Tuple=3_7 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[int]=1_0 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : Union[str, Any]=[1, 1_6, 4, 4] , __lowerCAmelCase : List[Any]=None , ): """simple docstring""" _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Dict = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Any = num_channels _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Any = scope _lowerCamelCase : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _lowerCamelCase : Optional[int] = (self.image_size // 3_2) ** 2 _lowerCamelCase : Dict = num_patches + 1 def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ViTHybridModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : List[str] = ViTHybridForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Dict = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () snake_case__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : List[str] = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : int = ViTHybridModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Dict = _config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(config=__lowerCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _lowerCamelCase : List[str] = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[str] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCAmelCase ) _lowerCamelCase : Dict = self.default_image_processor _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Dict = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : str = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _lowerCamelCase : str = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) _lowerCamelCase : Any = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) _lowerCamelCase : Any = prepare_img() _lowerCamelCase : Dict = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ) _lowerCamelCase : List[Any] = model(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes _lowerCamelCase : List[Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
72
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
222
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : str = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = SpeechTaTokenizer lowercase__ = False lowercase__ = True def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : Any = SpeechTaTokenizer(lowerCamelCase__ ) _UpperCamelCase : List[Any] = AddedToken('<mask>' ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : Optional[int] = 'this is a test' _UpperCamelCase : Dict = 'this is a test' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : Tuple=20 ,lowerCamelCase__ : List[Any]=5 ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : List[str] = self.get_input_output_texts(lowerCamelCase__ ) _UpperCamelCase : List[Any] = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Optional[int] = tokenizer.decode(lowerCamelCase__ ,clean_up_tokenization_spaces=lowerCamelCase__ ) return text, ids def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Tuple = '<pad>' _UpperCamelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-4] ,'œ' ) self.assertEqual(vocab_keys[-2] ,'<mask>' ) self.assertEqual(vocab_keys[-1] ,'<ctc_blank>' ) self.assertEqual(len(lowerCamelCase__ ) ,81 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _UpperCamelCase : Union[str, Any] = tokenizer.vocab_size _UpperCamelCase : Optional[Any] = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _UpperCamelCase : Union[str, Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _UpperCamelCase : Dict = tokenizer.add_tokens(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = tokenizer.vocab_size _UpperCamelCase : List[Any] = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ ,0 ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,len(lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,all_size + len(lowerCamelCase__ ) ) _UpperCamelCase : Optional[Any] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' ,add_special_tokens=lowerCamelCase__ ) self.assertGreaterEqual(len(lowerCamelCase__ ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _UpperCamelCase : Optional[int] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _UpperCamelCase : Any = tokenizer.add_special_tokens(lowerCamelCase__ ) _UpperCamelCase : List[Any] = tokenizer.vocab_size _UpperCamelCase : Any = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ ,0 ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,len(lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,all_size_a + len(lowerCamelCase__ ) ) _UpperCamelCase : str = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' ,add_special_tokens=lowerCamelCase__ ) self.assertGreaterEqual(len(lowerCamelCase__ ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[Any] = self.get_tokenizer() _UpperCamelCase : Tuple = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(lowerCamelCase__ ,[SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _UpperCamelCase : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) # fmt: off self.assertListEqual(lowerCamelCase__ ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _UpperCamelCase : int = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' # Use custom sequence because this tokenizer does not handle numbers. _UpperCamelCase : str = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _UpperCamelCase : str = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='microsoft/speecht5_asr' ,revision='c5ef64c71905caeccde0e4462ef3f9077224c524' ,sequences=lowerCamelCase__ ,)
236
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : Any = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__( self :int , a :Optional[Any] , a :List[Any]=7 , a :int=3 , a :Union[str, Any]=3_0 , a :Tuple=4_0_0 , a :int=True , a :Union[str, Any]=None , a :Dict=True , a :Optional[int]=[0.5, 0.5, 0.5] , a :int=[0.5, 0.5, 0.5] , a :List[str]=True , a :Optional[int]=1 / 2_5_5 , a :Dict=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __UpperCamelCase : str = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} __UpperCamelCase : List[str] = parent __UpperCamelCase : Optional[Any] = batch_size __UpperCamelCase : Any = num_channels __UpperCamelCase : int = min_resolution __UpperCamelCase : List[Any] = max_resolution __UpperCamelCase : Optional[int] = do_resize __UpperCamelCase : Tuple = size __UpperCamelCase : int = do_normalize __UpperCamelCase : Tuple = image_mean __UpperCamelCase : List[str] = image_std __UpperCamelCase : Dict = do_rescale __UpperCamelCase : Optional[int] = rescale_factor __UpperCamelCase : Any = do_pad def _lowerCamelCase ( self :int ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self :int , a :Tuple , a :str=False ) -> str: if not batched: __UpperCamelCase : Optional[int] = image_inputs[0] if isinstance(__snake_case , Image.Image ): __UpperCamelCase , __UpperCamelCase : List[str] = image.size else: __UpperCamelCase , __UpperCamelCase : Optional[Any] = image.shape[1], image.shape[2] if w < h: __UpperCamelCase : int = int(self.size["shortest_edge"] * h / w ) __UpperCamelCase : Optional[int] = self.size["shortest_edge"] elif w > h: __UpperCamelCase : Union[str, Any] = self.size["shortest_edge"] __UpperCamelCase : str = int(self.size["shortest_edge"] * w / h ) else: __UpperCamelCase : List[Any] = self.size["shortest_edge"] __UpperCamelCase : List[Any] = self.size["shortest_edge"] else: __UpperCamelCase : str = [] for image in image_inputs: __UpperCamelCase , __UpperCamelCase : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase : Optional[Any] = max(__snake_case , key=lambda a : item[0] )[0] __UpperCamelCase : List[str] = max(__snake_case , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase): '''simple docstring''' _A = YolosImageProcessor if is_vision_available() else None def _lowerCamelCase ( self :Dict ) -> Any: __UpperCamelCase : Tuple = YolosImageProcessingTester(self ) @property def _lowerCamelCase ( self :int ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self :int ) -> Optional[Any]: __UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , "image_mean" ) ) self.assertTrue(hasattr(__snake_case , "image_std" ) ) self.assertTrue(hasattr(__snake_case , "do_normalize" ) ) self.assertTrue(hasattr(__snake_case , "do_resize" ) ) self.assertTrue(hasattr(__snake_case , "size" ) ) def _lowerCamelCase ( self :List[str] ) -> str: __UpperCamelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __snake_case ) __UpperCamelCase : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__snake_case ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __snake_case ) def _lowerCamelCase ( self :str ) -> List[str]: pass def _lowerCamelCase ( self :Union[str, Any] ) -> Any: # Initialize image_processing __UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __UpperCamelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : Any = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase , __UpperCamelCase : List[Any] = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) __UpperCamelCase : str = image_processing(__snake_case , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self :Optional[int] ) -> Dict: # Initialize image_processing __UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __UpperCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : Dict = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase : List[Any] = image_processing(__snake_case , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : str = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self :Optional[Any] ) -> int: # Initialize image_processing __UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : List[Any] = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase : List[Any] = image_processing(__snake_case , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : str = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self :List[Any] ) -> Dict: # Initialize image_processings __UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) __UpperCamelCase : str = self.image_processing_class(do_resize=__snake_case , do_normalize=__snake_case , do_rescale=__snake_case ) # create random PyTorch tensors __UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __UpperCamelCase : List[str] = image_processing_a.pad(__snake_case , return_tensors="pt" ) __UpperCamelCase : Tuple = image_processing_a(__snake_case , return_tensors="pt" ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1E-4 ) ) @slow def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: # prepare image and target __UpperCamelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __UpperCamelCase : List[str] = json.loads(f.read() ) __UpperCamelCase : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them __UpperCamelCase : Optional[Any] = YolosImageProcessor.from_pretrained("hustvl/yolos-small" ) __UpperCamelCase : Dict = image_processing(images=__snake_case , annotations=__snake_case , return_tensors="pt" ) # verify pixel values __UpperCamelCase : List[str] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __snake_case ) __UpperCamelCase : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area __UpperCamelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __snake_case ) ) # verify boxes __UpperCamelCase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __snake_case ) __UpperCamelCase : Union[str, Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __snake_case , atol=1E-3 ) ) # verify image_id __UpperCamelCase : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __snake_case ) ) # verify is_crowd __UpperCamelCase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __snake_case ) ) # verify class_labels __UpperCamelCase : Optional[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __snake_case ) ) # verify orig_size __UpperCamelCase : Optional[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __snake_case ) ) # verify size __UpperCamelCase : Any = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __snake_case ) ) @slow def _lowerCamelCase ( self :str ) -> Tuple: # prepare image, target and masks_path __UpperCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __UpperCamelCase : Optional[Any] = json.loads(f.read() ) __UpperCamelCase : List[str] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} __UpperCamelCase : str = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __UpperCamelCase : Tuple = YolosImageProcessor(format="coco_panoptic" ) __UpperCamelCase : List[Any] = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors="pt" ) # verify pixel values __UpperCamelCase : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __snake_case ) __UpperCamelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area __UpperCamelCase : List[str] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __snake_case ) ) # verify boxes __UpperCamelCase : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __snake_case ) __UpperCamelCase : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __snake_case , atol=1E-3 ) ) # verify image_id __UpperCamelCase : Tuple = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __snake_case ) ) # verify is_crowd __UpperCamelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __snake_case ) ) # verify class_labels __UpperCamelCase : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __snake_case ) ) # verify masks __UpperCamelCase : Optional[int] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __snake_case ) # verify orig_size __UpperCamelCase : List[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __snake_case ) ) # verify size __UpperCamelCase : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __snake_case ) )
232
from argparse import ArgumentParser from .env import EnvironmentCommand def __lowercase ( ): a__ = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) a__ = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__lowerCAmelCase ) # Let's go a__ = parser.parse_args() if not hasattr(__lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run a__ = args.func(__lowerCAmelCase ) service.run() if __name__ == "__main__": main()
240
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' random.seed(lowerCamelCase__ ) np.random.seed(lowerCamelCase__ ) torch.manual_seed(lowerCamelCase__ ) torch.cuda.manual_seed_all(lowerCamelCase__ ) # ^^ safe to call this function even if cuda is not available class __lowercase : """simple docstring""" def __init__( self , A , A = 0.9999 , A = 0.0 , A = 0 , A = False , A = 1.0 , A = 2 / 3 , A = None , A = None , **A , ) -> List[str]: '''simple docstring''' if isinstance(A , torch.nn.Module ): lowerCamelCase = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , A , standard_warn=A , ) lowerCamelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility lowerCamelCase = True if kwargs.get("""max_value""" , A ) is not None: lowerCamelCase = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , A , standard_warn=A ) lowerCamelCase = kwargs["""max_value"""] if kwargs.get("""min_value""" , A ) is not None: lowerCamelCase = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , A , standard_warn=A ) lowerCamelCase = kwargs["""min_value"""] lowerCamelCase = list(A ) lowerCamelCase = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , A ) is not None: lowerCamelCase = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , A , standard_warn=A ) self.to(device=kwargs["""device"""] ) lowerCamelCase = None lowerCamelCase = decay lowerCamelCase = min_decay lowerCamelCase = update_after_step lowerCamelCase = use_ema_warmup lowerCamelCase = inv_gamma lowerCamelCase = power lowerCamelCase = 0 lowerCamelCase = None # set in `step()` lowerCamelCase = model_cls lowerCamelCase = model_config @classmethod def __A ( cls , A , A ) -> "EMAModel": '''simple docstring''' lowerCamelCase , lowerCamelCase = model_cls.load_config(A , return_unused_kwargs=A ) lowerCamelCase = model_cls.from_pretrained(A ) lowerCamelCase = cls(model.parameters() , model_cls=A , model_config=model.config ) ema_model.load_state_dict(A ) return ema_model def __A ( self , A ) -> int: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) lowerCamelCase = self.model_cls.from_config(self.model_config ) lowerCamelCase = self.state_dict() state_dict.pop("""shadow_params""" , A ) model.register_to_config(**A ) self.copy_to(model.parameters() ) model.save_pretrained(A ) def __A ( self , A ) -> float: '''simple docstring''' lowerCamelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: lowerCamelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: lowerCamelCase = (1 + step) / (10 + step) lowerCamelCase = min(A , self.decay ) # make sure decay is not smaller than min_decay lowerCamelCase = max(A , self.min_decay ) return cur_decay_value @torch.no_grad() def __A ( self , A ) -> Optional[int]: '''simple docstring''' if isinstance(A , torch.nn.Module ): lowerCamelCase = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , A , standard_warn=A , ) lowerCamelCase = parameters.parameters() lowerCamelCase = list(A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. lowerCamelCase = self.get_decay(self.optimization_step ) lowerCamelCase = decay lowerCamelCase = 1 - decay lowerCamelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): lowerCamelCase = deepspeed.zero.GatheredParameters(A , modifier_rank=A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(A ) def __A ( self , A ) -> None: '''simple docstring''' lowerCamelCase = list(A ) for s_param, param in zip(self.shadow_params , A ): param.data.copy_(s_param.to(param.device ).data ) def __A ( self , A=None , A=None ) -> None: '''simple docstring''' lowerCamelCase = [ p.to(device=A , dtype=A ) if p.is_floating_point() else p.to(device=A ) for p in self.shadow_params ] def __A ( self ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __A ( self , A ) -> None: '''simple docstring''' lowerCamelCase = [param.detach().cpu().clone() for param in parameters] def __A ( self , A ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , A ): param.data.copy_(c_param.data ) # Better memory-wise. lowerCamelCase = None def __A ( self , A ) -> None: '''simple docstring''' lowerCamelCase = copy.deepcopy(A ) lowerCamelCase = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) lowerCamelCase = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , A ): raise ValueError("""Invalid min_decay""" ) lowerCamelCase = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , A ): raise ValueError("""Invalid optimization_step""" ) lowerCamelCase = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , A ): raise ValueError("""Invalid update_after_step""" ) lowerCamelCase = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , A ): raise ValueError("""Invalid use_ema_warmup""" ) lowerCamelCase = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) lowerCamelCase = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) lowerCamelCase = state_dict.get("""shadow_params""" , A ) if shadow_params is not None: lowerCamelCase = shadow_params if not isinstance(self.shadow_params , A ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(A , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE__ : Tuple = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } SCREAMING_SNAKE_CASE__ : Dict = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } SCREAMING_SNAKE_CASE__ : int = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Dict = ConvBertTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__="[UNK]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="[PAD]" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[str]: super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase__ ) != tokenize_chinese_chars ): lowerCamelCase : Dict = getattr(UpperCamelCase__ , normalizer_state.pop("type" ) ) lowerCamelCase : Any = do_lower_case lowerCamelCase : Optional[Any] = strip_accents lowerCamelCase : Optional[int] = tokenize_chinese_chars lowerCamelCase : Optional[int] = normalizer_class(**UpperCamelCase__ ) lowerCamelCase : int = do_lower_case def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> int: lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: lowerCamelCase : Optional[Any] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
48
from __future__ import annotations import requests def A ( _SCREAMING_SNAKE_CASE ) -> dict: lowerCamelCase : Tuple = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_SCREAMING_SNAKE_CASE ).json() def A ( _SCREAMING_SNAKE_CASE = 10 ) -> list[dict]: lowerCamelCase : str = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" lowerCamelCase : Any = requests.get(_SCREAMING_SNAKE_CASE ).json()[:max_stories] return [get_hackernews_story(_SCREAMING_SNAKE_CASE ) for story_id in story_ids] def A ( _SCREAMING_SNAKE_CASE = 10 ) -> str: lowerCamelCase : str = hackernews_top_stories(_SCREAMING_SNAKE_CASE ) return "\n".join("* [{title}]({url})".format(**_SCREAMING_SNAKE_CASE ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
48
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _UpperCAmelCase ( lowercase_ ): '''simple docstring''' __A = "decision_transformer" __A = ["past_key_values"] __A = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , lowercase_ : Union[str, Any]=17 , lowercase_ : List[Any]=4 , lowercase_ : Tuple=128 , lowercase_ : Dict=4096 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=1 , lowercase_ : List[str]=1024 , lowercase_ : Optional[Any]=3 , lowercase_ : Dict=1 , lowercase_ : Dict=None , lowercase_ : Union[str, Any]="relu" , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=1e-5 , lowercase_ : Optional[int]=0.02 , lowercase_ : Optional[Any]=True , lowercase_ : Tuple=True , lowercase_ : str=50256 , lowercase_ : List[Any]=50256 , lowercase_ : List[str]=False , lowercase_ : Tuple=False , **lowercase_ : Dict , ) -> Optional[int]: """simple docstring""" _UpperCamelCase = state_dim _UpperCamelCase = act_dim _UpperCamelCase = hidden_size _UpperCamelCase = max_ep_len _UpperCamelCase = action_tanh _UpperCamelCase = vocab_size _UpperCamelCase = n_positions _UpperCamelCase = n_layer _UpperCamelCase = n_head _UpperCamelCase = n_inner _UpperCamelCase = activation_function _UpperCamelCase = resid_pdrop _UpperCamelCase = embd_pdrop _UpperCamelCase = attn_pdrop _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_range _UpperCamelCase = scale_attn_weights _UpperCamelCase = use_cache _UpperCamelCase = scale_attn_by_inverse_layer_idx _UpperCamelCase = reorder_and_upcast_attn _UpperCamelCase = bos_token_id _UpperCamelCase = eos_token_id super().__init__(bos_token_id=a__ , eos_token_id=a__ , **a__)
353
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Any=13 , lowercase_ : Optional[int]=7 , lowercase_ : Optional[Any]=True , lowercase_ : str=True , lowercase_ : Tuple=True , lowercase_ : List[Any]=True , lowercase_ : str=99 , lowercase_ : Any=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : List[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : List[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : int=16 , lowercase_ : str=2 , lowercase_ : Tuple=0.02 , lowercase_ : Dict=4 , ) -> List[str]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def __UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = True __A = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCamelCase = FlaxRoFormerModelTester(self) @slow def __UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowercase_) _UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowercase_) @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCamelCase = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") _UpperCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]]) _UpperCamelCase = model(lowercase_)[0] _UpperCamelCase = 50000 _UpperCamelCase = (1, 6, vocab_size) self.assertEqual(output.shape , lowercase_) _UpperCamelCase = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4))
63
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] = FunnelTokenizer __UpperCAmelCase : List[Any] = FunnelTokenizerFast __UpperCAmelCase : Any = True __UpperCAmelCase : List[str] = True def __UpperCAmelCase ( self ): super().setUp() __a = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , **_a ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , **_a ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def __UpperCAmelCase ( self ): __a = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: __a = tokenizer('''UNwant\u00E9d,running''' ) __a = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __a = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
45
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=99 , __lowercase=13 , __lowercase=16 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=True , __lowercase=2 , __lowercase=32 , __lowercase=4 , __lowercase=4 , __lowercase=30 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = decoder_seq_length # For common tests __lowerCAmelCase = self.decoder_seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = d_model __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = eos_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = decoder_start_token_id __lowerCAmelCase = use_cache __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = None __lowerCAmelCase = decoder_seq_length __lowerCAmelCase = 2 __lowerCAmelCase = 1 def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , ): __lowerCAmelCase = True __lowerCAmelCase = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __lowerCAmelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowerCAmelCase = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) __lowerCAmelCase = model(_UpperCAmelCase ) __lowerCAmelCase = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) __lowerCAmelCase = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = model(_UpperCAmelCase )['''last_hidden_state'''] __lowerCAmelCase = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['''last_hidden_state'''] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class a__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __UpperCamelCase : Optional[Any] = (TrOCRForCausalLM,) if is_torch_available() else () __UpperCamelCase : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} __UpperCamelCase : int = True __UpperCamelCase : Any = False def _snake_case (self ): __lowerCAmelCase = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) __lowerCAmelCase = ConfigTester(self , config_class=_UpperCAmelCase ) def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def _snake_case (self ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _snake_case (self ): pass
352
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowerCAmelCase ( unittest.TestCase): _a = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] ): lowercase :int = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowercase :List[str] = VideoClassificationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase , top_k=2 ) lowercase :int = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Optional[Any] ): for example in examples: lowercase :Tuple = video_classifier(_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ {"score": ANY(_lowerCAmelCase ), "label": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "label": ANY(_lowerCAmelCase )}, ] , ) @require_torch def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :List[Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase :Optional[Any] = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) lowercase :Dict = pipeline( "video-classification" , model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , frame_sampling_rate=4 ) lowercase :Any = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowercase :Optional[int] = video_classifier(_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}] , ) lowercase :Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}], [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}], ] , ) @require_tf def SCREAMING_SNAKE_CASE ( self: List[str] ): pass
236
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } _UpperCAmelCase : Any = { "camembert-base": 512, } _UpperCAmelCase : List[Any] = "▁" class __lowerCAmelCase ( lowerCAmelCase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Dict="<s>" , _lowerCAmelCase: Union[str, Any]="</s>" , _lowerCAmelCase: Optional[int]="</s>" , _lowerCAmelCase: List[Any]="<s>" , _lowerCAmelCase: Tuple="<unk>" , _lowerCAmelCase: Union[str, Any]="<pad>" , _lowerCAmelCase: str="<mask>" , _lowerCAmelCase: int=["<s>NOTUSED", "</s>NOTUSED"] , _lowerCAmelCase: Optional[Dict[str, Any]] = None , **_lowerCAmelCase: Any , ): # Mask token behave like a normal word, i.e. include the space before it lowercase :Dict = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token lowercase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase :Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowercase :Tuple = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowercase :int = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} lowercase :Tuple = len(self.fairseq_tokens_to_ids ) lowercase :int = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowercase :Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :List[Any] = [self.cls_token_id] lowercase :List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): lowercase :Any = [self.sep_token_id] lowercase :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Any = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] ): lowercase :Tuple = [] lowercase :Any = "" lowercase :str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase :Optional[int] = True lowercase :Any = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase :str = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self: Dict ): lowercase :int = self.__dict__.copy() lowercase :List[str] = None return state def __setstate__( self: Optional[Any] , _lowerCAmelCase: Dict ): lowercase :int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase :Optional[int] = {} lowercase :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowercase :Any = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: lowercase :Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
236
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = botoa.client('''iam''' ) snake_case_ = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=SCREAMING_SNAKE_CASE , AssumeRolePolicyDocument=json.dumps(SCREAMING_SNAKE_CASE , indent=2 ) ) snake_case_ = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=SCREAMING_SNAKE_CASE , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(SCREAMING_SNAKE_CASE , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Union[str, Any]: """simple docstring""" snake_case_ = botoa.client('''iam''' ) return iam_client.get_role(RoleName=SCREAMING_SNAKE_CASE )["Role"]["Arn"] def __lowerCAmelCase ()-> Any: """simple docstring""" snake_case_ = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , SCREAMING_SNAKE_CASE , ) snake_case_ = None if credentials_configuration == 0: snake_case_ = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) snake_case_ = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) snake_case_ = _ask_field('''AWS Access Key ID: ''' ) snake_case_ = aws_access_key_id snake_case_ = _ask_field('''AWS Secret Access Key: ''' ) snake_case_ = aws_secret_access_key snake_case_ = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) snake_case_ = aws_region snake_case_ = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , SCREAMING_SNAKE_CASE , ) if role_management == 0: snake_case_ = _ask_field('''Enter your IAM role name: ''' ) else: snake_case_ = '''accelerate_sagemaker_execution_role''' print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(SCREAMING_SNAKE_CASE ) snake_case_ = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) snake_case_ = None if is_custom_docker_image: snake_case_ = _ask_field('''Enter your Docker image: ''' , lambda SCREAMING_SNAKE_CASE : str(SCREAMING_SNAKE_CASE ).lower() ) snake_case_ = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) snake_case_ = None if is_sagemaker_inputs_enabled: snake_case_ = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda SCREAMING_SNAKE_CASE : str(SCREAMING_SNAKE_CASE ).lower() , ) snake_case_ = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) snake_case_ = None if is_sagemaker_metrics_enabled: snake_case_ = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda SCREAMING_SNAKE_CASE : str(SCREAMING_SNAKE_CASE ).lower() , ) snake_case_ = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) snake_case_ = {} snake_case_ = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) if use_dynamo: snake_case_ = '''dynamo_''' snake_case_ = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case_ = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) if use_custom_options: snake_case_ = _ask_options( '''Which mode do you want to use?''' , SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : TORCH_DYNAMO_MODES[int(SCREAMING_SNAKE_CASE )] , default='''default''' , ) snake_case_ = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) snake_case_ = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) snake_case_ = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: snake_case_ = _ask_options( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(SCREAMING_SNAKE_CASE )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case_ = _ask_field(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : str(SCREAMING_SNAKE_CASE ).lower() , default='''ml.p3.2xlarge''' ) snake_case_ = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case_ = _ask_field( '''How many machines do you want use? [1]: ''' , SCREAMING_SNAKE_CASE , default=1 , ) snake_case_ = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=SCREAMING_SNAKE_CASE , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=SCREAMING_SNAKE_CASE , use_cpu=SCREAMING_SNAKE_CASE , dynamo_config=SCREAMING_SNAKE_CASE , eca_instance_type=SCREAMING_SNAKE_CASE , profile=SCREAMING_SNAKE_CASE , region=SCREAMING_SNAKE_CASE , iam_role_name=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE , num_machines=SCREAMING_SNAKE_CASE , sagemaker_inputs_file=SCREAMING_SNAKE_CASE , sagemaker_metrics_file=SCREAMING_SNAKE_CASE , )
365
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) snake_case_ = CLIPTextModel(_UpperCAmelCase ) snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) snake_case_ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) snake_case_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ = sd_pipe(**_UpperCAmelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
267
0
import string import numpy def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: return b if a == 0 else greatest_common_divisor(b % a , _lowercase ) class A__ : lowercase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase = numpy.vectorize(lambda __magic_name__ : x % 36 ) lowercase = numpy.vectorize(_lowerCAmelCase ) def __init__( self : Optional[int] , a : numpy.ndarray ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.modulus(a ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCAmelCase__ : Union[str, Any] = encrypt_key.shape[0] def _lowerCamelCase ( self : Tuple , a : str ): '''simple docstring''' return self.key_string.index(a ) def _lowerCamelCase ( self : Tuple , a : int ): '''simple docstring''' return self.key_string[round(a )] def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase__ : Any = det % len(self.key_string ) lowerCAmelCase__ : Union[str, Any] = len(self.key_string ) if greatest_common_divisor(a , len(self.key_string ) ) != 1: lowerCAmelCase__ : str = ( f'''determinant modular {req_l} of encryption key({det}) ''' f'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(a ) def _lowerCamelCase ( self : Optional[int] , a : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [char for char in text.upper() if char in self.key_string] lowerCAmelCase__ : Union[str, Any] = chars[-1] while len(a ) % self.break_key != 0: chars.append(a ) return "".join(a ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.process_text(text.upper() ) lowerCAmelCase__ : List[Any] = """""" for i in range(0 , len(a ) - self.break_key + 1 , self.break_key ): lowerCAmelCase__ : int = text[i : i + self.break_key] lowerCAmelCase__ : int = [self.replace_letters(a ) for char in batch] lowerCAmelCase__ : Optional[int] = numpy.array([vec] ).T lowerCAmelCase__ : Any = self.modulus(self.encrypt_key.dot(a ) ).T.tolist()[ 0 ] lowerCAmelCase__ : Optional[Any] = """""".join( self.replace_digits(a ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase__ : List[Any] = det % len(self.key_string ) lowerCAmelCase__ : Optional[int] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowerCAmelCase__ : Dict = i break lowerCAmelCase__ : Optional[int] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(a ) ) def _lowerCamelCase ( self : Optional[Any] , a : str ): '''simple docstring''' lowerCAmelCase__ : Dict = self.make_decrypt_key() lowerCAmelCase__ : Tuple = self.process_text(text.upper() ) lowerCAmelCase__ : Optional[int] = """""" for i in range(0 , len(a ) - self.break_key + 1 , self.break_key ): lowerCAmelCase__ : Tuple = text[i : i + self.break_key] lowerCAmelCase__ : Dict = [self.replace_letters(a ) for char in batch] lowerCAmelCase__ : List[str] = numpy.array([vec] ).T lowerCAmelCase__ : Optional[Any] = self.modulus(decrypt_key.dot(a ) ).T.tolist()[0] lowerCAmelCase__ : int = """""".join( self.replace_digits(a ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ) -> Optional[int]: lowerCAmelCase__ : Dict = int(input('Enter the order of the encryption key: ' ) ) lowerCAmelCase__ : Union[str, Any] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(_lowercase ): lowerCAmelCase__ : Union[str, Any] = [int(_lowercase ) for x in input().split()] hill_matrix.append(_lowercase ) lowerCAmelCase__ : List[Any] = HillCipher(numpy.array(_lowercase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) lowerCAmelCase__ : int = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": lowerCAmelCase__ : Optional[Any] = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(_lowercase ) ) elif option == "2": lowerCAmelCase__ : Dict = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
212
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = os.path.join(args.tf_model_dir, """parameters.json""" ) snake_case_ :Any = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): snake_case_ :Optional[int] = args.output + """.pt""" snake_case_ :List[str] = OrderedDict() with tf.device("""/CPU:0""" ): snake_case_ :Dict = tf.train.load_checkpoint(args.tf_model_dir ) snake_case_ :str = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ :List[Any] = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): snake_case_ :Any = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): snake_case_ :Optional[int] = 8 snake_case_ :List[str] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :List[str] = torch.tensor(_lowercase ) elif key_name.startswith("""model/moe""" ): snake_case_ :Tuple = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/softmlp/kernel""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player snake_case_ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): snake_case_ :Dict = key_name[-9:-7] for i in range(16 ): snake_case_ :str = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) snake_case_ :Tuple = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/mlp""" ): snake_case_ :Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p1/bias""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player snake_case_ :str = vnp.copy() # same because it is one dimensional snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/bias""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player snake_case_ :Any = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/ln""" ): snake_case_ :Union[str, Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :str = """model.blocks.%d.feed_forward.norm.bias""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :int = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.startswith("""model/att""" ): snake_case_ :List[str] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): snake_case_ :Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ :Dict = state[:, 0, :, :] snake_case_ :int = state[:, 1, :, :] snake_case_ :List[str] = state[:, 2, :, :] snake_case_ :str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[int] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player snake_case_ :int = torch.tensor(_lowercase ) snake_case_ :Optional[Any] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player snake_case_ :Dict = torch.tensor(_lowercase ) snake_case_ :Dict = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/o/kernel""" ): snake_case_ :str = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player snake_case_ :str = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = torch.tensor(_lowercase ) elif key_name.startswith("""model/an""" ): snake_case_ :Optional[int] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :Any = """model.blocks.%d.self_attn.norm.bias""" % player snake_case_ :Optional[int] = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.self_attn.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): snake_case_ :List[Any] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] snake_case_ :Optional[Any] = """model.%s.weight""" % nlayer snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) if key_name.startswith("""model/wte""" ): snake_case_ :Tuple = """lm_head.weight""" snake_case_ :List[str] = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) elif key_name.startswith("""model/wob""" ): snake_case_ :str = """final_logits_bias""" snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = state.reshape((1, -1) ) snake_case_ :Union[str, Any] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": snake_case_ :str = """model.last_project.weight""" snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": snake_case_ :Optional[int] = """model.last_project.bias""" snake_case_ :Tuple = vnp.copy() # same because it is one dimensional snake_case_ :Any = torch.tensor(_lowercase ) torch.save(_lowercase, args.output ) if __name__ == "__main__": __a = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __a = parser.parse_args() convert_tf_gptsan_to_pt(args)
66
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class a_ ( __lowercase ): '''simple docstring''' __a: List[str] = '''''' __a: Optional[int] = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __a: Any = None # compression type in fsspec. ex: "gzip" __a: Union[str, Any] = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , lowercase_ = "" , lowercase_ = None , lowercase_ = None , **lowercase_ ) -> str: '''simple docstring''' super().__init__(self , **_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase_ = fsspec.open( _a , mode='rb' , protocol=_a , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCAmelCase_ = os.path.basename(self.file.path.split('::' )[0] ) lowerCAmelCase_ = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) lowerCAmelCase_ = None @classmethod def _lowercase ( cls , lowercase_ ) -> Optional[Any]: '''simple docstring''' return super()._strip_protocol(_a ).lstrip('/' ) def _lowercase ( self ) -> Tuple: '''simple docstring''' if self.dir_cache is None: lowerCAmelCase_ = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} lowerCAmelCase_ = {f['name']: f} def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' return self.file.open().read() def _lowercase ( self , lowercase_ , lowercase_ = "rb" , lowercase_=None , lowercase_=True , lowercase_=None , **lowercase_ , ) -> str: '''simple docstring''' lowerCAmelCase_ = self._strip_protocol(_a ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class a_ ( __lowercase ): '''simple docstring''' __a: Optional[Any] = '''bz2''' __a: List[str] = '''bz2''' __a: Tuple = '''.bz2''' class a_ ( __lowercase ): '''simple docstring''' __a: Union[str, Any] = '''gzip''' __a: List[str] = '''gzip''' __a: List[str] = '''.gz''' class a_ ( __lowercase ): '''simple docstring''' __a: List[str] = '''lz4''' __a: Any = '''lz4''' __a: List[str] = '''.lz4''' class a_ ( __lowercase ): '''simple docstring''' __a: Any = '''xz''' __a: List[Any] = '''xz''' __a: Union[str, Any] = '''.xz''' class a_ ( __lowercase ): '''simple docstring''' __a: List[str] = '''zstd''' __a: Dict = '''zstd''' __a: Dict = '''.zst''' def __init__( self , lowercase_ , lowercase_ = "rb" , lowercase_ = None , lowercase_ = None , lowercase_ = DEFAULT_BLOCK_SIZE , **lowercase_ , ) -> Optional[Any]: '''simple docstring''' super().__init__( fo=_a , mode=_a , target_protocol=_a , target_options=_a , block_size=_a , **_a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase_ = self.file.__enter__ class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = file_ def __enter__( self ) -> Dict: '''simple docstring''' self._file.__enter__() return self def __exit__( self , *lowercase_ , **lowercase_ ) -> Dict: '''simple docstring''' self._file.__exit__(*_a , **_a ) def __iter__( self ) -> Optional[Any]: '''simple docstring''' return iter(self._file ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return next(self._file ) def __getattr__( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' return getattr(self._file , _a ) def fixed_enter(*lowercase_ , **lowercase_ ): return WrappedFile(_enter(*_a , **_a ) ) lowerCAmelCase_ = fixed_enter
371
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = None class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = None def __iter__( self ) -> Iterator[Any]: '''simple docstring''' __lowerCamelCase = self.head while self.head: yield node.data __lowerCamelCase = node.next if node == self.head: break def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ) -> List[str]: '''simple docstring''' return "->".join(str(lowerCamelCase__ ) for item in iter(self ) ) def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(len(self ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(0 , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) __lowerCamelCase = Node(lowerCamelCase__ ) if self.head is None: __lowerCamelCase = new_node # first node points itself __lowerCamelCase = __lowerCamelCase = new_node elif index == 0: # insert at head __lowerCamelCase = self.head __lowerCamelCase = __lowerCamelCase = new_node else: __lowerCamelCase = self.head for _ in range(index - 1 ): __lowerCamelCase = temp.next __lowerCamelCase = temp.next __lowerCamelCase = new_node if index == len(self ) - 1: # insert at tail __lowerCamelCase = new_node def lowercase_ ( self ) -> List[str]: '''simple docstring''' return self.delete_nth(0 ) def lowercase_ ( self ) -> Any: '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def lowercase_ ( self , lowerCamelCase__ = 0 ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) __lowerCamelCase = self.head if self.head == self.tail: # just one node __lowerCamelCase = __lowerCamelCase = None elif index == 0: # delete head node __lowerCamelCase = self.tail.next.next __lowerCamelCase = self.head.next else: __lowerCamelCase = self.head for _ in range(index - 1 ): __lowerCamelCase = temp.next __lowerCamelCase = temp.next __lowerCamelCase = temp.next.next if index == len(self ) - 1: # delete at tail __lowerCamelCase = temp return delete_node.data def lowercase_ ( self ) -> bool: '''simple docstring''' return len(self ) == 0 def lowerCamelCase_ ( ) -> None: """simple docstring""" __lowerCamelCase = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
90
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='LayoutLMv3ImageProcessor' __a =('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Tuple , __a : int=None , __a : Union[str, Any]=None , **__a : Optional[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Any , __a : List[str] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Dict , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _a = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def UpperCamelCase__ ( self : int , *__a : str , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : List[Any] , **__a : List[str] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : Tuple ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCamelCase__ ( self : int ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
63
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure)
17
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase : List[str] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['OwlViTFeatureExtractor'] lowerCamelCase : str = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __a = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[Any]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(_UpperCamelCase ), version.parse(_UpperCamelCase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def __lowercase ( _UpperCamelCase, _UpperCamelCase = None ) ->None: """simple docstring""" lowercase : List[str] = f"""\n{hint}""" if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''', _UpperCamelCase ): lowercase : Any = requirement, None, None else: lowercase : int = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''', _UpperCamelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f""" got {requirement}""" ) lowercase : int = match[0] lowercase : Dict = want_full.split(''',''' ) # there could be multiple requirements lowercase : Optional[Any] = {} for w in want_range: lowercase : Any = re.findall(R'''^([\s!=<>]{1,2})(.+)''', _UpperCamelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f""" but got {requirement}""" ) lowercase : Tuple = match[0] lowercase : Any = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": lowercase : Tuple = '''.'''.join([str(_UpperCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) return # check if any version is installed try: lowercase : int = importlib.metadata.version(_UpperCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) def __lowercase ( _UpperCamelCase ) ->Dict: """simple docstring""" lowercase : str = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(_UpperCamelCase, _UpperCamelCase )
368
# Algorithm for the pigeonhole sorting def __lowercase ( _UpperCamelCase ) ->List[Any]: """simple docstring""" lowercase : List[Any] = min(_UpperCamelCase ) # min() finds the minimum value lowercase : Union[str, Any] = max(_UpperCamelCase ) # max() finds the maximum value lowercase : Tuple = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowercase : List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_UpperCamelCase, _UpperCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowercase : Tuple = 0 for count in range(_UpperCamelCase ): while holes[count] > 0: holes[count] -= 1 lowercase : str = count + min_val i += 1 def __lowercase ( ) ->List[str]: """simple docstring""" lowercase : Union[str, Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_UpperCamelCase ) print('''Sorted order is:''', ''' '''.join(_UpperCamelCase ) ) if __name__ == "__main__": main()
173
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class snake_case : '''simple docstring''' def __init__( self : Any , lowerCAmelCase : str , ) -> Tuple: """simple docstring""" _snake_case : List[Any] = parent _snake_case : Any = 13 _snake_case : Union[str, Any] = 7 _snake_case : Union[str, Any] = True _snake_case : List[str] = True _snake_case : List[str] = True _snake_case : Tuple = 99 _snake_case : Any = 32 _snake_case : Optional[int] = 2 _snake_case : List[str] = 4 _snake_case : Union[str, Any] = 37 _snake_case : Any = """gelu""" _snake_case : Dict = 0.1 _snake_case : Tuple = 0.1 _snake_case : Optional[Any] = 512 _snake_case : Optional[Any] = 16 _snake_case : Dict = 2 _snake_case : str = 0.02 _snake_case : List[Any] = 3 _snake_case : int = 4 _snake_case : Tuple = None def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _snake_case : List[Any] = None if self.use_input_mask: _snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices) _snake_case : Dict = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : str = self.prepare_config_and_inputs() _snake_case : List[Any] = True _snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _snake_case : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" _snake_case : List[Any] = TFEsmModel(config=__SCREAMING_SNAKE_CASE) _snake_case : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} _snake_case : str = model(__SCREAMING_SNAKE_CASE) _snake_case : Optional[int] = [input_ids, input_mask] _snake_case : str = model(__SCREAMING_SNAKE_CASE) _snake_case : Optional[Any] = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" _snake_case : List[Any] = True _snake_case : int = TFEsmModel(config=__SCREAMING_SNAKE_CASE) _snake_case : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _snake_case : List[str] = model(__SCREAMING_SNAKE_CASE) _snake_case : Optional[Any] = [input_ids, input_mask] _snake_case : str = model(__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE) # Also check the case where encoder outputs are not passed _snake_case : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : List[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = TFEsmForMaskedLM(config=__SCREAMING_SNAKE_CASE) _snake_case : str = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.num_labels _snake_case : str = TFEsmForTokenClassification(config=__SCREAMING_SNAKE_CASE) _snake_case : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} _snake_case : Any = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase_ ( self : List[Any]) -> int: """simple docstring""" _snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Optional[int] = config_and_inputs _snake_case : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case_ : Any = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case_ : List[Any] = False snake_case_ : Tuple = False def UpperCamelCase_ ( self : Dict) -> Any: """simple docstring""" _snake_case : Optional[Any] = TFEsmModelTester(self) _snake_case : str = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37) def UpperCamelCase_ ( self : Optional[Any]) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[str]) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self : Union[str, Any]) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self : str) -> int: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = TFEsmModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @unittest.skip("""Protein models do not support embedding resizing.""") def UpperCamelCase_ ( self : Optional[Any]) -> Tuple: """simple docstring""" pass @unittest.skip("""Protein models do not support embedding resizing.""") def UpperCamelCase_ ( self : List[Any]) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(__SCREAMING_SNAKE_CASE) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _snake_case : Dict = model.get_bias() assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for k, v in name.items(): assert isinstance(__SCREAMING_SNAKE_CASE , tf.Variable) else: _snake_case : str = model.get_output_embeddings() assert x is None _snake_case : str = model.get_bias() assert name is None @require_tf class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Tuple) -> Any: """simple docstring""" _snake_case : str = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""") _snake_case : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]]) _snake_case : Union[str, Any] = model(__SCREAMING_SNAKE_CASE)[0] _snake_case : Union[str, Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape) , __SCREAMING_SNAKE_CASE) # compare the actual values for a slice. _snake_case : List[str] = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2)) @slow def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" _snake_case : int = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""") _snake_case : Optional[Any] = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) _snake_case : Optional[Any] = model(__SCREAMING_SNAKE_CASE)[0] # compare the actual values for a slice. _snake_case : List[Any] = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
317
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : List[str] = logging.get_logger(__name__) class lowerCAmelCase__ ( a , a ): """simple docstring""" lowerCAmelCase__ = "maskformer-swin" lowerCAmelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple=224 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=96 , __SCREAMING_SNAKE_CASE : Optional[Any]=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE : Any=[3, 6, 12, 24] , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Dict=4.0 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1E-5 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) __SCREAMING_SNAKE_CASE = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
267
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a :Union[str, Any] = logging.get_logger(__name__) a :Optional[int] = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __a (a__): '''simple docstring''' _SCREAMING_SNAKE_CASE :Tuple = """gpt_neox""" def __init__( self , _a=50_432 , _a=6_144 , _a=44 , _a=64 , _a=24_576 , _a="gelu" , _a=0.25 , _a=10_000 , _a=0.0 , _a=0.0 , _a=0.1 , _a=2_048 , _a=0.02 , _a=1E-5 , _a=True , _a=0 , _a=2 , _a=False , _a=True , _a=None , **_a , ) -> Tuple: """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = hidden_size SCREAMING_SNAKE_CASE__ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = rotary_pct SCREAMING_SNAKE_CASE__ : List[str] = rotary_emb_base SCREAMING_SNAKE_CASE__ : Dict = attention_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_dropout SCREAMING_SNAKE_CASE__ : Tuple = classifier_dropout SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE__ : str = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = tie_word_embeddings SCREAMING_SNAKE_CASE__ : Tuple = use_parallel_residual SCREAMING_SNAKE_CASE__ : Optional[int] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def _a ( self ) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) SCREAMING_SNAKE_CASE__ : str = self.rope_scaling.get("""type""" , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rope_scaling.get("""factor""" , lowerCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
362
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a :List[str] = logging.get_logger(__name__) a :Union[str, Any] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = """audio-spectrogram-transformer""" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-1_2 , _a=16 , _a=True , _a=10 , _a=10 , _a=1_024 , _a=128 , **_a , ) -> List[Any]: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : Dict = qkv_bias SCREAMING_SNAKE_CASE__ : Any = frequency_stride SCREAMING_SNAKE_CASE__ : int = time_stride SCREAMING_SNAKE_CASE__ : int = max_length SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_mel_bins
56
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __SCREAMING_SNAKE_CASE :Optional[int] = TypeVar('''T''') class A_ ( Generic[T] ): def __init__( self : List[Any] , snake_case_ : list[T] , snake_case_ : Callable[[T, T], T] ): _UpperCAmelCase = None _UpperCAmelCase = len(snake_case_ ) _UpperCAmelCase = [any_type for _ in range(self.N )] + arr _UpperCAmelCase = fnc self.build() def lowercase ( self : List[Any] ): for p in range(self.N - 1 , 0 , -1 ): _UpperCAmelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase ( self : Optional[Any] , snake_case_ : int , snake_case_ : T ): p += self.N _UpperCAmelCase = v while p > 1: _UpperCAmelCase = p // 2 _UpperCAmelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase ( self : Any , snake_case_ : int , snake_case_ : int ): # noqa: E741 _UpperCAmelCase , _UpperCAmelCase = l + self.N, r + self.N _UpperCAmelCase = None while l <= r: if l % 2 == 1: _UpperCAmelCase = self.st[l] if res is None else self.fn(snake_case_ , self.st[l] ) if r % 2 == 0: _UpperCAmelCase = self.st[r] if res is None else self.fn(snake_case_ , self.st[r] ) _UpperCAmelCase , _UpperCAmelCase = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __SCREAMING_SNAKE_CASE :List[str] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __SCREAMING_SNAKE_CASE :Any = SegmentTree(test_array, min) __SCREAMING_SNAKE_CASE :Any = SegmentTree(test_array, max) __SCREAMING_SNAKE_CASE :Any = SegmentTree(test_array, lambda a, b: a + b) def UpperCAmelCase_ ( ) -> None: '''simple docstring''' for i in range(len(__lowercase ) ): for j in range(__lowercase , len(__lowercase ) ): _UpperCAmelCase = reduce(__lowercase , test_array[i : j + 1] ) _UpperCAmelCase = reduce(__lowercase , test_array[i : j + 1] ) _UpperCAmelCase = reduce(lambda __lowercase , __lowercase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowercase , __lowercase ) assert max_range == max_segment_tree.query(__lowercase , __lowercase ) assert sum_range == sum_segment_tree.query(__lowercase , __lowercase ) test_all_segments() for index, value in test_updates.items(): __SCREAMING_SNAKE_CASE :str = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
22
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCAmelCase : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) A_ = img A_ = img.shape[1] A_ = img.shape[0] A_ = dst_width A_ = dst_height A_ = self.src_w / self.dst_w A_ = self.src_h / self.dst_h A_ = A_ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __A ( self ) -> Optional[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): A_ = self.img[self.get_y(_SCREAMING_SNAKE_CASE )][self.get_x(_SCREAMING_SNAKE_CASE )] def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: return int(self.ratio_x * x ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": __snake_case : List[str] = 800, 600 __snake_case : int = imread('image_data/lena.jpg', 1) __snake_case : Union[str, Any] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure)
17
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCamelCase : Dict = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } __UpperCamelCase : Dict = {"mobilebert-uncased": 512} __UpperCamelCase : Tuple = {} class a ( UpperCamelCase_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = MobileBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _a ) != do_lower_case or normalizer_state.get('strip_accents' , _a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _a ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_a , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_a ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
362
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
309
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'spm_char.model'} _a = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } _a = { 'microsoft/speecht5_asr': 10_24, 'microsoft/speecht5_tts': 10_24, 'microsoft/speecht5_vc': 10_24, } class _lowerCAmelCase ( UpperCAmelCase__ ): """simple docstring""" __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ['input_ids', 'attention_mask'] def __init__( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[int]="<s>", UpperCAmelCase__ : Optional[Any]="</s>", UpperCAmelCase__ : int="<unk>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : Optional[Dict[str, Any]] = None, **UpperCAmelCase__ : Optional[int], ): __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, unk_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCAmelCase__, ) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def _lowercase ( self : int ): return self.sp_model.get_piece_size() def _lowercase ( self : List[str] ): __lowercase = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : Any, UpperCAmelCase__ : Any ): __lowercase = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : str ): return self.sp_model.encode(UpperCAmelCase__, out_type=UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : List[Any] ): return self.sp_model.piece_to_id(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Any ): __lowercase = self.sp_model.IdToPiece(UpperCAmelCase__ ) return token def _lowercase ( self : str, UpperCAmelCase__ : Dict ): __lowercase = [] __lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__ ) + token __lowercase = [] else: current_sub_tokens.append(UpperCAmelCase__ ) out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def _lowercase ( self : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowercase ( self : Optional[int], UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__, token_ids_a=UpperCAmelCase__, already_has_special_tokens=UpperCAmelCase__ ) __lowercase = [1] if token_ids_a is None: return ([0] * len(UpperCAmelCase__ )) + suffix_ones return ([0] * len(UpperCAmelCase__ )) + ([0] * len(UpperCAmelCase__ )) + suffix_ones def _lowercase ( self : str, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__, "wb" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
17
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __magic_name__ ( *lowercase ): if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =list(lowercase ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE_: Optional[Any] =None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =[ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase , lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __magic_name__ ( lowercase = None , lowercase = 128 ): if function is None: return functools.partial(lowercase , starting_batch_size=lowercase ) SCREAMING_SNAKE_CASE_: str =starting_batch_size def decorator(*lowercase , **lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE_: Optional[int] =list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): SCREAMING_SNAKE_CASE_: List[Any] =""", """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase , *lowercase , **lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
173
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def SCREAMING_SNAKE_CASE ( ) -> Tuple: UpperCAmelCase_ = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCAmelCase_ = Dataset.from_dict(__snake_case ) return dataset class a ( lowerCamelCase__ ): '''simple docstring''' def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = get_dataset() UpperCAmelCase_ = make_duplicate_clusters(__snake_case , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = get_dataset() UpperCAmelCase_ , UpperCAmelCase_ = deduplicate_dataset(__snake_case ) self.assertEqual(len(__snake_case ) , 2 ) print(__snake_case ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , __snake_case )
356
import numpy as np def SCREAMING_SNAKE_CASE ( __UpperCamelCase : np.array ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
177
0
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar _UpperCamelCase : Optional[int] = TypeVar("KT") _UpperCamelCase : Tuple = TypeVar("VT") class UpperCAmelCase_ ( Generic[KT, VT]): def __init__( self , a = "root" , a = None ) -> Dict: lowercase__ : str = key lowercase__ : int = value lowercase__ : list[Node[KT, VT]] = [] def __repr__( self ) -> str: return f"""Node({self.key}: {self.value})""" @property def _UpperCAmelCase ( self ) -> int: return len(self.forward ) class UpperCAmelCase_ ( Generic[KT, VT]): def __init__( self , a = 0.5 , a = 1_6 ) -> Any: lowercase__ : Node[KT, VT] = Node[KT, VT]() lowercase__ : Any = 0 lowercase__ : int = p lowercase__ : Optional[Any] = max_level def __str__( self ) -> str: lowercase__ : Any = list(self ) if len(a ) == 0: return f"""SkipList(level={self.level})""" lowercase__ : Optional[int] = max((len(str(a ) ) for item in items) , default=4 ) lowercase__ : Dict = max(a , 4 ) + 4 lowercase__ : Dict = self.head lowercase__ : Tuple = [] lowercase__ : Any = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(a , '-' ) + '* ' * len(a ) ) lines.append(' ' * label_size + '| ' * len(a ) ) while len(node.forward ) != 0: lowercase__ : Union[str, Any] = node.forward[0] lines.append( f"""[{node.key}]""".ljust(a , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(a ) ) lowercase__ : str = node.forward lines.append('None'.ljust(a ) + '* ' * len(a ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(a ) def __iter__( self ) -> Any: lowercase__ : Dict = self.head while len(node.forward ) != 0: yield node.forward[0].key lowercase__ : List[str] = node.forward[0] def _UpperCAmelCase ( self ) -> int: lowercase__ : List[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def _UpperCAmelCase ( self , a ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: lowercase__ : Optional[int] = [] lowercase__ : Tuple = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowercase__ : Dict = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(a ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _UpperCAmelCase ( self , a ) -> Dict: lowercase__ , lowercase__ : Optional[Any] = self._locate_node(a ) if node is not None: for i, update_node in enumerate(a ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowercase__ : List[str] = node.forward[i] else: lowercase__ : Optional[int] = update_node.forward[:i] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ , lowercase__ : str = self._locate_node(a ) if node is not None: lowercase__ : Optional[int] = value else: lowercase__ : List[str] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , a ): update_vector.append(self.head ) lowercase__ : List[Any] = level lowercase__ : Tuple = Node(a , a ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(a ) else: lowercase__ : str = new_node def _UpperCAmelCase ( self , a ) -> VT | None: lowercase__ , lowercase__ : Optional[Any] = self._locate_node(a ) if node is not None: return node.value return None def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) lowercase__ : Dict = skip_list.head lowercase__ : Dict = {} while node.level != 0: lowercase__ : Dict = node.forward[0] lowercase__ : int = node.value assert len(_lowerCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) lowercase__ : Dict = skip_list.head lowercase__ : Tuple = {} while node.level != 0: lowercase__ : Any = node.forward[0] lowercase__ : Optional[int] = node.value if len(_lowerCAmelCase ) != 4: print() assert len(_lowerCAmelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def a_ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = SkipList() assert skip_list.find('Some key' ) is None def a_ ( ): '''simple docstring''' lowercase__ : List[str] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def a_ ( ): '''simple docstring''' lowercase__ : str = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def a_ ( ): '''simple docstring''' lowercase__ : List[str] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def a_ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_lowerCAmelCase : Tuple ): yield node.key for forward_node in node.forward: yield from traverse_keys(_lowerCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def a_ ( ): '''simple docstring''' def is_sorted(_lowerCAmelCase : Dict ): return all(next_item >= item for item, next_item in zip(_lowerCAmelCase , lst[1:] ) ) lowercase__ : int = SkipList() for i in range(10 ): skip_list.insert(_lowerCAmelCase , _lowerCAmelCase ) assert is_sorted(list(_lowerCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_lowerCAmelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_lowerCAmelCase ) ) def a_ ( ): '''simple docstring''' for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def a_ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
77
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = "sample" snake_case_ = 1e-2 @property def A_ ( self : Dict ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) return {"sample": image} @property def A_ ( self : List[Any] ): return (3, 32, 32) @property def A_ ( self : Dict ): return (3, 32, 32) def A_ ( self : Union[str, Any] ): snake_case_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict def A_ ( self : Any ): pass def A_ ( self : str ): pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def A_ ( self : Dict ): # enable deterministic behavior for gradient checkpointing snake_case_ ,snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.model_class(**lowercase_ ) model.to(lowercase_ ) assert not model.is_gradient_checkpointing and model.training snake_case_ = model(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case_ = torch.randn_like(lowercase_ ) snake_case_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case_ = self.model_class(**lowercase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowercase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case_ = model_a(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) snake_case_ = dict(model.named_parameters() ) snake_case_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def A_ ( self : Tuple ): snake_case_ ,snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowercase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A_ ( self : Tuple ): snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) snake_case_ = model.to(lowercase_ ) model.eval() if torch_device == "mps": snake_case_ = torch.manual_seed(0 ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = image.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , sample_posterior=lowercase_ , generator=lowercase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case_ = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": snake_case_ = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: snake_case_ = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1e-2 ) ) @slow class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(lowercase_ ) for s in shape] )}.npy" def A_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Dict , lowercase_ : List[Any]=0 , lowercase_ : Union[str, Any]=(4, 3, 512, 512) , lowercase_ : Optional[Any]=False ): snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = torch.from_numpy(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) ).to(lowercase_ ).to(lowercase_ ) return image def A_ ( self : Any , lowercase_ : Dict="CompVis/stable-diffusion-v1-4" , lowercase_ : List[str]=False ): snake_case_ = '''fp16''' if fpaa else None snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = AutoencoderKL.from_pretrained( lowercase_ , subfolder='''vae''' , torch_dtype=lowercase_ , revision=lowercase_ , ) model.to(lowercase_ ).eval() return model def A_ ( self : Any , lowercase_ : int=0 ): if torch_device == "mps": return torch.manual_seed(lowercase_ ) return torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , fpaa=lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[Any] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : List[str] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : Any ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def A_ ( self : str , lowercase_ : Optional[int] , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model.encode(lowercase_ ).latent_dist snake_case_ = dist.sample(generator=lowercase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case_ = sample[0, -1, -3:, -3:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) snake_case_ = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(lowercase_ , lowercase_ , atol=lowercase_ )
56
0
from math import sqrt def lowercase__ ( __snake_case : int = 1_000_000 ): '''simple docstring''' UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__snake_case , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'{solution() = }')
145
def lowercase__ ( __snake_case : str , __snake_case : int , __snake_case : List[str] ): '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__snake_case , n - 1 , __snake_case ) * a) % mod else: UpperCAmelCase_ : Optional[int] = binary_exponentiation(__snake_case , n / 2 , __snake_case ) return (b * b) % mod # a prime number __UpperCAmelCase = 701 __UpperCAmelCase = 1000000000 __UpperCAmelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
145
1
from __future__ import annotations __snake_case = list[tuple[int, int]] __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =pos_x UpperCAmelCase : Any =pos_y UpperCAmelCase : str =(pos_y, pos_x) UpperCAmelCase : Tuple =goal_x UpperCAmelCase : Any =goal_y UpperCAmelCase : str =g_cost UpperCAmelCase : str =parent UpperCAmelCase : Dict =self.calculate_heuristic() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Any =abs(self.pos_x - self.goal_x ) UpperCAmelCase : Optional[Any] =abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , snake_case__ ) -> Optional[int]: '''simple docstring''' return self.f_cost < other.f_cost class __snake_case : def __init__( self , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _A ) UpperCAmelCase : List[str] =Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , _A ) UpperCAmelCase : Optional[int] =[self.start] UpperCAmelCase : list[Node] =[] UpperCAmelCase : Dict =False def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : List[str] =self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : Optional[int] =True return self.retrace_path(_A ) self.closed_nodes.append(_A ) UpperCAmelCase : List[str] =self.get_successors(_A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_A ) else: # retrieve the best current path UpperCAmelCase : Tuple =self.open_nodes.pop(self.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_A ) else: self.open_nodes.append(_A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : List[str] =[] for action in delta: UpperCAmelCase : Dict =parent.pos_x + action[1] UpperCAmelCase : Dict =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _A , _A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _A , ) ) return successors def UpperCAmelCase__ ( self , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =node UpperCAmelCase : Optional[int] =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : Optional[Any] =current_node.parent path.reverse() return path if __name__ == "__main__": __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') __snake_case = GreedyBestFirst(init, goal) __snake_case = greedy_bf.search() if path: for pos_x, pos_y in path: __snake_case = 2 for elem in grid: print(elem)
348
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = PriorTransformer lowerCAmelCase_ = "hidden_states" @property def lowercase (self ) -> Any: _snake_case = 4 _snake_case = 8 _snake_case = 7 _snake_case = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase ) _snake_case = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase ) _snake_case = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase (self , UpperCAmelCase=0 ) -> Union[str, Any]: torch.manual_seed(UpperCAmelCase ) _snake_case = 4 _snake_case = 8 _snake_case = 7 _snake_case = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase ) _snake_case = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase ) _snake_case = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowercase (self ) -> Dict: return (4, 8) @property def lowercase (self ) -> Any: return (4, 8) def lowercase (self ) -> Optional[int]: _snake_case = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } _snake_case = self.dummy_input return init_dict, inputs_dict def lowercase (self ) -> Dict: _snake_case, _snake_case = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase ) _snake_case = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowercase (self ) -> Any: _snake_case, _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.model_class(**UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , UpperCAmelCase ) def lowercase (self ) -> Optional[Any]: _snake_case = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) _snake_case = model.to(UpperCAmelCase ) if hasattr(UpperCAmelCase , """set_default_attn_processor""" ): model.set_default_attn_processor() _snake_case = self.get_dummy_seed_input() with torch.no_grad(): _snake_case = model(**UpperCAmelCase )[0] _snake_case = output[0, :5].flatten().cpu() print(UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. _snake_case = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-2 ) ) @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self , UpperCAmelCase=1 , UpperCAmelCase=768 , UpperCAmelCase=77 , UpperCAmelCase=0 ) -> Optional[int]: torch.manual_seed(UpperCAmelCase ) _snake_case = batch_size _snake_case = embedding_dim _snake_case = num_embeddings _snake_case = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase ) _snake_case = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase ) _snake_case = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase (self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(UpperCAmelCase ) _snake_case = self.get_dummy_seed_input(seed=UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] _snake_case = sample[0, :8].flatten().cpu() print(UpperCAmelCase ) _snake_case = torch.tensor(UpperCAmelCase ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1e-3 )
359
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _snake_case = 0 _snake_case = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _snake_case = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _snake_case = i _snake_case = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
270
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : '''simple docstring''' pass
48
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } UpperCAmelCase_ = { """ctrl""": 256, } UpperCAmelCase_ = { """Pregnancy""": 168_629, """Christianity""": 7_675, """Explain""": 106_423, """Fitness""": 63_440, """Saving""": 63_163, """Ask""": 27_171, """Ass""": 95_985, """Joke""": 163_509, """Questions""": 45_622, """Thoughts""": 49_605, """Retail""": 52_342, """Feminism""": 164_338, """Writing""": 11_992, """Atheism""": 192_263, """Netflix""": 48_616, """Computing""": 39_639, """Opinion""": 43_213, """Alone""": 44_967, """Funny""": 58_917, """Gaming""": 40_358, """Human""": 4_088, """India""": 1_331, """Joker""": 77_138, """Diet""": 36_206, """Legal""": 11_859, """Norman""": 4_939, """Tip""": 72_689, """Weight""": 52_343, """Movies""": 46_273, """Running""": 23_425, """Science""": 2_090, """Horror""": 37_793, """Confession""": 60_572, """Finance""": 12_250, """Politics""": 16_360, """Scary""": 191_985, """Support""": 12_654, """Technologies""": 32_516, """Teenage""": 66_160, """Event""": 32_769, """Learned""": 67_460, """Notion""": 182_770, """Wikipedia""": 37_583, """Books""": 6_665, """Extract""": 76_050, """Confessions""": 102_701, """Conspiracy""": 75_932, """Links""": 63_674, """Narcissus""": 150_425, """Relationship""": 54_766, """Relationships""": 134_796, """Reviews""": 41_671, """News""": 4_256, """Translation""": 26_820, """multilingual""": 128_406, } def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(_UpperCAmelCase ) return pairs class lowerCamelCase__( __UpperCamelCase): UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[str] = CONTROL_CODES def __init__( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: List[str]="<unk>" , **UpperCamelCase_: List[Any] ): super().__init__(unk_token=UpperCamelCase_ , **UpperCamelCase_ ) with open(UpperCamelCase_ , encoding="""utf-8""" ) as vocab_handle: __lowerCamelCase = json.load(UpperCamelCase_ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding="""utf-8""" ) as merges_handle: __lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = {} @property def lowerCAmelCase__ ( self: int ): return len(self.encoder ) def lowerCAmelCase__ ( self: List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Any ): if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(UpperCamelCase_ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowerCamelCase = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __lowerCamelCase = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(UpperCamelCase_ ): try: __lowerCamelCase = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(UpperCamelCase_ ) __lowerCamelCase = new_word if len(UpperCamelCase_ ) == 1: break else: __lowerCamelCase = get_pairs(UpperCamelCase_ ) __lowerCamelCase = '@@ '.join(UpperCamelCase_ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word return word def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] __lowerCamelCase = re.findall(r"""\S+\n?""" , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(""" """ ) ) ) return split_tokens def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any] ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] ): return self.decoder.get(UpperCamelCase_ , self.unk_token ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Tuple ): __lowerCamelCase = ' '.join(UpperCamelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowerCAmelCase__ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + """\n""" ) __lowerCamelCase = 0 with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __lowerCamelCase = token_index writer.write(""" """.join(UpperCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
350
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'spiece.model'} lowercase : int = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } lowercase : List[str] = { 'AI-Sweden/gpt-sw3-126m': 20_48, 'AI-Sweden/gpt-sw3-350m': 20_48, 'AI-Sweden/gpt-sw3-1.6b': 20_48, 'AI-Sweden/gpt-sw3-6.7b': 20_48, 'AI-Sweden/gpt-sw3-20b': 20_48, } class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" A : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs A : Optional[int] = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) A : List[Any] = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing A : int = '''<|endoftext|>''' if eos_token is None else eos_token A : Dict = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: A : List[Any] = unk_token if pad_token is None else pad_token A : List[str] = eos_token if bos_token is None else bos_token else: A : Optional[Any] = '''<pad>''' if pad_token is None else pad_token A : Optional[int] = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) A : List[str] = do_lower_case A : List[str] = remove_space A : Union[str, Any] = keep_accents A : Union[str, Any] = vocab_file A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off A : Any = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing A : List[str] = re.compile( F'[{"".join(map(SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]' ) def __getstate__( self ) -> Dict: """simple docstring""" A : Tuple = self.__dict__.copy() A : List[Any] = None return state def __setstate__( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A : Any = {} A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCAmelCase ( self ) -> int: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : List[str] = self.non_printing_characters_re.sub('''''' , SCREAMING_SNAKE_CASE ) # Normalize whitespaces A : Union[str, Any] = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization A : Optional[int] = unicodedata.normalize('''NFC''' , SCREAMING_SNAKE_CASE ) return text def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Optional[int] = self.preprocess_text(SCREAMING_SNAKE_CASE ) return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return out_string def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Optional[int] = [] A : Optional[Any] = '''''' A : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token A : Dict = True A : int = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) A : List[Any] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string def __lowerCAmelCase ( self ) -> Dict[str, int]: """simple docstring""" A : Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A : Tuple = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = self.preprocess_text(SCREAMING_SNAKE_CASE ) A : Any = self.sp_model.encode(SCREAMING_SNAKE_CASE ) else: A : Any = [self.preprocess_text(SCREAMING_SNAKE_CASE ) for t in text] A : Optional[int] = self.sp_model.encode(SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": A : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE ) return token_ids def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.sp_model.decode(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[int]: """simple docstring""" A : int = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] A : Tuple = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(SCREAMING_SNAKE_CASE ) + F'{self.bos_token}Bot:' ) return self.encode(text=SCREAMING_SNAKE_CASE )
3
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: # Initialise PyTorch model lowercase__: Optional[Any] = FunnelConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__: List[Any] = FunnelBaseModel(__UpperCAmelCase ) if base_model else FunnelModel(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
177
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
355
from math import isqrt def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _a , _a ): lowerCAmelCase__ : int = False return [i for i in range(2 , _a ) if is_prime[i]] def lowerCamelCase_ ( _a = 10**8 ): """simple docstring""" lowerCAmelCase__ : Any = calculate_prime_numbers(max_number // 2 ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Optional[int] = len(_a ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
211
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : List[Any] = self.delimiter if self.column_names is not None: _UpperCAmelCase : Union[str, Any] = self.column_names @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : Tuple = CsvConfig def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Tuple = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
145
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''ibert''' def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : Optional[int]=3_0_7_2 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-12 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Optional[Any]="absolute" , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Tuple="none" , **lowerCAmelCase__ : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : Any = quant_mode _UpperCAmelCase : Optional[Any] = force_dequant class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
145
1
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase ( a_ = "AAPL" ) -> str: """simple docstring""" A_ : List[str] = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" A_ : Union[str, Any] = BeautifulSoup(requests.get(a_ ).text , """html.parser""" ) A_ : str = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
164
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> float: """simple docstring""" A_ : Optional[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a_ )] ) A_ : Optional[Any] = np.array(a_ ) A_ : Optional[int] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a_ ) ) , x.transpose() ) , a_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : List[str] = (1, 2, 1) A_ : Tuple = (1, 1, 0, 7) A_ : List[Any] = SARIMAX( a_ , exog=a_ , order=a_ , seasonal_order=a_ ) A_ : Tuple = model.fit(disp=a_ , maxiter=6_0_0 , method="""nm""" ) A_ : List[Any] = model_fit.predict(1 , len(a_ ) , exog=[test_match] ) return result[0] def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : int = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(a_ , a_ ) A_ : Tuple = regressor.predict(a_ ) return y_pred[0] def UpperCAmelCase ( a_ ) -> float: """simple docstring""" train_user.sort() A_ : Any = np.percentile(a_ , 2_5 ) A_ : Union[str, Any] = np.percentile(a_ , 7_5 ) A_ : str = qa - qa A_ : List[Any] = qa - (iqr * 0.1) return low_lim def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" A_ : Dict = 0 A_ : Optional[Any] = 0 for i in list_vote: if i > actual_result: A_ : Optional[Any] = not_safe + 1 else: if abs(abs(a_ ) - abs(a_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCamelCase__ : List[str] = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCamelCase__ : Optional[Any] = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) UpperCamelCase__ : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data UpperCamelCase__ : List[Any] = normalize_df[:, 2].tolist() UpperCamelCase__ : Tuple = normalize_df[:, 0].tolist() UpperCamelCase__ : Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCamelCase__ : Any = normalize_df[:, [1, 2]].tolist() UpperCamelCase__ : Optional[int] = x[: len(x) - 1] UpperCamelCase__ : Optional[Any] = x[len(x) - 1 :] # for linear regression & sarimax UpperCamelCase__ : Optional[int] = total_date[: len(total_date) - 1] UpperCamelCase__ : str = total_user[: len(total_user) - 1] UpperCamelCase__ : Tuple = total_match[: len(total_match) - 1] UpperCamelCase__ : List[str] = total_date[len(total_date) - 1 :] UpperCamelCase__ : List[Any] = total_user[len(total_user) - 1 :] UpperCamelCase__ : Dict = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCamelCase__ : List[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCamelCase__ : Tuple = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
164
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[Any] =logging.get_logger(__name__) class a_ ( __lowercase ): __A = """encoder-decoder""" __A = True def __init__( self : Union[str, Any] , **lowercase : Any ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase_ :Optional[int] = kwargs.pop("encoder" ) lowercase_ :int = encoder_config.pop("model_type" ) lowercase_ :Any = kwargs.pop("decoder" ) lowercase_ :int = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowercase_ :List[Any] = AutoConfig.for_model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowercase_ :Optional[Any] = AutoConfig.for_model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowercase_ :List[Any] = True @classmethod def lowercase__ ( cls : Tuple , lowercase : PretrainedConfig , lowercase : PretrainedConfig , **lowercase : Dict ): """simple docstring""" logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase_ :Union[str, Any] = True lowercase_ :str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :List[Any] = copy.deepcopy(self.__dict__ ) lowercase_ :List[str] = self.encoder.to_dict() lowercase_ :Union[str, Any] = self.decoder.to_dict() lowercase_ :Any = self.__class__.model_type return output
223
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : List[Any] = TypeVar("T") def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (position - 1) // 2 def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (2 * position) + 1 def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): def __init__( self : List[str] ) -> None: __lowerCamelCase = [] __lowerCamelCase = {} __lowerCamelCase = 0 def __len__( self : Optional[int] ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def __A ( self : Union[str, Any] ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __A ( self : str , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) __lowerCamelCase = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __lowerCamelCase , __lowerCamelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowerCamelCase , __lowerCamelCase = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE__ ) return elem def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Update the weight of the given key __lowerCamelCase = self.position_map[elem] __lowerCamelCase = (elem, weight) if position > 0: __lowerCamelCase = get_parent_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] __lowerCamelCase = self.position_map[elem] if curr_pos == 0: return None __lowerCamelCase = get_parent_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = self.heap[curr_pos] __lowerCamelCase , __lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_up(SCREAMING_SNAKE_CASE__ ) return None def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] __lowerCamelCase = self.position_map[elem] __lowerCamelCase , __lowerCamelCase = self.heap[curr_pos] __lowerCamelCase = get_child_left_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = get_child_right_position(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements and child_right_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_left_position] __lowerCamelCase , __lowerCamelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: return None if child_right_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) return None def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: # Swap the nodes at the given positions __lowerCamelCase = self.heap[nodea_pos][0] __lowerCamelCase = self.heap[nodea_pos][0] __lowerCamelCase , __lowerCamelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowerCamelCase = nodea_pos __lowerCamelCase = nodea_pos class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) -> None: __lowerCamelCase = {} __lowerCamelCase = 0 def __repr__( self : Optional[int] ) -> str: return str(self.connections ) def __len__( self : List[str] ) -> int: return self.nodes def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: __lowerCamelCase = {} self.nodes += 1 def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(SCREAMING_SNAKE_CASE__ ) self.add_node(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = weight __lowerCamelCase = weight def __magic_name__ ( __lowerCAmelCase : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: __lowerCamelCase = {node: maxsize for node in graph.connections} __lowerCamelCase = {node: None for node in graph.connections} __lowerCamelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowerCAmelCase , __lowerCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization __lowerCamelCase = priority_queue.extract_min() __lowerCamelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowerCAmelCase , dist[neighbour] ) __lowerCamelCase = node # running prim's algorithm while not priority_queue.is_empty(): __lowerCamelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowerCAmelCase , dist[neighbour] ) __lowerCamelCase = node return dist, parent
270
0
from math import factorial lowerCAmelCase = {str(d): factorial(d) for d in range(1_0)} def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(A_ ) ) def _lowerCamelCase( ) -> Tuple: '''simple docstring''' __lowercase= 7 * factorial(9 ) + 1 return sum(i for i in range(3 , A_ ) if sum_of_digit_factorial(A_ ) == i ) if __name__ == "__main__": print(F'{solution() = }')
358
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any]=0.9_99 ,_lowerCamelCase : Optional[int]="cosine" ,) -> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _lowerCAmelCase : str = [] for i in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = i / num_diffusion_timesteps _lowerCAmelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) ,_lowerCamelCase ) ) return torch.tensor(_lowerCamelCase ,dtype=torch.floataa ) class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] _UpperCamelCase : Dict = 2 @register_to_config def __init__( self , a__ = 1000 , a__ = 0.0_0_0_8_5 , a__ = 0.0_1_2 , a__ = "linear" , a__ = None , a__ = "epsilon" , a__ = "linspace" , a__ = 0 , ): if trained_betas is not None: _lowerCAmelCase : str = torch.tensor(a__ , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase : Optional[Any] = torch.linspace(a__ , a__ , a__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase : int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase : Optional[Any] = betas_for_alpha_bar(a__ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) _lowerCAmelCase : List[str] = 1.0 - self.betas _lowerCAmelCase : Optional[int] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a__ , a__ , a__ ) def __A ( self , a__ , a__=None ): if schedule_timesteps is None: _lowerCAmelCase : Dict = self.timesteps _lowerCAmelCase : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCAmelCase : List[str] = 1 if len(a__ ) > 1 else 0 else: _lowerCAmelCase : Optional[int] = timestep.cpu().item() if torch.is_tensor(a__ ) else timestep _lowerCAmelCase : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def __A ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __A ( self , a__ , a__ , ): _lowerCAmelCase : Union[str, Any] = self.index_for_timestep(a__ ) if self.state_in_first_order: _lowerCAmelCase : Optional[int] = self.sigmas[step_index] else: _lowerCAmelCase : Optional[Any] = self.sigmas_interpol[step_index] _lowerCAmelCase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def __A ( self , a__ , a__ = None , a__ = None , ): _lowerCAmelCase : List[Any] = num_inference_steps _lowerCAmelCase : Tuple = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCAmelCase : List[str] = np.linspace(0 , num_train_timesteps - 1 , a__ , dtype=a__ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCAmelCase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : List[str] = (np.arange(0 , a__ ) * step_ratio).round()[::-1].copy().astype(a__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCAmelCase : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : str = (np.arange(a__ , 0 , -step_ratio )).round().copy().astype(a__ ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) _lowerCAmelCase : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCAmelCase : List[str] = torch.from_numpy(np.log(a__ ) ).to(a__ ) _lowerCAmelCase : List[str] = np.interp(a__ , np.arange(0 , len(a__ ) ) , a__ ) _lowerCAmelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCAmelCase : Any = torch.from_numpy(a__ ).to(device=a__ ) # interpolate sigmas _lowerCAmelCase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _lowerCAmelCase : Dict = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCAmelCase : Union[str, Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(a__ ).startswith("""mps""" ): # mps does not support float64 _lowerCAmelCase : List[Any] = torch.from_numpy(a__ ).to(a__ , dtype=torch.floataa ) else: _lowerCAmelCase : List[str] = torch.from_numpy(a__ ).to(a__ ) # interpolate timesteps _lowerCAmelCase : List[Any] = self.sigma_to_t(a__ ).to(a__ , dtype=timesteps.dtype ) _lowerCAmelCase : Optional[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _lowerCAmelCase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowerCAmelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCAmelCase : Tuple = defaultdict(a__ ) def __A ( self , a__ ): # get log sigma _lowerCAmelCase : str = sigma.log() # get distribution _lowerCAmelCase : List[str] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowerCAmelCase : Optional[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowerCAmelCase : List[str] = low_idx + 1 _lowerCAmelCase : str = self.log_sigmas[low_idx] _lowerCAmelCase : Union[str, Any] = self.log_sigmas[high_idx] # interpolate sigmas _lowerCAmelCase : List[Any] = (low - log_sigma) / (low - high) _lowerCAmelCase : List[str] = w.clamp(0 , 1 ) # transform interpolation to time range _lowerCAmelCase : Optional[Any] = (1 - w) * low_idx + w * high_idx _lowerCAmelCase : Optional[int] = t.view(sigma.shape ) return t @property def __A ( self ): return self.sample is None def __A ( self , a__ , a__ , a__ , a__ = True , ): _lowerCAmelCase : List[str] = self.index_for_timestep(a__ ) # advance index counter by 1 _lowerCAmelCase : str = timestep.cpu().item() if torch.is_tensor(a__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCAmelCase : Tuple = self.sigmas[step_index] _lowerCAmelCase : Optional[int] = self.sigmas_interpol[step_index + 1] _lowerCAmelCase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowerCAmelCase : int = self.sigmas[step_index - 1] _lowerCAmelCase : Any = self.sigmas_interpol[step_index] _lowerCAmelCase : List[str] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCAmelCase : int = 0 _lowerCAmelCase : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCAmelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCAmelCase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCAmelCase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCAmelCase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCAmelCase : Optional[Any] = sigma_interpol - sigma_hat # store for 2nd order step _lowerCAmelCase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowerCAmelCase : List[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowerCAmelCase : Union[str, Any] = sigma_next - sigma_hat _lowerCAmelCase : int = self.sample _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a__ ) def __A ( self , a__ , a__ , a__ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowerCAmelCase : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a__ ): # mps does not support float64 _lowerCAmelCase : str = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCAmelCase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCAmelCase : Any = self.timesteps.to(original_samples.device ) _lowerCAmelCase : int = timesteps.to(original_samples.device ) _lowerCAmelCase : str = [self.index_for_timestep(a__ , a__ ) for t in timesteps] _lowerCAmelCase : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCAmelCase : str = sigma.unsqueeze(-1 ) _lowerCAmelCase : Tuple = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
44
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __UpperCamelCase ( _A ): def __lt__(self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any): return self[-1] < other[-1] def __eq__(self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int): return self[-1] == other[-1] def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = [] # sort into stacks for element in collection: A = Stack([element] ) A = bisect_left(lowercase__ , lowercase__ ) if i != len(lowercase__ ): stacks[i].append(lowercase__ ) else: stacks.append(lowercase__ ) # use a heap-based merge to merge stack efficiently A = merge(*(reversed(lowercase__ ) for stack in stacks) ) return collection if __name__ == "__main__": __A : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() __A : List[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
353
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __A : Union[str, Any] = get_logger(__name__) class __UpperCamelCase ( enum.Enum ): SCREAMING_SNAKE_CASE = "all_checks" SCREAMING_SNAKE_CASE = "basic_checks" SCREAMING_SNAKE_CASE = "no_checks" class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=None ): """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase__ ) - set(lowercase__ ) ) ) A = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] A = " for " + verification_name if verification_name is not None else "" if len(lowercase__ ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) A = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase__ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase__ ) ) logger.info("All the splits matched successfully." ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ = True ): """simple docstring""" if record_checksum: A = shaaaa() with open(lowercase__ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(lowercase__ ) A = m.hexdigest() else: A = None return {"num_bytes": os.path.getsize(lowercase__ ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
57
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : str = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
'''simple docstring''' import random def lowerCAmelCase (__A): """simple docstring""" _a = num - 1 _a = 0 while s % 2 == 0: _a = s // 2 t += 1 for _ in range(5): _a = random.randrange(2 , num - 1) _a = pow(__A , __A , __A) if v != 1: _a = 0 while v != (num - 1): if i == t - 1: return False else: _a = i + 1 _a = (v**2) % num return True def lowerCAmelCase (__A): """simple docstring""" if num < 2: return False _a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__A) def lowerCAmelCase (__A = 1_024): """simple docstring""" while True: _a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize)) if is_prime_low_num(__A): return num if __name__ == "__main__": lowercase_ = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
211
0
import math def lowerCAmelCase_ ( __A, __A ) -> int: '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__A ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase__ = "Enter the base and the power separated by a comma: " UpperCamelCase__ , UpperCamelCase__ = map(int, input(prompt).split(",")) UpperCamelCase__ , UpperCamelCase__ = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase__ = res(xa, ya) UpperCamelCase__ = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
354
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = '▁' UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : int = BigBirdTokenizer __UpperCAmelCase : Optional[int] = BigBirdTokenizerFast __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : List[Any] = True def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" super().setUp() UpperCAmelCase__ = self.tokenizer_class(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "<s>" UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ (self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_4 ) def lowercase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = "I was born in 92000, and this is falsé." UpperCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) UpperCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = "Hello World!" UpperCAmelCase__ = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off UpperCAmelCase__ = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def lowercase_ (self : List[str] ) -> int: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] UpperCAmelCase__ = " ".join(__UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors="pt" , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = BigBirdConfig(attention_type="original_full" ) UpperCAmelCase__ = BigBirdModel(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) UpperCAmelCase__ = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = {"input_ids": [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
143
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class A : def __init__( self , lowerCamelCase__ ) -> str: '''simple docstring''' lowercase__ = data lowercase__ = None class A : def __init__( self ) -> Any: '''simple docstring''' lowercase__ = None lowercase__ = None def __iter__( self ) -> Iterator[Any]: '''simple docstring''' lowercase__ = self.head while self.head: yield node.data lowercase__ = node.next if node == self.head: break def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ) -> Optional[Any]: '''simple docstring''' return "->".join(str(lowerCamelCase__ ) for item in iter(self ) ) def A__ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(len(self ) , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(0 , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) lowercase__ = Node(lowerCamelCase__ ) if self.head is None: lowercase__ = new_node # first node points itself lowercase__ = lowercase__ = new_node elif index == 0: # insert at head lowercase__ = self.head lowercase__ = lowercase__ = new_node else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = new_node if index == len(self ) - 1: # insert at tail lowercase__ = new_node def A__ ( self ) -> Dict: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self ) -> Any: '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , lowerCamelCase__ = 0 ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) lowercase__ = self.head if self.head == self.tail: # just one node lowercase__ = lowercase__ = None elif index == 0: # delete head node lowercase__ = self.tail.next.next lowercase__ = self.head.next else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = temp.next.next if index == len(self ) - 1: # delete at tail lowercase__ = temp return delete_node.data def A__ ( self ) -> bool: '''simple docstring''' return len(self ) == 0 def _A ( ): lowercase__ = CircularLinkedList() assert len(lowercase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowercase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowercase__ ) == i circular_linked_list.insert_nth(lowercase__ , i + 1 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
164
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = AudioLDMPipeline lowerCamelCase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS lowerCamelCase : Tuple = TEXT_TO_AUDIO_BATCH_PARAMS lowerCamelCase : Optional[int] = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCamelCase__ , ) lowercase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) lowercase__ = ClapTextModelWithProjection(lowerCamelCase__ ) lowercase__ = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) lowercase__ = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCamelCase__ , ) lowercase__ = SpeechTaHifiGan(lowerCamelCase__ ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def A__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Tuple: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 256 lowercase__ = audio[:10] lowercase__ = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * [inputs["""prompt"""]] # forward lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * [inputs.pop("""prompt""" )] lowercase__ = audioldm_pipe.tokenizer( lowerCamelCase__ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="""pt""" , ) lowercase__ = text_inputs["""input_ids"""].to(lowerCamelCase__ ) lowercase__ = audioldm_pipe.text_encoder( lowerCamelCase__ , ) lowercase__ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ = F.normalize(lowerCamelCase__ , dim=-1 ) lowercase__ = prompt_embeds # forward lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * ["""this is a negative prompt"""] lowercase__ = negative_prompt lowercase__ = 3 * [inputs["""prompt"""]] # forward lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * [inputs.pop("""prompt""" )] lowercase__ = [] for p in [prompt, negative_prompt]: lowercase__ = audioldm_pipe.tokenizer( lowerCamelCase__ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="""pt""" , ) lowercase__ = text_inputs["""input_ids"""].to(lowerCamelCase__ ) lowercase__ = audioldm_pipe.text_encoder( lowerCamelCase__ , ) lowercase__ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ = F.normalize(lowerCamelCase__ , dim=-1 ) embeds.append(lowerCamelCase__ ) lowercase__ , lowercase__ = embeds # forward lowercase__ = audioldm_pipe(**lowerCamelCase__ ) lowercase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = """egg cracking""" lowercase__ = audioldm_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 256 lowercase__ = audio[:10] lowercase__ = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def A__ ( self ) -> int: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) lowercase__ = audioldm_pipe(lowerCamelCase__ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase__ = 2 lowercase__ = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase__ = 2 lowercase__ = audioldm_pipe(lowerCamelCase__ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase__ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase__ = 2 lowercase__ = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = audioldm_pipe.vocoder.config.sampling_rate lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = audioldm_pipe(audio_length_in_s=0.0_16 , **lowerCamelCase__ ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) / vocoder_sampling_rate == 0.0_16 lowercase__ = audioldm_pipe(audio_length_in_s=0.0_32 , **lowerCamelCase__ ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) / vocoder_sampling_rate == 0.0_32 def A__ ( self ) -> str: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase__ ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = ["""hey"""] lowercase__ = audioldm_pipe(lowerCamelCase__ , num_inference_steps=1 ) lowercase__ = output.audios.shape assert audio_shape == (1, 256) lowercase__ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase__ = SpeechTaHifiGan(lowerCamelCase__ ).to(lowerCamelCase__ ) lowercase__ = audioldm_pipe(lowerCamelCase__ , num_inference_steps=1 ) lowercase__ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def A__ ( self ) -> Optional[int]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase__ ) def A__ ( self ) -> int: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ ( self ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ ) @slow class A ( unittest.TestCase ): def A__ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , lowerCamelCase__ , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=0 ) -> int: '''simple docstring''' lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = np.random.RandomState(lowerCamelCase__ ).standard_normal((1, 8, 128, 16) ) lowercase__ = torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) lowercase__ = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_inputs(lowerCamelCase__ ) lowercase__ = 25 lowercase__ = audioldm_pipe(**lowerCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 81_920 lowercase__ = audio[77_230:77_240] lowercase__ = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) lowercase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) lowercase__ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase__ = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_inputs(lowerCamelCase__ ) lowercase__ = audioldm_pipe(**lowerCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 81_920 lowercase__ = audio[27_780:27_790] lowercase__ = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) lowercase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
164
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ (__lowerCAmelCase ): """simple docstring""" def __init__( self : Dict ,lowercase__ : WhisperForConditionalGeneration ,lowercase__ : WhisperProcessor ,lowercase__ : AutoencoderKL ,lowercase__ : CLIPTextModel ,lowercase__ : CLIPTokenizer ,lowercase__ : UNetaDConditionModel ,lowercase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,lowercase__ : StableDiffusionSafetyChecker ,lowercase__ : CLIPImageProcessor ,): super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase__ ,speech_processor=lowerCamelCase__ ,vae=lowerCamelCase__ ,text_encoder=lowerCamelCase__ ,tokenizer=lowerCamelCase__ ,unet=lowerCamelCase__ ,scheduler=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.enable_attention_slicing(lowerCamelCase__ ) @torch.no_grad() def __call__( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : List[str]=1_6_0_0_0 ,lowercase__ : int = 5_1_2 ,lowercase__ : int = 5_1_2 ,lowercase__ : int = 5_0 ,lowercase__ : float = 7.5 ,lowercase__ : Optional[Union[str, List[str]]] = None ,lowercase__ : Optional[int] = 1 ,lowercase__ : float = 0.0 ,lowercase__ : Optional[torch.Generator] = None ,lowercase__ : Optional[torch.FloatTensor] = None ,lowercase__ : Optional[str] = "pil" ,lowercase__ : bool = True ,lowercase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,lowercase__ : int = 1 ,**lowercase__ : List[str] ,): __lowercase = self.speech_processor.feature_extractor( lowerCamelCase__ ,return_tensors='''pt''' ,sampling_rate=lowerCamelCase__ ).input_features.to(self.device ) __lowercase = self.speech_model.generate(lowerCamelCase__ ,max_length=4_8_0_0_0_0 ) __lowercase = self.speech_processor.tokenizer.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ,normalize=lowerCamelCase__ )[ 0 ] if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): __lowercase = 1 elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): __lowercase = len(lowerCamelCase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase__ ,lowerCamelCase__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowerCamelCase__ )}." ) # get prompt text embeddings __lowercase = self.tokenizer( lowerCamelCase__ ,padding='''max_length''' ,max_length=self.tokenizer.model_max_length ,return_tensors='''pt''' ,) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase = text_embeddings.shape __lowercase = text_embeddings.repeat(1 ,lowerCamelCase__ ,1 ) __lowercase = text_embeddings.view(bs_embed * num_images_per_prompt ,lowerCamelCase__ ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''''''] * batch_size elif type(lowerCamelCase__ ) is not type(lowerCamelCase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase__ )} !=" F" {type(lowerCamelCase__ )}." ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): __lowercase = [negative_prompt] elif batch_size != len(lowerCamelCase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __lowercase = negative_prompt __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( lowerCamelCase__ ,padding='''max_length''' ,max_length=lowerCamelCase__ ,truncation=lowerCamelCase__ ,return_tensors='''pt''' ,) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = uncond_embeddings.shape[1] __lowercase = uncond_embeddings.repeat(1 ,lowerCamelCase__ ,1 ) __lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt ,lowerCamelCase__ ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase = torch.randn(lowerCamelCase__ ,generator=lowerCamelCase__ ,device='''cpu''' ,dtype=lowerCamelCase__ ).to( self.device ) else: __lowercase = torch.randn(lowerCamelCase__ ,generator=lowerCamelCase__ ,device=self.device ,dtype=lowerCamelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for i, t in enumerate(self.progress_bar(lowerCamelCase__ ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(lowerCamelCase__ ,lowerCamelCase__ ) # predict the noise residual __lowercase = self.unet(lowerCamelCase__ ,lowerCamelCase__ ,encoder_hidden_states=lowerCamelCase__ ).sample # perform guidance if do_classifier_free_guidance: __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) __lowercase = 1 / 0.1_8_2_1_5 * latents __lowercase = self.vae.decode(lowerCamelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase__ ,nsfw_content_detected=lowerCamelCase__ )
357
'''simple docstring''' import string def _A ( A__ ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __lowercase = '''''' for symbol in message: if symbol in string.ascii_uppercase: __lowercase = string.ascii_uppercase.find(A__ ) __lowercase = num - key if num < 0: __lowercase = num + len(string.ascii_uppercase ) __lowercase = translated + string.ascii_uppercase[num] else: __lowercase = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def _A ( ): """simple docstring""" __lowercase = input('''Encrypted message: ''' ) __lowercase = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
52
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[int] =XLMTokenizer lowerCamelCase : List[Any] =False def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCamelCase = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(a ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Any ): """simple docstring""" __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = XLMTokenizer(self.vocab_file , self.merges_file ) __lowerCamelCase = '''lower''' __lowerCamelCase = ['''low''', '''er</w>'''] __lowerCamelCase = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase = tokens + ['''<unk>'''] __lowerCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
67
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
from __future__ import annotations from typing import Any def a ( SCREAMING_SNAKE_CASE_ : list ): """simple docstring""" if not postfix_notation: return 0 UpperCamelCase : Optional[Any] = {'''+''', '''-''', '''*''', '''/'''} UpperCamelCase : list[Any] = [] for token in postfix_notation: if token in operations: UpperCamelCase , UpperCamelCase : Optional[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(SCREAMING_SNAKE_CASE_ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
315
def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): """simple docstring""" UpperCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE_ ) ) return data_lists def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" UpperCamelCase : list[list[float]] = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = max(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: UpperCamelCase : Dict = F"""Invalid weight of {weight:f} provided""" raise ValueError(SCREAMING_SNAKE_CASE_ ) score_lists.append(SCREAMING_SNAKE_CASE_ ) return score_lists def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): """simple docstring""" UpperCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = final_scores[j] + ele return final_scores def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" UpperCamelCase : str = get_data(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = calculate_each_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = generate_final_scores(SCREAMING_SNAKE_CASE_ ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE_ ): source_data[i].append(SCREAMING_SNAKE_CASE_ ) return source_data
315
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class A ( unittest.TestCase ): def __init__( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[Any]=13 , lowercase_ : int=30 , lowercase_ : Any=2 , lowercase_ : Dict=3 , lowercase_ : Any=True , lowercase_ : Optional[int]=True , lowercase_ : Tuple=32 , lowercase_ : List[Any]=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Optional[int]=37 , lowercase_ : List[str]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Tuple=10 , lowercase_ : List[Any]=0.02 , ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] =parent _lowerCamelCase : str =batch_size _lowerCamelCase : Optional[Any] =image_size _lowerCamelCase : Any =patch_size _lowerCamelCase : Dict =num_channels _lowerCamelCase : List[str] =is_training _lowerCamelCase : int =use_labels _lowerCamelCase : Optional[int] =hidden_size _lowerCamelCase : Any =num_hidden_layers _lowerCamelCase : str =num_attention_heads _lowerCamelCase : Any =intermediate_size _lowerCamelCase : Dict =hidden_act _lowerCamelCase : int =hidden_dropout_prob _lowerCamelCase : List[str] =attention_probs_dropout_prob _lowerCamelCase : Optional[int] =type_sequence_label_size _lowerCamelCase : List[Any] =initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : Optional[Any] =(image_size // patch_size) ** 2 _lowerCamelCase : str =num_patches + 1 def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] =ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase ( self : str , lowercase_ : str , lowercase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] =FlaxViTModel(config=__a ) _lowerCamelCase : str =model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : Optional[int] =(self.image_size, self.image_size) _lowerCamelCase : List[str] =(self.patch_size, self.patch_size) _lowerCamelCase : List[str] =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Any ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] =self.type_sequence_label_size _lowerCamelCase : List[Any] =FlaxViTForImageClassification(config=__a ) _lowerCamelCase : Tuple =model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : Union[str, Any] =1 _lowerCamelCase : str =FlaxViTForImageClassification(__a ) _lowerCamelCase : Optional[Any] =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Dict =model(__a ) def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] =self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any =config_and_inputs _lowerCamelCase : Optional[Any] ={'pixel_values': pixel_values} return config, inputs_dict @require_flax class A ( lowerCAmelCase__ , unittest.TestCase ): UpperCamelCase__ : int =(FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] =FlaxViTModelTester(self ) _lowerCamelCase : Union[str, Any] =ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCamelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict =model_class(__a ) _lowerCamelCase : Dict =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] =[*signature.parameters.keys()] _lowerCamelCase : str =['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Dict =self._prepare_for_class(__a , __a ) _lowerCamelCase : Optional[int] =model_class(__a ) @jax.jit def model_jitted(lowercase_ : Optional[int] , **lowercase_ : List[str] ): return model(pixel_values=__a , **__a ) with self.subTest('JIT Enabled' ): _lowerCamelCase : int =model_jitted(**__a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : Optional[Any] =model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCamelCase : Optional[Any] =model_class_name.from_pretrained('google/vit-base-patch16-224' ) _lowerCamelCase : str =model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
199
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""image_processor""", """tokenizer"""] __UpperCAmelCase : Optional[Any] ="""CLIPImageProcessor""" __UpperCAmelCase : Union[str, Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self , __a=None , __a=None , **__a ): __lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) __lowerCAmelCase = kwargs.pop("feature_extractor" ) __lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self , __a=None , __a=None , __a=None , **__a ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __lowerCAmelCase = self.tokenizer(__a , return_tensors=__a , **__a ) if images is not None: __lowerCAmelCase = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: __lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def snake_case ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @property def snake_case ( self ): __lowerCAmelCase = self.tokenizer.model_input_names __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
57
0
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : str , _A : List[str] ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __SCREAMING_SNAKE_CASE : Optional[int] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'sshleifer/tiny-gpt2' __SCREAMING_SNAKE_CASE : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : Optional[Any] = PyTorchBenchmark(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 'sgugger/tiny-distilbert-classification' __SCREAMING_SNAKE_CASE : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , only_pretrain_model=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : Dict = PyTorchBenchmark(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = 'sshleifer/tiny-gpt2' __SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , torchscript=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : Optional[Any] = PyTorchBenchmark(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = 'sshleifer/tiny-gpt2' __SCREAMING_SNAKE_CASE : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , fpaa=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : Optional[int] = PyTorchBenchmark(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 'sshleifer/tiny-gpt2' __SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) # set architectures equal to `None` __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : List[Any] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __SCREAMING_SNAKE_CASE : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = 'sshleifer/tiny-gpt2' __SCREAMING_SNAKE_CASE : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : str = PyTorchBenchmark(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'sshleifer/tiny-gpt2' __SCREAMING_SNAKE_CASE : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCamelCase , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : List[Any] = PyTorchBenchmark(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 'sshleifer/tiny-gpt2' __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'sshleifer/tinier_bart' __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : int = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = 'sshleifer/tiny-gpt2' __SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : int = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __SCREAMING_SNAKE_CASE : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = 'sshleifer/tinier_bart' __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __SCREAMING_SNAKE_CASE : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , save_to_csv=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCamelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(__UpperCamelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(__UpperCamelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(__UpperCamelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(__UpperCamelCase , '''env.csv''' ) , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = PyTorchBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''env.csv''' ) ).exists() ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_A : List[str] ): self.assertTrue(hasattr(__UpperCamelCase , '''sequential''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''cumulative''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''current''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCamelCase , '''log.txt''' ) , log_print=__UpperCamelCase , trace_memory_line_by_line=__UpperCamelCase , multi_process=__UpperCamelCase , ) __SCREAMING_SNAKE_CASE : int = PyTorchBenchmark(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''log.txt''' ) ).exists() )
303
from abc import ABC, abstractmethod from argparse import ArgumentParser class __snake_case ( _lowerCamelCase ): @staticmethod @abstractmethod def __a ( __UpperCamelCase ) -> Dict: '''simple docstring''' raise NotImplementedError() @abstractmethod def __a ( self ) -> Optional[int]: '''simple docstring''' raise NotImplementedError()
143
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE__ ( ) -> int: snake_case : Any = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" snake_case : int = Image.open(requests.get(lowercase ,stream=lowercase ).raw ).convert("""RGB""" ) return image def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Any = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[int]: snake_case : List[str] = dct.pop(lowercase ) snake_case : Dict = val def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case : Dict = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) snake_case : str = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(lowercase ,requires_grad=lowercase ), v_bias) ) snake_case : List[Any] = qkv_bias def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[Any]: snake_case : List[Any] = 364 if """coco""" in model_name else 224 snake_case : List[str] = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: snake_case : List[Any] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" ,eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" ,eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: snake_case : Union[str, Any] = TaConfig.from_pretrained("""google/flan-t5-xl""" ,dense_act_fn="""gelu""" ,bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xxl""" ,dense_act_fn="""gelu""" ,bos_token_id=1 ).to_dict() snake_case : Tuple = BlipaConfig(vision_config=lowercase ,text_config=lowercase ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=False ) -> List[str]: snake_case : Any = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) snake_case : Tuple = tokenizer("""\n""" ,add_special_tokens=lowercase ).input_ids[0] snake_case , snake_case : Tuple = get_blipa_config(lowercase ,eos_token_id=lowercase ) snake_case : List[str] = BlipaForConditionalGeneration(lowercase ).eval() snake_case : Optional[Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } snake_case , snake_case : Optional[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" snake_case , snake_case , snake_case : Union[str, Any] = load_model_and_preprocess( name=lowercase ,model_type=lowercase ,is_eval=lowercase ,device=lowercase ) original_model.eval() print("""Done!""" ) # update state dict keys snake_case : int = original_model.state_dict() snake_case : Optional[int] = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case : List[str] = state_dict.pop(lowercase ) if key.startswith("""Qformer.bert""" ): snake_case : Optional[Any] = key.replace("""Qformer.bert""" ,"""qformer""" ) if "attention.self" in key: snake_case : List[str] = key.replace("""self""" ,"""attention""" ) if "opt_proj" in key: snake_case : int = key.replace("""opt_proj""" ,"""language_projection""" ) if "t5_proj" in key: snake_case : Any = key.replace("""t5_proj""" ,"""language_projection""" ) if key.startswith("""opt""" ): snake_case : Optional[int] = key.replace("""opt""" ,"""language""" ) if key.startswith("""t5""" ): snake_case : Union[str, Any] = key.replace("""t5""" ,"""language""" ) snake_case : str = val # read in qv biases read_in_q_v_bias(lowercase ,lowercase ) snake_case , snake_case : str = hf_model.load_state_dict(lowercase ,strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] snake_case : List[Any] = load_demo_image() snake_case : Dict = vis_processors["""eval"""](lowercase ).unsqueeze(0 ).to(lowercase ) snake_case : Optional[Any] = tokenizer(["""\n"""] ,return_tensors="""pt""" ).input_ids.to(lowercase ) # create processor snake_case : Tuple = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} ,image_mean=lowercase ,image_std=lowercase ) snake_case : Dict = BlipaProcessor(image_processor=lowercase ,tokenizer=lowercase ) snake_case : Optional[int] = processor(images=lowercase ,return_tensors="""pt""" ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase ,lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: snake_case : Tuple = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits snake_case : str = hf_model(lowercase ,lowercase ).logits else: snake_case : Optional[int] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits snake_case : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id ,-100 ) snake_case : Union[str, Any] = hf_model(lowercase ,lowercase ,labels=lowercase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" ,original_logits[0, :3, :3] ) print("""First values of HF logits:""" ,logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": snake_case : Optional[Any] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] ,device=lowercase ) assert torch.allclose(logits[0, :3, :3] ,lowercase ,atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": snake_case : Union[str, Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] ,device=lowercase ) else: # cast to same type snake_case : List[Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase ) ,lowercase ,atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) snake_case : Union[str, Any] = """""" snake_case : Dict = tokenizer(lowercase ,return_tensors="""pt""" ).input_ids.to(lowercase ) snake_case : Optional[int] = original_model.generate({"""image""": original_pixel_values} ) snake_case : int = hf_model.generate( lowercase ,lowercase ,do_sample=lowercase ,num_beams=5 ,max_length=30 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.0 ,length_penalty=1.0 ,temperature=1 ,) print("""Original generation:""" ,lowercase ) snake_case : Dict = input_ids.shape[1] snake_case : List[Any] = processor.batch_decode(outputs[:, prompt_length:] ,skip_special_tokens=lowercase ) snake_case : List[str] = [text.strip() for text in output_text] print("""HF generation:""" ,lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() lowerCamelCase : List[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowerCamelCase : Tuple = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
176
from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> bool: snake_case : List[str] = first_str.lower().strip() snake_case : List[str] = second_str.lower().strip() # Remove whitespace snake_case : Any = first_str.replace(""" """ ,"""""" ) snake_case : List[str] = second_str.replace(""" """ ,"""""" ) # Strings of different lengths are not anagrams if len(lowercase ) != len(lowercase ): return False # Default values for count should be 0 snake_case : defaultdict[str, int] = defaultdict(lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : List[Any] = input('Enter the first string ').strip() lowerCamelCase : Optional[int] = input('Enter the second string ').strip() lowerCamelCase : Optional[Any] = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
176
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __snake_case :Optional[int] = '''src/diffusers''' __snake_case :Any = '''.''' # This is to make sure the diffusers module imported is the one in the repo. __snake_case :List[Any] = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) __snake_case :int = spec.loader.load_module() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return line.startswith(_UpperCAmelCase ) or len(_UpperCAmelCase ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , _UpperCAmelCase ) is not None def __snake_case ( _UpperCAmelCase ): __a = object_name.split('''.''' ) __a = 0 # First let's find the module where our object lives. __a = parts[i] while i < len(_UpperCAmelCase ) and not os.path.isfile(os.path.join(_UpperCAmelCase , f'{module}.py' ) ): i += 1 if i < len(_UpperCAmelCase ): __a = os.path.join(_UpperCAmelCase , parts[i] ) if i >= len(_UpperCAmelCase ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(_UpperCAmelCase , f'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.readlines() # Now let's find the class / func in the code! __a = '''''' __a = 0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCAmelCase ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCAmelCase ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __a = line_index while line_index < len(_UpperCAmelCase ) and _should_continue(lines[line_index] , _UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __a = lines[start_index:line_index] return "".join(_UpperCAmelCase ) __snake_case :List[Any] = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') __snake_case :Tuple = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') __snake_case :Union[str, Any] = re.compile(r'''<FILL\s+[^>]*>''') def __snake_case ( _UpperCAmelCase ): __a = code.split('''\n''' ) __a = 0 while idx < len(_UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCAmelCase ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def __snake_case ( _UpperCAmelCase ): __a = len(get_indent(_UpperCAmelCase ) ) > 0 if has_indent: __a = f'class Bla:\n{code}' __a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_UpperCAmelCase ) __a = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) __a , __a = style_docstrings_in_code(_UpperCAmelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=False ): with open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.readlines() __a = [] __a = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCAmelCase ): __a = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __a , __a , __a = search.groups() __a = find_code_in_diffusers(_UpperCAmelCase ) __a = get_indent(_UpperCAmelCase ) __a = line_index + 1 if indent == theoretical_indent else line_index + 2 __a = theoretical_indent __a = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __a = True while line_index < len(_UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCAmelCase ): break __a = lines[line_index] __a = _should_continue(_UpperCAmelCase , _UpperCAmelCase ) and re.search(f'^{indent}# End copy' , _UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __a = lines[start_index:line_index] __a = ''''''.join(_UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies __a = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(_UpperCAmelCase ) is None] __a = '''\n'''.join(_UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCAmelCase ) > 0: __a = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) __a = [_re_replace_pattern.search(_UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue __a , __a , __a = pattern.groups() __a = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if option.strip() == "all-casing": __a = re.sub(obja.lower() , obja.lower() , _UpperCAmelCase ) __a = re.sub(obja.upper() , obja.upper() , _UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __a = blackify(lines[start_index - 1] + theoretical_code ) __a = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __a = lines[:start_index] + [theoretical_code] + lines[line_index:] __a = start_index + 1 if overwrite and len(_UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_UpperCAmelCase ) return diffs def __snake_case ( _UpperCAmelCase = False ): __a = glob.glob(os.path.join(_UpperCAmelCase , '''**/*.py''' ) , recursive=_UpperCAmelCase ) __a = [] for filename in all_files: __a = is_copy_consistent(_UpperCAmelCase , _UpperCAmelCase ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(_UpperCAmelCase ) > 0: __a = '''\n'''.join(_UpperCAmelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": __snake_case :List[str] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case :int = parser.parse_args() check_copies(args.fix_and_overwrite)
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _lowerCAmelCase : Dict = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = 'facebook/nllb-200-distilled-600M' __SCREAMING_SNAKE_CASE : Union[str, Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __SCREAMING_SNAKE_CASE : List[Any] = 'translator' __SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer __SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM __SCREAMING_SNAKE_CASE : int = LANGUAGE_CODES __SCREAMING_SNAKE_CASE : str = ['text', 'text', 'text'] __SCREAMING_SNAKE_CASE : Tuple = ['text'] def snake_case_ ( self : Optional[int] , A : List[Any] , A : List[Any] , A : Optional[Any] ): if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) _UpperCAmelCase : List[str] = self.lang_to_code[src_lang] _UpperCAmelCase : str = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A , return_tensors="pt" , src_lang=A , tgt_lang=A ) def snake_case_ ( self : Dict , A : Dict ): return self.model.generate(**A ) def snake_case_ ( self : Any , A : Optional[Any] ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A )
202
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] while len(SCREAMING_SNAKE_CASE__ ) > 1: _UpperCAmelCase , _UpperCAmelCase : int = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) start.append(SCREAMING_SNAKE_CASE__ ) end.append(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) end.reverse() return start + collection + end if __name__ == "__main__": _lowerCAmelCase : int = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : List[str] = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
202
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = '''ibert''' def __init__( self : Dict , _UpperCAmelCase : List[str]=30_522 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : str=3_072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : str=1E-1_2 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Dict="absolute" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]="none" , **_UpperCAmelCase : List[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = quant_mode _A = force_dequant class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : int ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
315
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
1
from collections.abc import Callable class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: Any , __A: Callable | None = None ) -> None: # Stores actual heap items. _A = [] # Stores indexes of each item for supporting updates and deletion. _A = {} # Stores current size of heap. _A = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _A = key or (lambda __A : x) def __A ( self: List[Any] , __A: int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __A ( self: Union[str, Any] , __A: int ) -> int | None: _A = int(2 * i + 1 ) return left if 0 < left < self.size else None def __A ( self: Optional[Any] , __A: int ) -> int | None: _A = int(2 * i + 2 ) return right if 0 < right < self.size else None def __A ( self: List[str] , __A: int , __A: int ) -> None: _A ,_A = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _A ,_A = self.arr[j], self.arr[i] def __A ( self: Dict , __A: int , __A: int ) -> bool: return self.arr[i][1] < self.arr[j][1] def __A ( self: int , __A: int ) -> int: _A = self._left(__A ) _A = self._right(__A ) _A = i if left is not None and not self._cmp(__A , __A ): _A = left if right is not None and not self._cmp(__A , __A ): _A = right return valid_parent def __A ( self: List[str] , __A: int ) -> None: _A = self._parent(__A ) while parent is not None and not self._cmp(__A , __A ): self._swap(__A , __A ) _A ,_A = parent, self._parent(__A ) def __A ( self: str , __A: int ) -> None: _A = self._get_valid_parent(__A ) while valid_parent != index: self._swap(__A , __A ) _A ,_A = valid_parent, self._get_valid_parent(__A ) def __A ( self: Any , __A: int , __A: int ) -> None: if item not in self.pos_map: return _A = self.pos_map[item] _A = [item, self.key(__A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__A ) self._heapify_down(__A ) def __A ( self: Any , __A: int ) -> None: if item not in self.pos_map: return _A = self.pos_map[item] del self.pos_map[item] _A = self.arr[self.size - 1] _A = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__A ) self._heapify_down(__A ) def __A ( self: Tuple , __A: int , __A: int ) -> None: _A = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__A )] ) else: _A = [item, self.key(__A )] _A = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __A ( self: int ) -> tuple | None: return self.arr[0] if self.size else None def __A ( self: List[Any] ) -> tuple | None: _A = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __A ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
75
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __A = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
75
1
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = 1_000 ) ->int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
243
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Optional[Any] = torch.device("""cpu""") def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" __UpperCamelCase : Optional[Any] = dct.pop(_lowerCAmelCase ) __UpperCamelCase : Optional[int] = val def __UpperCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase : Optional[int] = [] for k in state_dict.keys(): __UpperCamelCase : Optional[Any] = k if ".pwconv" in k: __UpperCamelCase : Optional[int] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: __UpperCamelCase : List[Any] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: __UpperCamelCase : Tuple = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: __UpperCamelCase : List[str] = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: __UpperCamelCase : Union[str, Any] = k_new.split(""".""" ) if ls[2].isdigit(): __UpperCamelCase : Tuple = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __UpperCamelCase : List[Any] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" __UpperCamelCase : Tuple = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCamelCase : List[str] = 1000 __UpperCamelCase : Any = """huggingface/label-files""" __UpperCamelCase : Dict = """imagenet-1k-id2label.json""" __UpperCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCamelCase : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __UpperCamelCase : Union[str, Any] = idalabel __UpperCamelCase : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCamelCase : str = [3, 3, 6, 4] __UpperCamelCase : Any = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __UpperCamelCase : Optional[int] = [3, 3, 9, 6] __UpperCamelCase : Tuple = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __UpperCamelCase : Union[str, Any] = [4, 3, 10, 5] __UpperCamelCase : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __UpperCamelCase : int = [4, 4, 12, 6] __UpperCamelCase : Union[str, Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): __UpperCamelCase : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="""cpu""" , check_hash=_lowerCAmelCase ) else: __UpperCamelCase : Dict = torch.load(_lowerCAmelCase , map_location="""cpu""" ) __UpperCamelCase : Union[str, Any] = checkpoint __UpperCamelCase : int = create_rename_keys(_lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model __UpperCamelCase : Optional[Any] = SwiftFormerForImageClassification(_lowerCAmelCase ).eval() hf_model.load_state_dict(_lowerCAmelCase ) # prepare test inputs __UpperCamelCase : List[Any] = prepare_img() __UpperCamelCase : int = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) __UpperCamelCase : List[Any] = processor(images=_lowerCAmelCase , return_tensors="""pt""" ) # compare outputs from both models __UpperCamelCase : Optional[Any] = get_expected_output(_lowerCAmelCase ) __UpperCamelCase : int = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _lowerCAmelCase , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") SCREAMING_SNAKE_CASE_:List[str] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
355
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py SCREAMING_SNAKE_CASE_:Any = """src/diffusers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE_:Optional[Any] = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla SCREAMING_SNAKE_CASE_:Union[str, Any] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") SCREAMING_SNAKE_CASE_:List[Any] = """ {0} = None """ SCREAMING_SNAKE_CASE_:Optional[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ SCREAMING_SNAKE_CASE_:int = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" A : Union[str, Any] = _re_backend.findall(_lowerCAmelCase ) if len(_lowerCAmelCase ) == 0: return None return "_and_".join(_lowerCAmelCase ) def __UpperCamelCase ( ) -> str: """simple docstring""" with open(os.path.join(_lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A : Dict = f.readlines() # Get to the point we do the actual imports for type checking A : Dict = 0 A : List[Any] = {} # Go through the end of the file while line_index < len(_lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block A : Optional[int] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 A : str = [] # Until we unindent, add backend objects to the list while line_index < len(_lowerCAmelCase ) and len(lines[line_index] ) > 1: A : Tuple = lines[line_index] A : List[str] = _re_single_line_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowerCAmelCase ) > 0: A : List[str] = objects else: line_index += 1 return backend_specific_objects def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowerCAmelCase , _lowerCAmelCase ) else: return DUMMY_CLASS.format(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase=None ) -> Tuple: """simple docstring""" if backend_specific_objects is None: A : Union[str, Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename A : Any = {} for backend, objects in backend_specific_objects.items(): A : str = """[""" + """, """.join(f'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" A : Any = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowerCAmelCase , _lowerCAmelCase ) for o in objects] ) A : Optional[Any] = dummy_file return dummy_files def __UpperCamelCase ( _lowerCAmelCase=False ) -> str: """simple docstring""" A : str = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py A : List[str] = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. A : Union[str, Any] = os.path.join(_lowerCAmelCase , """utils""" ) A : Any = { backend: os.path.join(_lowerCAmelCase , f'''dummy_{short_names.get(_lowerCAmelCase , _lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } A : List[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowerCAmelCase ): with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A : Dict = f.read() else: A : str = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowerCAmelCase , _lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'''diffusers.utils.dummy_{short_names.get(_lowerCAmelCase , _lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE_:Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
115
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __snake_case = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): A__ : Optional[Any] ="""maskformer""" A__ : int ={"""hidden_size""": """mask_feature_size"""} A__ : Optional[int] =["""resnet""", """swin"""] A__ : Optional[int] =["""detr"""] def __init__( self : str , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 20.0 , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : int , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k SCREAMING_SNAKE_CASE__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = backbone_config.pop('model_type' ) SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ = config_class.from_dict(UpperCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 SCREAMING_SNAKE_CASE__ = DetrConfig() else: # verify that the decoder is supported SCREAMING_SNAKE_CASE__ = ( decoder_config.pop('model_type' ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[decoder_type] SCREAMING_SNAKE_CASE__ = config_class.from_dict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = backbone_config SCREAMING_SNAKE_CASE__ = decoder_config # main feature dimension for the model SCREAMING_SNAKE_CASE__ = fpn_feature_size SCREAMING_SNAKE_CASE__ = mask_feature_size # initializer SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = init_xavier_std # Hungarian matcher && loss SCREAMING_SNAKE_CASE__ = cross_entropy_weight SCREAMING_SNAKE_CASE__ = dice_weight SCREAMING_SNAKE_CASE__ = mask_weight SCREAMING_SNAKE_CASE__ = use_auxiliary_loss SCREAMING_SNAKE_CASE__ = no_object_weight SCREAMING_SNAKE_CASE__ = output_auxiliary_logits SCREAMING_SNAKE_CASE__ = self.decoder_config.encoder_attention_heads SCREAMING_SNAKE_CASE__ = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase_ ) @classmethod def A_ ( cls : str , UpperCAmelCase_ : PretrainedConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : Optional[Any] ): return cls( backbone_config=UpperCAmelCase_ , decoder_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
176
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : List[str] =XLMProphetNetTokenizer A__ : List[Any] =False A__ : Tuple =True def A_ ( self : str ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = XLMProphetNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = '[PAD]' SCREAMING_SNAKE_CASE__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(UpperCAmelCase_ ) , 1012 ) def A_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = XLMProphetNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def A_ ( self : Optional[Any] ): return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = 'Hello World!' SCREAMING_SNAKE_CASE__ = [35389, 6672, 49, 2] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def A_ ( self : Tuple ): # fmt: off SCREAMING_SNAKE_CASE__ = {'input_ids': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
176
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _lowerCAmelCase( snake_case_ ): """simple docstring""" a : Tuple ='''M-CLIP''' def __init__( self , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=7_6_8 , **_lowerCamelCase ): UpperCamelCase_: Tuple = transformerDimSize UpperCamelCase_: Optional[Any] = imageDimSize super().__init__(**_lowerCamelCase ) class _lowerCAmelCase( snake_case_ ): """simple docstring""" a : List[Any] =MCLIPConfig def __init__( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): super().__init__(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Optional[int] = XLMRobertaModel(_lowerCamelCase ) UpperCamelCase_: List[str] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = self.transformer(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: Optional[Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCamelCase ), embs
356
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) UpperCamelCase_: List[str] = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(_lowerCamelCase ) , torch_builtin(_lowerCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(_lowerCamelCase ) , gelu_new(_lowerCamelCase ) ) ) def _a ( self ): UpperCamelCase_: Optional[Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) UpperCamelCase_: Union[str, Any] = get_activation('gelu' ) UpperCamelCase_: int = get_activation('gelu_10' ) UpperCamelCase_: Union[str, Any] = torch_builtin(_lowerCamelCase ) UpperCamelCase_: List[str] = geluaa(_lowerCamelCase ) UpperCamelCase_: Dict = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(_lowerCamelCase ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _a ( self ): get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(_lowerCamelCase ): get_activation('bogus' ) with self.assertRaises(_lowerCamelCase ): get_activation(_lowerCamelCase ) def _a ( self ): UpperCamelCase_: str = get_activation('gelu' ) UpperCamelCase_: str = 1 UpperCamelCase_: int = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_lowerCamelCase ): UpperCamelCase_: Tuple = acta.a
292
0
"""simple docstring""" import heapq import sys import numpy as np _A : Dict = tuple[int, int] class a__ : def __init__( self ): lowercase : str = [] lowercase : Optional[Any] = set() def __magic_name__ ( self ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def __magic_name__ ( self ): return len(self.elements ) == 0 def __magic_name__ ( self , _a , _a ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_a ) else: # update # print("update", item) lowercase : Union[str, Any] = [] ((lowercase) , (lowercase)) : Optional[int] = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowercase) , (lowercase)) : Dict = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __magic_name__ ( self , _a ): if item in self.set: self.set.remove(_a ) lowercase : List[Any] = [] ((lowercase) , (lowercase)) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowercase) , (lowercase)) : Tuple = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __magic_name__ ( self ): return self.elements[0][1] def __magic_name__ ( self ): ((lowercase) , (lowercase)) : int = heapq.heappop(self.elements ) self.set.remove(_a ) return (priority, item) def __magic_name__ ( __snake_case : TPos , __snake_case : TPos ) -> List[Any]: # euclidean distance lowercase : Optional[Any] = np.array(__snake_case ) lowercase : List[Any] = np.array(__snake_case ) return np.linalg.norm(a - b ) def __magic_name__ ( __snake_case : TPos , __snake_case : TPos ) -> Union[str, Any]: # integer division by time variable return consistent_heuristic(__snake_case , __snake_case ) // t def __magic_name__ ( __snake_case : TPos , __snake_case : TPos ) -> List[str]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __magic_name__ ( __snake_case : TPos , __snake_case : int , __snake_case : TPos , __snake_case : dict[TPos, float] ) -> List[str]: lowercase : Tuple = g_function[start] + Wa * heuristics[i](__snake_case , __snake_case ) return ans def __magic_name__ ( __snake_case : Any , __snake_case : str , __snake_case : Tuple ) -> Optional[int]: lowercase : Union[str, Any] = np.chararray((n, n) ) for i in range(__snake_case ): for j in range(__snake_case ): lowercase : str = "*" for i in range(__snake_case ): for j in range(__snake_case ): if (j, (n - 1) - i) in blocks: lowercase : Any = "#" lowercase : str = "-" lowercase : str = back_pointer[goal] while x != start: ((lowercase) , (lowercase)) : Any = x # print(x) lowercase : Union[str, Any] = "-" lowercase : Union[str, Any] = back_pointer[x] lowercase : Any = "-" for i in range(__snake_case ): for j in range(__snake_case ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) lowercase : Tuple = back_pointer[goal] while x != start: print(__snake_case , end=" " ) lowercase : int = back_pointer[x] print(__snake_case ) sys.exit() def __magic_name__ ( __snake_case : TPos ) -> str: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __magic_name__ ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , ) -> Any: for itera in range(__snake_case ): open_list[itera].remove_element(__snake_case ) # print("s", s) # print("j", j) ((lowercase) , (lowercase)) : Optional[int] = s lowercase : Tuple = (x - 1, y) lowercase : List[Any] = (x + 1, y) lowercase : Union[str, Any] = (x, y + 1) lowercase : Any = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__snake_case ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__snake_case ) lowercase : List[Any] = -1 lowercase : Dict = float("inf" ) if valid(__snake_case ) and g_function[neighbours] > g_function[s] + 1: lowercase : Optional[int] = g_function[s] + 1 lowercase : Tuple = s if neighbours not in close_list_anchor: open_list[0].put(__snake_case , key(__snake_case , 0 , __snake_case , __snake_case ) ) if neighbours not in close_list_inad: for var in range(1 , __snake_case ): if key(__snake_case , __snake_case , __snake_case , __snake_case ) <= Wa * key( __snake_case , 0 , __snake_case , __snake_case ): open_list[j].put( __snake_case , key(__snake_case , __snake_case , __snake_case , __snake_case ) ) def __magic_name__ ( ) -> int: lowercase : int = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _A : int = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _A : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _A : Any = make_common_ground() _A : List[Any] = blocks_blk # hyper parameters _A : Tuple = 1 _A : Dict = 1 _A : Dict = 20 _A : List[str] = 3 # one consistent and two other inconsistent # start and end destination _A : int = (0, 0) _A : int = (n - 1, n - 1) _A : List[Any] = 1 def __magic_name__ ( __snake_case : TPos , __snake_case : TPos , __snake_case : int ) -> List[str]: lowercase : str = {start: 0, goal: float("inf" )} lowercase : str = {start: -1, goal: -1} lowercase : List[str] = [] lowercase : Tuple = set() for i in range(__snake_case ): open_list.append(PriorityQueue() ) open_list[i].put(__snake_case , key(__snake_case , __snake_case , __snake_case , __snake_case ) ) lowercase : list[int] = [] lowercase : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , __snake_case ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(__snake_case , __snake_case , __snake_case ) else: lowercase , lowercase : List[Any] = open_list[i].top_show() visited.add(__snake_case ) expand_state( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) close_list_inad.append(__snake_case ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(__snake_case , __snake_case , __snake_case ) else: lowercase : Dict = open_list[0].top_show() visited.add(__snake_case ) expand_state( __snake_case , 0 , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) close_list_anchor.append(__snake_case ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__snake_case ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
202
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _A : Optional[Any] = 1_00 _A : Optional[int] = set(range(3, NUM_PRIMES, 2)) primes.add(2) _A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __magic_name__ ( __snake_case : int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase : set[int] = set() lowercase : int lowercase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __magic_name__ ( __snake_case : int = 5000 ) -> int | None: for number_to_partition in range(1 , __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
202
1
def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return "".join([hex(_UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(_UpperCamelCase )] ) def lowerCamelCase_ ( _UpperCamelCase ) -> bytes: """simple docstring""" if (len(_UpperCamelCase ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_UpperCamelCase ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_UpperCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
354
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> int: """simple docstring""" try: snake_case_ : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case_ : Tuple = default else: # KEY is set, convert it to True or False. try: snake_case_ : Union[str, Any] = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value lowerCAmelCase_ = parse_flag_from_env('''RUN_SLOW''', default=False) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skip('''Test was skipped''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase=None , _UpperCamelCase=None ) -> Tuple: """simple docstring""" if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , _UpperCamelCase ) , f'''test requires torch version >= {version}''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(_UpperCamelCase ) lowerCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(_UpperCamelCase ) class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : str = True @classmethod def lowerCamelCase (cls ) -> List[Any]: '''simple docstring''' snake_case_ : Any = tempfile.mkdtemp() @classmethod def lowerCamelCase (cls ) -> List[Any]: '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__magic_name__ ) class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> int: '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : str = mocks if isinstance(__magic_name__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = AcceleratorState() snake_case_ : List[str] = tensor[None].clone().to(state.device ) snake_case_ : Optional[Any] = gather(_UpperCamelCase ).cpu() snake_case_ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = returncode snake_case_ : List[Any] = stdout snake_case_ : Tuple = stderr async def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" while True: snake_case_ : Tuple = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(_UpperCamelCase ) ) snake_case_ : List[str] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case_ : List[Any] = [] snake_case_ : List[Any] = [] def tee(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="" ): snake_case_ : Union[str, Any] = line.decode('''utf-8''' ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=180 , _UpperCamelCase=False , _UpperCamelCase=True ) -> _RunOutput: """simple docstring""" snake_case_ : List[str] = asyncio.get_event_loop() snake_case_ : List[Any] = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) snake_case_ : Optional[int] = ''' '''.join(_UpperCamelCase ) if result.returncode > 0: snake_case_ : Union[str, Any] = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class __lowerCAmelCase ( _a ): pass def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> List[Any]: """simple docstring""" try: snake_case_ : List[str] = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , '''decode''' ): snake_case_ : Tuple = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
279
0
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] =(IPNDMScheduler,) lowercase : Optional[int] =(('num_inference_steps', 50),) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={'''num_train_timesteps''': 1_000} config.update(**lowerCAmelCase ) return config def lowercase__ ( self, lowerCAmelCase=0, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =dict(self.forward_default_kwargs ) lowerCamelCase_ =kwargs.pop('''num_inference_steps''', lowerCAmelCase ) lowerCamelCase_ =self.dummy_sample lowerCamelCase_ =0.1 * sample lowerCamelCase_ =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCamelCase_ =self.get_scheduler_config(**lowerCAmelCase ) lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals lowerCamelCase_ =dummy_past_residuals[:] if time_step is None: lowerCamelCase_ =scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) lowerCamelCase_ =scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals lowerCamelCase_ =dummy_past_residuals[:] lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =new_scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =new_scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self, lowerCAmelCase=0, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =dict(self.forward_default_kwargs ) lowerCamelCase_ =kwargs.pop('''num_inference_steps''', lowerCAmelCase ) lowerCamelCase_ =self.dummy_sample lowerCamelCase_ =0.1 * sample lowerCamelCase_ =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase_ =dummy_past_residuals[:] if time_step is None: lowerCamelCase_ =scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) lowerCamelCase_ =scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase_ =dummy_past_residuals[:] lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =new_scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =new_scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config(**lowerCAmelCase ) lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) lowerCamelCase_ =10 lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample return sample def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =dict(self.forward_default_kwargs ) lowerCamelCase_ =kwargs.pop('''num_inference_steps''', lowerCAmelCase ) for scheduler_class in self.scheduler_classes: lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) lowerCamelCase_ =self.dummy_sample lowerCamelCase_ =0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase, '''set_timesteps''' ): scheduler.set_timesteps(lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase, '''set_timesteps''' ): lowerCamelCase_ =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase_ =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] lowerCamelCase_ =dummy_past_residuals[:] lowerCamelCase_ =scheduler.timesteps[5] lowerCamelCase_ =scheduler.timesteps[6] lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def lowercase__ ( self ): """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase, time_step=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCAmelCase, time_step=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop() lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
75
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : str , __snake_case : list[str] | None = None , __snake_case : dict[str, float] | None = None , __snake_case : bool = False , ) -> tuple[int, float, str]: """simple docstring""" lowerCamelCase_ =cipher_alphabet or [chr(__snake_case ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase_ ={ '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary lowerCamelCase_ =frequencies_dict if not case_sensitive: lowerCamelCase_ =ciphertext.lower() # Chi squared statistic values lowerCamelCase_ ={} # cycle through all of the shifts for shift in range(len(__snake_case ) ): lowerCamelCase_ ='''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase_ =(alphabet_letters.index(letter.lower() ) - shift) % len( __snake_case ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase_ =0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase_ =letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ =decrypted_with_shift.lower().count(__snake_case ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ =frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ =decrypted_with_shift.count(__snake_case ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ =frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase_ =( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__snake_case : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase_ =min( __snake_case , key=__snake_case , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
75
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'audio': Audio()} ) _snake_case : ClassVar[Features] = Features({'labels': ClassLabel} ) _snake_case : str = "audio" _snake_case : str = "labels" def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCamelCase = copy.deepcopy(self ) _UpperCamelCase = self.label_schema.copy() _UpperCamelCase = features[self.label_column] _UpperCamelCase = label_schema return task_template @property def snake_case__ ( self : List[Any] ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[Any] = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = 'biogpt' def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=42384 , lowerCAmelCase__ : Optional[int]=1024 , lowerCAmelCase__ : List[str]=24 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : Optional[int]=4096 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Tuple=1e-1_2 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Optional[Any]=2 , **lowerCAmelCase__ : Optional[Any] , ) -> Tuple: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = scale_embedding _UpperCamelCase = use_cache _UpperCamelCase = layerdrop _UpperCamelCase = activation_dropout super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
287
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _snake_case ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int] ): super().__init__() __lowerCamelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = list(model.children() )[:-2] __lowerCamelCase : Tuple = nn.Sequential(*UpperCAmelCase ) __lowerCamelCase : Tuple = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[str] ): __lowerCamelCase : int = self.pool(self.model(UpperCAmelCase ) ) __lowerCamelCase : str = torch.flatten(UpperCAmelCase , start_dim=2 ) __lowerCamelCase : Union[str, Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _snake_case ( a__ ): def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] ): __lowerCamelCase : Optional[Any] = [json.loads(UpperCAmelCase ) for l in open(UpperCAmelCase )] __lowerCamelCase : Optional[Any] = os.path.dirname(UpperCAmelCase ) __lowerCamelCase : List[Any] = tokenizer __lowerCamelCase : List[str] = labels __lowerCamelCase : Optional[int] = len(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = max_seq_length __lowerCamelCase : Tuple = transforms def __len__( self : Tuple ): return len(self.data ) def __getitem__( self : int , UpperCAmelCase : Any ): __lowerCamelCase : Union[str, Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=UpperCAmelCase ) ) __lowerCamelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __lowerCamelCase : Union[str, Any] = sentence[: self.max_seq_length] __lowerCamelCase : Tuple = torch.zeros(self.n_classes ) __lowerCamelCase : str = 1 __lowerCamelCase : List[str] = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) __lowerCamelCase : Any = self.transforms(UpperCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : int = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def lowercase_ ( _lowerCamelCase: Union[str, Any] ) -> Any: '''simple docstring''' __lowerCamelCase : Union[str, Any] = [len(row["sentence"] ) for row in batch] __lowerCamelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __lowerCamelCase : int = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __lowerCamelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __lowerCamelCase : List[str] = input_row["""sentence"""] __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : int = torch.stack([row["image"] for row in batch] ) __lowerCamelCase : Optional[int] = torch.stack([row["label"] for row in batch] ) __lowerCamelCase : int = torch.stack([row["image_start_token"] for row in batch] ) __lowerCamelCase : int = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowercase_ ( ) -> List[str]: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowercase_ ( ) -> Dict: '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
135
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' __UpperCAmelCase : int = b.T __UpperCAmelCase : Union[str, Any] = np.sum(np.square(_UpperCamelCase ) , axis=1 ) __UpperCAmelCase : List[Any] = np.sum(np.square(_UpperCamelCase ) , axis=0 ) __UpperCAmelCase : int = np.matmul(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Tuple = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = x.reshape(-1 , 3 ) __UpperCAmelCase : Optional[Any] = squared_euclidean_distance(_UpperCamelCase , _UpperCamelCase ) return np.argmin(_UpperCamelCase , axis=1 ) class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""pixel_values"""] def __init__( self : List[str] , UpperCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : bool = True , UpperCamelCase : bool = True , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Optional[Any] = size if size is not None else {"""height""": 256, """width""": 256} __UpperCAmelCase : Tuple = get_size_dict(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.array(UpperCamelCase ) if clusters is not None else None __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Dict = resample __UpperCAmelCase : int = do_normalize __UpperCAmelCase : List[Any] = do_color_quantize def lowerCamelCase__ ( self : List[str] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : str , ): '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : np.ndarray , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = rescale(image=UpperCamelCase , scale=1 / 127.5 , data_format=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = image - 1 return image def lowerCamelCase__ ( self : Dict , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Any = get_size_dict(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample __UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase : Tuple = clusters if clusters is not None else self.clusters __UpperCAmelCase : Tuple = np.array(UpperCamelCase ) __UpperCAmelCase : int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : Dict = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: __UpperCAmelCase : str = [to_channel_dimension_format(UpperCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase : Optional[int] = np.array(UpperCamelCase ) __UpperCAmelCase : Any = color_quantize(UpperCamelCase , UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase : Dict = images.shape[0] __UpperCAmelCase : Optional[Any] = images.reshape(UpperCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase : int = list(UpperCamelCase ) else: __UpperCAmelCase : List[Any] = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : List[str] = {"""input_ids""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
115
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _lowerCamelCase( _a ): lowercase_ : int = """poolformer""" def __init__( self, lowerCamelCase=3, lowerCamelCase=16, lowerCamelCase=16, lowerCamelCase=3, lowerCamelCase=4.0, lowerCamelCase=[2, 2, 6, 2], lowerCamelCase=[64, 1_28, 3_20, 5_12], lowerCamelCase=[7, 3, 3, 3], lowerCamelCase=[4, 2, 2, 2], lowerCamelCase=[2, 1, 1, 1], lowerCamelCase=4, lowerCamelCase=0.0, lowerCamelCase="gelu", lowerCamelCase=True, lowerCamelCase=1E-5, lowerCamelCase=0.0_2, **lowerCamelCase, ) -> int: """simple docstring""" _lowercase : List[str] = num_channels _lowercase : int = patch_size _lowercase : Tuple = stride _lowercase : List[str] = padding _lowercase : List[Any] = pool_size _lowercase : Optional[int] = hidden_sizes _lowercase : Any = mlp_ratio _lowercase : Dict = depths _lowercase : Union[str, Any] = patch_sizes _lowercase : Optional[int] = strides _lowercase : List[Any] = num_encoder_blocks _lowercase : List[str] = drop_path_rate _lowercase : Union[str, Any] = hidden_act _lowercase : List[Any] = use_layer_scale _lowercase : List[Any] = layer_scale_init_value _lowercase : int = initializer_range super().__init__(**lowerCamelCase) class _lowerCamelCase( _a ): lowercase_ : Optional[int] = version.parse("""1.11""" ) @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def UpperCamelCase ( self) -> float: """simple docstring""" return 2E-3
84
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
84
1
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if point: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE , (int, float) ): __UpperCamelCase :Optional[int] = ( '''Expected a list of numbers as input, found ''' f"""{type(SCREAMING_SNAKE_CASE ).__name__}""" ) raise TypeError(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :List[str] = f"""Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE ) else: raise ValueError('''Missing an input''' ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : Optional[int] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''vivit''' def __init__( self :Optional[Any] , __UpperCamelCase :Dict=2_24 , __UpperCamelCase :int=32 , __UpperCamelCase :Union[str, Any]=[2, 16, 16] , __UpperCamelCase :Optional[Any]=3 , __UpperCamelCase :Optional[Any]=7_68 , __UpperCamelCase :Any=12 , __UpperCamelCase :List[str]=12 , __UpperCamelCase :List[str]=30_72 , __UpperCamelCase :Any="gelu_fast" , __UpperCamelCase :List[Any]=0.0 , __UpperCamelCase :str=0.0 , __UpperCamelCase :Dict=0.02 , __UpperCamelCase :Optional[Any]=1e-06 , __UpperCamelCase :Dict=True , **__UpperCamelCase :Tuple , ): A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = num_frames A = tubelet_size A = num_channels A = qkv_bias super().__init__(**__UpperCamelCase )
292
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __SCREAMING_SNAKE_CASE : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE : Optional[int] = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } __SCREAMING_SNAKE_CASE : Tuple = { '''google/electra-small-generator''': 5_1_2, '''google/electra-base-generator''': 5_1_2, '''google/electra-large-generator''': 5_1_2, '''google/electra-small-discriminator''': 5_1_2, '''google/electra-base-discriminator''': 5_1_2, '''google/electra-large-discriminator''': 5_1_2, } __SCREAMING_SNAKE_CASE : Dict = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Dict = ElectraTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**lowerCamelCase__ ) _lowerCamelCase = do_lower_case def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
363
"""simple docstring""" import argparse from collections import defaultdict def lowerCAmelCase_( lowercase_ : str , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : str , lowercase_ : str ) -> Optional[int]: _lowerCamelCase = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = F"""class {class_name}(""" _lowerCamelCase = F"""{4 * " "}def {test_name}(""" _lowerCamelCase = F"""{8 * " "}{correct_line.split()[0]}""" _lowerCamelCase = F"""{16 * " "}{correct_line.split()[0]}""" _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = [] for line in lines: if line.startswith(lowercase_ ): _lowerCamelCase = True elif in_class and line.startswith(lowercase_ ): _lowerCamelCase = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): _lowerCamelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowerCamelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowerCamelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowerCamelCase = _lowerCamelCase = _lowerCamelCase = _lowerCamelCase = False else: new_lines.append(lowercase_ ) with open(lowercase_ , '''w''' ) as f: for line in new_lines: f.write(lowercase_ ) def lowerCAmelCase_( lowercase_ : str , lowercase_ : Union[str, Any]=None ) -> Any: if fail is not None: with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = {l.strip() for l in f.readlines()} else: _lowerCamelCase = None with open(lowercase_ , '''r''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = defaultdict(lowercase_ ) for line in correct_lines: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() main(args.correct_filename, args.fail_filename)
73
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = model.config lowerCamelCase_ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) lowerCamelCase_ = MBartConfig( is_decoder=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , add_cross_attention=lowerCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowerCamelCase__ , add_final_layer_norm=lowerCamelCase__ , ) return encoder_config, decoder_config def lowerCamelCase_ ( lowerCamelCase__ ): if "encoder.model" in name: lowerCamelCase_ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: lowerCamelCase_ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: lowerCamelCase_ = "encoder." + name if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": lowerCamelCase_ = "encoder.layernorm.weight" if name == "encoder.norm.bias": lowerCamelCase_ = "encoder.layernorm.bias" return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[3] ) lowerCamelCase_ = int(key_split[5] ) lowerCamelCase_ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=False ): # load original model lowerCamelCase_ = DonutModel.from_pretrained(lowerCamelCase__ ).eval() # load HuggingFace model lowerCamelCase_ , lowerCamelCase_ = get_configs(lowerCamelCase__ ) lowerCamelCase_ = DonutSwinModel(lowerCamelCase__ ) lowerCamelCase_ = MBartForCausalLM(lowerCamelCase__ ) lowerCamelCase_ = VisionEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) model.eval() lowerCamelCase_ = original_model.state_dict() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify results on scanned document lowerCamelCase_ = load_dataset("hf-internal-testing/example-documents" ) lowerCamelCase_ = dataset["test"][0]["image"].convert("RGB" ) lowerCamelCase_ = XLMRobertaTokenizerFast.from_pretrained(lowerCamelCase__ , from_slow=lowerCamelCase__ ) lowerCamelCase_ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCamelCase_ = DonutProcessor(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCamelCase_ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" lowerCamelCase_ = "When is the coffee break?" lowerCamelCase_ = task_prompt.replace("{user_input}" , lowerCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCamelCase_ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCamelCase_ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCamelCase_ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCamelCase_ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCamelCase_ = "hello world" else: raise ValueError("Model name not supported" ) lowerCamelCase_ = original_model.decoder.tokenizer(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors="pt" )[ "input_ids" ] lowerCamelCase_ = original_model.encoder.model.patch_embed(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = model.encoder.embeddings(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) # verify encoder hidden states lowerCamelCase_ = original_model.encoder(lowerCamelCase__ ) lowerCamelCase_ = model.encoder(lowerCamelCase__ ).last_hidden_state assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-2 ) # verify decoder hidden states lowerCamelCase_ = original_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).logits lowerCamelCase_ = model(lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) __A =parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
19
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __lowerCAmelCase : def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' return None class __lowerCAmelCase : def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' return None class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Dict = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__magic_name__ , '''tf''' , 12 , **__magic_name__ ) @require_torch @slow def lowerCamelCase (self ) -> int: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__magic_name__ , '''pt''' , 12 , **__magic_name__ ) @require_torch @slow def lowerCamelCase (self ) -> int: '''simple docstring''' from transformers import BertModel snake_case_ : str = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(__magic_name__ ) ) vocab_file.flush() snake_case_ : Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: snake_case_ : str = BertModel(BertConfig(vocab_size=len(__magic_name__ ) ) ) model.save_pretrained(__magic_name__ ) self._test_export(__magic_name__ , '''pt''' , 12 , __magic_name__ ) @require_tf @slow def lowerCamelCase (self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case_ : Tuple = self._test_export(__magic_name__ , '''tf''' , 12 , **__magic_name__ ) snake_case_ : List[str] = quantize(Path(__magic_name__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__magic_name__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def lowerCamelCase (self ) -> Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case_ : Any = self._test_export(__magic_name__ , '''pt''' , 12 , **__magic_name__ ) snake_case_ : Any = quantize(__magic_name__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__magic_name__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Tuple: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: snake_case_ : List[str] = Path(__magic_name__ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) return path except Exception as e: self.fail(__magic_name__ ) @require_torch @require_tokenizers @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' from transformers import BertModel snake_case_ : Optional[Any] = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) snake_case_ : int = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__magic_name__ , __magic_name__ , '''pt''' ) @require_tf @require_tokenizers @slow def lowerCamelCase (self ) -> List[str]: '''simple docstring''' from transformers import TFBertModel snake_case_ : Any = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) snake_case_ : str = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__magic_name__ , __magic_name__ , '''tf''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : Tuple = FeatureExtractionPipeline(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = infer_shapes(__magic_name__ , __magic_name__ ) # Assert all variables are present self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __magic_name__ ) self.assertSequenceEqual(variable_names[3:] , __magic_name__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] snake_case_ : List[str] = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} snake_case_ , snake_case_ : Tuple = ensure_valid_input(FuncContiguousArgs() , __magic_name__ , __magic_name__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__magic_name__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__magic_name__ ) , set(__magic_name__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__magic_name__ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) snake_case_ , snake_case_ : Dict = ensure_valid_input(FuncNonContiguousArgs() , __magic_name__ , __magic_name__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
279
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowercase ( ) -> Dict: __a = HfArgumentParser(lowerCAmelCase__ ) __a = parser.parse_args_into_dataclasses()[0] __a = TensorFlowBenchmark(args=lowerCAmelCase__ ) try: __a = parser.parse_args_into_dataclasses()[0] except ValueError as e: __a = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __a = ''' '''.join(str(lowerCAmelCase__ ).split(''' ''' )[:-1] ) __a = '''''' __a = eval(str(lowerCAmelCase__ ).split(''' ''' )[-1] ) __a = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __a = full_error_msg + begin_error_msg + str(lowerCAmelCase__ ) raise ValueError(lowerCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
11
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
1
from math import factorial def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) SCREAMING_SNAKE_CASE = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! SCREAMING_SNAKE_CASE = float(factorial(_SCREAMING_SNAKE_CASE ) ) coefficient /= factorial(_SCREAMING_SNAKE_CASE ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
296
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""] lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
287
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , ) -> Tuple: A_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} A_ : Optional[int] = parent A_ : List[Any] = batch_size A_ : Optional[int] = num_channels A_ : Union[str, Any] = image_size A_ : Union[str, Any] = min_resolution A_ : str = max_resolution A_ : Optional[Any] = do_resize A_ : Optional[Any] = size A_ : List[str] = do_normalize def UpperCAmelCase_ ( self ) -> Tuple: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ImageGPTImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : Tuple = ImageGPTImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Any: A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """clusters""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = self.image_processing_class(**self.image_processor_dict ) A_ : Tuple = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[str] = os.path.join(_lowerCamelCase , """image_processor.json""" ) image_processor_first.to_json_file(_lowerCamelCase ) A_ : Tuple = self.image_processing_class.from_json_file(_lowerCamelCase ).to_dict() A_ : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCamelCase ) A_ : Tuple = self.image_processing_class.from_pretrained(_lowerCamelCase ).to_dict() A_ : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCamelCase ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def UpperCAmelCase_ ( self ) -> Tuple: pass def UpperCAmelCase ( ) -> int: """simple docstring""" A_ : int = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) A_ : Union[str, Any] = Image.open(dataset[4]["""file"""] ) A_ : Optional[int] = Image.open(dataset[5]["""file"""] ) A_ : Union[str, Any] = [imagea, imagea] return images @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> List[Any]: A_ : int = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) A_ : Optional[int] = prepare_images() # test non-batched A_ : Dict = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) A_ : List[Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCamelCase ) # test batched A_ : List[str] = image_processing(_lowerCamelCase , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) A_ : Dict = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCamelCase )
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase__ : Any = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
164
1
"""simple docstring""" def _snake_case ( lowercase__ : int = 1_0_0_0 ) -> int: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = 1, 1 lowerCAmelCase_ :Dict = 2 while True: lowerCAmelCase_ :str = 0 lowerCAmelCase_ :str = fa + fa lowerCAmelCase_ , lowerCAmelCase_ :Tuple = fa, f index += 1 for _ in str(lowercase__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
84
"""simple docstring""" def _snake_case ( lowercase__ : list[int] ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = [] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): lowerCAmelCase_ :Optional[Any] = nums.pop(0 ) lowerCAmelCase_ :str = permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def _snake_case ( lowercase__ : Tuple ) -> List[str]: '''simple docstring''' def backtrack(lowercase__ : str ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): lowerCAmelCase_ , lowerCAmelCase_ :str = nums[i], nums[start] backtrack(start + 1 ) lowerCAmelCase_ , lowerCAmelCase_ :str = nums[i], nums[start] # backtrack lowerCAmelCase_ :int = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __UpperCAmelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
84
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCamelCase: Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = ['pixel_values'] def __init__( self : List[Any], lowerCAmelCase : bool = True, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC, lowerCAmelCase : bool = True, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : bool = True, lowerCAmelCase : Union[int, float] = 1 / 255, lowerCAmelCase : bool = True, lowerCAmelCase : Optional[Union[float, List[float]]] = None, lowerCAmelCase : Optional[Union[float, List[float]]] = None, lowerCAmelCase : bool = True, **lowerCAmelCase : Dict, ) -> None: super().__init__(**lowerCAmelCase ) lowercase : Union[str, Any] = size if size is not None else {'shortest_edge': 224} lowercase : Optional[int] = get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowercase : Optional[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase : List[str] = get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase, param_name='crop_size' ) lowercase : Union[str, Any] = do_resize lowercase : Tuple = size lowercase : Dict = resample lowercase : List[Any] = do_center_crop lowercase : Tuple = crop_size lowercase : Optional[int] = do_rescale lowercase : int = rescale_factor lowercase : Dict = do_normalize lowercase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase : Any = image_std if image_std is not None else OPENAI_CLIP_STD lowercase : List[str] = do_convert_rgb def lowercase ( self : str, lowerCAmelCase : np.ndarray, lowerCAmelCase : Dict[str, int], lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : Dict, ) -> np.ndarray: lowercase : str = get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase : List[str] = get_resize_output_image_size(lowerCAmelCase, size=size['shortest_edge'], default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : str, lowerCAmelCase : np.ndarray, lowerCAmelCase : Dict[str, int], lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : Optional[Any], ) -> np.ndarray: lowercase : Dict = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase, size=(size['height'], size['width']), data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : List[str], lowerCAmelCase : np.ndarray, lowerCAmelCase : Union[int, float], lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : Optional[int], ) -> Union[str, Any]: return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Union[str, Any], lowerCAmelCase : np.ndarray, lowerCAmelCase : Union[float, List[float]], lowerCAmelCase : Union[float, List[float]], lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : Any, ) -> np.ndarray: return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Optional[Any], lowerCAmelCase : ImageInput, lowerCAmelCase : bool = None, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : PILImageResampling = None, lowerCAmelCase : bool = None, lowerCAmelCase : int = None, lowerCAmelCase : bool = None, lowerCAmelCase : float = None, lowerCAmelCase : bool = None, lowerCAmelCase : Optional[Union[float, List[float]]] = None, lowerCAmelCase : Optional[Union[float, List[float]]] = None, lowerCAmelCase : bool = None, lowerCAmelCase : Optional[Union[str, TensorType]] = None, lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST, **lowerCAmelCase : Dict, ) -> PIL.Image.Image: lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = size if size is not None else self.size lowercase : List[str] = get_size_dict(lowerCAmelCase, param_name='size', default_to_square=lowerCAmelCase ) lowercase : Dict = resample if resample is not None else self.resample lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Dict = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(lowerCAmelCase, param_name='crop_size', default_to_square=lowerCAmelCase ) lowercase : Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Any = do_normalize if do_normalize is not None else self.do_normalize lowercase : Tuple = image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] = image_std if image_std is not None else self.image_std lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase : List[Any] = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase : Tuple = [convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase : Dict = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowercase : Dict = [self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_center_crop: lowercase : List[Any] = [self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images] if do_rescale: lowercase : Optional[int] = [self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_normalize: lowercase : int = [self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images] lowercase : List[Any] = [to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowercase : Optional[Any] = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
354
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _UpperCamelCase: Optional[int] = logging.get_logger(__name__) _UpperCamelCase: Union[str, Any] = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'gpt_neo' _lowerCamelCase = ['past_key_values'] _lowerCamelCase = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Optional[Any], lowerCAmelCase : int=50257, lowerCAmelCase : Tuple=2048, lowerCAmelCase : int=2048, lowerCAmelCase : Tuple=24, lowerCAmelCase : Optional[Any]=[[["global", "local"], 12]], lowerCAmelCase : Optional[int]=16, lowerCAmelCase : Optional[Any]=None, lowerCAmelCase : Dict=256, lowerCAmelCase : Optional[int]="gelu_new", lowerCAmelCase : Any=0.0, lowerCAmelCase : Dict=0.0, lowerCAmelCase : Optional[Any]=0.0, lowerCAmelCase : Dict=0.1, lowerCAmelCase : List[Any]=1e-5, lowerCAmelCase : Optional[Any]=0.02, lowerCAmelCase : Dict=True, lowerCAmelCase : int=50256, lowerCAmelCase : Optional[Any]=50256, **lowerCAmelCase : Any, ) -> Optional[Any]: lowercase : List[Any] = vocab_size lowercase : Optional[Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Optional[Any] = num_layers lowercase : str = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Dict = activation_function lowercase : Dict = resid_dropout lowercase : int = embed_dropout lowercase : Optional[Any] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : Optional[Any] = use_cache lowercase : Union[str, Any] = bos_token_id lowercase : int = eos_token_id lowercase : str = attention_types lowercase : int = self.expand_attention_types_params(lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) @staticmethod def lowercase ( lowerCAmelCase : str ) -> Optional[Any]: lowercase : Dict = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' import torch lowercase : Dict = input.size() lowercase : Optional[int] = len(_UpperCAmelCase ) lowercase : str = shape[dimension] lowercase : Optional[Any] = torch.arange(0 , _UpperCAmelCase , _UpperCAmelCase ) lowercase : List[str] = torch.div(sizedim - size , _UpperCAmelCase , rounding_mode='floor' ) + 1 lowercase : Any = torch.arange(_UpperCAmelCase ) + low_indices[:min_length][:, None] lowercase : List[Any] = [slice(_UpperCAmelCase )] * rank lowercase : int = indices lowercase : Optional[Any] = input[s] lowercase : str = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_UpperCAmelCase ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Any: '''simple docstring''' import torch lowercase : int = torch.arange(1 , _UpperCAmelCase ) lowercase : List[str] = torch.remainder(_UpperCAmelCase , _UpperCAmelCase ) lowercase : Optional[int] = remainders == 0 lowercase : Tuple = candidates[divisor_indices] lowercase : Any = torch.max(_UpperCAmelCase ) return largest_divisor, torch.div(_UpperCAmelCase , _UpperCAmelCase , rounding_mode='floor' ) class a__ ( SCREAMING_SNAKE_CASE__ ): @property def lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: lowercase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase, direction='inputs' ) lowercase : Dict = {0: 'batch', 1: 'past_sequence + sequence'} else: lowercase : List[str] = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase ( self : int ) -> int: return self._config.num_heads def lowercase ( self : Tuple, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int = -1, lowerCAmelCase : int = -1, lowerCAmelCase : bool = False, lowerCAmelCase : Optional[TensorType] = None, ) -> Mapping[str, Any]: lowercase : Union[str, Any] = super(lowerCAmelCase, self ).generate_dummy_inputs( lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase : int = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowercase , lowercase : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowercase : Tuple = seqlen + 2 lowercase : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Any = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] lowercase : Optional[int] = common_inputs['attention_mask'] if self.use_past: lowercase : Optional[int] = ordered_inputs['attention_mask'].dtype lowercase : Dict = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase, lowerCAmelCase, dtype=lowerCAmelCase )], dim=1 ) return ordered_inputs @property def lowercase ( self : int ) -> int: return 13
53
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase = pytest.mark.integration @pytest.mark.parametrize("""path""" ,["""paws""", """csv"""] ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" inspect_dataset(lowerCamelCase__ ,lowerCamelCase__ ) _SCREAMING_SNAKE_CASE = path + '.py' assert script_name in os.listdir(lowerCamelCase__ ) assert "__pycache__" not in os.listdir(lowerCamelCase__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" ,["""accuracy"""] ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" inspect_metric(lowerCamelCase__ ,lowerCamelCase__ ) _SCREAMING_SNAKE_CASE = path + '.py' assert script_name in os.listdir(lowerCamelCase__ ) assert "__pycache__" not in os.listdir(lowerCamelCase__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" ,[ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = get_dataset_config_info(lowerCamelCase__ ,config_name=lowerCamelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" ,[ ("""paws""", None, ValueError), ] ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" with pytest.raises(lowerCamelCase__ ): get_dataset_config_info(lowerCamelCase__ ,config_name=lowerCamelCase__ ) @pytest.mark.parametrize( """path, expected""" ,[ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = get_dataset_config_names(lowerCamelCase__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" ,[ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = get_dataset_infos(lowerCamelCase__ ) assert list(infos.keys() ) == expected_configs _SCREAMING_SNAKE_CASE = expected_configs[0] assert expected_config in infos _SCREAMING_SNAKE_CASE = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" ,[ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = get_dataset_infos(lowerCamelCase__ ) assert expected_config in infos _SCREAMING_SNAKE_CASE = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" ,[ ("""paws""", None, ValueError), ] ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[Any]: """simple docstring""" with pytest.raises(lowerCamelCase__ ): get_dataset_split_names(lowerCamelCase__ ,config_name=lowerCamelCase__ )
306
from __future__ import annotations import time a =list[tuple[int, int]] a =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : Tuple = pos_x __lowerCamelCase : List[str] = pos_y __lowerCamelCase : str = (pos_y, pos_x) __lowerCamelCase : str = goal_x __lowerCamelCase : int = goal_y __lowerCamelCase : List[Any] = parent class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tuple[int, int] ,SCREAMING_SNAKE_CASE__ : tuple[int, int]): __lowerCamelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = [self.start] __lowerCamelCase : List[str] = False def lowerCAmelCase ( self : List[Any]): while self.node_queue: __lowerCamelCase : Any = self.node_queue.pop(0) if current_node.pos == self.target.pos: __lowerCamelCase : Dict = True return self.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_successors(SCREAMING_SNAKE_CASE__) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : Union[str, Any] = [] for action in delta: __lowerCamelCase : Optional[Any] = parent.pos_x + action[1] __lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE__)) return successors def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : List[Any] = node __lowerCamelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) __lowerCamelCase : int = current_node.parent path.reverse() return path class A_ : def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = False def lowerCAmelCase ( self : str): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCamelCase : Any = self.fwd_bfs.node_queue.pop(0) __lowerCamelCase : Any = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: __lowerCamelCase : List[str] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = current_bwd_node __lowerCamelCase : int = current_fwd_node __lowerCamelCase : str = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Node ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) bwd_path.pop() bwd_path.reverse() __lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a =(0, 0) a =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a =time.time() a =BreadthFirstSearch(init, goal) a =bfs.search() a =time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a =time.time() a =BidirectionalBreadthFirstSearch(init, goal) a =bd_bfs.search() a =time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
73
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase__ = random.Random() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=1.0 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : int=None ) -> Optional[int]: '''simple docstring''' if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , A : Optional[Any] , A : Any=7 , A : str=4_00 , A : List[Any]=20_00 , A : List[Any]=1 , A : Any=0.0 , A : Tuple=1_60_00 , A : Optional[int]=True , A : str=True , ) -> Dict: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = feature_size _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self : str , A : Optional[Any]=False , A : Any=False) -> Optional[Any]: """simple docstring""" def _flatten(A : Tuple): return list(itertools.chain(*A)) if equal_length: _UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size _UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _UpperCAmelCase = [np.asarray(A) for x in speech_inputs] return speech_inputs class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = WavaVecaFeatureExtractor def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = WavaVecaFeatureExtractionTester(self) def _lowerCamelCase ( self : str , A : str) -> Optional[int]: """simple docstring""" self.assertTrue(np.all(np.mean(A , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(A , axis=0) - 1) < 1E-3)) def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = [np.asarray(A) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np').input_values _UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(A , A , atol=1E-3)) # Test batched _UpperCAmelCase = feat_extract(A , return_tensors='np').input_values _UpperCAmelCase = feat_extract(A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(A , A): self.assertTrue(np.allclose(A , A , atol=1E-3)) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] _UpperCAmelCase = np.asarray(A) _UpperCAmelCase = feat_extract(A , return_tensors='np').input_values _UpperCAmelCase = feat_extract(A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(A , A): self.assertTrue(np.allclose(A , A , atol=1E-3)) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = ['longest', 'max_length', 'do_not_pad'] _UpperCAmelCase = [None, 16_00, None] for max_length, padding in zip(A , A): _UpperCAmelCase = feat_extract(A , padding=A , max_length=A , return_tensors='np') _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self.assertTrue(input_values[0][8_00:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self.assertTrue(input_values[0][10_00:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = range(8_00 , 14_00 , 2_00) _UpperCAmelCase = [floats_list((1, x))[0] for x in lengths] _UpperCAmelCase = ['longest', 'max_length', 'do_not_pad'] _UpperCAmelCase = [None, 16_00, None] for max_length, padding in zip(A , A): _UpperCAmelCase = feat_extract(A , max_length=A , padding=A) _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = feat_extract( A , truncation=A , max_length=10_00 , padding='max_length' , return_tensors='np') _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = feat_extract( A , truncation=A , max_length=10_00 , padding='longest' , return_tensors='np') _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00)) _UpperCAmelCase = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] _UpperCAmelCase = feat_extract( A , truncation=A , max_length=20_00 , padding='longest' , return_tensors='np') _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00)) @require_torch def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase = np.random.rand(1_00).astype(np.floataa) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) _UpperCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) @slow @require_torch def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _UpperCAmelCase = WavaVecaConfig.from_pretrained(A) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(A) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer')
290
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=A , ) assert hasattr(self , 'env') def _lowerCamelCase ( self : Any , A : Tuple=1) -> List[str]: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def _lowerCamelCase ( self : Dict , A : int) -> str: """simple docstring""" TrainingJobAnalytics(A).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A)
290
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _UpperCAmelCase (): _A : int = HfArgumentParser(UpperCamelCase__ ) _A : Tuple = parser.parse_args_into_dataclasses()[0] _A : Optional[Any] = TensorFlowBenchmark(args=UpperCamelCase__ ) try: _A : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: _A : int = "Arg --no_{0} is no longer used, please use --no-{0} instead." _A : List[str] = " ".join(str(UpperCamelCase__ ).split(" " )[:-1] ) _A : Tuple = "" _A : List[str] = eval(str(UpperCamelCase__ ).split(" " )[-1] ) _A : Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _A : List[str] = full_error_msg + begin_error_msg + str(UpperCamelCase__ ) raise ValueError(UpperCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :List[Any] = emb.weight.shape lowerCAmelCase__ :Dict = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = emb.weight.data return lin_layer def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Dict = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) lowerCAmelCase__ :List[Any] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCAmelCase__ :Union[str, Any] = mam_aaa['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCAmelCase__ :int = MaMaaaConfig( vocab_size=_SCREAMING_SNAKE_CASE , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCAmelCase__ :Union[str, Any] = state_dict['decoder.embed_tokens.weight'] lowerCAmelCase__ :Union[str, Any] = MaMaaaForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __A = parser.parse_args() __A = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
361
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ): '''simple docstring''' lowerCAmelCase__ :Tuple = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } lowerCAmelCase__ :Optional[int] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCAmelCase__ :Any = token_dict['token'] lowerCAmelCase__ :int = Tokenizer(Unigram() ) lowerCAmelCase__ :Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) lowerCAmelCase__ :Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCAmelCase__ :List[str] = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) lowerCAmelCase__ :Optional[int] = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = 8_0_0_0 , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :int = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :int = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase ) self.add_unk_id() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = 8_0_0_0 , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase ) self.add_unk_id() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = json.loads(self._tokenizer.to_str() ) lowerCAmelCase__ :List[str] = self.special_tokens['unk']['id'] lowerCAmelCase__ :Union[str, Any] = Tokenizer.from_str(json.dumps(__UpperCAmelCase ) )
254
0