code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCamelCase ( __magic_name__ : int ) -> str: """simple docstring""" lowercase__ = generate_pascal_triangle(_A ) for row_idx in range(_A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def UpperCamelCase ( __magic_name__ : int ) -> Tuple: """simple docstring""" if not isinstance(_A , _A ): raise TypeError("""The input value of \'num_rows\' should be \'int\'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of \'num_rows\' should be greater than or equal to 0""" ) lowercase__ = [] for current_row_idx in range(_A ): lowercase__ = populate_current_row(_A , _A ) triangle.append(_A ) return triangle def UpperCamelCase ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" lowercase__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase__ , lowercase__ = 1, 1 for current_col_idx in range(1 , _A ): calculate_current_element( _A , _A , _A , _A ) return current_row def UpperCamelCase ( __magic_name__ : list[list[int]] , __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : int , ) -> Any: """simple docstring""" lowercase__ = triangle[current_row_idx - 1][current_col_idx - 1] lowercase__ = triangle[current_row_idx - 1][current_col_idx] lowercase__ = above_to_left_elt + above_to_right_elt def UpperCamelCase ( __magic_name__ : int ) -> Optional[Any]: """simple docstring""" if not isinstance(_A , _A ): raise TypeError("""The input value of \'num_rows\' should be \'int\'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of \'num_rows\' should be greater than or equal to 0""" ) lowercase__ = [[1]] for row_index in range(1 , _A ): lowercase__ = [0] + result[-1] + [0] lowercase__ = row_index + 1 # Calculate the number of distinct elements in a row lowercase__ = sum(divmod(_A , 2 ) ) lowercase__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowercase__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase__ = row_first_half + row_second_half result.append(_A ) return result def UpperCamelCase ( ) -> str: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ : Callable , __magic_name__ : int ) -> None: lowercase__ = f'''{func.__name__}({value})''' lowercase__ = timeit(f'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_A , _A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
305
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, **lowercase_ ) -> Optional[int]: """simple docstring""" super().__init__(**lowercase_ ) requires_backends(self, '''vision''' ) requires_backends(self, '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> Optional[Any]: """simple docstring""" a__ ={} a__ ={} a__ ={} # preprocess args if "points_per_batch" in kwargs: a__ =kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: a__ =kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: a__ =kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: a__ =kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: a__ =kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: a__ =kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: a__ =kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: a__ =kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: a__ =kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: a__ =kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: a__ =kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: a__ =kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self, lowercase_, *lowercase_, lowercase_=None, lowercase_=None, **lowercase_ ) -> List[Any]: """simple docstring""" return super().__call__(lowercase_, *lowercase_, num_workers=lowercase_, batch_size=lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, lowercase_, lowercase_=64, lowercase_ = 0, lowercase_ = 512 / 1500, lowercase_ = 32, lowercase_ = 1, ) -> Any: """simple docstring""" a__ =load_image(lowercase_ ) a__ =self.image_processor.size['''longest_edge'''] a__, a__, a__, a__ =self.image_processor.generate_crop_boxes( lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) a__ =self.image_processor(images=lowercase_, return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": a__ =self.get_inference_context() with inference_context(): a__ =self._ensure_tensor_on_device(lowercase_, device=self.device ) a__ =self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) a__ =image_embeddings a__ =grid_points.shape[1] a__ =points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0, lowercase_, lowercase_ ): a__ =grid_points[:, i : i + points_per_batch, :, :] a__ =input_labels[:, i : i + points_per_batch] a__ =i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _UpperCAmelCase ( self, lowercase_, lowercase_=0.88, lowercase_=0.95, lowercase_=0, lowercase_=1, ) -> int: """simple docstring""" a__ =model_inputs.pop('''input_boxes''' ) a__ =model_inputs.pop('''is_last''' ) a__ =model_inputs.pop('''original_sizes''' ).tolist() a__ =model_inputs.pop('''reshaped_input_sizes''' ).tolist() a__ =self.model(**lowercase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks a__ =model_outputs['''pred_masks'''] a__ =self.image_processor.post_process_masks( lowercase_, lowercase_, lowercase_, lowercase_, binarize=lowercase_ ) a__ =model_outputs['''iou_scores'''] a__, a__, a__ =self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], lowercase_, lowercase_, lowercase_, lowercase_, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _UpperCAmelCase ( self, lowercase_, lowercase_=False, lowercase_=False, lowercase_=0.7, ) -> Any: """simple docstring""" a__ =[] a__ =[] a__ =[] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) a__ =torch.cat(lowercase_ ) a__ =torch.cat(lowercase_ ) a__, a__, a__, a__ =self.image_processor.post_process_for_mask_generation( lowercase_, lowercase_, lowercase_, lowercase_ ) a__ =defaultdict(lowercase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowercase_ ) a__ ={} if output_rle_mask: a__ =rle_mask if output_bboxes_mask: a__ =bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
188
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Any = RoCBertTokenizer __lowercase : List[str] = None __lowercase : Union[str, Any] = False __lowercase : Optional[Any] = True __lowercase : int = filter_non_english def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} for i, value in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(lowerCAmelCase__ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = RoCBertWordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def snake_case_ ( self): self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def snake_case_ ( self): self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def snake_case_ ( self): self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def snake_case_ ( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , """do_lower_case""") else False __SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] __SCREAMING_SNAKE_CASE = """""".join(lowerCAmelCase__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __SCREAMING_SNAKE_CASE = tokenizer.encode("""你好""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""你是谁""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=lowerCAmelCase__) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): __SCREAMING_SNAKE_CASE = """你好,你是谁""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.prepare_for_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
255
0
"""simple docstring""" from __future__ import annotations _A = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _A = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a__ ( lowerCAmelCase ) -> list[float]: UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Any = len(lowerCAmelCase ) for i in range(lowerCAmelCase ): UpperCAmelCase__ : float = -1 for j in range(i + 1 , lowerCAmelCase ): if arr[i] < arr[j]: UpperCAmelCase__ : Union[str, Any] = arr[j] break result.append(lowerCAmelCase ) return result def a__ ( lowerCAmelCase ) -> list[float]: UpperCAmelCase__ : List[str] = [] for i, outer in enumerate(lowerCAmelCase ): UpperCAmelCase__ : float = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCAmelCase__ : int = inner break result.append(lowerCAmelCase ) return result def a__ ( lowerCAmelCase ) -> list[float]: UpperCAmelCase__ : Union[str, Any] = len(lowerCAmelCase ) UpperCAmelCase__ : list[float] = [] UpperCAmelCase__ : list[float] = [-1] * arr_size for index in reversed(range(lowerCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCAmelCase__ : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _A = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
171
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : str = {} def _a (self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = super().add_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" """ `placeholder_token` that is not already in the tokenizer.""" ) def _a (self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=1 , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) else: UpperCAmelCase__ : Any = [] for i in range(_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = placeholder_token + F"""_{i}""" self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) UpperCAmelCase__ : Dict = output def _a (self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 ): """simple docstring""" if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : str = [] for i in range(len(_lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase__ : List[str] = self.token_map[placeholder_token] UpperCAmelCase__ : Any = tokens[: 1 + int(len(_lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: UpperCAmelCase__ : Any = copy.copy(_lowerCamelCase ) random.shuffle(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = text.replace(_lowerCamelCase , """ """.join(_lowerCamelCase ) ) return text def __call__(self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , ) def _a (self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
171
1
"""simple docstring""" import torch from torch import nn class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1 , _UpperCAmelCase=False ): super().__init__() snake_case_ = n_token snake_case_ = d_embed snake_case_ = d_proj snake_case_ = cutoffs + [n_token] snake_case_ = [0] + self.cutoffs snake_case_ = div_val snake_case_ = self.cutoffs[0] snake_case_ = len(self.cutoffs ) - 1 snake_case_ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: snake_case_ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) snake_case_ = nn.Parameter(torch.zeros(self.n_clusters ) ) snake_case_ = nn.ModuleList() snake_case_ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase ) ) ) else: self.out_projs.append(_UpperCAmelCase ) self.out_layers.append(nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): snake_case_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case_ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(_UpperCAmelCase , r_idx - l_idx ) ) snake_case_ = keep_order def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if proj is None: snake_case_ = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: snake_case_ = nn.functional.linear(_UpperCAmelCase , proj.t().contiguous() ) snake_case_ = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ): if labels is not None: # Shift so that tokens < n predict n snake_case_ = hidden[..., :-1, :].contiguous() snake_case_ = labels[..., 1:].contiguous() snake_case_ = hidden.view(-1 , hidden.size(-1 ) ) snake_case_ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: snake_case_ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: snake_case_ = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: snake_case_ = labels != -1_00 snake_case_ = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) snake_case_ = ( -nn.functional.log_softmax(_UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: snake_case_ = nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) else: # construct weights and biases snake_case_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: snake_case_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case_ = self.out_layers[0].weight[l_idx:r_idx] snake_case_ = self.out_layers[0].bias[l_idx:r_idx] else: snake_case_ = self.out_layers[i].weight snake_case_ = self.out_layers[i].bias if i == 0: snake_case_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) snake_case_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_UpperCAmelCase ) biases.append(_UpperCAmelCase ) snake_case_ = weights[0], biases[0], self.out_projs[0] snake_case_ = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) if labels is None: snake_case_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: snake_case_ = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) snake_case_ = 0 snake_case_ = [0] + self.cutoffs for i in range(len(_UpperCAmelCase ) - 1 ): snake_case_ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: snake_case_ = (labels >= l_idx) & (labels < r_idx) snake_case_ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue snake_case_ = labels.index_select(0 , _UpperCAmelCase ) - l_idx snake_case_ = head_logprob.index_select(0 , _UpperCAmelCase ) snake_case_ = hidden.index_select(0 , _UpperCAmelCase ) else: snake_case_ = hidden if i == 0: if labels is not None: snake_case_ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: snake_case_ = head_logprob[:, : self.cutoffs[0]] else: snake_case_ = weights[i], biases[i], self.out_projs[i] snake_case_ = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) snake_case_ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: snake_case_ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: snake_case_ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i snake_case_ = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , _UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCamelCase__ ( self , _UpperCAmelCase ): if self.n_clusters == 0: snake_case_ = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) else: # construct weights and biases snake_case_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: snake_case_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case_ = self.out_layers[0].weight[l_idx:r_idx] snake_case_ = self.out_layers[0].bias[l_idx:r_idx] else: snake_case_ = self.out_layers[i].weight snake_case_ = self.out_layers[i].bias if i == 0: snake_case_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) snake_case_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_UpperCAmelCase ) biases.append(_UpperCAmelCase ) snake_case_ = weights[0], biases[0], self.out_projs[0] snake_case_ = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) snake_case_ = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) snake_case_ = [0] + self.cutoffs for i in range(len(_UpperCAmelCase ) - 1 ): snake_case_ = cutoff_values[i], cutoff_values[i + 1] if i == 0: snake_case_ = head_logprob[:, : self.cutoffs[0]] else: snake_case_ = weights[i], biases[i], self.out_projs[i] snake_case_ = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) snake_case_ = head_logprob[:, -i] + tail_logprob_i snake_case_ = logprob_i return out
352
from __future__ import annotations import time UpperCAmelCase = list[tuple[int, int]] UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = pos_x snake_case_ = pos_y snake_case_ = (pos_y, pos_x) snake_case_ = goal_x snake_case_ = goal_y snake_case_ = parent class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = Node(start[1] , start[0] , goal[1] , goal[0] , _UpperCAmelCase ) snake_case_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , _UpperCAmelCase ) snake_case_ = [self.start] snake_case_ = False def UpperCamelCase__ ( self ): while self.node_queue: snake_case_ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case_ = True return self.retrace_path(_UpperCAmelCase ) snake_case_ = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = [] for action in delta: snake_case_ = parent.pos_x + action[1] snake_case_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , _UpperCAmelCase ) ) return successors def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = node snake_case_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ = current_node.parent path.reverse() return path class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = False def UpperCamelCase__ ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case_ = self.fwd_bfs.node_queue.pop(0 ) snake_case_ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case_ = True return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = current_bwd_node snake_case_ = current_fwd_node snake_case_ = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.fwd_bfs.retrace_path(_UpperCAmelCase ) snake_case_ = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() snake_case_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCAmelCase = (0, 0) UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase = time.time() UpperCAmelCase = BreadthFirstSearch(init, goal) UpperCAmelCase = bfs.search() UpperCAmelCase = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) UpperCAmelCase = time.time() UpperCAmelCase = BidirectionalBreadthFirstSearch(init, goal) UpperCAmelCase = bd_bfs.search() UpperCAmelCase = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
267
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowercase : Optional[Any] = logging.get_logger(__name__) __lowercase : Any = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class __lowercase ( _lowercase , _lowercase ): lowerCamelCase : Tuple = "resnet" lowerCamelCase : Optional[int] = ["basic", "bottleneck"] def __init__(self , A=3 , A=6_4 , A=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , A=[3, 4, 6, 3] , A="bottleneck" , A="relu" , A=False , A=None , A=None , **A , ): super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) lowerCamelCase_ : str = num_channels lowerCamelCase_ : Tuple = embedding_size lowerCamelCase_ : List[Any] = hidden_sizes lowerCamelCase_ : Optional[Any] = depths lowerCamelCase_ : List[Any] = layer_type lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : Any = downsample_in_first_stage lowerCamelCase_ : int = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(A ) + 1 )] lowerCamelCase_, lowerCamelCase_ : Tuple = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class __lowercase ( _lowercase ): lowerCamelCase : List[str] = version.parse("1.11" ) @property def UpperCAmelCase__ (self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ (self ): return 1E-3
318
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = input_paths_and_base_extractors[compression_format] if input_path is None: SCREAMING_SNAKE_CASE_: Union[str, Any] = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) assert base_extractor.is_extractable(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(_UpperCAmelCase , _UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE_: Any = file_path.read_text(encoding="utf-8" ) else: SCREAMING_SNAKE_CASE_: Union[str, Any] = output_path.read_text(encoding="utf-8" ) SCREAMING_SNAKE_CASE_: str = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: List[str] = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } SCREAMING_SNAKE_CASE_: Optional[int] = input_paths[compression_format] if input_path is None: SCREAMING_SNAKE_CASE_: Optional[int] = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = Extractor.infer_extractor_format(_UpperCAmelCase ) assert extractor_format is not None SCREAMING_SNAKE_CASE_: Optional[Any] = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE_: Optional[int] = file_path.read_text(encoding="utf-8" ) else: SCREAMING_SNAKE_CASE_: List[str] = output_path.read_text(encoding="utf-8" ) SCREAMING_SNAKE_CASE_: Any = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def A_ ( _UpperCAmelCase , _UpperCAmelCase ): import tarfile SCREAMING_SNAKE_CASE_: List[Any] = tmp_path / "data_dot_dot" directory.mkdir() SCREAMING_SNAKE_CASE_: Optional[Any] = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(_UpperCAmelCase , "w" ) as f: f.add(_UpperCAmelCase , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def A_ ( _UpperCAmelCase ): import tarfile SCREAMING_SNAKE_CASE_: Union[str, Any] = tmp_path / "data_sym_link" directory.mkdir() SCREAMING_SNAKE_CASE_: Any = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=_UpperCAmelCase ) with tarfile.TarFile(_UpperCAmelCase , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } SCREAMING_SNAKE_CASE_: Optional[Any] = insecure_tar_files[insecure_tar_file] SCREAMING_SNAKE_CASE_: Optional[Any] = tmp_path / "extracted" TarExtractor.extract(_UpperCAmelCase , _UpperCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def A_ ( _UpperCAmelCase ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number SCREAMING_SNAKE_CASE_: Tuple = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 SCREAMING_SNAKE_CASE_: str = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(_UpperCAmelCase ) assert zipfile.is_zipfile(str(_UpperCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_UpperCAmelCase ) # but we're right
127
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase : Optional[Any] = 50003 lowerCAmelCase : List[str] = 50002 @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = PLBartTokenizer _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = False def _SCREAMING_SNAKE_CASE ( self : str): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: Tuple = PLBartTokenizer(lowerCAmelCase__ , language_codes="base" , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[int] = PLBartTokenizer(lowerCAmelCase__ , language_codes="base" , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: str = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) SCREAMING_SNAKE_CASE_: int = tokenizer.vocab_size SCREAMING_SNAKE_CASE_: Tuple = [tokenizer.convert_ids_to_tokens(lowerCAmelCase__) for x in range(end - 4 , lowerCAmelCase__)] self.assertListEqual(lowerCAmelCase__ , ["__java__", "__python__", "__en_XX__", "<mask>"]) SCREAMING_SNAKE_CASE_: Optional[int] = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer(lowerCAmelCase__).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) , lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = PLBartTokenizer(lowerCAmelCase__ , language_codes="multi" , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.vocab_size SCREAMING_SNAKE_CASE_: int = [tokenizer.convert_ids_to_tokens(lowerCAmelCase__) for x in range(end - 7 , lowerCAmelCase__)] self.assertListEqual( lowerCAmelCase__ , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"]) SCREAMING_SNAKE_CASE_: str = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) , lowerCAmelCase__ , ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = '''uclanlp/plbart-python-en_XX''' _UpperCAmelCase : List[str] = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] _UpperCAmelCase : int = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] _UpperCAmelCase : Optional[Any] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict): SCREAMING_SNAKE_CASE_: PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX") SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return cls def _SCREAMING_SNAKE_CASE ( self : List[str]): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0003) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Dict = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids) SCREAMING_SNAKE_CASE_: Optional[Any] = [EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE_: int = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: Optional[Any] = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , lowerCAmelCase__) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"]) , [5_0004, 5_0001]) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = PLBartTokenizer.from_pretrained(lowerCAmelCase__) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__) @require_torch def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: Any = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE]) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase__) self.assertEqual(batch.decoder_input_ids[1][-1] , 2) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE]) @require_torch def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens) , return_tensors="pt" , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) self.assertEqual((2, 26) , batch.input_ids.shape) self.assertEqual((2, 26) , batch.attention_mask.shape) SCREAMING_SNAKE_CASE_: Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors="pt") SCREAMING_SNAKE_CASE_: Any = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors="pt") SCREAMING_SNAKE_CASE_: List[Any] = targets["input_ids"] SCREAMING_SNAKE_CASE_: List[Any] = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java") self.assertEqual( nested_simplify(lowerCAmelCase__) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 5_0003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0001, } , )
127
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase ( A_ ): A__ : List[Any] = "canine" def __init__(self : Dict , snake_case__ : Dict=7_68 , snake_case__ : Tuple=12 , snake_case__ : Optional[int]=12 , snake_case__ : Optional[Any]=30_72 , snake_case__ : List[Any]="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : List[str]=1_63_84 , snake_case__ : List[Any]=16 , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=1e-12 , snake_case__ : Tuple=0 , snake_case__ : Optional[int]=0XE_0_0_0 , snake_case__ : Dict=0XE_0_0_1 , snake_case__ : int=4 , snake_case__ : Union[str, Any]=4 , snake_case__ : Union[str, Any]=8 , snake_case__ : List[str]=1_63_84 , snake_case__ : List[str]=1_28 , **snake_case__ : Optional[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) snake_case : Any = max_position_embeddings snake_case : List[Any] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Tuple = num_attention_heads snake_case : Dict = intermediate_size snake_case : List[str] = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : str = initializer_range snake_case : int = type_vocab_size snake_case : List[Any] = layer_norm_eps # Character config: snake_case : str = downsampling_rate snake_case : Dict = upsampling_kernel_size snake_case : List[str] = num_hash_functions snake_case : Optional[int] = num_hash_buckets snake_case : Dict = local_transformer_stride
59
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase :str = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowerCAmelCase :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
0
import heapq import sys import numpy as np __A : int = tuple[int, int] class __A : def __init__( self : Optional[int] ): lowerCAmelCase : Tuple = [] lowerCAmelCase : List[Any] = set() def lowercase__ ( self : Dict ): if not self.empty(): return self.elements[0][0] else: return float('inf' ) def lowercase__ ( self : str ): return len(self.elements ) == 0 def lowercase__ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCAmelCase_ ) else: # update # print("update", item) lowerCAmelCase : Any = [] ((lowerCAmelCase) , (lowerCAmelCase)) : List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCAmelCase) , (lowerCAmelCase)) : Optional[Any] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowercase__ ( self : int , UpperCAmelCase_ : Any ): if item in self.set: self.set.remove(UpperCAmelCase_ ) lowerCAmelCase : Any = [] ((lowerCAmelCase) , (lowerCAmelCase)) : str = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCAmelCase) , (lowerCAmelCase)) : List[str] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowercase__ ( self : Optional[Any] ): return self.elements[0][1] def lowercase__ ( self : int ): ((lowerCAmelCase) , (lowerCAmelCase)) : List[str] = heapq.heappop(self.elements ) self.set.remove(UpperCAmelCase_ ) return (priority, item) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = np.array(_UpperCAmelCase ) lowerCAmelCase : Any = np.array(_UpperCAmelCase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' return consistent_heuristic(_UpperCAmelCase, _UpperCAmelCase ) // t def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[str] = g_function[start] + Wa * heuristics[i](_UpperCAmelCase, _UpperCAmelCase ) return ans def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = np.chararray((n, n) ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCAmelCase : Optional[Any] = '*' for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (j, (n - 1) - i) in blocks: lowerCAmelCase : Tuple = '#' lowerCAmelCase : List[Any] = '-' lowerCAmelCase : Optional[Any] = back_pointer[goal] while x != start: ((lowerCAmelCase) , (lowerCAmelCase)) : Tuple = x # print(x) lowerCAmelCase : Tuple = '-' lowerCAmelCase : str = back_pointer[x] lowerCAmelCase : Optional[int] = '-' for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j], end=' ' ) print('<-- End position', end=' ' ) else: print(grid[i][j], end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowerCAmelCase : Dict = back_pointer[goal] while x != start: print(_UpperCAmelCase, end=' ' ) lowerCAmelCase : List[Any] = back_pointer[x] print(_UpperCAmelCase ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> int: '''simple docstring''' for itera in range(_UpperCAmelCase ): open_list[itera].remove_element(_UpperCAmelCase ) # print("s", s) # print("j", j) ((lowerCAmelCase) , (lowerCAmelCase)) : Union[str, Any] = s lowerCAmelCase : List[Any] = (x - 1, y) lowerCAmelCase : Optional[Any] = (x + 1, y) lowerCAmelCase : Optional[int] = (x, y + 1) lowerCAmelCase : str = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Optional[int] = float('inf' ) if valid(_UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase : Any = g_function[s] + 1 lowerCAmelCase : Optional[Any] = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCAmelCase, key(_UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1, _UpperCAmelCase ): if key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) <= Wa * key( _UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase ): open_list[j].put( _UpperCAmelCase, key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Tuple = [] for x in range(1, 5 ): for y in range(1, 6 ): some_list.append((x, y) ) for x in range(15, 20 ): some_list.append((x, 17) ) for x in range(10, 19 ): for y in range(1, 15 ): some_list.append((x, y) ) # L block for x in range(1, 4 ): for y in range(12, 19 ): some_list.append((x, y) ) for x in range(3, 13 ): for y in range(16, 19 ): some_list.append((x, y) ) return some_list __A : Any = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __A : str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __A : Any = make_common_ground() __A : List[Any] = blocks_blk # hyper parameters __A : Union[str, Any] = 1 __A : Dict = 1 __A : str = 20 __A : int = 3 # one consistent and two other inconsistent # start and end destination __A : str = (0, 0) __A : List[str] = (n - 1, n - 1) __A : int = 1 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = {start: 0, goal: float('inf' )} lowerCAmelCase : List[str] = {start: -1, goal: -1} lowerCAmelCase : Dict = [] lowerCAmelCase : Any = set() for i in range(_UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCAmelCase, key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) ) lowerCAmelCase : list[int] = [] lowerCAmelCase : list[int] = [] while open_list[0].minkey() < float('inf' ): for i in range(1, _UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) else: lowerCAmelCase , lowerCAmelCase : int = open_list[i].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) close_list_inad.append(_UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) else: lowerCAmelCase : Tuple = open_list[0].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase, 0, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) close_list_anchor.append(_UpperCAmelCase ) print('No path found to goal' ) print() for i in range(n - 1, -1, -1 ): for j in range(_UpperCAmelCase ): if (j, i) in blocks: print('#', end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*', end=' ' ) else: print('-', end=' ' ) else: print('*', end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position', end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
323
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> np.ndarray: '''simple docstring''' lowercase : List[str] = cva.getAffineTransform(_UpperCAmelCase , _UpperCAmelCase ) return cva.warpAffine(_UpperCAmelCase , _UpperCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image _UpperCamelCase: List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value _UpperCamelCase: List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _UpperCamelCase , _UpperCamelCase: Union[str, Any] = gray_img.shape # set different points to rotate image _UpperCamelCase: str = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) _UpperCamelCase: Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) _UpperCamelCase: str = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) _UpperCamelCase: Optional[Any] = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list _UpperCamelCase: int = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _UpperCamelCase: str = plt.figure(1) _UpperCamelCase: List[Any] = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
255
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a__ : def __init__( self : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Optional[Any]=13, lowerCAmelCase : str=7, lowerCAmelCase : Union[str, Any]=True, lowerCAmelCase : Optional[int]=True, lowerCAmelCase : Dict=True, lowerCAmelCase : List[str]=True, lowerCAmelCase : List[Any]=99, lowerCAmelCase : Tuple=32, lowerCAmelCase : int=2, lowerCAmelCase : Dict=4, lowerCAmelCase : List[str]=37, lowerCAmelCase : Any="gelu", lowerCAmelCase : Optional[int]=0.1, lowerCAmelCase : Tuple=0.1, lowerCAmelCase : Optional[int]=512, lowerCAmelCase : Dict=16, lowerCAmelCase : Tuple=2, lowerCAmelCase : Union[str, Any]=0.02, lowerCAmelCase : str=3, lowerCAmelCase : Any=4, lowerCAmelCase : List[str]=None, lowerCAmelCase : Union[str, Any]=1000, ) -> Dict: lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : List[Any] = seq_length lowercase : List[str] = is_training lowercase : Optional[Any] = use_input_mask lowercase : Optional[int] = use_token_type_ids lowercase : List[Any] = use_labels lowercase : Optional[Any] = vocab_size lowercase : int = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : str = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : str = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Optional[int] = type_sequence_label_size lowercase : str = initializer_range lowercase : Any = num_labels lowercase : List[Any] = num_choices lowercase : Optional[int] = scope lowercase : str = range_bbox def lowercase ( self : str ) -> Optional[int]: lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : str = bbox[i, j, 3] lowercase : Tuple = bbox[i, j, 1] lowercase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Optional[int] = bbox[i, j, 2] lowercase : List[str] = bbox[i, j, 0] lowercase : Union[str, Any] = t lowercase : Any = tf.convert_to_tensor(lowerCAmelCase ) lowercase : Optional[Any] = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_token_type_ids: lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase : Dict = None lowercase : List[str] = None lowercase : List[Any] = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) lowercase : Tuple = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : int, lowerCAmelCase : Tuple, lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[Any] ) -> Dict: lowercase : Dict = TFLayoutLMModel(config=lowerCAmelCase ) lowercase : str = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Union[str, Any] = model(lowerCAmelCase, lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Any = model(lowerCAmelCase, lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase ( self : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Tuple, lowerCAmelCase : List[str] ) -> Any: lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=lowerCAmelCase ) lowercase : List[Any] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Any, lowerCAmelCase : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Dict, lowerCAmelCase : List[str], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : int ) -> List[str]: lowercase : Optional[Any] = self.num_labels lowercase : Optional[int] = TFLayoutLMForSequenceClassification(config=lowerCAmelCase ) lowercase : Tuple = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple, lowerCAmelCase : Union[str, Any], lowerCAmelCase : List[str], lowerCAmelCase : Optional[int], lowerCAmelCase : List[str], lowerCAmelCase : List[str], lowerCAmelCase : int, lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict ) -> Dict: lowercase : Optional[int] = self.num_labels lowercase : int = TFLayoutLMForTokenClassification(config=lowerCAmelCase ) lowercase : List[str] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : Any, lowerCAmelCase : Optional[Any], lowerCAmelCase : List[str], lowerCAmelCase : List[Any], lowerCAmelCase : List[Any], lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple ) -> Optional[Any]: lowercase : List[str] = TFLayoutLMForQuestionAnswering(config=lowerCAmelCase ) lowercase : Optional[int] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase ( self : Tuple ) -> Union[str, Any]: lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _lowerCamelCase = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = 10 def lowercase ( self : Tuple ) -> int: lowercase : int = TFLayoutLMModelTester(self ) lowercase : int = ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() def lowercase ( self : str ) -> List[Any]: lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase ( self : List[Any] ) -> Tuple: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowercase ( self : int ) -> List[str]: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowercase ( self : Dict ) -> int: lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) def lowercase ( self : List[str] ) -> Any: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) @slow def lowercase ( self : Dict ) -> List[Any]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFLayoutLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def lowercase ( self : List[Any] ) -> List[Any]: pass def lowercase__ ( ) -> str: '''simple docstring''' lowercase : Any = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 lowercase : List[Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase : List[str] = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 lowercase : Dict = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase : List[Any] = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a__ ( unittest.TestCase ): @slow def lowercase ( self : Optional[int] ) -> str: lowercase : Any = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[str] = model(input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) # test the sequence output on [0, :3, :3] lowercase : Dict = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], lowerCAmelCase, atol=1e-3 ) ) # test the pooled output on [1, :3] lowercase : Any = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], lowerCAmelCase, atol=1e-3 ) ) @slow def lowercase ( self : List[Any] ) -> Any: # initialize model with randomly initialized sequence classification head lowercase : List[str] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=2 ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model( input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=tf.convert_to_tensor([1, 1] ), ) # test whether we get a loss as a scalar lowercase : List[str] = outputs.loss lowercase : List[Any] = (2,) self.assertEqual(loss.shape, lowerCAmelCase ) # test the shape of the logits lowercase : str = outputs.logits lowercase : List[str] = (2, 2) self.assertEqual(logits.shape, lowerCAmelCase ) @slow def lowercase ( self : List[Any] ) -> str: # initialize model with randomly initialized token classification head lowercase : Tuple = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=13 ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[str] = model( input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) # test the shape of the logits lowercase : Union[str, Any] = outputs.logits lowercase : Union[str, Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape, lowerCAmelCase ) @slow def lowercase ( self : Union[str, Any] ) -> int: # initialize model with randomly initialized token classification head lowercase : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = prepare_layoutlm_batch_inputs() # forward pass lowercase : int = model(input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) # test the shape of the logits lowercase : str = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape, lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape, lowerCAmelCase )
255
1
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.0_2 , __a=False , __a=True , __a="None" , __a=3 , __a=4 , __a=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = relative_attention __lowerCAmelCase = position_biased_input __lowerCAmelCase = pos_att_type __lowerCAmelCase = scope def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case ( self , __a ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = DebertaVaModel(config=__A ) model.to(__A ) model.eval() __lowerCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A )[0] __lowerCAmelCase = model(__A , token_type_ids=__A )[0] __lowerCAmelCase = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() __lowerCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() __lowerCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() __lowerCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __lowerCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( __lowerCAmelCase ) = config_and_inputs __lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[int] =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Any =True __UpperCAmelCase : Optional[int] =False __UpperCAmelCase : str =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : int =False def snake_case ( self ): __lowerCAmelCase = DebertaVaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__A , hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def snake_case ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def snake_case ( self ): pass @slow def snake_case ( self ): __lowerCAmelCase = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) __lowerCAmelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(__A , attention_mask=__A )[0] # compare the actual values for a slice. __lowerCAmelCase = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) , f"{output[:, 1:4, 1:4]}" )
361
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Optional[int] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""xlnet""" __UpperCAmelCase : Tuple =["""mems"""] __UpperCAmelCase : List[str] ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __a=3_20_00 , __a=10_24 , __a=24 , __a=16 , __a=40_96 , __a="gelu" , __a=True , __a="bi" , __a=0.0_2 , __a=1e-1_2 , __a=0.1 , __a=5_12 , __a=None , __a=True , __a=False , __a=False , __a=-1 , __a=False , __a="last" , __a=True , __a="tanh" , __a=0.1 , __a=5 , __a=5 , __a=5 , __a=1 , __a=2 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = n_layer __lowerCAmelCase = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __lowerCAmelCase = d_model // n_head __lowerCAmelCase = ff_activation __lowerCAmelCase = d_inner __lowerCAmelCase = untie_r __lowerCAmelCase = attn_type __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = dropout __lowerCAmelCase = mem_len __lowerCAmelCase = reuse_len __lowerCAmelCase = bi_data __lowerCAmelCase = clamp_len __lowerCAmelCase = same_length __lowerCAmelCase = summary_type __lowerCAmelCase = summary_use_proj __lowerCAmelCase = summary_activation __lowerCAmelCase = summary_last_dropout __lowerCAmelCase = start_n_top __lowerCAmelCase = end_n_top __lowerCAmelCase = bos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __a , ) __lowerCAmelCase = kwargs["use_cache"] __lowerCAmelCase = use_mems_eval __lowerCAmelCase = use_mems_train super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) @property def snake_case ( self ): logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def snake_case ( self , __a ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
259
0
"""simple docstring""" from typing import List import numpy as np def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = {key: len(__lowerCamelCase ) for key, value in gen_kwargs.items() if isinstance(__lowerCamelCase, __lowerCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) UpperCAmelCase_ : List[str] = max(lists_lengths.values(), default=0 ) return max(1, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [] for group_idx in range(__lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCAmelCase_ : Optional[Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCAmelCase_ : List[Any] = range(__lowerCamelCase, start + num_shards_to_add ) shards_indices_per_group.append(__lowerCamelCase ) return shards_indices_per_group def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) if num_shards == 1: return [dict(__lowerCamelCase )] else: UpperCAmelCase_ : Any = _distribute_shards(num_shards=__lowerCamelCase, max_num_jobs=__lowerCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowerCamelCase, __lowerCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowerCamelCase ) ) ] def __a ( __lowerCamelCase ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], __lowerCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = {len(__lowerCamelCase ) for value in gen_kwargs.values() if isinstance(__lowerCamelCase, __lowerCamelCase )} UpperCAmelCase_ : List[str] = {} for size in list_sizes: UpperCAmelCase_ : Tuple = list(range(__lowerCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCAmelCase_ : Optional[int] = dict(__lowerCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = [value[i] for i in indices_per_size[len(__lowerCamelCase )]] return shuffled_kwargs
61
'''simple docstring''' def a__ ( a__ , a__ ): """simple docstring""" _enforce_args(a__ , a__ ) if n == 0: return 0 __SCREAMING_SNAKE_CASE = float("""-inf""" ) for i in range(1 , n + 1 ): __SCREAMING_SNAKE_CASE = max( a__ , prices[i - 1] + naive_cut_rod_recursive(n - i , a__ ) ) return max_revue def a__ ( a__ , a__ ): """simple docstring""" _enforce_args(a__ , a__ ) __SCREAMING_SNAKE_CASE = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __SCREAMING_SNAKE_CASE = float("""-inf""" ) for i in range(1 , n + 1 ): __SCREAMING_SNAKE_CASE = max( a__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , a__ , a__ ) , ) __SCREAMING_SNAKE_CASE = max_revenue return max_rev[n] def a__ ( a__ , a__ ): """simple docstring""" _enforce_args(a__ , a__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __SCREAMING_SNAKE_CASE = [float("""-inf""" ) for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE = 0 for i in range(1 , n + 1 ): __SCREAMING_SNAKE_CASE = max_rev[i] for j in range(1 , i + 1 ): __SCREAMING_SNAKE_CASE = max(a__ , prices[j - 1] + max_rev[i - j] ) __SCREAMING_SNAKE_CASE = max_revenue_i return max_rev[n] def a__ ( a__ , a__ ): """simple docstring""" if n < 0: __SCREAMING_SNAKE_CASE = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(a__ ) if n > len(a__ ): __SCREAMING_SNAKE_CASE = ( """Each integral piece of rod must have a corresponding price. """ F'Got n = {n} but length of prices = {len(a__ )}' ) raise ValueError(a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = [6, 10, 12, 15, 20, 23] __SCREAMING_SNAKE_CASE = len(a__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __SCREAMING_SNAKE_CASE = 36 __SCREAMING_SNAKE_CASE = top_down_cut_rod(a__ , a__ ) __SCREAMING_SNAKE_CASE = bottom_up_cut_rod(a__ , a__ ) __SCREAMING_SNAKE_CASE = naive_cut_rod_recursive(a__ , a__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
267
0
'''simple docstring''' _lowerCamelCase = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase = 'TRWAGMYFPDXBNJZSQVHLCKE' def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase_ : Dict = F'''Expected string as input, found {type(lowerCamelCase_ ).__name__}''' raise TypeError(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = spanish_id.replace("-" , "" ).upper() if len(lowerCamelCase_ ) != 9: raise ValueError(lowerCamelCase_ ) try: UpperCAmelCase_ : Union[str, Any] = int(spanish_id_clean[0:8] ) UpperCAmelCase_ : Optional[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCamelCase_ ) from ex if letter.isdigit(): raise ValueError(lowerCamelCase_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _snake_case (unittest.TestCase): def __init__( self ,_snake_case ,_snake_case=7 ,_snake_case=3 ,_snake_case=18 ,_snake_case=30 ,_snake_case=4_00 ,_snake_case=True ,_snake_case=None ,_snake_case=True ,_snake_case=None ,_snake_case=True ,_snake_case=[0.48145466, 0.4578275, 0.40821073] ,_snake_case=[0.26862954, 0.26130258, 0.27577711] ,_snake_case=True ,): UpperCAmelCase_ : List[str] = size if size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Dict = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : List[Any] = do_resize UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : Union[str, Any] = do_center_crop UpperCAmelCase_ : Any = crop_size UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : Tuple = image_mean UpperCAmelCase_ : List[Any] = image_std UpperCAmelCase_ : Dict = do_convert_rgb def UpperCamelCase__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCamelCase__ ( self ,_snake_case=False ,_snake_case=False ,_snake_case=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCAmelCase_ : Optional[int] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: UpperCAmelCase_ : Optional[Any] = [] for i in range(self.batch_size ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(2_55 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCAmelCase_ : Optional[int] = [Image.fromarray(np.moveaxis(_snake_case ,0 ,-1 ) ) for x in image_inputs] if torchify: UpperCAmelCase_ : Optional[Any] = [torch.from_numpy(_snake_case ) for x in image_inputs] return image_inputs @require_torch @require_vision class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Tuple =ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = ChineseCLIPImageProcessingTester(self ,do_center_crop=_snake_case ) @property def UpperCamelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case ,"do_resize" ) ) self.assertTrue(hasattr(_snake_case ,"size" ) ) self.assertTrue(hasattr(_snake_case ,"do_center_crop" ) ) self.assertTrue(hasattr(_snake_case ,"center_crop" ) ) self.assertTrue(hasattr(_snake_case ,"do_normalize" ) ) self.assertTrue(hasattr(_snake_case ,"image_mean" ) ) self.assertTrue(hasattr(_snake_case ,"image_std" ) ) self.assertTrue(hasattr(_snake_case ,"do_convert_rgb" ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 2_24, "width": 2_24} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) UpperCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): # Initialize image_processing UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched UpperCAmelCase_ : int = image_processing(_snake_case ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase__ ( self ): # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=_snake_case ,numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched UpperCAmelCase_ : Optional[int] = image_processing(_snake_case ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase__ ( self ): # Initialize image_processing UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=_snake_case ,torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,torch.Tensor ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched UpperCAmelCase_ : List[str] = image_processing(_snake_case ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) @require_torch @require_vision class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Any =ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=_snake_case ) UpperCAmelCase_ : Optional[Any] = 3 @property def UpperCamelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case ,"do_resize" ) ) self.assertTrue(hasattr(_snake_case ,"size" ) ) self.assertTrue(hasattr(_snake_case ,"do_center_crop" ) ) self.assertTrue(hasattr(_snake_case ,"center_crop" ) ) self.assertTrue(hasattr(_snake_case ,"do_normalize" ) ) self.assertTrue(hasattr(_snake_case ,"image_mean" ) ) self.assertTrue(hasattr(_snake_case ,"image_std" ) ) self.assertTrue(hasattr(_snake_case ,"do_convert_rgb" ) ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): # Initialize image_processing UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = self.image_processor_tester.prepare_inputs(equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,Image.Image ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched UpperCAmelCase_ : Any = image_processing(_snake_case ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
67
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _SCREAMING_SNAKE_CASE : int = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def UpperCAmelCase__ (UpperCamelCase_=None ): """simple docstring""" if subparsers is not None: snake_case = subparsers.add_parser('''tpu-config''' ,description=_description ) else: snake_case = argparse.ArgumentParser('''Accelerate tpu-config command''' ,description=_description ) # Core arguments snake_case = parser.add_argument_group( '''Config Arguments''' ,'''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' ,type=UpperCamelCase_ ,default=UpperCamelCase_ ,help='''Path to the config file to use for accelerate.''' ,) config_args.add_argument( '''--tpu_name''' ,default=UpperCamelCase_ ,help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' ,) config_args.add_argument( '''--tpu_zone''' ,default=UpperCamelCase_ ,help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' ,) snake_case = parser.add_argument_group('''TPU Arguments''' ,'''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' ,action='''store_true''' ,help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' ,) pod_args.add_argument( '''--command_file''' ,default=UpperCamelCase_ ,help='''The path to the file containing the commands to run on the pod on startup.''' ,) pod_args.add_argument( '''--command''' ,action='''append''' ,nargs='''+''' ,help='''A command to run on the pod. Can be passed multiple times.''' ,) pod_args.add_argument( '''--install_accelerate''' ,action='''store_true''' ,help='''Whether to install accelerate on the pod. Defaults to False.''' ,) pod_args.add_argument( '''--accelerate_version''' ,default='''latest''' ,help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' ,) pod_args.add_argument( '''--debug''' ,action='''store_true''' ,help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase_ ) return parser def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCamelCase_ ): snake_case = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case = defaults.command_file if not args.command and defaults.commands is not None: snake_case = defaults.commands if not args.tpu_name: snake_case = defaults.tpu_name if not args.tpu_zone: snake_case = defaults.tpu_zone if args.accelerate_version == "dev": snake_case = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": snake_case = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) ,UpperCamelCase_ ): snake_case = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file ,'''r''' ) as f: snake_case = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] ,UpperCamelCase_ ): snake_case = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command snake_case = '''; '''.join(UpperCamelCase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {" ".join(UpperCamelCase_ )}''' ) return subprocess.run(UpperCamelCase_ ) print('''Successfully setup pod.''' ) def UpperCAmelCase__ (): """simple docstring""" snake_case = tpu_command_parser() snake_case = parser.parse_args() tpu_command_launcher(UpperCamelCase_ )
127
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = BlenderbotSmallTokenizer __magic_name__ = False def a_ ( self ): super().setUp() snake_case = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] snake_case = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] snake_case = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def a_ ( self , **__snake_case ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self , __snake_case ): snake_case = '''adapt act apte''' snake_case = '''adapt act apte''' return input_text, output_text def a_ ( self ): snake_case = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case = '''adapt act apte''' snake_case = ['''adapt''', '''act''', '''ap@@''', '''te'''] snake_case = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] snake_case = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def a_ ( self ): snake_case = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] snake_case = '''I am a small frog.''' snake_case = tok([src_text] , padding=__snake_case , truncation=__snake_case )['''input_ids'''] snake_case = tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def a_ ( self ): snake_case = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) snake_case = '''I am a small frog .''' snake_case = '''.''' snake_case = tok(__snake_case )['''input_ids'''] snake_case = tok(__snake_case )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
127
1
from collections import deque from .hash_table import HashTable class lowerCamelCase (__lowerCamelCase ): """simple docstring""" def __init__( self : int, *_UpperCAmelCase : str, **_UpperCAmelCase : Tuple ) -> Any: """simple docstring""" super().__init__(*_UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : Union[str, Any], _UpperCAmelCase : int, _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = self.values[key] def A_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( sum(self.charge_factor - len(_UpperCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def A_ ( self : Any, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Any=None ) -> List[Any]: """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCAmelCase ) == 0 ): return key return super()._collision_resolution(_UpperCAmelCase, _UpperCAmelCase )
191
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[Any]=1_3, _UpperCAmelCase : Optional[Any]=3_0, _UpperCAmelCase : List[str]=2, _UpperCAmelCase : str=3, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : Optional[Any]=3_2, _UpperCAmelCase : Any=5, _UpperCAmelCase : Optional[Any]=4, _UpperCAmelCase : List[Any]=3_7, _UpperCAmelCase : Optional[int]="gelu", _UpperCAmelCase : int=0.1, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : List[str]=1_0, _UpperCAmelCase : List[Any]=0.02, _UpperCAmelCase : List[Any]=None, ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = parent SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE__ : str = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : Any = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : str = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : str = num_patches + 1 def A_ ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : int = self.get_config() return config, pixel_values, labels def A_ ( self : int ) -> Tuple: """simple docstring""" return ViTMSNConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def A_ ( self : Dict, _UpperCAmelCase : List[str], _UpperCAmelCase : List[Any], _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ViTMSNModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : int, _UpperCAmelCase : Dict, _UpperCAmelCase : List[Any], _UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(_UpperCAmelCase, labels=_UpperCAmelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = config_and_inputs SCREAMING_SNAKE_CASE__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCAmelCase_ = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ViTMSNModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self, config_class=_UpperCAmelCase, has_text_modality=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def A_ ( self : List[str] ) -> Tuple: """simple docstring""" pass def A_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase, nn.Linear ) ) def A_ ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTMSNModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def A_ ( self : Any ) -> Dict: """simple docstring""" torch.manual_seed(2 ) SCREAMING_SNAKE_CASE__ : List[str] = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : Dict = image_processor(images=_UpperCAmelCase, return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**_UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _UpperCAmelCase, atol=1E-4 ) )
191
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __UpperCAmelCase = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __UpperCAmelCase = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCamelCase_ )[0] @deprecated(lowerCamelCase_ , """Please use tf.data to implement this functionality.""" ) def __A ( lowerCamelCase_ ): """simple docstring""" print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: SCREAMING_SNAKE_CASE : int = _readaa(lowerCamelCase_ ) if magic != 20_51: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) SCREAMING_SNAKE_CASE : str = _readaa(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = _readaa(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = _readaa(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE : Dict = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE : Any = data.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 1 ) return data @deprecated(lowerCamelCase_ , """Please use tf.one_hot on tensors.""" ) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = labels_dense.shape[0] SCREAMING_SNAKE_CASE : int = numpy.arange(lowerCamelCase_ ) * num_classes SCREAMING_SNAKE_CASE : Any = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE : Dict = 1 return labels_one_hot @deprecated(lowerCamelCase_ , """Please use tf.data to implement this functionality.""" ) def __A ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=10 ): """simple docstring""" print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: SCREAMING_SNAKE_CASE : Tuple = _readaa(lowerCamelCase_ ) if magic != 20_49: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) SCREAMING_SNAKE_CASE : Union[str, Any] = _readaa(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = bytestream.read(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowerCamelCase_ , lowerCamelCase_ ) return labels class UpperCamelCase__ : """simple docstring""" @deprecated( lowerCamelCase_ , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=dtypes.floataa , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = random_seed.get_seed(lowerCamelCase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE : Optional[int] = dtypes.as_dtype(lowerCamelCase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: SCREAMING_SNAKE_CASE : List[str] = 1_00_00 SCREAMING_SNAKE_CASE : Union[str, Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE : Any = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE : Union[str, Any] = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE : str = numpy.multiply(lowerCamelCase_ , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE : int = images SCREAMING_SNAKE_CASE : Optional[Any] = labels SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self._images @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return self._labels @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return self._num_examples @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return self._epochs_completed def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=True ): '''simple docstring''' if fake_data: SCREAMING_SNAKE_CASE : Tuple = [1] * 7_84 SCREAMING_SNAKE_CASE : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCamelCase_ )], [fake_label for _ in range(lowerCamelCase_ )], ) SCREAMING_SNAKE_CASE : Optional[int] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.images[perma] SCREAMING_SNAKE_CASE : Any = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE : Tuple = self._num_examples - start SCREAMING_SNAKE_CASE : Tuple = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE : int = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.images[perm] SCREAMING_SNAKE_CASE : List[str] = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : List[str] = batch_size - rest_num_examples SCREAMING_SNAKE_CASE : List[str] = self._index_in_epoch SCREAMING_SNAKE_CASE : List[str] = self._images[start:end] SCREAMING_SNAKE_CASE : Any = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE : Tuple = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCamelCase_ , """Please write your own downloading logic.""" ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if not gfile.Exists(lowerCamelCase_ ): gfile.MakeDirs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not gfile.Exists(lowerCamelCase_ ): urllib.request.urlretrieve(lowerCamelCase_ , lowerCamelCase_ ) # noqa: S310 with gfile.GFile(lowerCamelCase_ ) as f: SCREAMING_SNAKE_CASE : Dict = f.size() print("""Successfully downloaded""" , lowerCamelCase_ , lowerCamelCase_ , """bytes.""" ) return filepath @deprecated( lowerCamelCase_ , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def __A ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=dtypes.floataa , lowerCamelCase_=True , lowerCamelCase_=50_00 , lowerCamelCase_=None , lowerCamelCase_=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCamelCase_ , one_hot=lowerCamelCase_ , dtype=lowerCamelCase_ , seed=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = fake() SCREAMING_SNAKE_CASE : str = fake() SCREAMING_SNAKE_CASE : List[str] = fake() return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ ) if not source_url: # empty string check SCREAMING_SNAKE_CASE : int = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE : Optional[int] = """train-images-idx3-ubyte.gz""" SCREAMING_SNAKE_CASE : List[Any] = """train-labels-idx1-ubyte.gz""" SCREAMING_SNAKE_CASE : Optional[Any] = """t10k-images-idx3-ubyte.gz""" SCREAMING_SNAKE_CASE : Union[str, Any] = """t10k-labels-idx1-ubyte.gz""" SCREAMING_SNAKE_CASE : Tuple = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_images_file ) with gfile.Open(lowerCamelCase_ , """rb""" ) as f: SCREAMING_SNAKE_CASE : Tuple = _extract_images(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_labels_file ) with gfile.Open(lowerCamelCase_ , """rb""" ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_images_file ) with gfile.Open(lowerCamelCase_ , """rb""" ) as f: SCREAMING_SNAKE_CASE : List[str] = _extract_images(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_labels_file ) with gfile.Open(lowerCamelCase_ , """rb""" ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) if not 0 <= validation_size <= len(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = ( """Validation size should be between 0 and """ f'''{len(lowerCamelCase_ )}. Received: {validation_size}.''' ) raise ValueError(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = train_images[:validation_size] SCREAMING_SNAKE_CASE : str = train_labels[:validation_size] SCREAMING_SNAKE_CASE : int = train_images[validation_size:] SCREAMING_SNAKE_CASE : Any = train_labels[validation_size:] SCREAMING_SNAKE_CASE : Tuple = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} SCREAMING_SNAKE_CASE : int = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ )
323
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE : dict[str, str | None] = {} SCREAMING_SNAKE_CASE : List[str] = source_vertex def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex} SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vertex queue.append(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE : Tuple = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCamelCase_ ) return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}''' if __name__ == "__main__": __UpperCAmelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
323
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json UpperCamelCase__ : Optional[int] = 'sshleifer/mar_enro_6_3_student' class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Optional[int]: super().setUp() A_ : Any = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=_lowerCamelCase , ) A_ : List[Any] = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def UpperCAmelCase_ ( self ) -> List[str]: MarianMTModel.from_pretrained(_lowerCamelCase ) @slow @require_torch_gpu def UpperCAmelCase_ ( self ) -> List[Any]: A_ : List[Any] = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script A_ : Optional[Any] = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() A_ : int = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): A_ : List[Any] = bash_script.replace(_lowerCamelCase , str(_lowerCamelCase ) ) A_ : int = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") A_ : Optional[Any] = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future A_ : Optional[Any] = ["""finetune.py"""] + bash_script.split() + args with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase ): A_ : Any = argparse.ArgumentParser() A_ : Optional[int] = pl.Trainer.add_argparse_args(_lowerCamelCase ) A_ : List[Any] = SummarizationModule.add_model_specific_args(_lowerCamelCase , os.getcwd() ) A_ : Union[str, Any] = parser.parse_args() A_ : Optional[Any] = main(_lowerCamelCase ) # Check metrics A_ : int = load_json(model.metrics_save_path ) A_ : Tuple = metrics["""val"""][0] A_ : Any = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _lowerCamelCase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict A_ : Tuple = os.listdir(_lowerCamelCase ) A_ : Optional[Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] A_ : Any = os.path.join(args.output_dir , _lowerCamelCase ) A_ : Tuple = torch.load(_lowerCamelCase , map_location="""cpu""" ) A_ : int = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A_ : Tuple = {os.path.basename(_lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class _lowerCAmelCase ( __A ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : List[Any] = F"{self.test_file_dir_str}/test_data/wmt_en_ro" A_ : Union[str, Any] = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script A_ : Union[str, Any] = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) A_ : Union[str, Any] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) A_ : Union[str, Any] = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): A_ : str = bash_script.replace(_lowerCamelCase , str(_lowerCamelCase ) ) A_ : int = self.get_auto_remove_tmp_dir() A_ : Union[str, Any] = bash_script.replace("""--fp16""" , """""" ) A_ : Optional[Any] = 6 A_ : Union[str, Any] = ( ["""distillation.py"""] + bash_script.split() + [ F"--output_dir={output_dir}", """--gpus=1""", """--learning_rate=1e-3""", F"--num_train_epochs={epochs}", """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase ): A_ : Any = argparse.ArgumentParser() A_ : Any = pl.Trainer.add_argparse_args(_lowerCamelCase ) A_ : str = SummarizationDistiller.add_model_specific_args(_lowerCamelCase , os.getcwd() ) A_ : Dict = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu A_ : Dict = distill_main(_lowerCamelCase ) # Check metrics A_ : List[Any] = load_json(model.metrics_save_path ) A_ : Union[str, Any] = metrics["""val"""][0] A_ : int = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _lowerCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict A_ : Optional[Any] = os.listdir(_lowerCamelCase ) A_ : List[Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] A_ : List[Any] = os.path.join(args.output_dir , _lowerCamelCase ) A_ : Dict = torch.load(_lowerCamelCase , map_location="""cpu""" ) A_ : str = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A_ : Tuple = {os.path.basename(_lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
365
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCamelCase__ : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCamelCase__ : Tuple = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} UpperCamelCase__ : Optional[Any] = 'zero2' UpperCamelCase__ : Optional[int] = 'zero3' UpperCamelCase__ : Dict = [ZEROa, ZEROa] def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" A_ : int = parameterized.to_safe_name("""_""".join(str(a_ ) for x in param.args ) ) return F"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test UpperCamelCase__ : Tuple = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _lowerCAmelCase ( __A ): """simple docstring""" @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> int: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = True , ) -> List[str]: A_ : Union[str, Any] = models[model] A_ : Tuple = self.run_trainer( stage=_lowerCamelCase , model_name=_lowerCamelCase , eval_steps=_lowerCamelCase , num_train_epochs=1 , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) self.do_checks(_lowerCamelCase ) return output_dir def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 , _lowerCamelCase = 1 , _lowerCamelCase = True , _lowerCamelCase = True , ) -> Any: A_ : Dict = self.get_auto_remove_tmp_dir("""./xxx""" , after=_lowerCamelCase ) A_ : str = F"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(_lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = F"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : Union[str, Any] = [F"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : Tuple = self.get_launcher(_lowerCamelCase ) A_ : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCamelCase , env=self.get_env() ) return output_dir def UpperCAmelCase_ ( self , _lowerCamelCase=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return F"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
164
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a__ ( snake_case__ ): def __init__( self , *_A , _A=None , _A=None , **_A ): """simple docstring""" super().__init__(*_A , **_A ) __lowerCAmelCase = eval_examples __lowerCAmelCase = post_process_function def __SCREAMING_SNAKE_CASE( self , _A = None , _A=None , _A = None , _A = "eval" , **_A , ): """simple docstring""" __lowerCAmelCase = gen_kwargs.copy() __lowerCAmelCase = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) __lowerCAmelCase = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) __lowerCAmelCase = gen_kwargs __lowerCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset __lowerCAmelCase = self.get_eval_dataloader(_A ) __lowerCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowerCAmelCase = self.compute_metrics __lowerCAmelCase = None __lowerCAmelCase = time.time() __lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCAmelCase = eval_loop( _A , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowerCAmelCase = compute_metrics __lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowerCAmelCase = self.post_process_function(_A , _A , _A ) __lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) else: __lowerCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowerCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=None , _A = "test" , **_A ): """simple docstring""" __lowerCAmelCase = gen_kwargs.copy() __lowerCAmelCase = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. __lowerCAmelCase = self.compute_metrics __lowerCAmelCase = None __lowerCAmelCase = time.time() __lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCAmelCase = eval_loop( _A , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowerCAmelCase = compute_metrics __lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowerCAmelCase = self.post_process_function(_A , _A , _A , "predict" ) __lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A )
92
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] =ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> int: UpperCamelCase :Union[str, Any] = (3, 32, 128) UpperCamelCase :Any = tempfile.mkdtemp() # fmt: off UpperCamelCase :int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCamelCase :Optional[int] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) UpperCamelCase :Tuple = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } UpperCamelCase :str = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , **SCREAMING_SNAKE_CASE_ ) -> int: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Dict = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) UpperCamelCase :List[Any] = Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) return image_input def UpperCAmelCase ( self ) -> str: UpperCamelCase :str = self.get_tokenizer() UpperCamelCase :Union[str, Any] = self.get_image_processor() UpperCamelCase :List[Any] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase :Dict = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[int] = self.get_tokenizer() UpperCamelCase :Dict = self.get_image_processor() UpperCamelCase :List[Any] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase :Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase :Optional[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) UpperCamelCase :int = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Tuple = self.get_image_processor() UpperCamelCase :List[str] = self.get_tokenizer() UpperCamelCase :str = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = self.prepare_image_inputs() UpperCamelCase :List[str] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) UpperCamelCase :Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Optional[Any] = self.get_image_processor() UpperCamelCase :Union[str, Any] = self.get_tokenizer() UpperCamelCase :int = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = '''test''' UpperCamelCase :Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :List[str] = self.get_image_processor() UpperCamelCase :Tuple = self.get_tokenizer() UpperCamelCase :Union[str, Any] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = '''test''' UpperCamelCase :str = self.prepare_image_inputs() UpperCamelCase :Dict = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Optional[Any] = self.get_image_processor() UpperCamelCase :Any = self.get_tokenizer() UpperCamelCase :Union[str, Any] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase :Union[str, Any] = processor.char_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :List[Any] = self.get_image_processor() UpperCamelCase :Optional[Any] = self.get_tokenizer() UpperCamelCase :Any = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = None UpperCamelCase :List[Any] = self.prepare_image_inputs() UpperCamelCase :Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :str = self.get_image_processor() UpperCamelCase :Tuple = self.get_tokenizer() UpperCamelCase :Optional[int] = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = torch.randn(1 , 27 , 38 ) UpperCamelCase :Union[str, Any] = torch.randn(1 , 27 , 5_0257 ) UpperCamelCase :Optional[Any] = torch.randn(1 , 27 , 3_0522 ) UpperCamelCase :Optional[Any] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
259
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=1_3 , SCREAMING_SNAKE_CASE__ : Any=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE__ : str=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Dict=3_7 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=1_0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any="divided_space_time" , SCREAMING_SNAKE_CASE__ : str=None , ) -> str: a_ : int = parent a_ : Tuple = batch_size a_ : Union[str, Any] = image_size a_ : Optional[int] = num_channels a_ : Optional[int] = patch_size a_ : List[str] = num_frames a_ : int = is_training a_ : Union[str, Any] = use_labels a_ : Tuple = hidden_size a_ : Optional[Any] = num_hidden_layers a_ : int = num_attention_heads a_ : Any = intermediate_size a_ : str = hidden_act a_ : Any = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : Dict = attention_type a_ : List[Any] = initializer_range a_ : Optional[Any] = scope a_ : Optional[Any] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token a_ : Any = (image_size // patch_size) ** 2 a_ : Union[str, Any] = (num_frames) * self.num_patches_per_frame + 1 def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a_ : str = None if self.use_labels: a_ : Any = ids_tensor([self.batch_size] , self.num_labels ) a_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: a_ : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) a_ : str = self.num_labels return config def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: a_ : Optional[Any] = TimesformerModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : int = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: a_ : Union[str, Any] = TimesformerForVideoClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) # verify the logits shape a_ : Tuple = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: a_ : int = self.prepare_config_and_inputs() a_ , a_ , a_ : List[Any] = config_and_inputs a_ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Optional[int] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () snake_case__ : List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) snake_case__ : Optional[Any] = False snake_case__ : Union[str, Any] = False snake_case__ : Union[str, Any] = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : Tuple = TimesformerModelTester(self ) a_ : List[str] = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> Tuple: a_ : List[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): a_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Tuple = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : str = model_class(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Any = [*signature.parameters.keys()] a_ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Any = TimesformerModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: if not self.has_attentions: pass else: a_ , a_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[int] = True for model_class in self.all_model_classes: a_ : Optional[Any] = self.model_tester.seq_length a_ : List[str] = self.model_tester.num_frames a_ : Optional[int] = True a_ : Optional[Any] = False a_ : Tuple = True a_ : int = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): a_ : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a_ : Tuple = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a_ : Optional[Any] = True a_ : Tuple = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): a_ : str = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[int] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) a_ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) # Check attention is always last and order is fine a_ : List[Any] = True a_ : Dict = True a_ : Tuple = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): a_ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE__ ) ) a_ : List[str] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): a_ : Any = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): a_ : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[int] = outputs.hidden_states a_ : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) a_ : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a_ , a_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : str = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Tuple = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" a_ : Optional[int] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) a_ : Any = np.load(__A ) return list(__A ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : List[str] = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( SCREAMING_SNAKE_CASE__ ) a_ : List[str] = self.default_image_processor a_ : int = prepare_video() a_ : List[str] = image_processor(video[:8] , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): a_ : int = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits a_ : Any = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) a_ : List[str] = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
120
def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: """simple docstring""" a_ : int = len(__A ) for _ in range(__A ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: a_ , a_ : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ : int = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
120
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase__ = """src/diffusers""" # Matches is_xxx_available() UpperCamelCase__ = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla UpperCamelCase__ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") UpperCamelCase__ = """ {0} = None """ UpperCamelCase__ = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ UpperCamelCase__ = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def _a ( SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = _re_backend.findall(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE_ ) def _a ( ): with open(os.path.join(SCREAMING_SNAKE_CASE_ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking __lowerCAmelCase = 0 __lowerCAmelCase = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __lowerCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 __lowerCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE_ ) and len(lines[line_index] ) > 1: __lowerCAmelCase = lines[line_index] __lowerCAmelCase = _re_single_line_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCAmelCase = objects else: line_index += 1 return backend_specific_objects def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ): if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE_ ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ): if backend_specific_objects is None: __lowerCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __lowerCAmelCase = {} for backend, objects in backend_specific_objects.items(): __lowerCAmelCase = "[" + ", ".join(F"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" __lowerCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for o in objects] ) __lowerCAmelCase = dummy_file return dummy_files def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ): __lowerCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __lowerCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , "utils" ) __lowerCAmelCase = { backend: os.path.join(SCREAMING_SNAKE_CASE_ , F"""dummy_{short_names.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}_objects.py""" ) for backend in dummy_files.keys() } __lowerCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.read() else: __lowerCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"""diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCamelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
92
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __lowerCAmelCase ( UpperCamelCase__ ) -> list[list[float]]: __lowerCamelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCamelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowerCamelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __lowerCamelCase = [[0.0, 0.0], [0.0, 0.0]] __lowerCamelCase , __lowerCamelCase = matrix[1][1], matrix[0][0] __lowerCamelCase , __lowerCamelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCamelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCamelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowerCamelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __lowerCamelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowerCamelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowerCamelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowerCamelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowerCamelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowerCamelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowerCamelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowerCamelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowerCamelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowerCamelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowerCamelCase = array(UpperCamelCase__ ) for i in range(3 ): for j in range(3 ): __lowerCamelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowerCamelCase = array(UpperCamelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(UpperCamelCase__ ) # Calculate the inverse of the matrix return [[float(d(UpperCamelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
67
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): """simple docstring""" _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = TextaTextGenerationPipeline(model=__a , tokenizer=__a ) return generator, ["Something to write", "Something else"] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = generator('''Something there''' ) self.assertEqual(__a , [{'''generated_text''': ANY(__a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) UpperCamelCase__ :str = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{'''generated_text''': ANY(__a )}, {'''generated_text''': ANY(__a )}], [{'''generated_text''': ANY(__a )}, {'''generated_text''': ANY(__a )}], ] , ) UpperCamelCase__ :int = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{'''generated_text''': ANY(__a )}, {'''generated_text''': ANY(__a )}], [{'''generated_text''': ANY(__a )}, {'''generated_text''': ANY(__a )}], ] , ) with self.assertRaises(__a ): generator(4 ) @require_torch def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility UpperCamelCase__ :Tuple = generator('''Something there''' , do_sample=__a ) self.assertEqual(__a , [{'''generated_text''': ''''''}] ) UpperCamelCase__ :List[str] = 3 UpperCamelCase__ :List[str] = generator( '''Something there''' , num_return_sequences=__a , num_beams=__a , ) UpperCamelCase__ :Any = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(__a , __a ) UpperCamelCase__ :List[Any] = generator('''This is a test''' , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) UpperCamelCase__ :Dict = generator.model.config.eos_token_id UpperCamelCase__ :Union[str, Any] = '''<pad>''' UpperCamelCase__ :List[str] = generator( ['''This is a test''', '''This is a second test'''] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility UpperCamelCase__ :Dict = generator('''Something there''' , do_sample=__a ) self.assertEqual(__a , [{'''generated_text''': ''''''}] )
362
'''simple docstring''' import socket def a ( ) -> Dict: '''simple docstring''' UpperCamelCase__ :int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCamelCase__ :List[Any] = socket.gethostname() UpperCamelCase__ :List[str] = 12312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCamelCase__ :str = sock.recv(1024 ) if not data: break out_file.write(__a ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
219
0
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ = logging.getLogger() def __lowerCamelCase ( ) -> Tuple: __SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() parser.add_argument('''-f''' ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() return args.f class _SCREAMING_SNAKE_CASE( A ): def _UpperCamelCase ( self ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE :int = logging.StreamHandler(sys.stdout ) logger.addHandler(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'''run_glue_deebert.py''' ) with patch.object(SCREAMING_SNAKE_CASE__ ,'''argv''' ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(SCREAMING_SNAKE_CASE__ ,0.6_6_6 ) @slow @require_torch_non_multi_gpu def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(SCREAMING_SNAKE_CASE__ )
191
"""simple docstring""" from collections.abc import Callable import numpy as np def __lowerCamelCase ( a_ : Callable , a_ : float , a_ : float , a_ : float , a_ : float ) -> np.ndarray: __SCREAMING_SNAKE_CASE :List[Any] = int(np.ceil((x_end - xa) / step_size ) ) __SCREAMING_SNAKE_CASE :Optional[Any] = np.zeros((n + 1,) ) __SCREAMING_SNAKE_CASE :int = ya __SCREAMING_SNAKE_CASE :str = xa for k in range(a_ ): __SCREAMING_SNAKE_CASE :Optional[int] = y[k] + step_size * ode_func(a_ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
191
1
def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> List[str]: if divisor % 5 == 0 or divisor % 2 == 0: return 0 a_ : Union[str, Any] = 1 a_ : List[str] = 1 while repunit: a_ : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] = 1_00_00_00 ) -> Union[str, Any]: a_ : Union[str, Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__A ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
371
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
120
0
_lowerCamelCase : str = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] _lowerCamelCase : Tuple = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] _lowerCamelCase : Union[str, Any] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] _lowerCamelCase : Any = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] _lowerCamelCase : List[str] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] _lowerCamelCase : Union[str, Any] = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] _lowerCamelCase : List[str] = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] _lowerCamelCase : Union[str, Any] = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
336
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__ = str(id_ ) lowercase__ = None lowercase__ = None lowercase__ = [] lowercase__ = {} # {vertex:distance} def __lt__( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.key < other.key def __repr__( self ) -> Optional[Any]: '''simple docstring''' return self.id def A__ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' self.neighbors.append(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' lowercase__ = weight def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase__ ) graph[b - 1].add_edge(graph[a - 1] , lowercase__ ) def _A ( lowercase__ , lowercase__ ): lowercase__ = [] for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = graph[:] while q: lowercase__ = min(lowercase__ ) q.remove(lowercase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] for i in range(1 , len(lowercase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _A ( lowercase__ , lowercase__ ): for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = list(lowercase__ ) hq.heapify(lowercase__ ) while h: lowercase__ = hq.heappop(lowercase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] hq.heapify(lowercase__ ) for i in range(1 , len(lowercase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _A ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
164
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = KandinskyVaaPriorPipeline A__ = ['''prompt'''] A__ = ['''prompt''', '''negative_prompt'''] A__ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] A__ = False @property def A_ ( self : Dict ) -> List[str]: '''simple docstring''' return 32 @property def A_ ( self : Any ) -> str: '''simple docstring''' return 32 @property def A_ ( self : str ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def A_ ( self : str ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return 100 @property def A_ ( self : Tuple ) -> List[str]: '''simple docstring''' __snake_case : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } __snake_case : List[Any] = PriorTransformer(**__a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __snake_case : Any = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __snake_case : Optional[Any] = CLIPVisionModelWithProjection(__a ) return model @property def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = self.dummy_prior __snake_case : List[str] = self.dummy_image_encoder __snake_case : str = self.dummy_text_encoder __snake_case : List[str] = self.dummy_tokenizer __snake_case : List[str] = self.dummy_image_processor __snake_case : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__a , clip_sample_range=1_0.0 , ) __snake_case : str = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def A_ ( self : List[Any] , __a : Optional[Any] , __a : Tuple=0 ) -> Any: '''simple docstring''' if str(__a ).startswith('mps' ): __snake_case : List[str] = torch.manual_seed(__a ) else: __snake_case : List[str] = torch.Generator(device=__a ).manual_seed(__a ) __snake_case : List[Any] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A_ ( self : str ) -> Dict: '''simple docstring''' __snake_case : str = 'cpu' __snake_case : List[str] = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**__a ) __snake_case : Optional[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[int] = pipe(**self.get_dummy_inputs(__a ) ) __snake_case : List[str] = output.image_embeds __snake_case : str = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] __snake_case : Union[str, Any] = image[0, -10:] __snake_case : Any = image_from_tuple[0, -10:] assert image.shape == (1, 32) __snake_case : List[Any] = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = torch_device == 'cpu' __snake_case : Dict = True __snake_case : Union[str, Any] = False self._test_inference_batch_single_identical( test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , ) @skip_mps def A_ ( self : str ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = torch_device == 'cpu' __snake_case : Optional[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=__a , test_mean_pixel_difference=__a , )
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Optional[int] = {} class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''llama''' A__ = ['''past_key_values'''] def __init__( self : Any , __a : List[str]=32000 , __a : Union[str, Any]=4096 , __a : Optional[Any]=11008 , __a : Any=32 , __a : str=32 , __a : Optional[int]=None , __a : Dict="silu" , __a : Dict=2048 , __a : List[str]=0.0_2 , __a : Union[str, Any]=1e-6 , __a : Dict=True , __a : List[str]=0 , __a : Tuple=1 , __a : Tuple=2 , __a : Optional[Any]=1 , __a : Any=False , __a : Tuple=None , **__a : List[Any] , ) -> Optional[int]: '''simple docstring''' __snake_case : str = vocab_size __snake_case : List[str] = max_position_embeddings __snake_case : List[Any] = hidden_size __snake_case : Union[str, Any] = intermediate_size __snake_case : Optional[int] = num_hidden_layers __snake_case : List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[Any] = num_key_value_heads __snake_case : int = hidden_act __snake_case : Any = initializer_range __snake_case : Any = rms_norm_eps __snake_case : Union[str, Any] = pretraining_tp __snake_case : Optional[int] = use_cache __snake_case : Any = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) __snake_case : Optional[Any] = self.rope_scaling.get('type' , __a ) __snake_case : Tuple = self.rope_scaling.get('factor' , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
0
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any=13 , lowerCamelCase : Any=7 , lowerCamelCase : List[Any]=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Tuple=True , lowerCamelCase : str=True , lowerCamelCase : Any=True , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[Any]=False , lowerCamelCase : List[Any]=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[str]=99 , lowerCamelCase : Optional[int]=0 , lowerCamelCase : Optional[int]=32 , lowerCamelCase : List[str]=5 , lowerCamelCase : Union[str, Any]=4 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Dict=5_12 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : List[str]=2 , lowerCamelCase : List[str]=4 , lowerCamelCase : Union[str, Any]="last" , lowerCamelCase : Tuple=True , lowerCamelCase : List[str]=None , lowerCamelCase : List[str]=0 , ) -> Any: lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : List[Any] = seq_length lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : Any = use_input_lengths lowerCAmelCase_ : Dict = use_token_type_ids lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : Optional[int] = gelu_activation lowerCAmelCase_ : List[str] = sinusoidal_embeddings lowerCAmelCase_ : Tuple = causal lowerCAmelCase_ : Optional[Any] = asm lowerCAmelCase_ : List[Any] = n_langs lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Union[str, Any] = n_special lowerCAmelCase_ : Optional[int] = hidden_size lowerCAmelCase_ : Optional[int] = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Dict = attention_probs_dropout_prob lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : List[str] = type_sequence_label_size lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : List[str] = num_labels lowerCAmelCase_ : List[Any] = num_choices lowerCAmelCase_ : Optional[Any] = summary_type lowerCAmelCase_ : str = use_proj lowerCAmelCase_ : List[Any] = scope lowerCAmelCase_ : int = bos_token_id def __lowercase ( self : Dict ) -> Optional[int]: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Union[str, Any] = None if self.use_input_lengths: lowerCAmelCase_ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase_ : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Tuple = None if self.use_labels: lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowercase ( self : int , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : int , ) -> Tuple: lowerCAmelCase_ : int = XLMModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : int = model(lowerCamelCase , lengths=lowerCamelCase , langs=lowerCamelCase ) lowerCAmelCase_ : List[Any] = model(lowerCamelCase , langs=lowerCamelCase ) lowerCAmelCase_ : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : str , ) -> Dict: lowerCAmelCase_ : str = XLMWithLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[Any] = model(lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , ) -> List[str]: lowerCAmelCase_ : Optional[int] = XLMForQuestionAnsweringSimple(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Any = model(lowerCamelCase ) lowerCAmelCase_ : Dict = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) lowerCAmelCase_ : List[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : List[str] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , ) -> Optional[Any]: lowerCAmelCase_ : List[Any] = XLMForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : int = model(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , p_mask=lowerCamelCase , ) lowerCAmelCase_ : List[Any] = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , ) ((lowerCAmelCase_), ) : Any = result_with_labels.to_tuple() lowerCAmelCase_ : Tuple = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) ((lowerCAmelCase_), ) : List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowercase ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : str , ) -> Optional[int]: lowerCAmelCase_ : Optional[int] = XLMForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : str = model(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : str , ) -> Union[str, Any]: lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : str = XLMForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : List[str] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : int , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any] , ) -> List[str]: lowerCAmelCase_ : Optional[int] = self.num_choices lowerCAmelCase_ : Union[str, Any] = XLMForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : str = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ) : Optional[Any] = config_and_inputs lowerCAmelCase_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowercase ( self : int , lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Dict ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Any=False ) -> Union[str, Any]: lowerCAmelCase_ : str = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowerCAmelCase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) lowerCAmelCase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) return inputs_dict def __lowercase ( self : Optional[Any] ) -> Optional[int]: lowerCAmelCase_ : Union[str, Any] = XLMModelTester(self ) lowerCAmelCase_ : Tuple = ConfigTester(self , config_class=lowerCamelCase , emb_dim=37 ) def __lowercase ( self : Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def __lowercase ( self : Optional[int] ) -> List[str]: lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> int: lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase ) def __lowercase ( self : Tuple ) -> List[Any]: lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase ) def __lowercase ( self : Tuple ) -> Optional[int]: lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase ) def __lowercase ( self : Any ) -> Union[str, Any]: lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase ) def __lowercase ( self : str ) -> Dict: lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase ) def __lowercase ( self : Tuple ) -> Optional[int]: lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase ) def __lowercase ( self : Any , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple=False , lowerCamelCase : Dict=1 ) -> List[Any]: self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertListEqual( [isinstance(lowerCamelCase , lowerCamelCase ) for iter_attentions in attentions] , [True] * len(lowerCamelCase ) ) self.assertEqual(len(lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase ): # adds PAD dummy token lowerCAmelCase_ : Union[str, Any] = min_length + idx + 1 lowerCAmelCase_ : List[str] = min_length + idx + 1 lowerCAmelCase_ : str = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase ) ) def __lowercase ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]=1 ) -> Dict: self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertListEqual( [isinstance(lowerCamelCase , lowerCamelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase ) , ) self.assertEqual(len(lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase ): # adds PAD dummy token lowerCAmelCase_ : str = min_length + idx + 1 lowerCAmelCase_ : Tuple = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase ) , ) pass @slow def __lowercase ( self : Optional[int] ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Dict = XLMModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_torch class __snake_case ( unittest.TestCase): """simple docstring""" @slow def __lowercase ( self : Optional[int] ) -> Optional[int]: lowerCAmelCase_ : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCamelCase ) lowerCAmelCase_ : str = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCamelCase ) # the president lowerCAmelCase_ : Any = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowerCAmelCase_ : Dict = model.generate(lowerCamelCase , do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase )
120
'''simple docstring''' from sklearn.metrics import recall_score import datasets __A : Dict = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __A : List[Any] = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __A : str = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): """simple docstring""" def __lowercase ( self : str ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def __lowercase ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[int]=1 , lowerCamelCase : Union[str, Any]="binary" , lowerCamelCase : Any=None , lowerCamelCase : str="warn" , ) -> List[Any]: lowerCAmelCase_ : Optional[int] = recall_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase , zero_division=lowerCamelCase , ) return {"recall": float(lowerCamelCase ) if score.size == 1 else score}
120
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowerCAmelCase : def __init__( self :Optional[int] , __magic_name__ :List[Any] , __magic_name__ :Optional[int]=13 , __magic_name__ :Union[str, Any]=7 , __magic_name__ :str=False , __magic_name__ :Optional[Any]=True , __magic_name__ :Optional[Any]=False , __magic_name__ :Dict=False , __magic_name__ :List[Any]=19 , __magic_name__ :List[str]=32 , __magic_name__ :Any=5 , __magic_name__ :str=4 , __magic_name__ :Union[str, Any]=37 , __magic_name__ :List[Any]="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :str=0.1 , __magic_name__ :Union[str, Any]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Optional[Any]=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :List[Any]=3 , __magic_name__ :Tuple=4 , __magic_name__ :Any=None , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def lowerCamelCase__ ( self :str ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self :int ): '''simple docstring''' a = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__magic_name__ , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def lowerCamelCase__ ( self :int , __magic_name__ :List[Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :str ): '''simple docstring''' a = EsmForProteinFolding(config=__magic_name__ ).float() model.to(__magic_name__ ) model.eval() a = model(__magic_name__ , attention_mask=__magic_name__ ) a = model(__magic_name__ ) a = model(__magic_name__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = False UpperCamelCase__ = (EsmForProteinFolding,) if is_torch_available() else () UpperCamelCase__ = () UpperCamelCase__ = {} if is_torch_available() else {} UpperCamelCase__ = False def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = EsmFoldModelTester(self ) a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip("""Does not support attention outputs""" ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self :int ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def lowerCamelCase__ ( self :int ): '''simple docstring''' pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass @unittest.skip("""ESMFold only has one output format.""" ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support input chunking.""" ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' pass @require_torch class __lowerCAmelCase ( __magic_name__ ): @slow def lowerCamelCase__ ( self :int ): '''simple docstring''' a = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() a = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a = model(__magic_name__ )["""positions"""] a = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __magic_name__ , atol=1E-4 ) )
354
from __future__ import annotations from typing import Generic, TypeVar __UpperCamelCase : Union[str, Any] = TypeVar("T") class __lowerCAmelCase ( Generic[T] ): def __init__( self :Tuple , __magic_name__ :T ): '''simple docstring''' a = data a = self a = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self :Tuple ): '''simple docstring''' a = {} def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ): '''simple docstring''' a = DisjointSetTreeNode(__magic_name__ ) def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ): '''simple docstring''' a = self.map[data] if elem_ref != elem_ref.parent: a = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ): '''simple docstring''' if nodea.rank > nodea.rank: a = nodea else: a = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ): '''simple docstring''' self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self :Union[str, Any] ): '''simple docstring''' a = {} def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ): '''simple docstring''' if node not in self.connections: a = {} def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ): '''simple docstring''' self.add_node(__magic_name__ ) self.add_node(__magic_name__ ) a = weight a = weight def lowerCamelCase__ ( self :int ): '''simple docstring''' a = [] a = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __magic_name__ : x[2] ) # creating the disjoint set a = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__magic_name__ ) # MST generation a = 0 a = 0 a = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: a , a , a = edges[index] index += 1 a = disjoint_set.find_set(__magic_name__ ) a = disjoint_set.find_set(__magic_name__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ ) disjoint_set.union(__magic_name__ , __magic_name__ ) return graph
347
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[int] = IFInpaintingPipeline _lowercase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} _lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowercase : Any = PipelineTesterMixin.required_optional_params - {"""latents"""} def _lowercase ( self ) -> str: '''simple docstring''' return self._get_dummy_components() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Union[str, Any]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): a__ : Any =torch.manual_seed(lowerCAmelCase__ ) else: a__ : Dict =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : int =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) a__ : Optional[Any] =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) a__ : str ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase ( self ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowercase ( self ) -> List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_local() def _lowercase ( self ) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
95
import doctest from collections import deque import numpy as np class __snake_case : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(_lowercase , _lowercase ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(_lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(_lowercase ) for j, item in enumerate(_lowercase ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
219
0
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """spiece.model"""} a_ = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } a_ = { """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["""input_ids""", """attention_mask"""] _lowerCamelCase = [] def __init__( self , __lowerCamelCase , __lowerCamelCase="<unk>" , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="[MASK]" , __lowerCamelCase="[CLS]" , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __A : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __A : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __A : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token __A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __A : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __A : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token __A : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , mask_token=__lowerCamelCase , cls_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) __A : Any = vocab_file __A : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase__( self ): '''simple docstring''' return self.sp_model.get_piece_size() def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __A : Tuple = self.__dict__.copy() __A : int = None return state def __setstate__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __A : Union[str, Any] = {} __A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' return self.sp_model.piece_to_id(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = self.sp_model.IdToPiece(__lowerCamelCase ) return token def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : List[Any] = [] __A : int = '''''' __A : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token __A : Optional[Any] = True __A : Optional[int] = [] else: current_sub_tokens.append(__lowerCamelCase ) __A : List[Any] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = True , **__lowerCamelCase , ): '''simple docstring''' __A : Tuple = kwargs.pop('''use_source_tokenizer''' , __lowerCamelCase ) __A : Optional[Any] = self.convert_ids_to_tokens(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __A : Dict = [] __A : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) __A : Any = [] sub_texts.append(__lowerCamelCase ) else: current_sub_text.append(__lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __A : int = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(__lowerCamelCase ) ) else: __A : str = ''''''.join(__lowerCamelCase ) __A : Dict = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __A : Dict = self.clean_up_tokenization(__lowerCamelCase ) return clean_text else: return text def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: __A : Any = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Tuple = [self.cls_token_id] __A : Dict = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : Dict = [self.sep_token_id] __A : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
291
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( snake_case_ : int ) ->str: '''simple docstring''' if not isinstance(snake_case_ ,snake_case_ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) __A : int = precision __A : Tuple = ceil(precision / 14 ) __A : Dict = 426880 * Decimal(10005 ).sqrt() __A : Optional[Any] = 1 __A : int = 13591409 __A : Optional[int] = Decimal(snake_case_ ) for k in range(1 ,snake_case_ ): __A : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(snake_case_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a_ = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
291
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _A = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') _A = f"""https://www.google.com/search?q={query}&num=100""" _A = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: _A = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: _A = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
62
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : str ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCAmelCase_ : int = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCamelCase , cache_dir=lowerCamelCase ) lowerCAmelCase_ : Dict = [t[-1] for t in os.walk(os.path.join(lowerCamelCase , os.listdir(lowerCamelCase )[0] , """snapshots""" ) )] lowerCAmelCase_ : List[Any] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Any ) -> Optional[int]: lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCamelCase ) lowerCAmelCase_ : List[str] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : Tuple = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Optional[Any] = 4 lowerCAmelCase_ : Dict = jax.device_count() lowerCAmelCase_ : Tuple = num_samples * [prompt] lowerCAmelCase_ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : Optional[Any] = replicate(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : int = shard(lowerCamelCase ) lowerCAmelCase_ : str = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 lowerCAmelCase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase ) == num_samples def __lowercase ( self : Optional[int] ) -> List[str]: lowerCAmelCase_, lowerCAmelCase_ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=lowerCamelCase ) lowerCAmelCase_ : Dict = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[Any] = 50 lowerCAmelCase_ : str = jax.device_count() lowerCAmelCase_ : Optional[Any] = num_samples * [prompt] lowerCAmelCase_ : Dict = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : Optional[Any] = replicate(lowerCamelCase ) lowerCAmelCase_ : str = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = shard(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def __lowercase ( self : List[Any] ) -> List[Any]: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase ) lowerCAmelCase_ : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Union[str, Any] = 50 lowerCAmelCase_ : Dict = jax.device_count() lowerCAmelCase_ : List[Any] = num_samples * [prompt] lowerCAmelCase_ : Tuple = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : Optional[int] = replicate(lowerCamelCase ) lowerCAmelCase_ : Any = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Optional[int] = shard(lowerCamelCase ) lowerCAmelCase_ : Any = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __lowercase ( self : int ) -> Optional[int]: lowerCAmelCase_, lowerCAmelCase_ : int = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) lowerCAmelCase_ : List[str] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : str = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[Any] = 50 lowerCAmelCase_ : Union[str, Any] = jax.device_count() lowerCAmelCase_ : Optional[Any] = num_samples * [prompt] lowerCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : List[Any] = replicate(lowerCamelCase ) lowerCAmelCase_ : List[str] = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = shard(lowerCamelCase ) lowerCAmelCase_ : Tuple = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __lowercase ( self : List[str] ) -> Any: lowerCAmelCase_ : List[Any] = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) lowerCAmelCase_, lowerCAmelCase_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , ) lowerCAmelCase_ : Any = scheduler.create_state() lowerCAmelCase_ : Optional[Any] = scheduler_state lowerCAmelCase_ : List[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : int = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[str] = 50 lowerCAmelCase_ : str = jax.device_count() lowerCAmelCase_ : List[Any] = num_samples * [prompt] lowerCAmelCase_ : int = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng lowerCAmelCase_ : List[str] = replicate(lowerCamelCase ) lowerCAmelCase_ : Any = jax.random.split(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = shard(lowerCamelCase ) lowerCAmelCase_ : Tuple = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def __lowercase ( self : Any ) -> Union[str, Any]: lowerCAmelCase_ : int = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase_ : Any = jax.device_count() lowerCAmelCase_ : Optional[Any] = num_samples * [prompt] lowerCAmelCase_ : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase , ) lowerCAmelCase_ : Optional[int] = replicate(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = shard(lowerCamelCase ) lowerCAmelCase_ : Tuple = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) lowerCAmelCase_ : Dict = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention lowerCAmelCase_, lowerCAmelCase_ : Any = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase , use_memory_efficient_attention=lowerCamelCase , ) lowerCAmelCase_ : List[str] = replicate(lowerCamelCase ) lowerCAmelCase_ : Dict = pipeline.prepare_inputs(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = shard(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) lowerCAmelCase_ : List[Any] = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
120
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '''▁''' _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} _SCREAMING_SNAKE_CASE = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } _SCREAMING_SNAKE_CASE = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } _SCREAMING_SNAKE_CASE = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = ["input_ids"] a : Dict = VOCAB_FILES_NAMES a : List[str] = PRETRAINED_INIT_CONFIGURATION a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str = PRETRAINED_VOCAB_FILES_MAP a : str = RESOURCE_FILES_NAMES def __init__(self ,_lowerCamelCase ,_lowerCamelCase=None ,_lowerCamelCase=False ,_lowerCamelCase="utf8" ,_lowerCamelCase="[UNK]" ,_lowerCamelCase="[SEP]" ,_lowerCamelCase="[PAD]" ,_lowerCamelCase="[CLS]" ,_lowerCamelCase="[MASK]" ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,pad_token=lowercase_ ,cls_token=lowercase_ ,mask_token=lowercase_ ,vocab_file=lowercase_ ,encoding=lowercase_ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase_ ,) __lowercase = do_lower_case __lowercase = sentencepiece_model_ckpt __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __lowercase = self.load_vocab(filepath=lowercase_ ) else: __lowercase = {self.sp_model.id_to_piece(lowercase_ ): id for id in range(self.sp_model.get_piece_size() )} __lowercase = {v: k for k, v in self.vocab.items()} def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if text is None: return None __lowercase = self.tokenize(lowercase_ ) __lowercase , __lowercase = '''''', [] for i, ch in enumerate(lowercase_ ): if ch in self.SP_CHAR_MAPPING: __lowercase = self.SP_CHAR_MAPPING.get(lowercase_ ) else: __lowercase = unicodedata.normalize('''NFKC''' ,lowercase_ ) if self.is_whitespace(lowercase_ ): continue normalized_text += ch char_mapping.extend([i] * len(lowercase_ ) ) __lowercase , __lowercase , __lowercase = normalized_text, [], 0 if self.do_lower_case: __lowercase = text.lower() for token in split_tokens: if token[:1] == "▁": __lowercase = token[1:] __lowercase = text[offset:].index(lowercase_ ) + offset __lowercase = start + len(lowercase_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __lowercase = end return token_mapping @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' return len(self.vocab ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' return dict(self.vocab ,**self.added_tokens_encoder ) def __getstate__(self ) -> Optional[int]: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__(self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(lowercase_ ,lowercase_ ) for c in text) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=False ,_lowerCamelCase=64 ,_lowerCamelCase=0.1 ) -> str: '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: __lowercase = True if self.sp_model_kwargs.get('''alpha''' ) is not None: __lowercase = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: __lowercase = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: __lowercase = self.sp_model.EncodeAsPieces(lowercase_ ) else: __lowercase = self.sp_model.SampleEncodeAsPieces(lowercase_ ,lowercase_ ,lowercase_ ) __lowercase = [] for pi, piece in enumerate(lowercase_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowercase_ ) and pi != 0: new_pieces.append(lowercase_ ) continue else: continue __lowercase = 0 for i, chunk in enumerate(lowercase_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowercase_ ) or self.is_punct(lowercase_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowercase_ ) __lowercase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowercase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowercase = i if len(lowercase_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = ''''''.join(lowercase_ ).replace(lowercase_ ,''' ''' ).strip() return out_string def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = self.convert_ids_to_tokens(lowercase_ ) __lowercase = ''''''.join(lowercase_ ).replace(lowercase_ ,''' ''' ).strip() return out_string def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' return self.vocab.get(lowercase_ ,self.vocab.get(self.unk_token ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' return self.reverse_vocab.get(lowercase_ ,self.unk_token ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Tuple: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Any: '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ,_lowerCamelCase=False ) -> List[str]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(lowercase_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowercase_ ) + 1) + [1] * (len(lowercase_ ) + 3) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def _UpperCAmelCase (self ,_lowerCamelCase ) -> str: '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowercase_ ) == 1: __lowercase = unicodedata.category(lowercase_ ) if cat == "Zs": return True return False def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = {} with io.open(lowercase_ ,'''r''' ,encoding='''utf-8''' ) as f: for index, line in enumerate(lowercase_ ): __lowercase = line.rstrip('''\n''' ) __lowercase = int(lowercase_ ) return token_to_idx def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = 0 if os.path.isdir(lowercase_ ): __lowercase = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __lowercase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() ,key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ''' Please check that the vocabulary is not corrupted!''' ) __lowercase = token_index writer.write(token + '''\n''' ) index += 1 __lowercase = os.path.join(lowercase_ ,'''sentencepiece.bpe.model''' ) with open(lowercase_ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (vocab_file,)
369
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
217
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = KandinskyVaaPriorPipeline __snake_case = ['''prompt'''] __snake_case = ['''prompt''', '''negative_prompt'''] __snake_case = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" return 100 @property def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" torch.manual_seed(0 ) a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } a = PriorTransformer(**__UpperCAmelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a = CLIPVisionModelWithProjection(__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" a = CLIPImageProcessor( crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = self.dummy_prior a = self.dummy_image_encoder a = self.dummy_text_encoder a = self.dummy_tokenizer a = self.dummy_image_processor a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , ) a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int: """simple docstring""" if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.image_embeds a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] a = image[0, -10:] a = image_from_tuple[0, -10:] assert image.shape == (1, 32) a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = torch_device == '''cpu''' a = True a = False self._test_inference_batch_single_identical( test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , ) @skip_mps def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = torch_device == '''cpu''' a = False self._test_attention_slicing_forward_pass( test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {} class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''llama''' __snake_case = ['''past_key_values'''] def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str: """simple docstring""" a = vocab_size a = max_position_embeddings a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads # for backward compatibility if num_key_value_heads is None: a = num_attention_heads a = num_key_value_heads a = hidden_act a = initializer_range a = rms_norm_eps a = pretraining_tp a = use_cache a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) a = self.rope_scaling.get('''type''' , __UpperCAmelCase ) a = self.rope_scaling.get('''factor''' , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
0
1
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowercase : Tuple = logging.get_logger(__name__) class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= ["input_features", "attention_mask"] def __init__( self ,snake_case=80 ,snake_case=16000 ,snake_case=0.0 ,snake_case=10 ,snake_case=25 ,snake_case="hamming_window" ,snake_case=32_768.0 ,snake_case=0.97 ,snake_case=1.0 ,snake_case=True ,snake_case=True ,snake_case=False ,**snake_case ,): '''simple docstring''' super().__init__(feature_size=snake_case ,sampling_rate=snake_case ,padding_value=snake_case ,**snake_case ) lowercase : Optional[Any] = feature_size lowercase : List[Any] = sampling_rate lowercase : int = padding_value lowercase : Dict = hop_length lowercase : List[str] = win_length lowercase : List[Any] = frame_signal_scale lowercase : List[Any] = preemphasis_coeff lowercase : str = mel_floor lowercase : int = normalize_means lowercase : List[Any] = normalize_vars lowercase : List[Any] = win_function lowercase : int = return_attention_mask lowercase : Any = win_length * sampling_rate // 1000 lowercase : Tuple = hop_length * sampling_rate // 1000 lowercase : Tuple = optimal_fft_length(self.sample_size ) lowercase : Dict = (self.n_fft // 2) + 1 def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.win_function == "hamming_window": lowercase : Optional[Any] = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=snake_case ) else: lowercase : Optional[Any] = window_function(window_length=self.sample_size ,name=self.win_function ) lowercase : int = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) lowercase : Dict = spectrogram( one_waveform * self.frame_signal_scale ,window=snake_case ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=snake_case ,preemphasis=self.preemphasis_coeff ,mel_filters=snake_case ,mel_floor=self.mel_floor ,log_mel="""log""" ,) return msfc_features.T def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if self.normalize_means: lowercase : List[Any] = x[:input_length].mean(axis=0 ) lowercase : Dict = np.subtract(snake_case ,snake_case ) if self.normalize_vars: lowercase : List[Any] = x[:input_length].std(axis=0 ) lowercase : List[Any] = np.divide(snake_case ,snake_case ) if input_length < x.shape[0]: lowercase : Any = padding_value # make sure array is in float32 lowercase : Tuple = x.astype(np.floataa ) return x def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case ,snake_case ,self.padding_value ) for x, n in zip(snake_case ,snake_case )] def __call__( self ,snake_case ,snake_case = False ,snake_case = None ,snake_case = False ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,**snake_case ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowercase : List[Any] = isinstance(snake_case ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowercase : str = is_batched_numpy or ( isinstance(snake_case ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray(snake_case ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case ,np.ndarray ): lowercase : int = np.asarray(snake_case ,dtype=np.floataa ) elif isinstance(snake_case ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : Dict = [raw_speech] # extract fbank features lowercase : Tuple = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding lowercase : Union[str, Any] = BatchFeature({"""input_features""": features} ) lowercase : Optional[int] = self.pad( snake_case ,padding=snake_case ,max_length=snake_case ,truncation=snake_case ,pad_to_multiple_of=snake_case ,return_attention_mask=snake_case ,**snake_case ,) # make sure list is in array format lowercase : Tuple = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] ,snake_case ): lowercase : List[Any] = [np.asarray(snake_case ,dtype=np.floataa ) for feature in input_features] lowercase : int = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowercase : Any = [np.asarray(snake_case ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase : List[str] = ( np.array(snake_case ,dtype=np.intaa ) if self._get_padding_strategies(snake_case ,max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase : List[str] = self.normalize( padded_inputs["""input_features"""] ,attention_mask=snake_case ) if return_tensors is not None: lowercase : str = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
285
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: def count_of_possible_combinations(SCREAMING_SNAKE_CASE__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: def count_of_possible_combinations_with_dp_array( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase : Any = sum( count_of_possible_combinations_with_dp_array(target - item , SCREAMING_SNAKE_CASE__ ) for item in array ) lowercase : Optional[int] = answer return answer lowercase : int = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : str = [0] * (target + 1) lowercase : Tuple = 1 for i in range(1 , target + 1 ): for j in range(SCREAMING_SNAKE_CASE__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowercase : Any = 3 lowercase : Optional[Any] = 5 lowercase : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
285
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A_ = 'src/diffusers' # Matches is_xxx_available() A_ = re.compile(R"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla A_ = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") A_ = '\n{0} = None\n' A_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' A_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Tuple = _re_backend.findall(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(_SCREAMING_SNAKE_CASE ) def A_ ( ): with open(os.path.join(_SCREAMING_SNAKE_CASE , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[Any] = f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE:Union[str, Any] = 0 SCREAMING_SNAKE_CASE:str = {} # Go through the end of the file while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE:Union[str, Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = [] # Until we unindent, add backend objects to the list while line_index < len(_SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE:Union[str, Any] = lines[line_index] SCREAMING_SNAKE_CASE:Optional[Any] = _re_single_line_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_SCREAMING_SNAKE_CASE ) > 0: SCREAMING_SNAKE_CASE:Optional[Any] = objects else: line_index += 1 return backend_specific_objects def A_ ( snake_case , snake_case ): if name.isupper(): return DUMMY_CONSTANT.format(_SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A_ ( snake_case=None ): if backend_specific_objects is None: SCREAMING_SNAKE_CASE:str = read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE:Tuple = {} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE:Optional[int] = "[" + ", ".join(F'''\"{b}\"''' for b in backend.split("_and_" ) ) + "]" SCREAMING_SNAKE_CASE:Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for o in objects] ) SCREAMING_SNAKE_CASE:Dict = dummy_file return dummy_files def A_ ( snake_case=False ): SCREAMING_SNAKE_CASE:Any = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE:Dict = {"torch": "pt"} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE:Dict = os.path.join(_SCREAMING_SNAKE_CASE , "utils" ) SCREAMING_SNAKE_CASE:Union[str, Any] = { backend: os.path.join(_SCREAMING_SNAKE_CASE , F'''dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py''' ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE:str = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[Any] = f.read() else: SCREAMING_SNAKE_CASE:List[Any] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'''diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
139
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Tuple = SpeechTaTokenizer __lowercase: int = False __lowercase: List[str] = True def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case_ = SpeechTaTokenizer(UpperCAmelCase_ ) snake_case_ = AddedToken("""<mask>""" , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) snake_case_ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = """this is a test""" snake_case_ = """this is a test""" return input_text, output_text def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Tuple=20 , UpperCAmelCase_ : Dict=5 ) ->List[Any]: """simple docstring""" snake_case_ , snake_case_ = self.get_input_output_texts(UpperCAmelCase_ ) snake_case_ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = """<pad>""" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(UpperCAmelCase_ ) , 81 ) def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] snake_case_ = tokenizer.add_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , all_size + len(UpperCAmelCase_ ) ) snake_case_ = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} snake_case_ = tokenizer.add_special_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , all_size_a + len(UpperCAmelCase_ ) ) snake_case_ = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(UpperCAmelCase_ , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) snake_case_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) # fmt: off self.assertListEqual(UpperCAmelCase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off snake_case_ = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=UpperCAmelCase_ , )
347
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: snake_case__ : Any = None snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Union[str, Any] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } snake_case__ : str = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } snake_case__ : int = '''▁''' class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Any = VOCAB_FILES_NAMES lowerCamelCase_ :Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ :str = AlbertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_="[CLS]" , snake_case_="[SEP]" , snake_case_="<unk>" , snake_case_="[SEP]" , snake_case_="<pad>" , snake_case_="[CLS]" , snake_case_="[MASK]" , **snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) UpperCAmelCase_ : Dict = do_lower_case UpperCAmelCase_ : Optional[int] = remove_space UpperCAmelCase_ : Union[str, Any] = keep_accents UpperCAmelCase_ : Union[str, Any] = vocab_file UpperCAmelCase_ : List[Any] = False if not self.vocab_file else True def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : List[str] = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Union[str, Any] = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
274
'''simple docstring''' from sklearn.metrics import fa_score import datasets snake_case__ : str = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case__ : int = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case__ : Tuple = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=1 , snake_case_="binary" , snake_case_=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = fa_score( snake_case_ , snake_case_ , labels=snake_case_ , pos_label=snake_case_ , average=snake_case_ , sample_weight=snake_case_ ) return {"f1": float(snake_case_ ) if score.size == 1 else score}
274
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-1_2 , _a=16 , _a=True , _a=10 , _a=10 , _a=1_024 , _a=128 , **_a , ): """simple docstring""" super().__init__(**_a ) lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = patch_size lowerCamelCase = qkv_bias lowerCamelCase = frequency_stride lowerCamelCase = time_stride lowerCamelCase = max_length lowerCamelCase = num_mel_bins
291
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = tempfile.mkdtemp() # fmt: off lowerCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } lowerCamelCase = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_a , _a ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def _lowerCAmelCase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_image_processor() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) lowerCamelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(_a , return_tensors="""np""" ) lowerCamelCase = processor(images=_a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = """lower newer""" lowerCamelCase = processor(text=_a ) lowerCamelCase = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase = processor.batch_decode(_a ) lowerCamelCase = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
291
1
"""simple docstring""" from math import isclose, sqrt def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> tuple[float, float, float]: _lowerCAmelCase =point_y / 4 / point_x _lowerCAmelCase =2 * normal_gradient / (1 + normal_gradient * normal_gradient) _lowerCAmelCase =(1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _lowerCAmelCase =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _lowerCAmelCase =outgoing_gradient**2 + 4 _lowerCAmelCase =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _lowerCAmelCase =(point_y - outgoing_gradient * point_x) ** 2 - 100 _lowerCAmelCase =( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _lowerCAmelCase =( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _lowerCAmelCase =x_minus if isclose(__UpperCamelCase , __UpperCamelCase ) else x_plus _lowerCAmelCase =point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _lowerCamelCase(__UpperCamelCase = 1.4 , __UpperCamelCase = -9.6 ) -> int: _lowerCAmelCase =0 _lowerCAmelCase =first_x_coord _lowerCAmelCase =first_y_coord _lowerCAmelCase =(10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =next_point(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
341
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" ) _lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" ) _lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" ) _lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" ) _lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item _lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" ) _lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" ) _lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowerCAmelCase =old_checkpoint[path] _lowerCAmelCase =old_tensor.shape[0] // 3 _lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3 _lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 ) _lowerCAmelCase =query.reshape(__UpperCamelCase ) _lowerCAmelCase =key.reshape(__UpperCamelCase ) _lowerCAmelCase =value.reshape(__UpperCamelCase ) for path in paths: _lowerCAmelCase =path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0] else: _lowerCAmelCase =old_checkpoint[path["""old"""]] def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase ={} _lowerCAmelCase =checkpoint["""time_embed.0.weight"""] _lowerCAmelCase =checkpoint["""time_embed.0.bias"""] _lowerCAmelCase =checkpoint["""time_embed.2.weight"""] _lowerCAmelCase =checkpoint["""time_embed.2.bias"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""] _lowerCAmelCase =checkpoint["""out.0.weight"""] _lowerCAmelCase =checkpoint["""out.0.bias"""] _lowerCAmelCase =checkpoint["""out.2.weight"""] _lowerCAmelCase =checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): _lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} _lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''input_blocks.{i}.1''', """new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''input_blocks.{i}.1.qkv.bias''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) _lowerCAmelCase =middle_blocks[0] _lowerCAmelCase =middle_blocks[1] _lowerCAmelCase =middle_blocks[2] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): _lowerCAmelCase =i // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =i % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] _lowerCAmelCase ={} for layer in output_block_layers: _lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: _lowerCAmelCase =[layer_name] if len(__UpperCamelCase ) > 1: _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: _lowerCAmelCase =[] if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''output_blocks.{i}.1''', """new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''output_blocks.{i}.1.qkv.bias''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) _lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) _lowerCAmelCase =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __A = parser.parse_args() __A = torch.load(args.checkpoint_path) with open(args.config_file) as f: __A = json.loads(f.read()) __A = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __A = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) __A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) __A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
341
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''openai-gpt''' UpperCamelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , A=4_0478 , A=512 , A=768 , A=12 , A=12 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.02 , A="cls_index" , A=True , A=None , A=True , A=0.1 , **A , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = n_positions _SCREAMING_SNAKE_CASE = n_embd _SCREAMING_SNAKE_CASE = n_layer _SCREAMING_SNAKE_CASE = n_head _SCREAMING_SNAKE_CASE = afn _SCREAMING_SNAKE_CASE = resid_pdrop _SCREAMING_SNAKE_CASE = embd_pdrop _SCREAMING_SNAKE_CASE = attn_pdrop _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = summary_type _SCREAMING_SNAKE_CASE = summary_use_proj _SCREAMING_SNAKE_CASE = summary_activation _SCREAMING_SNAKE_CASE = summary_first_dropout _SCREAMING_SNAKE_CASE = summary_proj_to_labels super().__init__(**A )
58
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } __A = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizer def __init__( self : Optional[int] , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int="replace" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : List[Any]="</s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : int="<mask>" , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Tuple , )-> Optional[int]: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: str = getattr(UpperCamelCase__ , pre_tok_state.pop("type")) __lowerCAmelCase: Optional[int] = add_prefix_space __lowerCAmelCase: Dict = pre_tok_class(**UpperCamelCase__) __lowerCAmelCase: Any = add_prefix_space __lowerCAmelCase: int = "post_processor" __lowerCAmelCase: Optional[Any] = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) if tokenizer_component_instance: __lowerCAmelCase: Dict = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase: List[Any] = tuple(state["sep"]) if "cls" in state: __lowerCAmelCase: str = tuple(state["cls"]) __lowerCAmelCase: str = False if state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Optional[Any] = add_prefix_space __lowerCAmelCase: List[str] = True if state.get("trim_offsets" , UpperCamelCase__) != trim_offsets: __lowerCAmelCase: Any = trim_offsets __lowerCAmelCase: List[str] = True if changes_to_apply: __lowerCAmelCase: str = getattr(UpperCamelCase__ , state.pop("type")) __lowerCAmelCase: List[str] = component_class(**UpperCamelCase__) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) @property def lowercase_ ( self : List[str])-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def lowercase_ ( self : Tuple , UpperCamelCase__ : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else value __lowerCAmelCase: int = value def lowercase_ ( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : List[Any])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : int , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: str = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__) return tuple(UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = [self.sep_token_id] __lowerCAmelCase: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
217
0
"""simple docstring""" _lowerCAmelCase :Any = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
362
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase : Optional[Any] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(A ) , torch_builtin(A ) ) ) self.assertFalse(torch.allclose(gelu_python(A ) , gelu_new(A ) ) ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Union[str, Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase : Tuple = get_activation('''gelu''' ) _UpperCAmelCase : int = get_activation('''gelu_10''' ) _UpperCAmelCase : Optional[int] = torch_builtin(A ) _UpperCAmelCase : Optional[int] = geluaa(A ) _UpperCAmelCase : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(A ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(A ): get_activation('''bogus''' ) with self.assertRaises(A ): get_activation(A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Dict = get_activation('''gelu''' ) _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : int = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(A ): _UpperCAmelCase : Any = acta.a
68
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' def is_in_circle(UpperCamelCase__ , UpperCamelCase__ ) -> bool: snake_case_ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. snake_case_ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 ): '''simple docstring''' def identity_function(UpperCamelCase__ ) -> float: return x snake_case_ = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' def function_to_integrate(UpperCamelCase__ ) -> float: return sqrt(4.0 - x * x ) snake_case_ = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
285
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : List[Any] = logging.get_logger() @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : list = field(default_factory=lowercase_ ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = len(list(m.modules() ) ) == 1 or isinstance(snake_case , nn.Convad ) or isinstance(snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self , snake_case ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def a ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) def __call__( self , snake_case ): snake_case_ = Tracker(self.dest )(snake_case ).parametrized snake_case_ = Tracker(self.src )(snake_case ).parametrized snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.src_skip , snake_case ) ) snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip , snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( F'''Numbers of operations are different. Source module has {len(snake_case )} operations while''' F''' destination module has {len(snake_case )}.''' ) for dest_m, src_m in zip(snake_case , snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case_ = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() snake_case_ = ResNetForImageClassification(UpperCamelCase__ ).eval() snake_case_ = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) snake_case_ = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." snake_case_ = F'''resnet{"-".join(name.split("resnet" ) )}''' print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one snake_case_ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCamelCase__ , ) print(F'''Pushed {checkpoint_name}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = 1000 snake_case_ = (1, num_labels) snake_case_ = 'huggingface/label-files' snake_case_ = num_labels snake_case_ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) snake_case_ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _UpperCAmelCase : Optional[Any] = parser.parse_args() _UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
285
1
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase__ , max_perimeter + 1 ): lowercase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase__ ): lowercase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCamelCase ( lowerCAmelCase__ = 1000 ): '''simple docstring''' lowercase = pythagorean_triple(lowerCAmelCase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'Perimeter {solution()} has maximum solutions')
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ :Dict = logging.get_logger(__name__) lowercase__ :Optional[Any] = "▁" lowercase__ :str = {"vocab_file": "prophetnet.tokenizer"} lowercase__ :List[str] = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } lowercase__ :Optional[Any] = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } lowercase__ :List[Any] = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = collections.OrderedDict() with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase = reader.readlines() for index, token in enumerate(lowerCAmelCase__ ): lowercase = token.rstrip('''\n''' ) lowercase = index return vocab class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[Any] =VOCAB_FILES_NAMES lowercase_ : Any =PRETRAINED_VOCAB_FILES_MAP lowercase_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str =['''input_ids''', '''attention_mask'''] def __init__( self ,A__ ,A__="[SEP]" ,A__="[SEP]" ,A__="[SEP]" ,A__="[UNK]" ,A__="[PAD]" ,A__="[CLS]" ,A__="[MASK]" ,A__ = None ,**A__ ,): lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ ,eos_token=A__ ,sep_token=A__ ,unk_token=A__ ,pad_token=A__ ,cls_token=A__ ,mask_token=A__ ,sp_model_kwargs=self.sp_model_kwargs ,**A__ ,) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''') raise lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(A__)) lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowercase = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(1_0): lowercase = f'[unused{i}]' lowercase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowercase = 1_2 lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A__) def __getstate__( self): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self ,A__): lowercase = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''') raise # for backward compatibility if not hasattr(self ,'''sp_model_kwargs'''): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ ( self ,A__ ,A__ = None ,A__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ ,token_ids_a=A__ ,already_has_special_tokens=A__) if token_ids_a is None: return ([0] * len(A__)) + [1] return ([0] * len(A__)) + [1] + ([0] * len(A__)) + [1] def A__ ( self ,A__ ,A__ = None): lowercase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset def A__ ( self): lowercase = {self.convert_ids_to_tokens(A__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self ,A__): return self.sp_model.encode(A__ ,out_type=A__) def A__ ( self ,A__): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(A__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self ,A__): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self ,A__): lowercase = ''''''.join(A__).replace(A__ ,''' ''').strip() return out_string def A__ ( self ,A__ ,A__ = None): if not os.path.isdir(A__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return lowercase = os.path.join( A__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(A__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,A__) elif not os.path.isfile(self.vocab_file): with open(A__ ,'''wb''') as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(A__) return (out_vocab_file,) def A__ ( self ,A__ ,A__ = None): if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowercase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
97
0
from __future__ import annotations A : Optional[int] = list[tuple[int, int]] A : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Union[str, Any] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A : '''simple docstring''' def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : Node | None , ) -> Dict: """simple docstring""" A__ = pos_x A__ = pos_y A__ = (pos_y, pos_x) A__ = goal_x A__ = goal_y A__ = g_cost A__ = parent A__ = self.calculate_heuristic() def a_ ( self : Optional[int] ) -> float: """simple docstring""" A__ = abs(self.pos_x - self.goal_x ) A__ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , __lowerCAmelCase : List[str] ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : '''simple docstring''' def __init__( self : List[str] , __lowerCAmelCase : tuple[int, int] , __lowerCAmelCase : tuple[int, int] ) -> List[Any]: """simple docstring""" A__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCAmelCase ) A__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __lowerCAmelCase ) A__ = [self.start] A__ = [] A__ = False def a_ ( self : Union[str, Any] ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: A__ = True return self.retrace_path(__lowerCAmelCase ) self.closed_nodes.append(__lowerCAmelCase ) A__ = self.get_successors(__lowerCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCAmelCase ) else: # retrieve the best current path A__ = self.open_nodes.pop(self.open_nodes.index(__lowerCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCAmelCase ) else: self.open_nodes.append(__lowerCAmelCase ) if not self.reached: return [self.start.pos] return None def a_ ( self : Tuple , __lowerCAmelCase : Node ) -> list[Node]: """simple docstring""" A__ = [] for action in delta: A__ = parent.pos_x + action[1] A__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCAmelCase , __lowerCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCAmelCase , ) ) return successors def a_ ( self : str , __lowerCAmelCase : Node | None ) -> Path: """simple docstring""" A__ = node A__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A__ = current_node.parent path.reverse() return path if __name__ == "__main__": A : Any = (0, 0) A : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') A : Any = GreedyBestFirst(init, goal) A : List[str] = greedy_bf.search() if path: for pos_x, pos_y in path: A : Union[str, Any] = 2 for elem in grid: print(elem)
274
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A : List[str] = input('''Enter image url: ''').strip() print(F'''Downloading image from {url} ...''') A : Any = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image A : List[Any] = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] A : Dict = requests.get(image_url).content A : Tuple = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
274
1
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __snake_case = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize __snake_case = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' __snake_case = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' __snake_case = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__=0.9 , snake_case__=3 , snake_case__=0.5 ) -> List[Any]: '''simple docstring''' if NLTK_VERSION >= version.Version('''3.6.5''' ): UpperCAmelCase : int =[ meteor_score.single_meteor_score( word_tokenize(__UpperCAmelCase ) , word_tokenize(__UpperCAmelCase ) , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , gamma=__UpperCAmelCase ) for ref, pred in zip(__UpperCAmelCase , __UpperCAmelCase ) ] else: UpperCAmelCase : Dict =[ meteor_score.single_meteor_score(__UpperCAmelCase , __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , gamma=__UpperCAmelCase ) for ref, pred in zip(__UpperCAmelCase , __UpperCAmelCase ) ] return {"meteor": np.mean(__UpperCAmelCase )}
366
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
78
0
'''simple docstring''' from math import isclose, sqrt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = point_y / 4 / point_x _snake_case = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _snake_case = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _snake_case = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _snake_case = outgoing_gradient**2 + 4 _snake_case = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _snake_case = (point_y - outgoing_gradient * point_x) ** 2 - 100 _snake_case = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _snake_case = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _snake_case = x_minus if isclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else x_plus _snake_case = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1.4 , _SCREAMING_SNAKE_CASE = -9.6 ): _snake_case = 0 _snake_case = first_x_coord _snake_case = first_y_coord _snake_case = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _snake_case, _snake_case, _snake_case = next_point(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
341
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: _snake_case = data _snake_case = previous _snake_case = next_node def __str__(self ) -> str: return f"""{self.data}""" def lowercase (self ) -> int: return self.data def lowercase (self ) -> Dict: return self.next def lowercase (self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = head def __iter__(self ) -> Optional[Any]: return self def lowercase (self ) -> str: if not self.current: raise StopIteration else: _snake_case = self.current.get_data() _snake_case = self.current.get_next() return value class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Optional[int]: _snake_case = None # First node in list _snake_case = None # Last node in list def __str__(self ) -> Optional[int]: _snake_case = self.head _snake_case = [] while current is not None: nodes.append(current.get_data() ) _snake_case = current.get_next() return " ".join(str(UpperCAmelCase ) for node in nodes ) def __contains__(self , UpperCAmelCase ) -> int: _snake_case = self.head while current: if current.get_data() == value: return True _snake_case = current.get_next() return False def __iter__(self ) -> Union[str, Any]: return LinkedListIterator(self.head ) def lowercase (self ) -> str: if self.head: return self.head.get_data() return None def lowercase (self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: _snake_case = node _snake_case = node else: self.insert_before_node(self.head , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: self.set_head(UpperCAmelCase ) else: self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if self.head is None: self.set_head(UpperCAmelCase ) else: self.set_tail(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.previous if node.get_previous() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.next if node.get_next() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = 1 _snake_case = Node(UpperCAmelCase ) _snake_case = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase , UpperCAmelCase ) return current_position += 1 _snake_case = node.next self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Node: _snake_case = self.head while node: if node.get_data() == item: return node _snake_case = node.get_next() raise Exception("""Node not found""" ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: if (node := self.get_node(UpperCAmelCase )) is not None: if node == self.head: _snake_case = self.head.get_next() if node == self.tail: _snake_case = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase ) @staticmethod def lowercase (UpperCAmelCase ) -> None: if node.get_next(): _snake_case = node.previous if node.get_previous(): _snake_case = node.next _snake_case = None _snake_case = None def lowercase (self ) -> Dict: return self.head is None def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case_ ( _lowerCAmelCase ,unittest.TestCase ): __A : Optional[int] = DanceDiffusionPipeline __A : Dict = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : List[str] = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } __A : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : Any = False __A : Optional[Any] = False def __UpperCamelCase ( self : Dict ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : Dict = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , use_timestep_embedding=SCREAMING_SNAKE_CASE_ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) lowercase__ : Any = IPNDMScheduler() lowercase__ : List[str] = { """unet""": unet, """scheduler""": scheduler, } return components def __UpperCamelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Any=0 ) -> List[str]: if str(SCREAMING_SNAKE_CASE_ ).startswith("mps" ): lowercase__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowercase__ : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def __UpperCamelCase ( self : str ) -> Dict: lowercase__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : List[str] = DanceDiffusionPipeline(**SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase__ : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = pipe(**SCREAMING_SNAKE_CASE_ ) lowercase__ : int = output.audios lowercase__ : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowercase__ : List[Any] = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __UpperCamelCase ( self : Tuple ) -> Any: return super().test_save_load_local() @skip_mps def __UpperCamelCase ( self : List[str] ) -> Any: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: return super().test_save_load_optional_components() @skip_mps def __UpperCamelCase ( self : Optional[Any] ) -> Dict: return super().test_attention_slicing_forward_pass() def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Any = torch_device lowercase__ : Tuple = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) lowercase__ : int = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Union[str, Any] = pipe(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , audio_length_in_s=4.0_96 ) lowercase__ : Optional[Any] = output.audios lowercase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase__ : Optional[Any] = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: lowercase__ : Dict = torch_device lowercase__ : Optional[Any] = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) lowercase__ : Dict = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : int = pipe(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , audio_length_in_s=4.0_96 ) lowercase__ : int = output.audios lowercase__ : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase__ : Dict = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
0
import string import numpy def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , __a ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase_ = numpy.vectorize(lambda __SCREAMING_SNAKE_CASE : x % 36 ) lowercase_ = numpy.vectorize(__SCREAMING_SNAKE_CASE ) def __init__(self : Union[str, Any] , UpperCAmelCase_ : numpy.ndarray) ->None: '''simple docstring''' lowerCamelCase__: int =self.modulus(UpperCAmelCase_) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCamelCase__: Dict =encrypt_key.shape[0] def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : str) ->int: '''simple docstring''' return self.key_string.index(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int) ->str: '''simple docstring''' return self.key_string[round(UpperCAmelCase_)] def SCREAMING_SNAKE_CASE_ (self : int) ->None: '''simple docstring''' lowerCamelCase__: str =round(numpy.linalg.det(self.encrypt_key)) if det < 0: lowerCamelCase__: str =det % len(self.key_string) lowerCamelCase__: Optional[int] =len(self.key_string) if greatest_common_divisor(UpperCAmelCase_ , len(self.key_string)) != 1: lowerCamelCase__: Tuple =( F"""determinant modular {req_l} of encryption key({det}) """ F"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: int =[char for char in text.upper() if char in self.key_string] lowerCamelCase__: List[str] =chars[-1] while len(UpperCAmelCase_) % self.break_key != 0: chars.append(UpperCAmelCase_) return "".join(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: Any =self.process_text(text.upper()) lowerCamelCase__: List[str] ="" for i in range(0 , len(UpperCAmelCase_) - self.break_key + 1 , self.break_key): lowerCamelCase__: Union[str, Any] =text[i : i + self.break_key] lowerCamelCase__: Optional[int] =[self.replace_letters(UpperCAmelCase_) for char in batch] lowerCamelCase__: Any =numpy.array([vec]).T lowerCamelCase__: Union[str, Any] =self.modulus(self.encrypt_key.dot(UpperCAmelCase_)).T.tolist()[ 0 ] lowerCamelCase__: Dict ="".join( self.replace_digits(UpperCAmelCase_) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def SCREAMING_SNAKE_CASE_ (self : List[str]) ->numpy.ndarray: '''simple docstring''' lowerCamelCase__: Tuple =round(numpy.linalg.det(self.encrypt_key)) if det < 0: lowerCamelCase__: str =det % len(self.key_string) lowerCamelCase__: Optional[int] =None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: lowerCamelCase__: Optional[int] =i break lowerCamelCase__: str =( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: Any =self.make_decrypt_key() lowerCamelCase__: Any =self.process_text(text.upper()) lowerCamelCase__: Dict ="" for i in range(0 , len(UpperCAmelCase_) - self.break_key + 1 , self.break_key): lowerCamelCase__: List[str] =text[i : i + self.break_key] lowerCamelCase__: List[str] =[self.replace_letters(UpperCAmelCase_) for char in batch] lowerCamelCase__: Dict =numpy.array([vec]).T lowerCamelCase__: Any =self.modulus(decrypt_key.dot(UpperCAmelCase_)).T.tolist()[0] lowerCamelCase__: int ="".join( self.replace_digits(UpperCAmelCase_) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: Optional[Any] =int(input("Enter the order of the encryption key: " ) ) lowerCamelCase__: str =[] print("Enter each row of the encryption key with space separated integers" ) for _ in range(__a ): lowerCamelCase__: List[Any] =[int(__a ) for x in input().split()] hill_matrix.append(__a ) lowerCamelCase__: Dict =HillCipher(numpy.array(__a ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) lowerCamelCase__: List[str] =input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": lowerCamelCase__: Union[str, Any] =input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(__a ) ) elif option == "2": lowerCamelCase__: Optional[int] =input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(__a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
10
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> List[str]: '''simple docstring''' A__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } A__ = F'{src_lang}-{tgt_lang}' A__ = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) A__ = os.path.join(SCREAMING_SNAKE_CASE_ , "README.md" ) print(F'Generating {path}' ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # make sure we are under the root of the project lowerCAmelCase__ = Path(__file__).resolve().parent.parent.parent lowerCAmelCase__ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = model_name.split("""-""") lowerCAmelCase__ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
68
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Tuple = 'markuplm' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase=256 , _UpperCamelCase=1024 , _UpperCamelCase=216 , _UpperCamelCase=1001 , _UpperCamelCase=32 , _UpperCamelCase=50 , _UpperCamelCase="absolute" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ): """simple docstring""" super().__init__( pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase , ) _lowercase : Optional[int] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Union[str, Any] = hidden_act _lowercase : List[Any] = intermediate_size _lowercase : Tuple = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : Tuple = type_vocab_size _lowercase : List[Any] = initializer_range _lowercase : Dict = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : Dict = use_cache _lowercase : Any = classifier_dropout # additional properties _lowercase : Optional[int] = max_depth _lowercase : int = max_xpath_tag_unit_embeddings _lowercase : int = max_xpath_subs_unit_embeddings _lowercase : Optional[Any] = tag_pad_id _lowercase : List[str] = subs_pad_id _lowercase : Dict = xpath_unit_hidden_size
199
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _snake_case = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' _snake_case = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' _snake_case = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def _lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _lowerCamelCase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase="uniform_average" , _UpperCamelCase=True ): """simple docstring""" _lowercase : str = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
199
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): _a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _a = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _a = -1 _a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _a = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _a = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _a = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _a = cs.out[:-1] self.assertEqual(__a , __a ) def UpperCamelCase__ ( self : Optional[int] ): _a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _a = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _a = -1 _a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _a = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _a = tokenizer.decode(greedy_ids[0] ) _a = TextIteratorStreamer(__a ) _a = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _a = Thread(target=model.generate , kwargs=__a ) thread.start() _a = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def UpperCamelCase__ ( self : str ): _a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _a = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _a = -1 _a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _a = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _a = greedy_ids[:, input_ids.shape[1] :] _a = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _a = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _a = cs.out[:-1] self.assertEqual(__a , __a ) def UpperCamelCase__ ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _a = AutoTokenizer.from_pretrained("distilgpt2" ) _a = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _a = -1 _a = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _a = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _a = cs.out[:-1] # Remove the final "\n" _a = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCamelCase__ ( self : Any ): _a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _a = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _a = -1 _a = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _a = TextIteratorStreamer(__a , timeout=0.001 ) _a = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _a = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _a = "" for new_text in streamer: streamer_text += new_text
63
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 255 , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :Dict = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCamelCase__ :str = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :str = min_resolution UpperCamelCase__ :Optional[Any] = max_resolution UpperCamelCase__ :int = do_resize UpperCamelCase__ :Optional[Any] = size UpperCamelCase__ :Tuple = do_normalize UpperCamelCase__ :List[Any] = image_mean UpperCamelCase__ :Dict = image_std UpperCamelCase__ :Union[str, Any] = do_rescale UpperCamelCase__ :Union[str, Any] = rescale_factor UpperCamelCase__ :Union[str, Any] = do_pad def lowerCAmelCase__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' if not batched: UpperCamelCase__ :List[str] = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): UpperCamelCase__ , UpperCamelCase__ :List[str] = image.size else: UpperCamelCase__ , UpperCamelCase__ :List[Any] = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ :int = int(self.size['''shortest_edge'''] * h / w ) UpperCamelCase__ :Dict = self.size['''shortest_edge'''] elif w > h: UpperCamelCase__ :int = self.size['''shortest_edge'''] UpperCamelCase__ :Tuple = int(self.size['''shortest_edge'''] * w / h ) else: UpperCamelCase__ :str = self.size['''shortest_edge'''] UpperCamelCase__ :str = self.size['''shortest_edge'''] else: UpperCamelCase__ :Any = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ :Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ :List[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] UpperCamelCase__ :Optional[int] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase__ :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) UpperCamelCase__ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase__ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase__ :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Dict = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.loads(f.read() ) UpperCamelCase__ :Any = {'''image_id''': 39769, '''annotations''': target} # encode them UpperCamelCase__ :str = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) UpperCamelCase__ :List[Any] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size UpperCamelCase__ :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Tuple = json.loads(f.read() ) UpperCamelCase__ :List[str] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} UpperCamelCase__ :Any = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCamelCase__ :List[Any] = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) UpperCamelCase__ :Dict = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks UpperCamelCase__ :Optional[Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size UpperCamelCase__ :List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
97
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ = [ """good first issue""", """feature request""", """wip""", ] def _snake_case ( ): _lowerCamelCase : Optional[Any] = Github(os.environ['GITHUB_TOKEN'] ) _lowerCamelCase : List[Any] = g.get_repo('huggingface/accelerate' ) _lowerCamelCase : Union[str, Any] = repo.get_issues(state='open' ) for issue in open_issues: _lowerCamelCase : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=__lowerCamelCase ) _lowerCamelCase : Any = comments[0] if len(__lowerCamelCase ) > 0 else None _lowerCamelCase : Optional[Any] = dt.utcnow() _lowerCamelCase : Optional[int] = (current_time - issue.updated_at).days _lowerCamelCase : str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
350
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=8 ): UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCAmelCase ( lowercase_ , lowercase_=512 , lowercase_=512 ): UpperCAmelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase = arr.astype(np.floataa ) / 1_2_7.5 - 1 UpperCAmelCase = np.transpose(lowercase_ , [2, 0, 1] ) UpperCAmelCase = torch.from_numpy(lowercase_ ).unsqueeze(0 ) return image class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :UNetaDConditionModel , lowercase_ :DDPMScheduler , lowercase_ :VQModel , ) -> List[str]: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :Tuple , lowercase_ :Any ) -> Optional[int]: # get the original timestep using init_timestep UpperCAmelCase = min(int(num_inference_steps * strength ) , lowercase_ ) UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Dict , lowercase_ :str , lowercase_ :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Optional[Any] , lowercase_ :Any=None ) -> Any: if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}""" ) UpperCAmelCase = image.to(device=lowercase_ , dtype=lowercase_ ) UpperCAmelCase = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase = image else: if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase_ ) ] UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) else: UpperCAmelCase = self.movq.encode(lowercase_ ).latent_dist.sample(lowercase_ ) UpperCAmelCase = self.movq.config.scaling_factor * init_latents UpperCAmelCase = torch.cat([init_latents] , dim=0 ) UpperCAmelCase = init_latents.shape UpperCAmelCase = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents UpperCAmelCase = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = init_latents return latents def UpperCAmelCase__ ( self :int , lowercase_ :int=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :str=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self :List[Any] ) -> Dict: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self :str , lowercase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ :Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowercase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ :int = 5_12 , lowercase_ :int = 5_12 , lowercase_ :int = 1_00 , lowercase_ :float = 4.0 , lowercase_ :float = 0.3 , lowercase_ :int = 1 , lowercase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ :Optional[str] = "pil" , lowercase_ :bool = True , ) -> List[str]: UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase = image_embeds.shape[0] if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [image] if not all(isinstance(lowercase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(lowercase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCAmelCase = torch.cat([prepare_image(lowercase_ , lowercase_ , lowercase_ ) for i in image] , dim=0 ) UpperCAmelCase = image.to(dtype=image_embeds.dtype , device=lowercase_ ) UpperCAmelCase = self.movq.encode(lowercase_ )['latents'] UpperCAmelCase = latents.repeat_interleave(lowercase_ , dim=0 ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase , UpperCAmelCase = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) UpperCAmelCase = self.prepare_latents( lowercase_ , lowercase_ , lowercase_ , lowercase_ , image_embeds.dtype , lowercase_ , lowercase_ ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'image_embeds': image_embeds} UpperCAmelCase = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
78
0
class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] )-> List[str]: lowerCamelCase__ : int ="""""" lowerCamelCase__ : str ="""""" lowerCamelCase__ : Dict =[] def snake_case ( self : Tuple, lowerCamelCase : int, lowerCamelCase : int )-> Optional[int]: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowerCamelCase__ : int =self.__min_dist_top_down_dp(m - 1, n - 1 ) else: lowerCamelCase__ : Union[str, Any] =self.__min_dist_top_down_dp(lowercase_, n - 1 ) lowerCamelCase__ : List[Any] =self.__min_dist_top_down_dp(m - 1, lowercase_ ) lowerCamelCase__ : List[str] =self.__min_dist_top_down_dp(m - 1, n - 1 ) lowerCamelCase__ : Optional[Any] =1 + min(lowercase_, lowercase_, lowercase_ ) return self.dp[m][n] def snake_case ( self : Dict, lowerCamelCase : str, lowerCamelCase : str )-> Tuple: lowerCamelCase__ : Any =worda lowerCamelCase__ : Union[str, Any] =worda lowerCamelCase__ : Optional[int] =[[-1 for _ in range(len(lowercase_ ) )] for _ in range(len(lowercase_ ) )] return self.__min_dist_top_down_dp(len(lowercase_ ) - 1, len(lowercase_ ) - 1 ) def snake_case ( self : List[Any], lowerCamelCase : str, lowerCamelCase : str )-> Union[str, Any]: lowerCamelCase__ : Any =worda lowerCamelCase__ : int =worda lowerCamelCase__ : str =len(lowercase_ ) lowerCamelCase__ : int =len(lowercase_ ) lowerCamelCase__ : Tuple =[[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowerCamelCase__ : Tuple =j elif j == 0: # second string is empty lowerCamelCase__ : str =i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowerCamelCase__ : Any =self.dp[i - 1][j - 1] else: lowerCamelCase__ : str =self.dp[i][j - 1] lowerCamelCase__ : Union[str, Any] =self.dp[i - 1][j] lowerCamelCase__ : List[Any] =self.dp[i - 1][j - 1] lowerCamelCase__ : int =1 + min(lowercase_, lowercase_, lowercase_ ) return self.dp[m][n] if __name__ == "__main__": _lowercase : int = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() _lowercase : List[str] = input("Enter the first string: ").strip() _lowercase : Union[str, Any] = input("Enter the second string: ").strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
371
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" if "model" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowerCamelCase__ : List[Any] =orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowerCamelCase__ : List[str] =orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowerCamelCase__ : str =orig_key.split('''.''' )[0].split('''_''' )[-1] lowerCamelCase__ : Dict =orig_key.replace(f'''transformer_{layer_num}''' , f'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowerCamelCase__ : str =orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowerCamelCase__ : List[str] =orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowerCamelCase__ : Dict =orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowerCamelCase__ : Union[str, Any] =orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowerCamelCase__ : str =orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowerCamelCase__ : Tuple =orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowerCamelCase__ : Optional[int] =orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowerCamelCase__ : Optional[int] ='''yoso.''' + orig_key return orig_key def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Any ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Optional[Any] =orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase__ : List[str] =val lowerCamelCase__ : Optional[int] =orig_state_dict['''cls.predictions.decoder.bias'''] lowerCamelCase__ : str =torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowerCamelCase__ : List[Any] =YosoConfig.from_json_file(__lowerCamelCase ) lowerCamelCase__ : List[str] =YosoForMaskedLM(__lowerCamelCase ) lowerCamelCase__ : Tuple =convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
272
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _lowercase = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' _lowerCamelCase: bool = None _lowerCamelCase: bool = None class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = datasets.Audio() _lowerCamelCase: List[Any] = '''audio''' _lowerCamelCase: Optional[Any] = AudioFolderConfig _lowerCamelCase: List[str] # definition at the bottom of the script _lowerCamelCase: Dict = AudioClassification(audio_column='''audio''' , label_column='''label''' ) _lowercase = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] _lowercase = AUDIO_EXTENSIONS
74
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
0
'''simple docstring''' def __A ( lowerCAmelCase_ ): if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) _UpperCAmelCase : str = sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" _UpperCAmelCase : Dict = nn.Parameter(lowerCAmelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" _UpperCAmelCase : Optional[Any] = nn.Parameter(lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # set torch weights for 1-to-1 comparison _UpperCAmelCase : List[str] = np.asarray(weights[0] ) _UpperCAmelCase : Union[str, Any] = np.asarray(weights[1] ) _UpperCAmelCase : Optional[Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase_ ).view(-1 , lowerCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # set torch weights for 1-to-1 comparison _UpperCAmelCase : Optional[int] = np.asarray(weights[0] ) _UpperCAmelCase : Tuple = np.asarray(weights[1] ) _UpperCAmelCase : List[str] = np.asarray(weights[2] ) _UpperCAmelCase : str = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase_ ).view(-1 , lowerCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # layernorm 1 _UpperCAmelCase : Tuple = weights[0][0][0] _UpperCAmelCase : Optional[int] = np.asarray(layer_norm_a[0] ) _UpperCAmelCase : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # lsh weights + output _UpperCAmelCase : List[Any] = weights[0][1] if len(lowerCAmelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCAmelCase_ , torch_block.attention , lowerCAmelCase_ ) else: set_layer_weights_in_torch_local(lowerCAmelCase_ , torch_block.attention , lowerCAmelCase_ ) # intermediate weighs _UpperCAmelCase : int = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCAmelCase_ ) == 4: _UpperCAmelCase : List[str] = intermediate_weights[2] # layernorm 2 _UpperCAmelCase : str = np.asarray(intermediate_weights[0][0] ) _UpperCAmelCase : Dict = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # intermediate dense _UpperCAmelCase : int = np.asarray(intermediate_weights[1][0] ) _UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) # intermediate out _UpperCAmelCase : Tuple = np.asarray(intermediate_weights[4][0] ) _UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # reformer model _UpperCAmelCase : Union[str, Any] = torch_model.reformer # word embeds _UpperCAmelCase : Union[str, Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCAmelCase_ ) , ) if isinstance(weights[3] , lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _UpperCAmelCase : Any = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" _UpperCAmelCase : Dict = nn.Parameter(torch.tensor(lowerCAmelCase_ ) ) _UpperCAmelCase : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCAmelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _UpperCAmelCase : Any = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # output layer norm _UpperCAmelCase : str = np.asarray(weights[7][0] ) _UpperCAmelCase : Optional[int] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # output embeddings _UpperCAmelCase : Tuple = np.asarray(weights[9][0] ) _UpperCAmelCase : Optional[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # Initialise PyTorch model _UpperCAmelCase : Optional[int] = ReformerConfig.from_json_file(lowerCAmelCase_ ) print(f"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase : Any = ReformerModelWithLMHead(lowerCAmelCase_ ) with open(lowerCAmelCase_ , """rb""" ) as f: _UpperCAmelCase : List[str] = pickle.load(lowerCAmelCase_ )["""weights"""] set_model_weights_in_torch(lowerCAmelCase_ , lowerCAmelCase_ , config.hidden_size ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
170
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a_ ( ): '''simple docstring''' raise RuntimeError('CUDA out of memory.' ) class A ( nn.Module ): def __init__( self : Optional[int] ) -> Any: """simple docstring""" super().__init__() _lowerCamelCase : Union[str, Any] =nn.Linear(3 , 4 ) _lowerCamelCase : List[str] =nn.BatchNormad(4 ) _lowerCamelCase : int =nn.Linear(4 , 5 ) def lowerCamelCase ( self : Tuple , lowercase_ : Tuple ) -> Optional[Any]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class A ( unittest.TestCase ): def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Union[str, Any] =[] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ : List[str] ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase_ , [128, 64, 32, 16, 8] ) def lowerCamelCase ( self : int ) -> Any: """simple docstring""" _lowerCamelCase : Union[str, Any] =[] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ : Optional[Any] , lowercase_ : Tuple ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _lowerCamelCase , _lowerCamelCase : str =mock_training_loop_function('hello' ) self.assertListEqual(lowercase_ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def lowerCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase_ : Any ): pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ : Union[str, Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def lowerCamelCase ( self : str ) -> List[Any]: """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ : int ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def lowerCamelCase ( self : int ) -> Dict: """simple docstring""" _lowerCamelCase : int =torch.cuda.memory_allocated() _lowerCamelCase : Union[str, Any] =ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowercase_ ) _lowerCamelCase : Optional[Any] =release_memory(lowercase_ ) self.assertEqual(torch.cuda.memory_allocated() , lowercase_ )
199
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A : def __init__( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Dict=13 , lowercase_ : List[Any]=7 , lowercase_ : List[Any]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=False , lowercase_ : Tuple=True , lowercase_ : List[str]=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[Any]=5 , lowercase_ : Dict=4 , lowercase_ : List[Any]=37 , lowercase_ : Any="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=512 , lowercase_ : Any=16 , lowercase_ : Optional[int]=2 , lowercase_ : Any=0.02 , lowercase_ : Dict=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : Tuple=None , ) -> List[Any]: """simple docstring""" _lowerCamelCase : List[Any] =parent _lowerCamelCase : Tuple =batch_size _lowerCamelCase : Any =seq_length _lowerCamelCase : int =is_training _lowerCamelCase : int =use_input_mask _lowerCamelCase : List[str] =use_token_type_ids _lowerCamelCase : Dict =use_labels _lowerCamelCase : int =vocab_size _lowerCamelCase : Optional[Any] =hidden_size _lowerCamelCase : Union[str, Any] =num_hidden_layers _lowerCamelCase : Any =num_attention_heads _lowerCamelCase : Tuple =intermediate_size _lowerCamelCase : List[str] =hidden_act _lowerCamelCase : int =hidden_dropout_prob _lowerCamelCase : Optional[int] =attention_probs_dropout_prob _lowerCamelCase : Any =max_position_embeddings _lowerCamelCase : Optional[Any] =type_vocab_size _lowerCamelCase : List[Any] =type_sequence_label_size _lowerCamelCase : Union[str, Any] =initializer_range _lowerCamelCase : Dict =num_labels _lowerCamelCase : Optional[Any] =num_choices _lowerCamelCase : Dict =scope def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" _lowerCamelCase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Union[str, Any] =None if self.use_input_mask: _lowerCamelCase : Dict =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : str =None if self.use_token_type_ids: _lowerCamelCase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Tuple =None _lowerCamelCase : Optional[Any] =None _lowerCamelCase : Optional[Any] =None if self.use_labels: _lowerCamelCase : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Optional[Any] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : List[Any] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Dict =LlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowerCamelCase : List[str] =model(lowercase_ , attention_mask=lowercase_ ) _lowerCamelCase : List[str] =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : int , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , ) -> Any: """simple docstring""" _lowerCamelCase : str =True _lowerCamelCase : str =LlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() _lowerCamelCase : int =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) _lowerCamelCase : str =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) _lowerCamelCase : List[Any] =model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Any , ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =LlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowerCamelCase : int =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : int , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , ) -> List[str]: """simple docstring""" _lowerCamelCase : List[str] =True _lowerCamelCase : Tuple =True _lowerCamelCase : str =LlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass _lowerCamelCase : int =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) _lowerCamelCase : Any =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCamelCase : Tuple =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : Optional[Any] =torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCamelCase : Optional[int] =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] _lowerCamelCase : Tuple =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice _lowerCamelCase : int =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : Optional[Any] =output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase : Optional[int] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" _lowerCamelCase : int =self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[Any] =config_and_inputs _lowerCamelCase : Union[str, Any] ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Optional[Any] =(LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () UpperCamelCase__ : Union[str, Any] =(LlamaForCausalLM,) if is_torch_available() else () UpperCamelCase__ : List[Any] =( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : Tuple =False def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _lowerCamelCase : Optional[Any] =LlamaModelTester(self ) _lowerCamelCase : Any =ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Dict ) -> str: """simple docstring""" _lowerCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Tuple =type self.model_tester.create_and_check_model(*lowercase_ ) def lowerCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : str =3 _lowerCamelCase : str =input_dict['input_ids'] _lowerCamelCase : int =input_ids.ne(1 ).to(lowercase_ ) _lowerCamelCase : Optional[Any] =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCamelCase : Union[str, Any] =LlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _lowerCamelCase : Dict =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] =3 _lowerCamelCase : List[Any] ='single_label_classification' _lowerCamelCase : List[str] =input_dict['input_ids'] _lowerCamelCase : Any =input_ids.ne(1 ).to(lowercase_ ) _lowerCamelCase : List[str] =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCamelCase : str =LlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _lowerCamelCase : Optional[int] =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : int =3 _lowerCamelCase : Optional[Any] ='multi_label_classification' _lowerCamelCase : str =input_dict['input_ids'] _lowerCamelCase : Tuple =input_ids.ne(1 ).to(lowercase_ ) _lowerCamelCase : Tuple =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCamelCase : Optional[Any] =LlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _lowerCamelCase : Optional[Any] =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCamelCase ( self : int ) -> str: """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCamelCase ( self : Optional[int] , lowercase_ : List[Any] ) -> int: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Union[str, Any] =ids_tensor([1, 10] , config.vocab_size ) _lowerCamelCase : List[str] =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCamelCase : Optional[int] =LlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() _lowerCamelCase : List[Any] =original_model(lowercase_ ).last_hidden_state _lowerCamelCase : Dict =original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCamelCase : Dict ={'type': scaling_type, 'factor': 10.0} _lowerCamelCase : int =LlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() _lowerCamelCase : Optional[int] =scaled_model(lowercase_ ).last_hidden_state _lowerCamelCase : Dict =scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) @require_torch class A ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] =[1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCamelCase : Optional[Any] =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) _lowerCamelCase : int =model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowerCamelCase : int =torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowercase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCamelCase : Dict =torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowercase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCamelCase ( self : int ) -> Any: """simple docstring""" _lowerCamelCase : Tuple =[1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCamelCase : Optional[Any] =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) _lowerCamelCase : List[Any] =model(torch.tensor(lowercase_ ) ) # Expected mean on dim = -1 _lowerCamelCase : str =torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowercase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCamelCase : List[str] =torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowercase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _lowerCamelCase : Optional[Any] =[1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCamelCase : str =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) _lowerCamelCase : int =model(torch.tensor(lowercase_ ) ) # Expected mean on dim = -1 _lowerCamelCase : str =torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowercase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCamelCase : Union[str, Any] =torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowercase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" _lowerCamelCase : List[str] =[1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCamelCase : Any =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) _lowerCamelCase : Optional[Any] =model(torch.tensor(lowercase_ ) ) _lowerCamelCase : Optional[int] =torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowercase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off _lowerCamelCase : int =torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowercase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Tuple ='Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' _lowerCamelCase : Union[str, Any] ='Simply put, the theory of relativity states that ' _lowerCamelCase : int =LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) _lowerCamelCase : str =tokenizer.encode(lowercase_ , return_tensors='pt' ) _lowerCamelCase : List[Any] =LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=lowercase_ ) # greedy generation outputs _lowerCamelCase : str =model.generate(lowercase_ , max_new_tokens=64 , top_p=lowercase_ , temperature=1 , do_sample=lowercase_ ) _lowerCamelCase : Tuple =tokenizer.decode(generated_ids[0] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ )
199
1
"""simple docstring""" import string from math import logaa def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str )-> int: _lowerCamelCase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) _lowerCamelCase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str )-> tuple[int, int]: _lowerCamelCase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' _lowerCamelCase = corpus_without_punctuation.split('\n' ) _lowerCamelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(snake_case )) def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : int , snake_case : int=False )-> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : int )-> float: return round(tf * idf , 3 )
80
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A_ : List[str] =logging.get_logger(__name__) A_ : Optional[Any] ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : Tuple ={ """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A_ : Any ={ """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } A_ : List[str] ={ """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : List[Any] = RoFormerTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , a__ ) != do_lower_case or pre_tok_state.get('strip_accents' , a__ ) != strip_accents ): _lowerCamelCase = getattr(a__ , pre_tok_state.pop('type' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = pre_tok_class(**a__ ) _lowerCamelCase = do_lower_case def __getstate__( self ): _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = BertPreTokenizer() return state def __setstate__( self , a__ ): _lowerCamelCase = d _lowerCamelCase = self.__dict__['_tokenizer'].get_vocab() _lowerCamelCase = PreTokenizer.custom(JiebaPreTokenizer(a__ ) ) def snake_case_ ( self , a__ , a__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def snake_case_ ( self , a__ , a__=None , a__=None , a__=False , **a__ , ): _lowerCamelCase = BertPreTokenizer() return super().save_pretrained(a__ , a__ , a__ , a__ , **a__ )
80
1
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file UpperCAmelCase : List[str] = TapasConfig.from_json_file(_lowerCAmelCase ) # set absolute/relative position embeddings parameter UpperCAmelCase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": UpperCAmelCase : Any = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "WTQ": # run_task_main.py hparams UpperCAmelCase : int = 4 UpperCAmelCase : int = True # hparam_utils.py hparams UpperCAmelCase : Union[str, Any] = 0.6_6_4_6_9_4 UpperCAmelCase : Tuple = 0.2_0_7_9_5_1 UpperCAmelCase : Dict = 0.1_2_1_1_9_4 UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = True UpperCAmelCase : List[Any] = False UpperCAmelCase : Tuple = 0.0_3_5_2_5_1_3 UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Tuple = False # hparam_utils.py hparams UpperCAmelCase : Union[str, Any] = 3_6.4_5_1_9 UpperCAmelCase : Optional[Any] = 0.9_0_3_4_2_1 UpperCAmelCase : Dict = 2_2_2.0_8_8 UpperCAmelCase : int = True UpperCAmelCase : Tuple = True UpperCAmelCase : Tuple = True UpperCAmelCase : Any = 0.7_6_3_1_4_1 UpperCAmelCase : Tuple = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "TABFACT": UpperCAmelCase : List[str] = TapasForSequenceClassification(config=_lowerCAmelCase ) elif task == "MLM": UpperCAmelCase : List[str] = TapasForMaskedLM(config=_lowerCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": UpperCAmelCase : List[Any] = TapasModel(config=_lowerCAmelCase ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCAmelCase ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) UpperCAmelCase : Dict = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(_lowerCAmelCase ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCamelCase__: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__: Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
23
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , SCREAMING_SNAKE_CASE_ , ) if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): UpperCamelCase : List[str] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase , UpperCamelCase : Union[str, Any] = image[0].size UpperCamelCase , UpperCamelCase : List[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCamelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCamelCase : Tuple = np.concatenate(SCREAMING_SNAKE_CASE_ , axis=0 ) UpperCamelCase : Union[str, Any] = np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) / 255.0 UpperCamelCase : int = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase : List[str] = 2.0 * image - 1.0 UpperCamelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase : Tuple = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) return image def a ( SCREAMING_SNAKE_CASE_ : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): return mask elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): UpperCamelCase : Optional[int] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCamelCase , UpperCamelCase : Union[str, Any] = mask[0].size UpperCamelCase , UpperCamelCase : Any = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase : Any = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] UpperCamelCase : Union[str, Any] = np.concatenate(SCREAMING_SNAKE_CASE_ , axis=0 ) UpperCamelCase : Union[str, Any] = mask.astype(np.floataa ) / 255.0 UpperCamelCase : List[Any] = 0 UpperCamelCase : Union[str, Any] = 1 UpperCamelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) elif isinstance(mask[0] , torch.Tensor ): UpperCamelCase : List[Any] = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) return mask class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : UNetaDModel __UpperCamelCase : RePaintScheduler def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 250 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" UpperCamelCase : Any = image UpperCamelCase : Optional[int] = _preprocess_image(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase : Optional[Any] = _preprocess_mask(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase : str = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__SCREAMING_SNAKE_CASE )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase : Optional[Any] = original_image.shape UpperCamelCase : Union[str, Any] = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase : List[str] = eta UpperCamelCase : Any = self.scheduler.timesteps[0] + 1 UpperCamelCase : str = generator[0] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCamelCase : str = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample # compute previous image: x_t -> x_t-1 UpperCamelCase : Dict = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCamelCase : str = self.scheduler.undo_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = t UpperCamelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase : str = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
315
from __future__ import annotations import collections import pprint from pathlib import Path def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return word_by_signature[signature(SCREAMING_SNAKE_CASE_ )] __UpperCAmelCase : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __UpperCAmelCase : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCAmelCase : Union[str, Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCAmelCase : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
315
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = state_dict.pop(lowercase_ ) A__ = val def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A__ = value else: A__ = value return new_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Dict: """simple docstring""" A__ = '''''' if is_panoptic: A__ = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A__ = '''resnet101''' if "dc5" in model_name: A__ = True A__ = '''panoptic''' in model_name if is_panoptic: A__ = 250 else: A__ = 91 A__ = '''huggingface/label-files''' A__ = '''coco-detection-id2label.json''' A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(lowercase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load image processor A__ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' A__ = ConditionalDetrImageProcessor(format=lowercase_ ) # prepare image A__ = prepare_img() A__ = image_processor(images=lowercase_ , return_tensors='''pt''' ) A__ = encoding['''pixel_values'''] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub A__ = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowercase_ , pretrained=lowercase_ ).eval() A__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A__ = '''conditional_detr.''' + src rename_key(lowercase_ , lowercase_ , lowercase_ ) A__ = rename_backbone_keys(lowercase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase_ , is_panoptic=lowercase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A__ = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): A__ = state_dict.pop(lowercase_ ) A__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A__ = state_dict.pop(lowercase_ ) A__ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: A__ = state_dict.pop(lowercase_ ) A__ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A__ = state_dict.pop(lowercase_ ) A__ = val # finally, create HuggingFace model and load state dict A__ = ConditionalDetrForSegmentation(lowercase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() model.push_to_hub(repo_id=lowercase_ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion A__ = conditional_detr(lowercase_ ) A__ = model(lowercase_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
14
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case__ ( _A: Union[str, Any] , _A: Tuple , _A: Any=1e-12 ) -> str: '''simple docstring''' lowerCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_A , axis=1 ) , a_min=_A ) ).T lowerCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_A , axis=1 ) , a_min=_A ) ).T return jnp.matmul(_A , norm_emb_a.T ) class a__( nn.Module ): '''simple docstring''' UpperCAmelCase_ : CLIPConfig UpperCAmelCase_ : jnp.dtype = jnp.floataa def a_ ( self): """simple docstring""" lowerCAmelCase = FlaxCLIPVisionModule(self.config.vision_config) lowerCAmelCase = nn.Dense(self.config.projection_dim , use_bias=__lowerCAmelCase , dtype=self.dtype) lowerCAmelCase = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim)) lowerCAmelCase = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim)) lowerCAmelCase = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,)) lowerCAmelCase = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,)) def __call__( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.vision_model(__lowerCAmelCase)[1] lowerCAmelCase = self.visual_projection(__lowerCAmelCase) lowerCAmelCase = jax_cosine_distance(__lowerCAmelCase , self.special_care_embeds) lowerCAmelCase = jax_cosine_distance(__lowerCAmelCase , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCAmelCase = 0.0 lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCAmelCase = jnp.round(__lowerCAmelCase , 3) lowerCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCAmelCase) # Use a lower threshold if an image has any special care concept lowerCAmelCase = is_special_care * 0.01 lowerCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCAmelCase = jnp.round(__lowerCAmelCase , 3) lowerCAmelCase = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : int = CLIPConfig UpperCAmelCase_ : Any = '''clip_input''' UpperCAmelCase_ : List[str] = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = jnp.floataa , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" if input_shape is None: lowerCAmelCase = (1, 224, 224, 3) lowerCAmelCase = self.module_class(config=__lowerCAmelCase , dtype=__lowerCAmelCase , **__lowerCAmelCase) super().__init__(__lowerCAmelCase , __lowerCAmelCase , input_shape=__lowerCAmelCase , seed=__lowerCAmelCase , dtype=__lowerCAmelCase , _do_init=_do_init) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" lowerCAmelCase = jax.random.normal(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase , lowerCAmelCase = jax.random.split(__lowerCAmelCase) lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} lowerCAmelCase = self.module.init(__lowerCAmelCase , __lowerCAmelCase)["""params"""] return random_params def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1)) return self.module.apply( {"""params""": params or self.params} , jnp.array(__lowerCAmelCase , dtype=jnp.floataa) , rngs={} , )
272
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( _lowerCamelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): @property def A_ ( self : List[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A_ ( self : Union[str, Any] ): snake_case_ = ort.SessionOptions() snake_case_ = False return options def A_ ( self : Tuple ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case_ = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A_ ( self : Tuple ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case_ = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
56
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowercase : int =logging.getLogger(__name__) @dataclass class snake_case__ : """simple docstring""" __lowerCAmelCase :Optional[str] = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __lowerCAmelCase :Optional[str] = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __lowerCAmelCase :int = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __lowerCAmelCase :bool = field( default=A__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __lowerCAmelCase :bool = field( default=A__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __lowerCAmelCase :Optional[int] = field( default=A__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __lowerCAmelCase :Optional[int] = field( default=A__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __lowerCAmelCase :Optional[int] = field( default=A__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "A csv or a json file containing the training data."} ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "A csv or a json file containing the validation data."} ) __lowerCAmelCase :Optional[str] = field(default=A__ , metadata={"help": "A csv or a json file containing the test data."} ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: a__ : Dict = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." a__ : List[str] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class snake_case__ : """simple docstring""" __lowerCAmelCase :str = field( default=A__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowerCAmelCase :Optional[str] = field( default=A__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __lowerCAmelCase :bool = field( default=A__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __lowerCAmelCase :str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __lowerCAmelCase :bool = field( default=A__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(""".json"""): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: a__ , a__ , a__ : Union[str, Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout)] , ) a__ : Dict = training_args.get_process_log_level() logger.setLevel(_lowercase) datasets.utils.logging.set_verbosity(_lowercase) transformers.utils.logging.set_verbosity(_lowercase) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Detecting last checkpoint. a__ : Any = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: a__ : str = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. a__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. a__ : Tuple = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: a__ : Tuple = data_args.train_file.split(""".""")[-1] a__ : Any = data_args.test_file.split(""".""")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." a__ : int = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""") for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''') if data_args.train_file.endswith(""".csv"""): # Loading a dataset from local csv files a__ : int = load_dataset("""csv""" , data_files=_lowercase , cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files a__ : Dict = load_dataset("""json""" , data_files=_lowercase , cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels a__ : int = raw_datasets["""train"""].features["""label"""].names a__ : Any = len(_lowercase) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer a__ : List[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_lowercase , ) a__ : Dict = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: a__ : List[Any] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch a__ : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. a__ : Union[str, Any] = {"""Refused""": 0, """Entailed""": 1} a__ : Dict = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''') a__ : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length) def preprocess_tabfact_function(_lowercase : Tuple): # Tokenize the texts def _convert_table_text_to_pandas(_lowercase : Dict): a__ : Dict = [_table_row.split("""#""") for _table_row in _table_text.strip("""\n""").split("""\n""")] a__ : Any = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0]) return _table_pd a__ : str = examples["""statement"""] a__ : Union[str, Any] = list(map(_convert_table_text_to_pandas , examples["""table_text"""])) a__ : Tuple = tokenizer(_lowercase , _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase) a__ : int = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing"""): a__ : List[str] = raw_datasets.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""") a__ : Optional[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: a__ : str = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""") a__ : List[str] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: a__ : List[str] = eval_dataset.select(range(data_args.max_eval_samples)) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""") a__ : Any = raw_datasets["""test"""] if data_args.max_predict_samples is not None: a__ : Dict = predict_dataset.select(range(data_args.max_predict_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_lowercase)) , 3): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''') # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase : EvalPrediction): a__ : Optional[int] = p.predictions[0] if isinstance(p.predictions , _lowercase) else p.predictions a__ : str = np.argmax(_lowercase , axis=1) return {"accuracy": (preds == p.label_ids).astype(np.floataa).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: a__ : Dict = default_data_collator elif training_args.fpaa: a__ : Union[str, Any] = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8) else: a__ : int = None # Initialize our Trainer a__ : List[str] = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: a__ : List[Any] = None if training_args.resume_from_checkpoint is not None: a__ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: a__ : Dict = last_checkpoint a__ : Dict = trainer.train(resume_from_checkpoint=_lowercase) a__ : int = train_result.metrics a__ : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase) ) a__ : int = min(_lowercase , len(_lowercase)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , _lowercase) trainer.save_metrics("""train""" , _lowercase) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""") a__ : List[str] = trainer.evaluate(eval_dataset=_lowercase) a__ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase) a__ : Dict = min(_lowercase , len(_lowercase)) trainer.log_metrics("""eval""" , _lowercase) trainer.save_metrics("""eval""" , _lowercase) if training_args.do_predict: logger.info("""*** Predict ***""") # Removing the `label` columns because it contains -1 and Trainer won't like that. a__ : Any = predict_dataset.remove_columns("""label""") a__ : Optional[Any] = trainer.predict(_lowercase , metric_key_prefix="""predict""").predictions a__ : Any = np.argmax(_lowercase , axis=1) a__ : List[str] = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""") if trainer.is_world_process_zero(): with open(_lowercase , """w""") as writer: logger.info("""***** Predict Results *****""") writer.write("""index\tprediction\n""") for index, item in enumerate(_lowercase): a__ : int = label_list[item] writer.write(F'''{index}\t{item}\n''') a__ : Tuple = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**_lowercase) else: trainer.create_model_card(**_lowercase) def lowerCAmelCase_ ( _lowercase : Any) -> Union[str, Any]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
170
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) UpperCAmelCase = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase = model(_snake_case )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3 ) ) @slow def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) UpperCAmelCase = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase = model(_snake_case )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3 ) )
152
def _lowerCAmelCase ( A__: list[int] , A__: list[int] ): '''simple docstring''' UpperCAmelCase = len(A__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase = 0 print(A__ , end=''',''' ) # Consider rest of the activities for j in range(A__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A__ , end=''',''' ) UpperCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [1, 3, 0, 5, 8, 5] __magic_name__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
152
1
'''simple docstring''' import argparse import os import re a__ : Any = 'src/diffusers' # Pattern that looks at the indentation in a line. a__ : Any = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. a__ : List[Any] = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a__ : Dict = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. a__ : Union[str, Any] = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a__ : Dict = re.compile(R'\[([^\]]+)\]') def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = _re_indent.search(__A ) return "" if search is None else search.groups()[0] def _UpperCamelCase ( __A , __A="" , __A=None , __A=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__A ): index += 1 UpperCamelCase__ = ["\n".join(lines[:index] )] else: UpperCamelCase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ = [lines[index]] index += 1 while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__A ) ) if index < len(__A ) - 1: UpperCamelCase__ = [lines[index + 1]] index += 1 else: UpperCamelCase__ = [] else: blocks.append("\n".join(__A ) ) UpperCamelCase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__A ) > 0: blocks.append("\n".join(__A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__A ): blocks.append("\n".join(lines[index:] ) ) return blocks def _UpperCamelCase ( __A ) -> Optional[Any]: '''simple docstring''' def _inner(__A ): return key(__A ).lower().replace("_" , "" ) return _inner def _UpperCamelCase ( __A , __A=None ) -> Optional[Any]: '''simple docstring''' def noop(__A ): return x if key is None: UpperCamelCase__ = noop # Constants are all uppercase, they go first. UpperCamelCase__ = [obj for obj in objects if key(__A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ = [obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ = [obj for obj in objects if not key(__A )[0].isupper()] UpperCamelCase__ = ignore_underscore(__A ) return sorted(__A , key=__A ) + sorted(__A , key=__A ) + sorted(__A , key=__A ) def _UpperCamelCase ( __A ) -> Optional[int]: '''simple docstring''' def _replace(__A ): UpperCamelCase__ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' UpperCamelCase__ = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(__A )] ) + "]" UpperCamelCase__ = import_statement.split("\n" ) if len(__A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ = 2 if lines[1].strip() == "[" else 1 UpperCamelCase__ = [(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase__ = sort_objects(__A , key=lambda __A : x[1] ) UpperCamelCase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase__ = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCamelCase__ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ = keys[:-1] UpperCamelCase__ = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(__A )] ) return "\n".join(__A ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ = _re_bracket_content.sub(_replace , __A ) return import_statement def _UpperCamelCase ( __A , __A=True ) -> Optional[int]: '''simple docstring''' with open(__A , "r" ) as f: UpperCamelCase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ = split_code_in_indented_blocks( __A , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ = main_blocks[block_idx] UpperCamelCase__ = block.split("\n" ) # Get to the start of the imports. UpperCamelCase__ = 0 while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ = len(__A ) else: line_idx += 1 if line_idx >= len(__A ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ = "\n".join(block_lines[line_idx:-1] ) UpperCamelCase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ = split_code_in_indented_blocks(__A , indent_level=__A ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ = [(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ = [(i, key) for i, key in enumerate(__A ) if key is not None] UpperCamelCase__ = [x[0] for x in sorted(__A , key=lambda __A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ = 0 UpperCamelCase__ = [] for i in range(len(__A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__A ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__A ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(__A , "w" ) as f: f.write("\n".join(__A ) ) def _UpperCamelCase ( __A=True ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = [] for root, _, files in os.walk(__A ): if "__init__.py" in files: UpperCamelCase__ = sort_imports(os.path.join(__A , "__init__.py" ) , check_only=__A ) if result: UpperCamelCase__ = [os.path.join(__A , "__init__.py" )] if len(__A ) > 0: raise ValueError(F'''Would overwrite {len(__A )} files, run `make style`.''' ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
80
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a__ : Optional[List[str]] = None a__ : Dict = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a__ : Any = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class lowercase_ : __UpperCAmelCase = True __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "PIL.Image.Image" __UpperCAmelCase = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __UpperCAmelCase = field(default='Image' , init=a__ , repr=a__ ) def __call__( self ): return self.pa_type def __a ( self , a ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a , a ): UpperCamelCase__ = np.array(a ) if isinstance(a , a ): return {"path": value, "bytes": None} elif isinstance(a , a ): return {"path": None, "bytes": value} elif isinstance(a , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a ) elif isinstance(a , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __a ( self , a , a=None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(a ): UpperCamelCase__ = PIL.Image.open(a ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a , config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a ) except ValueError: UpperCamelCase__ = None with xopen(a , "rb" , use_auth_token=a ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __a ( self ): from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def __a ( self , a ): if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(a , self.pa_type ) def __a ( self , a ): @no_op_if_value_is_null def path_to_bytes(a ): with xopen(a , "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase__ = pa.array( [os.path.basename(a ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(a , self.pa_type ) def _UpperCamelCase ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _UpperCamelCase ( __A ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__A , format=__A ) return buffer.getvalue() def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' if hasattr(__A , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__A )} def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(__A ) UpperCamelCase__ = np.dtype(__A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(__A ) ) return {"path": None, "bytes": image_to_bytes(__A )} def _UpperCamelCase ( __A ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(__A ) if isinstance(__A , __A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__A , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(__A ) return [obj_to_image_dict_func(__A ) for obj in objs] elif isinstance(__A , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(__A ) return [obj_to_image_dict_func(__A ) for obj in objs] else: return objs else: return objs
80
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class a : def __init__( self , __magic_name__ = None ) -> int: _a = value _a = None # Added in order to delete a node easier _a = None _a = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class a : def __init__( self , __magic_name__ = None ) -> Tuple: _a = root def __str__( self ) -> str: return str(self.root ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: if new_children is not None: # reset its kids _a = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children _a = new_children else: _a = new_children else: _a = new_children def __UpperCAmelCase ( self , __magic_name__ ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __UpperCAmelCase ( self ) -> bool: return self.root is None def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty _a = new_node # set its root else: # Tree is not empty _a = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _a = new_node # We insert the new node in a leaf break else: _a = parent_node.left else: if parent_node.right is None: _a = new_node break else: _a = parent_node.right _a = parent_node def __UpperCAmelCase ( self , *__magic_name__ ) -> None: for value in values: self.__insert(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Node | None: if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: _a = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _a = node.left if value < node.value else node.right return node def __UpperCAmelCase ( self , __magic_name__ = None ) -> Node | None: if node is None: if self.root is None: return None _a = self.root if not self.empty(): while node.right is not None: _a = node.right return node def __UpperCAmelCase ( self , __magic_name__ = None ) -> Node | None: if node is None: _a = self.root if self.root is None: return None if not self.empty(): _a = self.root while node.left is not None: _a = node.left return node def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: _a = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _a = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __UpperCAmelCase ( self , __magic_name__ ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __UpperCAmelCase ( self , __magic_name__=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: _a = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def _A (lowerCAmelCase__ :Node | None ) -> list[Node]: '''simple docstring''' _a = [] if curr_node is not None: _a = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _A () -> None: '''simple docstring''' _a = (8, 3, 6, 1, 10, 14, 13, 4, 7) _a = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
104
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[str] = logging.get_logger(__name__) a_ : str = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """git_vision_model""" def __init__( self , __magic_name__=7_68 , __magic_name__=30_72 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3 , __magic_name__=2_24 , __magic_name__=16 , __magic_name__="quick_gelu" , __magic_name__=1e-5 , __magic_name__=0.0 , __magic_name__=0.0_2 , **__magic_name__ , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = num_channels _a = patch_size _a = image_size _a = initializer_range _a = attention_dropout _a = layer_norm_eps _a = hidden_act @classmethod def __UpperCAmelCase ( cls , __magic_name__ , **__magic_name__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) _a , _a = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": _a = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """git""" def __init__( self , __magic_name__=None , __magic_name__=3_05_22 , __magic_name__=7_68 , __magic_name__=6 , __magic_name__=12 , __magic_name__=30_72 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10_24 , __magic_name__=0.0_2 , __magic_name__=1e-12 , __magic_name__=0 , __magic_name__="absolute" , __magic_name__=True , __magic_name__=False , __magic_name__=1_01 , __magic_name__=1_02 , __magic_name__=None , **__magic_name__ , ) -> Optional[int]: super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , pad_token_id=__magic_name__ , **__magic_name__ ) if vision_config is None: _a = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) _a = GitVisionConfig(**__magic_name__ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = tie_word_embeddings _a = num_image_with_embedding _a = bos_token_id _a = eos_token_id def __UpperCAmelCase ( self ) -> List[str]: _a = copy.deepcopy(self.__dict__ ) _a = self.vision_config.to_dict() _a = self.__class__.model_type return output
104
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for data in source_data: for i, el in enumerate(_A ): if len(_A ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_A ) ) return data_lists def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Dict = [] for dlist, weight in zip(_A , _A ): UpperCAmelCase : List[str] = min(_A ) UpperCAmelCase : List[str] = max(_A ) UpperCAmelCase : Optional[int] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: UpperCAmelCase : Tuple = F'''Invalid weight of {weight:f} provided''' raise ValueError(_A ) score_lists.append(_A ) return score_lists def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Optional[Any] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_A ): UpperCAmelCase : Union[str, Any] = final_scores[j] + ele return final_scores def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : int = get_data(_A ) UpperCAmelCase : Tuple = calculate_each_score(_A , _A ) UpperCAmelCase : Optional[int] = generate_final_scores(_A ) # append scores to source data for i, ele in enumerate(_A ): source_data[i].append(_A ) return source_data
265
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _a ( unittest.TestCase ): def __init__( self : Union[str, Any], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : str=7, lowerCAmelCase__ : List[Any]=3, lowerCAmelCase__ : int=1_8, lowerCAmelCase__ : Union[str, Any]=3_0, lowerCAmelCase__ : Optional[Any]=4_0_0, lowerCAmelCase__ : int=True, lowerCAmelCase__ : List[str]=3_2, lowerCAmelCase__ : Optional[int]=True, ) -> List[Any]: '''simple docstring''' _UpperCamelCase : List[str] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : Any = num_channels _UpperCamelCase : int = image_size _UpperCamelCase : Dict = min_resolution _UpperCamelCase : Any = max_resolution _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : Dict = size_divisor _UpperCamelCase : List[str] = do_rescale def snake_case ( self : Optional[Any] ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = GLPNImageProcessor if is_vision_available() else None def snake_case ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase : Dict = GLPNImageProcessingTester(self ) @property def snake_case ( self : Dict ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__, '''size_divisor''' ) ) self.assertTrue(hasattr(lowerCAmelCase__, '''resample''' ) ) self.assertTrue(hasattr(lowerCAmelCase__, '''do_rescale''' ) ) def snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass def snake_case ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Tuple = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def snake_case ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__, numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Union[str, Any] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def snake_case ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__, torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Optional[Any] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
360
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
128
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ =get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, 'r', encoding='utf-8') as f: lowercase__ =json.load(f) @require_torch class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Optional[Any] , snake_case_ : Union[str, Any] ): return FSMTTokenizer.from_pretrained(__UpperCAmelCase ) def lowerCAmelCase (self : List[Any] , snake_case_ : str ): __a : List[Any] = FSMTForConditionalGeneration.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 2_6.0], ['''ru-en''', 2_2.0], ['''en-de''', 2_2.0], ['''de-en''', 2_9.0], ] ) @slow def lowerCAmelCase (self : Optional[int] , snake_case_ : Any , snake_case_ : List[Any] ): __a : int = f"facebook/wmt19-{pair}" __a : int = self.get_tokenizer(__UpperCAmelCase ) __a : Optional[int] = self.get_model(__UpperCAmelCase ) __a : int = bleu_data[pair]['''src'''] __a : List[str] = bleu_data[pair]['''tgt'''] __a : List[Any] = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , truncation=__UpperCAmelCase , padding='''longest''' ).to(__UpperCAmelCase ) __a : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __a : Any = tokenizer.batch_decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) __a : str = calculate_bleu(__UpperCAmelCase , __UpperCAmelCase ) print(__UpperCAmelCase ) self.assertGreaterEqual(scores['''bleu'''] , __UpperCAmelCase )
216
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCamelCase ( snake_case__ : Dict , snake_case__ : List[str] ) -> Dict: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCamelCase : str = flax_key_tuple[:-1] + ('weight',) UpperCamelCase : str = torch.permute(_A , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_A ): # linear layer UpperCamelCase : str = flax_key_tuple[:-1] + ('weight',) UpperCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase : str = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ) -> Tuple: if "metadata" in layer: UpperCamelCase : List[str] = layer.split('metadata' ) UpperCamelCase : Union[str, Any] = ''.join(split_layer[0] )[:-1] UpperCamelCase : Dict = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: UpperCamelCase : Optional[int] = layer.split('kvstore' ) UpperCamelCase : Tuple = ''.join(split_layer[0] )[:-1] UpperCamelCase : Tuple = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: UpperCamelCase : List[Any] = layer.split('/' ) UpperCamelCase : int = '/'.join(split_layer[:-1] ) UpperCamelCase : List[Any] = (split_layer[-1],) if "kvstore/path" in layer: UpperCamelCase : List[Any] = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: UpperCamelCase : Union[str, Any] = 'file' else: UpperCamelCase : Tuple = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Dict ) -> List[Any]: UpperCamelCase : Any = rename_keys(_A ) UpperCamelCase : Tuple = {} for k, v in current_block.items(): UpperCamelCase : Dict = v UpperCamelCase : Tuple = new_current_block torch.save(_A , _A ) def UpperCamelCase ( snake_case__ : str , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : str = WEIGHTS_NAME ) -> Union[str, Any]: UpperCamelCase : List[str] = convert_file_size_to_int(_A ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = {} UpperCamelCase : List[str] = 0 UpperCamelCase : List[Any] = 0 os.makedirs(_A , exist_ok=_A ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: UpperCamelCase : Optional[Any] = serialization.msgpack_restore(fp.read() )['optimizer']['target'] UpperCamelCase : List[Any] = flatten_dict(_A , sep='/' ) UpperCamelCase : List[str] = {} for layer in checkpoint_info.keys(): UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = get_key_and_tensorstore_dict( _A , _A , _A ) if curr_real_layer_name in all_layers: UpperCamelCase : Tuple = content else: UpperCamelCase : Union[str, Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCamelCase : Tuple = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCamelCase : Union[str, Any] = torch.tensor(_A ) UpperCamelCase : List[str] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCamelCase , UpperCamelCase : Dict = rename_base_flax_keys(tuple(key.split('/' ) ) , _A ) UpperCamelCase : Union[str, Any] = '/'.join(_A ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCamelCase : List[str] = os.path.join( _A , weights_name.replace('.bin' , F"""-{len(_A )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_A , _A ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCamelCase : List[str] = {} UpperCamelCase : Any = 0 UpperCamelCase : Union[str, Any] = raw_weights.to(getattr(_A , _A ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCamelCase : str = os.path.join(_A , weights_name.replace('.bin' , F"""-{len(_A )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_A , _A ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_A ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCamelCase : str = {} UpperCamelCase : Optional[int] = {} for idx, shard in enumerate(_A ): UpperCamelCase : Union[str, Any] = weights_name.replace( '.bin' , F"""-{idx+1:05d}-of-{len(_A ):05d}.bin""" ) # len(sharded_state_dicts):05d} UpperCamelCase : Any = os.path.join(_A , weights_name.replace('.bin' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_A , os.path.join(_A , _A ) ) UpperCamelCase : Union[str, Any] = shard for key in shard: UpperCamelCase : Tuple = shard_file # Add the metadata UpperCamelCase : Any = {'total_size': total_size} UpperCamelCase : List[Any] = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(_A , _A ) , 'w' , encoding='utf-8' ) as f: UpperCamelCase : List[str] = json.dumps(_A , indent=2 , sort_keys=_A ) + '\n' f.write(_A ) return metadata, index if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) __UpperCAmelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCamelCase ( ) -> int: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCamelCase : str = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) UpperCamelCase : Dict = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) UpperCamelCase : List[str] = TaTokenizer.from_pretrained('t5-small' ) UpperCamelCase : Union[str, Any] = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' UpperCamelCase : Tuple = tokenizer(_A , return_tensors='pt' ).input_ids UpperCamelCase : Optional[Any] = model.generate(_A , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
355
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = "data2vec-text" def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_="absolute", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Tuple = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : str = hidden_act UpperCamelCase : List[str] = intermediate_size UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : List[Any] = initializer_range UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : List[str] = position_embedding_type UpperCamelCase : Any = use_cache UpperCamelCase : Any = classifier_dropout class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
103
0
'''simple docstring''' a_ = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
152
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""image_processor""", """tokenizer"""] snake_case_ = """CLIPImageProcessor""" snake_case_ = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[Any] , __lowercase : Union[str, Any]=None , __lowercase : int=None , **__lowercase : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ : str =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowercase , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase , __lowercase ) def __call__( self : Union[str, Any] , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]=None , __lowercase : List[str]=None , **__lowercase : str ) -> Tuple: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase ) if images is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : int =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowercase ) , tensor_type=__lowercase ) def __magic_name__ ( self : int , *__lowercase : Optional[Any] , **__lowercase : Tuple ) -> Dict: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def __magic_name__ ( self : List[Any] , *__lowercase : Optional[Any] , **__lowercase : Union[str, Any] ) -> Union[str, Any]: return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def __magic_name__ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : str =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
152
1
'''simple docstring''' import os import string import sys __A : Any = 1 << 8 __A : int = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } __A : Union[str, Any] = KEYMAP["up"] __A : Dict = KEYMAP["left"] if sys.platform == "win32": __A : int = [] __A : Dict = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): __A : List[Any] = ord(str(i)) def UpperCamelCase_ ( ): if os.name == "nt": import msvcrt lowerCAmelCase_ : str = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke lowerCAmelCase_ : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase_ : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase_ : Optional[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) lowerCAmelCase_ : int = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase_ : List[Any] = cha[1] else: lowerCAmelCase_ : List[str] = ch.decode(__lowerCamelCase ) else: lowerCAmelCase_ : int = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase_ : Any = sys.stdin.fileno() lowerCAmelCase_ : Any = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) lowerCAmelCase_ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase_ ( ): lowerCAmelCase_ : Optional[Any] = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: lowerCAmelCase_ : Optional[int] = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: lowerCAmelCase_ : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
368
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple=13 , lowerCamelCase : Dict=30 , lowerCamelCase : Dict=2 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : List[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : str=32 , lowerCamelCase : Any=5 , lowerCamelCase : int=4 , lowerCamelCase : List[str]=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : str=10 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : List[str]=3 , lowerCamelCase : Union[str, Any]=0.6 , lowerCamelCase : List[Any]=None , ) -> Optional[int]: lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Any = is_training lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = type_sequence_label_size lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : List[str] = mask_ratio lowerCAmelCase_ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase_ : Union[str, Any] = (image_size // patch_size) ** 2 lowerCAmelCase_ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ) -> Optional[int]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowercase ( self : Any , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict ) -> Tuple: lowerCAmelCase_ : Tuple = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Dict: lowerCAmelCase_ : Tuple = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : List[str] = model(lowerCamelCase ) lowerCAmelCase_ : int = (self.image_size // self.patch_size) ** 2 lowerCAmelCase_ : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : List[str] = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : Tuple = model(lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[Any] = config_and_inputs lowerCAmelCase_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def __lowercase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase_ : Optional[int] = ViTMAEModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __lowercase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def __lowercase ( self : Optional[int] ) -> Optional[int]: pass def __lowercase ( self : List[str] ) -> Tuple: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __lowercase ( self : Optional[Any] ) -> Any: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Any = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowercase ( self : Tuple ) -> str: lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def __lowercase ( self : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ) -> str: # make masks reproducible np.random.seed(2 ) lowerCAmelCase_ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase_ : int = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __lowercase ( self : int ) -> Dict: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase_ : Any = outputs[0].cpu().numpy() lowerCAmelCase_ : List[str] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : int = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans lowerCAmelCase_ : Optional[Any] = after_outputs[0].cpu().numpy() lowerCAmelCase_ : str = 0 lowerCAmelCase_ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def __lowercase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowercase ( self : List[Any] ) -> str: pass @slow def __lowercase ( self : List[str] ) -> List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def __lowercase ( self : int ) -> List[Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase_ : Dict = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : Dict = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase_ : Optional[int] = ViTMAEConfig() lowerCAmelCase_ : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCAmelCase_ : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits lowerCAmelCase_ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) lowerCAmelCase_ : str = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
89
0
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = cva.getAffineTransform(A__ , A__ ) return cva.warpAffine(A__ , A__ , (rows, cols) ) if __name__ == "__main__": # read original image lowerCAmelCase__ = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value lowerCAmelCase__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape lowerCAmelCase__ , lowerCAmelCase__ = gray_img.shape # set different points to rotate image lowerCAmelCase__ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) lowerCAmelCase__ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) lowerCAmelCase__ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) lowerCAmelCase__ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list lowerCAmelCase__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations lowerCAmelCase__ = plt.figure(1) lowerCAmelCase__ = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
104
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase = logging.get_logger(__name__) # General docstring lowerCamelCase = '''RegNetConfig''' # Base docstring lowerCamelCase = '''facebook/regnet-y-040''' lowerCamelCase = [1, 1088, 7, 7] # Image classification docstring lowerCamelCase = '''facebook/regnet-y-040''' lowerCamelCase = '''tabby, tabby cat''' lowerCamelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _a ( nn.Module): def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int = 3 , _SCREAMING_SNAKE_CASE : int = 1 , _SCREAMING_SNAKE_CASE : int = 1 , _SCREAMING_SNAKE_CASE : Optional[str] = "relu" , )-> Optional[int]: super().__init__() lowerCAmelCase__ : List[Any] = nn.Convad( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , groups=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : str = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )-> Optional[int]: lowerCAmelCase__ : Tuple = self.convolution(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = self.normalization(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class _a ( nn.Module): def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : RegNetConfig )-> Optional[Any]: super().__init__() lowerCAmelCase__ : List[Any] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowerCAmelCase__ : List[Any] = config.num_channels def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )-> Dict: lowerCAmelCase__ : List[str] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowerCAmelCase__ : Dict = self.embedder(_SCREAMING_SNAKE_CASE ) return hidden_state class _a ( nn.Module): def __init__( self : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int = 2 )-> List[Any]: super().__init__() lowerCAmelCase__ : str = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , stride=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tensor )-> Tensor: lowerCAmelCase__ : int = self.convolution(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = self.normalization(_SCREAMING_SNAKE_CASE ) return hidden_state class _a ( nn.Module): def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )-> List[Any]: super().__init__() lowerCAmelCase__ : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) lowerCAmelCase__ : str = nn.Sequential( nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.ReLU() , nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.Sigmoid() , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : List[str] )-> List[str]: # b c h w -> b c 1 1 lowerCAmelCase__ : Optional[Any] = self.pooler(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.attention(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = hidden_state * attention return hidden_state class _a ( nn.Module): def __init__( self : Optional[int] , _SCREAMING_SNAKE_CASE : RegNetConfig , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int = 1 )-> str: super().__init__() lowerCAmelCase__ : int = in_channels != out_channels or stride != 1 lowerCAmelCase__ : List[Any] = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ : List[Any] = ( RegNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : Union[str, Any] = nn.Sequential( RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) lowerCAmelCase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : int )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = hidden_state lowerCAmelCase__ : List[str] = self.layer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual lowerCAmelCase__ : str = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class _a ( nn.Module): def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : RegNetConfig , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int = 1 )-> Optional[int]: super().__init__() lowerCAmelCase__ : Optional[int] = in_channels != out_channels or stride != 1 lowerCAmelCase__ : List[str] = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ : Any = ( RegNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : Tuple = nn.Sequential( RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetSELayer(_SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) lowerCAmelCase__ : Tuple = ACTaFN[config.hidden_act] def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> List[str]: lowerCAmelCase__ : Optional[int] = hidden_state lowerCAmelCase__ : Optional[Any] = self.layer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual lowerCAmelCase__ : List[Any] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class _a ( nn.Module): def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : RegNetConfig , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int = 2 , _SCREAMING_SNAKE_CASE : int = 2 , )-> int: super().__init__() lowerCAmelCase__ : List[str] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowerCAmelCase__ : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , ) , *[layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(depth - 1 )] , ) def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : str )-> Dict: lowerCAmelCase__ : Union[str, Any] = self.layers(_SCREAMING_SNAKE_CASE ) return hidden_state class _a ( nn.Module): def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : RegNetConfig )-> List[Any]: super().__init__() lowerCAmelCase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCAmelCase__ : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(RegNetStage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , depth=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Tensor , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : bool = True )-> BaseModelOutputWithNoAttention: lowerCAmelCase__ : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ : int = hidden_states + (hidden_state,) lowerCAmelCase__ : Optional[int] = stage_module(_SCREAMING_SNAKE_CASE ) if output_hidden_states: lowerCAmelCase__ : List[str] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : int = RegNetConfig _a : List[Any] = '''regnet''' _a : Optional[Any] = '''pixel_values''' _a : Dict = True def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : str )-> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str]=False )-> Optional[int]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Union[str, Any] = value lowerCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , _lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _a ( _lowercase): def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : Any )-> Union[str, Any]: super().__init__(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = config lowerCAmelCase__ : Any = RegNetEmbeddings(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = RegNetEncoder(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tensor , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None )-> BaseModelOutputWithPoolingAndNoAttention: lowerCAmelCase__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : List[Any] = self.embedder(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = encoder_outputs[0] lowerCAmelCase__ : List[str] = self.pooler(_SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , pooler_output=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _a ( _lowercase): def __init__( self : Dict , _SCREAMING_SNAKE_CASE : List[Any] )-> str: super().__init__(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = config.num_labels lowerCAmelCase__ : Optional[Any] = RegNetModel(_SCREAMING_SNAKE_CASE ) # classification head lowerCAmelCase__ : List[str] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE : Optional[torch.LongTensor] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , )-> ImageClassifierOutputWithNoAttention: lowerCAmelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Optional[Any] = self.regnet(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : Optional[Any] = self.classifier(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : Dict = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : Dict = '''single_label_classification''' else: lowerCAmelCase__ : Any = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase__ : List[Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ : List[Any] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : List[str] = CrossEntropyLoss() lowerCAmelCase__ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : int = BCEWithLogitsLoss() lowerCAmelCase__ : List[Any] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: lowerCAmelCase__ : Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states )
364
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) lowerCamelCase = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) lowerCamelCase = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) lowerCamelCase = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) lowerCamelCase = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) lowerCamelCase = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) lowerCamelCase = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass): _a : List[str] = FLAX_MODEL_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class _a ( _BaseAutoModelClass): _a : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class _a ( _BaseAutoModelClass): _a : Tuple = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class _a ( _BaseAutoModelClass): _a : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class _a ( _BaseAutoModelClass): _a : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class _a ( _BaseAutoModelClass): _a : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class _a ( _BaseAutoModelClass): _a : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class _a ( _BaseAutoModelClass): _a : List[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class _a ( _BaseAutoModelClass): _a : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCamelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
211
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _A : Tuple =None _A : int =logging.get_logger(__name__) _A : int ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _A : int ={ """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } _A : Optional[Any] ={ """facebook/mbart-large-en-ro""": 1_024, """facebook/mbart-large-cc25""": 1_024, } # fmt: off _A : Optional[Any] =["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _lowercase ( a_ ): a = VOCAB_FILES_NAMES a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_VOCAB_FILES_MAP a = ["""input_ids""", """attention_mask"""] a = MBartTokenizer a = [] a = [] def __init__( self: Any , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: List[str]=None , UpperCamelCase__: Optional[int]="<s>" , UpperCamelCase__: int="</s>" , UpperCamelCase__: str="</s>" , UpperCamelCase__: Union[str, Any]="<s>" , UpperCamelCase__: Tuple="<unk>" , UpperCamelCase__: List[Any]="<pad>" , UpperCamelCase__: List[str]="<mask>" , UpperCamelCase__: int=None , UpperCamelCase__: str=None , UpperCamelCase__: Optional[int]=None , **UpperCamelCase__: List[str] , ): lowerCamelCase__ : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCamelCase__ : Optional[Any] = vocab_file lowerCamelCase__ : Union[str, Any] = False if not self.vocab_file else True lowerCamelCase__ : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowerCamelCase__ : Tuple = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : str = src_lang if src_lang is not None else """en_XX""" lowerCamelCase__ : str = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self: Tuple ): return self._src_lang @src_lang.setter def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: int ): lowerCamelCase__ : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: List[str] , UpperCamelCase__: str = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self: int , UpperCamelCase__: Dict , UpperCamelCase__: str = None ): lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: int , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCamelCase__ : Optional[Any] = src_lang lowerCamelCase__ : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) lowerCamelCase__ : Dict = self.convert_tokens_to_ids(snake_case__ ) lowerCamelCase__ : Optional[Any] = tgt_lang_id return inputs def lowerCamelCase_ ( self: Any , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] = "en_XX" , UpperCamelCase__: Union[str, Any] = None , UpperCamelCase__: Optional[int] = "ro_RO" , **UpperCamelCase__: Optional[Any] , ): lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : str = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def lowerCamelCase_ ( self: List[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self: int ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(snake_case__ ) lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] lowerCamelCase__ : str = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int ): lowerCamelCase__ : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] lowerCamelCase__ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Optional[int] , UpperCamelCase__: str = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowerCamelCase__ : Any = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
41
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [] for part_id in partition_order: UpperCamelCase_ = df.where(f"""SPARK_PARTITION_ID() = {part_id}""").collect() for row_idx, row in enumerate(_lowerCAmelCase): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(1_00).repartition(1) UpperCamelCase_ = Spark(_lowerCAmelCase) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(10).repartition(2) UpperCamelCase_ = [1, 0] UpperCamelCase_ = _generate_iterable_examples(_lowerCAmelCase , _lowerCAmelCase) # Reverse the partitions. UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , _lowerCAmelCase) for i, (row_id, row_dict) in enumerate(generate_fn()): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(10).repartition(1) UpperCamelCase_ = SparkExamplesIterable(_lowerCAmelCase) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowerCAmelCase): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator") as generator_mock: UpperCamelCase_ = lambda _lowerCAmelCase: x.reverse() UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [2, 1, 0]) UpperCamelCase_ = SparkExamplesIterable(_lowerCAmelCase).shuffle_data_sources(_lowerCAmelCase) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(20).repartition(4) # Partitions 0 and 2 UpperCamelCase_ = SparkExamplesIterable(_lowerCAmelCase).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [0, 2]) for i, (row_id, row_dict) in enumerate(_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase_ = SparkExamplesIterable(_lowerCAmelCase).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [1, 3]) for i, (row_id, row_dict) in enumerate(_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(1_00).repartition(1) UpperCamelCase_ = Spark(_lowerCAmelCase) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
128
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE ( __UpperCamelCase ): """simple docstring""" def __A ( self: Optional[Any] ) -> Any: _A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(__A , '''num_heads''' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: List[Any] , __A: Optional[Any] , __A: Union[str, Any]=13 , __A: Dict=64 , __A: int=3 , __A: Optional[int]=[16, 48, 96] , __A: Union[str, Any]=[1, 3, 6] , __A: Optional[Any]=[1, 2, 10] , __A: str=[7, 3, 3] , __A: Optional[Any]=[4, 2, 2] , __A: Any=[2, 1, 1] , __A: List[Any]=[2, 2, 2] , __A: List[str]=[False, False, True] , __A: Dict=[0.0, 0.0, 0.0] , __A: List[Any]=0.02 , __A: List[str]=1e-12 , __A: List[Any]=True , __A: Any=True , __A: Union[str, Any]=2 , ) -> Any: _A = parent _A = batch_size _A = image_size _A = patch_sizes _A = patch_stride _A = patch_padding _A = is_training _A = use_labels _A = num_labels _A = num_channels _A = embed_dim _A = num_heads _A = stride_kv _A = depth _A = cls_token _A = attention_drop_rate _A = initializer_range _A = layer_norm_eps def __A ( self: Optional[Any] ) -> Union[str, Any]: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: # create a random int32 tensor of given shape _A = ids_tensor([self.batch_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels def __A ( self: str ) -> Optional[int]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __A ( self: List[Any] , __A: List[Any] , __A: Optional[Any] , __A: List[str] ) -> int: _A = TFCvtModel(config=__A ) _A = model(__A , training=__A ) _A = (self.image_size, self.image_size) _A = image_size[0], image_size[1] for i in range(len(self.depth ) ): _A = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _A = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __A ( self: Dict , __A: Dict , __A: Optional[Any] , __A: List[str] ) -> int: _A = self.num_labels _A = TFCvtForImageClassification(__A ) _A = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self: int ) -> List[Any]: _A = self.prepare_config_and_inputs() _A = config_and_inputs _A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" A_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () A_ = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def __A ( self: Optional[int] ) -> Union[str, Any]: _A = TFCvtModelTester(self ) _A = TFCvtConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def __A ( self: Tuple ) -> Any: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def __A ( self: Optional[Any] ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def __A ( self: List[str] ) -> int: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def __A ( self: List[Any] ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def __A ( self: int ) -> Tuple: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __A ( self: Any ) -> str: super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def __A ( self: List[str] ) -> Optional[int]: _A = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(__A ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def __A ( self: Dict ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__A ) _A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def __A ( self: Union[str, Any] ) -> Tuple: def check_hidden_states_output(__A: List[str] , __A: Union[str, Any] , __A: Tuple ): _A = model_class(__A ) _A = model(**self._prepare_for_class(__A , __A ) ) _A = outputs.hidden_states _A = len(self.model_tester.depth ) self.assertEqual(len(__A ) , __A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(__A , __A , __A ) def __A ( self: List[Any] ) -> str: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __A ( self: int ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def __A ( self: List[str] ) -> Optional[Any]: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFCvtModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __A ( ): '''simple docstring''' _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self: Any ) -> Any: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __A ( self: int ) -> Optional[int]: _A = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__A , return_tensors='''tf''' ) # forward pass _A = model(**__A ) # verify the logits _A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __A ) _A = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __A , atol=1e-4 ) )
356
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "rag" A_ = True def __init__( self: Optional[int] , __A: Optional[int]=None , __A: Dict=True , __A: Any=None , __A: Dict=None , __A: Optional[int]=None , __A: Optional[Any]=None , __A: Optional[Any]=None , __A: Optional[Any]=" / " , __A: int=" // " , __A: List[Any]=5 , __A: Dict=3_00 , __A: int=7_68 , __A: Tuple=8 , __A: List[Any]="wiki_dpr" , __A: List[str]="train" , __A: Optional[Any]="compressed" , __A: Optional[int]=None , __A: Union[str, Any]=None , __A: Dict=False , __A: Tuple=False , __A: Optional[int]=0.0 , __A: Optional[int]=True , __A: int=False , __A: int=False , __A: Optional[Any]=False , __A: Optional[int]=True , __A: Optional[int]=None , **__A: Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token_id=__A , pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , is_encoder_decoder=__A , prefix=__A , vocab_size=__A , **__A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A = kwargs.pop('''question_encoder''' ) _A = question_encoder_config.pop('''model_type''' ) _A = kwargs.pop('''generator''' ) _A = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A = AutoConfig.for_model(__A , **__A ) _A = AutoConfig.for_model(__A , **__A ) _A = reduce_loss _A = label_smoothing _A = exclude_bos_score _A = do_marginalize _A = title_sep _A = doc_sep _A = n_docs _A = max_combined_length _A = dataset _A = dataset_split _A = index_name _A = retrieval_vector_size _A = retrieval_batch_size _A = passages_path _A = index_path _A = use_dummy_dataset _A = output_retrieved _A = do_deduplication _A = use_cache if self.forced_eos_token_id is None: _A = getattr(self.generator , '''forced_eos_token_id''' , __A ) @classmethod def __A ( cls: List[Any] , __A: PretrainedConfig , __A: PretrainedConfig , **__A: Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__A ) def __A ( self: Optional[Any] ) -> Dict: _A = copy.deepcopy(self.__dict__ ) _A = self.question_encoder.to_dict() _A = self.generator.to_dict() _A = self.__class__.model_type return output
75
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , lowercase=2 , lowercase=99 , lowercase=0 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=12 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase="last" , lowercase=None , lowercase=None , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_lengths lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = gelu_activation lowerCAmelCase = sinusoidal_embeddings lowerCAmelCase = causal lowerCAmelCase = asm lowerCAmelCase = n_langs lowerCAmelCase = vocab_size lowerCAmelCase = n_special lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = summary_type lowerCAmelCase = use_proj lowerCAmelCase = scope def _snake_case ( self ) -> int: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_input_lengths: lowerCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ) -> List[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: lowerCAmelCase = FlaubertModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , lengths=lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = FlaubertWithLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> str: lowerCAmelCase = FlaubertForQuestionAnsweringSimple(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Dict: lowerCAmelCase = FlaubertForQuestionAnswering(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , p_mask=lowercase , ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = FlaubertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = FlaubertForTokenClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = self.num_choices lowerCAmelCase = FlaubertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , lowercase , lowercase , lowercase=False ) -> Optional[Any]: lowerCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _snake_case ( self ) -> List[str]: lowerCAmelCase = FlaubertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , emb_dim=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase ) @slow def _snake_case ( self ) -> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = FlaubertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def _snake_case ( self ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase = True lowerCAmelCase = model_class(config=lowercase ) lowerCAmelCase = self._prepare_for_class(lowercase , lowercase ) lowerCAmelCase = torch.jit.trace( lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , """traced_model.pt""" ) ) lowerCAmelCase = torch.jit.load(os.path.join(lowercase , """traced_model.pt""" ) , map_location=lowercase ) loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) ) @require_torch class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
46
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') lowerCAmelCase_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') lowerCAmelCase_ : List[Any] = '''xvjiarui/stable-diffusion-2-inpainting''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(A_ , safety_checker=A_) lowerCAmelCase_ : List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowerCAmelCase_ : List[Any] = jax.random.PRNGKey(0) lowerCAmelCase_ : str = 5_0 lowerCAmelCase_ : List[Any] = jax.device_count() lowerCAmelCase_ : Union[str, Any] = num_samples * [prompt] lowerCAmelCase_ : str = num_samples * [init_image] lowerCAmelCase_ : Union[str, Any] = num_samples * [mask_image] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pipeline.prepare_inputs(A_ , A_ , A_) # shard inputs and rng lowerCAmelCase_ : str = replicate(A_) lowerCAmelCase_ : str = jax.random.split(A_ , jax.device_count()) lowerCAmelCase_ : List[Any] = shard(A_) lowerCAmelCase_ : str = shard(A_) lowerCAmelCase_ : Tuple = shard(A_) lowerCAmelCase_ : int = pipeline( A_ , A_ , A_ , A_ , A_ , A_ , jit=A_) lowerCAmelCase_ : Optional[int] = output.images.reshape(A_ , 5_1_2 , 5_1_2 , 3) lowerCAmelCase_ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase_ : int = jnp.asarray(jax.device_get(image_slice.flatten())) lowerCAmelCase_ : str = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084]) print(F"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
103
0
'''simple docstring''' def a_ ( __snake_case : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =set({'''(''', '''[''', '''{'''} ) lowerCamelCase_ =set({''')''', ''']''', '''}'''} ) lowerCamelCase_ ={'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(__snake_case ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__snake_case ) == 0 or (len(__snake_case ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__snake_case ) == 0 def a_ ( ) -> str: """simple docstring""" lowerCamelCase_ =input('''Enter sequence of brackets: ''' ) if is_balanced(__snake_case ): print(__snake_case , '''is balanced''' ) else: print(__snake_case , '''is not balanced''' ) if __name__ == "__main__": main()
6
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
38
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCAmelCase = None __lowerCAmelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCAmelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class __magic_name__ : lowerCAmelCase : bool = True lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "PIL.Image.Image" lowerCAmelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase : str = field(default='Image' , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Union[str, Any] ): return self.pa_type def __lowercase ( self : Any ,_UpperCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Optional[Any] = np.array(_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_UpperCAmelCase ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_UpperCAmelCase ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : dict ,_UpperCAmelCase : Optional[int]=None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: _a : Dict = {} _a , _a : str = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(_UpperCAmelCase ): _a : Any = PIL.Image.open(_UpperCAmelCase ) else: _a : List[Any] = path.split('::' )[-1] try: _a : str = string_to_dict(_UpperCAmelCase ,config.HUB_DATASETS_URL )['repo_id'] _a : Optional[Any] = token_per_repo_id.get(_UpperCAmelCase ) except ValueError: _a : int = None with xopen(_UpperCAmelCase ,'rb' ,use_auth_token=_UpperCAmelCase ) as f: _a : Tuple = BytesIO(f.read() ) _a : Union[str, Any] = PIL.Image.open(bytes_ ) else: _a : Optional[int] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowercase ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __lowercase ( self : str ,_UpperCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): _a : Union[str, Any] = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.binary() ) _a : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _a : List[str] = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Any = pa.StructArray.from_arrays([storage, path_array] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: _a : Union[str, Any] = storage.field('bytes' ) else: _a : Tuple = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: _a : Union[str, Any] = storage.field('path' ) else: _a : Dict = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _a : List[str] = pa.array( [encode_np_array(np.array(_UpperCAmelCase ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) _a : int = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Optional[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] ,['bytes', 'path'] ,mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase ,self.pa_type ) def __lowercase ( self : Dict ,_UpperCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_UpperCAmelCase : Tuple ): with xopen(_UpperCAmelCase ,'rb' ) as f: _a : int = f.read() return bytes_ _a : Any = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) _a : Optional[Any] = pa.array( [os.path.basename(_UpperCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] ,type=pa.string() ,) _a : Dict = pa.StructArray.from_arrays([bytes_array, path_array] ,['bytes', 'path'] ,mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase ,self.pa_type ) def __lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _a : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( lowerCAmelCase_ ) -> bytes: _a : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): _a : Optional[Any] = image.format else: _a : str = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowerCAmelCase_ , format=lowerCAmelCase_ ) return buffer.getvalue() def __lowerCamelCase ( lowerCAmelCase_ ) -> dict: if hasattr(lowerCAmelCase_ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def __lowerCamelCase ( lowerCAmelCase_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) _a : List[Any] = array.dtype _a : Optional[int] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER _a : Union[str, Any] = dtype.kind _a : Union[str, Any] = dtype.itemsize _a : List[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _a : Optional[int] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _a : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _a : str = dtype_byteorder + dtype_kind + str(lowerCAmelCase_ ) _a : List[Any] = np.dtype(lowerCAmelCase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _a : Union[str, Any] = PIL.Image.fromarray(array.astype(lowerCAmelCase_ ) ) return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def __lowerCamelCase ( lowerCAmelCase_ ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: _a , _a : Optional[Any] = first_non_null_value(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCAmelCase_ , np.ndarray ): _a : List[str] = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): _a : List[str] = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] else: return objs else: return objs
89
0
import os def __UpperCamelCase ( _A = "input.txt" ): with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCAmelCase_ = [ [int(_A ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowerCAmelCase_ = len(_A ) lowerCAmelCase_ = len(matrix[0] ) lowerCAmelCase_ = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCAmelCase_ = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCAmelCase_ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCAmelCase_ = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCAmelCase_ = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
167
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _A = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') _A , _A = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') _A = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: _A = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _A = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
167
1
'''simple docstring''' lowerCAmelCase :str = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowerCAmelCase :Tuple = ['''a''', '''b''', '''c''', '''d''', '''e'''] def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : int = start # add current to visited visited.append(__A ) __magic_name__ : Tuple = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __magic_name__ : Dict = topological_sort(__A , __A , __A ) # if all neighbors visited add current to sort sort.append(__A ) # if all vertices haven't been visited select a new one to visit if len(__A ) != len(__A ): for vertice in vertices: if vertice not in visited: __magic_name__ : Union[str, Any] = topological_sort(__A , __A , __A ) # return sort return sort if __name__ == "__main__": lowerCAmelCase :List[Any] = topological_sort('''a''', [], []) print(sort)
331
'''simple docstring''' from __future__ import annotations from typing import TypedDict class __A ( A ): '''simple docstring''' __lowerCamelCase : str __lowerCamelCase : int def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter s type must be str.''') return [s[i:] + s[:i] for i in range(len(__A))] def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter s type must be str.''') if not s: raise ValueError('''The parameter s must not be empty.''') _a = all_rotations(__A) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a = { "bwt_string": "".join([word[-1] for word in rotations]), "idx_original_string": rotations.index(__A), } return response def lowerCAmelCase (__A , __A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter bwt_string type must be str.''') if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''') try: _a = int(__A) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''') if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''') if idx_original_string >= len(__A): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''') _a = [''''''] * len(__A) for _ in range(len(__A)): for i in range(len(__A)): _a = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowercase_ = "Provide a string that I will generate its BWT transform: " lowercase_ = input(entry_msg).strip() lowercase_ = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result['bwt_string']}'""" ) lowercase_ = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( F"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ F"""we get original string '{original_string}'""" )
211
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a_ : List[Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=1 ): """simple docstring""" lowerCamelCase_ =tokenizer lowerCamelCase_ =dataset lowerCamelCase_ =len(lowerCAmelCase ) if n_tasks is None else n_tasks lowerCamelCase_ =n_copies def __iter__( self ): """simple docstring""" lowerCamelCase_ =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) lowerCamelCase_ =self.tokenizer(lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =start_length lowerCamelCase_ =eof_strings lowerCamelCase_ =tokenizer def __call__( self, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase_ =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCAmelCase ) def a_ ( __snake_case : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def a_ ( __snake_case : str , __snake_case : Any , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[int]=20 , **__snake_case : int ) -> Any: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): lowerCamelCase_ =batch['''ids'''].shape[-1] lowerCamelCase_ =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times lowerCamelCase_ =batch['''task_id'''].repeat(__snake_case ) lowerCamelCase_ =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase_ =generated_tokens.cpu().numpy() lowerCamelCase_ =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) lowerCamelCase_ =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase_ =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def a_ ( ) -> Any: """simple docstring""" lowerCamelCase_ =HfArgumentParser(__snake_case ) lowerCamelCase_ =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase_ =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase_ ='''false''' if args.num_workers is None: lowerCamelCase_ =multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase_ =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer lowerCamelCase_ =AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase_ =tokenizer.eos_token lowerCamelCase_ =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase_ ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric lowerCamelCase_ =load_dataset('''openai_humaneval''' ) lowerCamelCase_ =load_metric('''code_eval''' ) lowerCamelCase_ =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) lowerCamelCase_ =args.n_samples // args.batch_size lowerCamelCase_ =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase_ =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase_ =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception lowerCamelCase_, lowerCamelCase_ =accelerator.prepare(__snake_case , __snake_case ) lowerCamelCase_ =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: lowerCamelCase_ =[] for task in tqdm(range(__snake_case ) ): lowerCamelCase_ =human_eval['''test'''][task]['''test'''] lowerCamelCase_ =F'''check({human_eval['test'][task]['entry_point']})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase_, lowerCamelCase_ =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowercase ( unittest.TestCase ): _a = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def a__ ( self , _a , _a , _a ) -> Any: _A : List[Any] = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _A : Tuple = VideoClassificationPipeline(model=_a , image_processor=_a , top_k=2 ) _A : Optional[Any] = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def a__ ( self , _a , _a ) -> Any: for example in examples: _A : Optional[int] = video_classifier(_a ) self.assertEqual( _a , [ {"""score""": ANY(_a ), """label""": ANY(_a )}, {"""score""": ANY(_a ), """label""": ANY(_a )}, ] , ) @require_torch def a__ ( self ) -> str: _A : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _A : Tuple = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) _A : Any = pipeline( """video-classification""" , model=_a , feature_extractor=_a , frame_sampling_rate=4 ) _A : Optional[int] = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _A : Any = video_classifier(_a , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) _A : Optional[int] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def a__ ( self ) -> str: pass
26
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =FunnelTokenizer lowercase : List[str] =FunnelTokenizerFast lowercase : Union[str, Any] =True lowercase : int =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =[ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''UNwant\u00E9d,running''' lowerCamelCase_ ='''unwanted, running''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer_class(self.vocab_file ) lowerCamelCase_ =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''' ) lowerCamelCase_ =len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len ) lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''', '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len + [1] * sentence_len )
75
0
'''simple docstring''' from __future__ import annotations def a_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ,_UpperCAmelCase : float ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' from __future__ import annotations import time import numpy as np A__ : str = [8, 5, 9, 7] A__ : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A__ : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : def __init__( self : Union[str, Any] , __a : list[int] , __a : list[list[int]] , __a : list[list[int]] , ) -> None: '''simple docstring''' __snake_case : int = claim_vector __snake_case : Optional[int] = allocated_resources_table __snake_case : List[str] = maximum_claim_table def A_ ( self : str ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def A_ ( self : int ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def A_ ( self : int ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def A_ ( self : str ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__a ): i for i in self.__need()} def A_ ( self : Union[str, Any] , **__a : int ) -> None: '''simple docstring''' __snake_case : str = self.__need() __snake_case : List[Any] = self.__allocated_resources_table __snake_case : Optional[int] = self.__available_resources() __snake_case : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __snake_case : Tuple = False for each_need in need_list: __snake_case : Any = True for index, need in enumerate(__a ): if need > available_resources[index]: __snake_case : List[str] = False break if execution: __snake_case : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __snake_case : str = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(__a ) # update available/freed resources stack __snake_case : Union[str, Any] = np.array(__a ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__a ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(__a ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(__a ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__a ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json'} __a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } __a = {'mgp-str': 27} class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any="[GO]" , lowerCAmelCase__ : int="[GO]" , lowerCAmelCase__ : Optional[Any]="[s]" , lowerCAmelCase__ : int="[GO]" , **lowerCAmelCase__ : List[str] ) -> Any: """simple docstring""" super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase : Tuple = json.load(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" return len(self.vocab ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = [] for s in text: char_tokens.extend(lowerCAmelCase__ ) return char_tokens def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int ) -> List[str]: """simple docstring""" return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> List[str]: """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCAmelCase__ ) ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) return (vocab_file,)
17
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Dict = KandinskyVaaControlnetPipeline __lowerCAmelCase : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCAmelCase : Any = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCAmelCase : str = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCAmelCase : Any = False @property def a_ ( self : Optional[int] ): """simple docstring""" return 32 @property def a_ ( self : Optional[int] ): """simple docstring""" return 32 @property def a_ ( self : Tuple ): """simple docstring""" return self.time_input_dim @property def a_ ( self : Optional[int] ): """simple docstring""" return self.time_input_dim * 4 @property def a_ ( self : Optional[int] ): """simple docstring""" return 1_00 @property def a_ ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[int] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A_ : Optional[Any] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def a_ ( self : Dict ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) A_ : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a_ ( self : List[str] ): """simple docstring""" A_ : Optional[int] = self.dummy_unet A_ : str = self.dummy_movq A_ : List[str] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_lowerCamelCase , ) A_ : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def a_ ( self : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=0 ): """simple docstring""" A_ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) A_ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create hint A_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): A_ : Tuple = torch.manual_seed(_lowerCamelCase ) else: A_ : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) A_ : int = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : str = '''cpu''' A_ : List[Any] = self.get_dummy_components() A_ : Union[str, Any] = self.pipeline_class(**_lowerCamelCase ) A_ : Any = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : str = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) A_ : str = output.images A_ : Optional[int] = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] A_ : Tuple = image[0, -3:, -3:, -1] A_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Optional[int] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowercase ( unittest.TestCase): def a_ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Dict ): """simple docstring""" A_ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) A_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) A_ : List[str] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 255.0 A_ : Union[str, Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) A_ : Any = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) A_ : str = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) A_ : Tuple = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) A_ : List[str] = '''A robot, 4k photo''' A_ : Optional[int] = torch.Generator(device='''cuda''' ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() A_ : List[str] = torch.Generator(device='''cuda''' ).manual_seed(0 ) A_ : Tuple = pipeline( image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=1_00 , output_type='''np''' , ) A_ : Any = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
167
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase ( unittest.TestCase): def __init__( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any]=13 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : List[Any]=2_24 , _lowerCamelCase : Tuple=30 , _lowerCamelCase : List[str]=4_00 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : int=True , _lowerCamelCase : Any=[0.5, 0.5, 0.5] , _lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , ): """simple docstring""" A_ : int = size if size is not None else {'''height''': 18, '''width''': 18} A_ : Optional[int] = parent A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = image_size A_ : List[Any] = min_resolution A_ : str = max_resolution A_ : Dict = do_resize A_ : Dict = size A_ : str = do_normalize A_ : List[str] = image_mean A_ : List[str] = image_std def a_ ( self : Optional[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None def a_ ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = EfficientFormerImageProcessorTester(self ) @property def a_ ( self : List[Any] ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def a_ ( self : List[Any] ): """simple docstring""" A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def a_ ( self : str ): """simple docstring""" pass def a_ ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a_ ( self : List[Any] ): """simple docstring""" A_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : str = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a_ ( self : str ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : List[str] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
167
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _UpperCAmelCase ( __lowerCamelCase : int ) -> Tuple: random.seed(__lowerCamelCase ) np.random.seed(__lowerCamelCase ) torch.manual_seed(__lowerCamelCase ) torch.cuda.manual_seed_all(__lowerCamelCase ) # ^^ safe to call this function even if cuda is not available class lowerCAmelCase__ : def __init__( self : Optional[Any] , _lowerCamelCase : Iterable[torch.nn.Parameter] , _lowerCamelCase : float = 0.9_9_9_9 , _lowerCamelCase : float = 0.0 , _lowerCamelCase : int = 0 , _lowerCamelCase : bool = False , _lowerCamelCase : Union[float, int] = 1.0 , _lowerCamelCase : Union[float, int] = 2 / 3 , _lowerCamelCase : Optional[Any] = None , _lowerCamelCase : Dict[str, Any] = None , **_lowerCamelCase : Tuple , ): if isinstance(_a , torch.nn.Module ): _snake_case = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , _a , standard_warn=_a , ) _snake_case = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _snake_case = True if kwargs.get('''max_value''' , _a ) is not None: _snake_case = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate('''max_value''' , '''1.0.0''' , _a , standard_warn=_a ) _snake_case = kwargs["max_value"] if kwargs.get('''min_value''' , _a ) is not None: _snake_case = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate('''min_value''' , '''1.0.0''' , _a , standard_warn=_a ) _snake_case = kwargs["min_value"] _snake_case = list(_a ) _snake_case = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , _a ) is not None: _snake_case = "The `device` argument is deprecated. Please use `to` instead." deprecate('''device''' , '''1.0.0''' , _a , standard_warn=_a ) self.to(device=kwargs['''device'''] ) _snake_case = None _snake_case = decay _snake_case = min_decay _snake_case = update_after_step _snake_case = use_ema_warmup _snake_case = inv_gamma _snake_case = power _snake_case = 0 _snake_case = None # set in `step()` _snake_case = model_cls _snake_case = model_config @classmethod def lowercase ( cls : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] ): _snake_case = model_cls.load_config(_a , return_unused_kwargs=_a ) _snake_case = model_cls.from_pretrained(_a ) _snake_case = cls(model.parameters() , model_cls=_a , model_config=model.config ) ema_model.load_state_dict(_a ) return ema_model def lowercase ( self : List[Any] , _lowerCamelCase : str ): if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) _snake_case = self.model_cls.from_config(self.model_config ) _snake_case = self.state_dict() state_dict.pop('''shadow_params''' , _a ) model.register_to_config(**_a ) self.copy_to(model.parameters() ) model.save_pretrained(_a ) def lowercase ( self : str , _lowerCamelCase : int ): _snake_case = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _snake_case = 1 - (1 + step / self.inv_gamma) ** -self.power else: _snake_case = (1 + step) / (10 + step) _snake_case = min(_a , self.decay ) # make sure decay is not smaller than min_decay _snake_case = max(_a , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase ( self : List[str] , _lowerCamelCase : Iterable[torch.nn.Parameter] ): if isinstance(_a , torch.nn.Module ): _snake_case = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , _a , standard_warn=_a , ) _snake_case = parameters.parameters() _snake_case = list(_a ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _snake_case = self.get_decay(self.optimization_step ) _snake_case = decay _snake_case = 1 - decay _snake_case = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _a ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _snake_case = deepspeed.zero.GatheredParameters(_a , modifier_rank=_a ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_a ) def lowercase ( self : List[str] , _lowerCamelCase : Iterable[torch.nn.Parameter] ): _snake_case = list(_a ) for s_param, param in zip(self.shadow_params , _a ): param.data.copy_(s_param.to(param.device ).data ) def lowercase ( self : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : List[str]=None ): _snake_case = [ p.to(device=_a , dtype=_a ) if p.is_floating_point() else p.to(device=_a ) for p in self.shadow_params ] def lowercase ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase ( self : Optional[int] , _lowerCamelCase : Iterable[torch.nn.Parameter] ): _snake_case = [param.detach().cpu().clone() for param in parameters] def lowercase ( self : List[str] , _lowerCamelCase : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , _a ): param.data.copy_(c_param.data ) # Better memory-wise. _snake_case = None def lowercase ( self : int , _lowerCamelCase : dict ): _snake_case = copy.deepcopy(_a ) _snake_case = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) _snake_case = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , _a ): raise ValueError('''Invalid min_decay''' ) _snake_case = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , _a ): raise ValueError('''Invalid optimization_step''' ) _snake_case = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , _a ): raise ValueError('''Invalid update_after_step''' ) _snake_case = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _a ): raise ValueError('''Invalid use_ema_warmup''' ) _snake_case = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) _snake_case = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) _snake_case = state_dict.get('''shadow_params''' , _a ) if shadow_params is not None: _snake_case = shadow_params if not isinstance(self.shadow_params , _a ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(_a , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
369
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ) -> Union[str, Any]: # Return True if there is node that has not iterated. _snake_case = [False] * len(__lowerCamelCase ) _snake_case = [] queue.append(__lowerCamelCase ) _snake_case = True while queue: _snake_case = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) _snake_case = True _snake_case = u return visited[t] def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ) -> Dict: # This array is filled by BFS and to store path _snake_case = [-1] * (len(__lowerCamelCase )) _snake_case = 0 while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _snake_case = float('''Inf''' ) _snake_case = sink while s != source: # Find the minimum value in select path _snake_case = min(__lowerCamelCase , graph[parent[s]][s] ) _snake_case = parent[s] max_flow += path_flow _snake_case = sink while v != source: _snake_case = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _snake_case = parent[v] return max_flow UpperCAmelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCAmelCase__ , UpperCAmelCase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
40
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
194
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{\"default\": {\"dataset_size\": 42}}' ) __lowerCamelCase : Union[str, Any] = DatasetInfosDict.from_directory(_a ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = str(_a ) dataset_info.write_to_directory(_a ) __lowerCamelCase : Optional[Any] = DatasetInfo.from_directory(_a ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_a , 'dataset_info.json' ) ) def UpperCamelCase__ ( ): __lowerCamelCase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) __lowerCamelCase : List[str] = dataset_info._to_yaml_dict() assert sorted(_a ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __lowerCamelCase : Optional[Any] = yaml.safe_dump(_a ) __lowerCamelCase : List[str] = yaml.safe_load(_a ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase__ ( ): __lowerCamelCase : int = DatasetInfo() __lowerCamelCase : Optional[int] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1_337 ), } ), ] , ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = str(_a ) dataset_infos_dict.write_to_directory(_a ) __lowerCamelCase : Optional[int] = DatasetInfosDict.from_directory(_a ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __lowerCamelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __lowerCamelCase : int = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_a , 'README.md' ) )
361
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE__ ) as metadata_file: __lowerCamelCase : List[str] = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __lowerCamelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) # Load the entity vocab file __lowerCamelCase : List[Any] = load_entity_vocab(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __lowerCamelCase : str = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = LukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Initialize the embeddings of the special tokens __lowerCamelCase : Union[str, Any] = state_dict['embeddings.word_embeddings.weight'] __lowerCamelCase : Tuple = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __lowerCamelCase : Any = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __lowerCamelCase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowerCamelCase : Optional[int] = f'encoder.layer.{layer_index}.attention.self.' __lowerCamelCase : Dict = state_dict[prefix + matrix_name] __lowerCamelCase : List[Any] = state_dict[prefix + matrix_name] __lowerCamelCase : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowerCamelCase : Optional[int] = state_dict['entity_embeddings.entity_embeddings.weight'] __lowerCamelCase : Union[str, Any] = entity_emb[entity_vocab['[MASK]']] __lowerCamelCase : Optional[Any] = LukeModel(config=SCREAMING_SNAKE_CASE__ ).eval() __lowerCamelCase , __lowerCamelCase : List[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if not (len(SCREAMING_SNAKE_CASE__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(SCREAMING_SNAKE_CASE__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs __lowerCamelCase : Optional[Any] = LukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , task='entity_classification' ) __lowerCamelCase : Dict = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __lowerCamelCase : Union[str, Any] = (39, 42) __lowerCamelCase : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , add_prefix_space=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE__ ) # Verify word hidden states if model_size == "large": __lowerCamelCase : Dict = torch.Size((1, 42, 1_024) ) __lowerCamelCase : int = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base __lowerCamelCase : Union[str, Any] = torch.Size((1, 42, 768) ) __lowerCamelCase : Tuple = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __lowerCamelCase : Union[str, Any] = torch.Size((1, 1, 1_024) ) __lowerCamelCase : Dict = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base __lowerCamelCase : int = torch.Size((1, 1, 768) ) __lowerCamelCase : Dict = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE__ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = {} with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase , __lowerCamelCase : List[Any] = line.rstrip().split('\t' ) __lowerCamelCase : Any = index return entity_vocab if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) lowercase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
194
0
from __future__ import annotations def _a ( a :float , a :float , a :float ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
0
from __future__ import annotations import time import numpy as np UpperCAmelCase__ = [8, 5, 9, 7] UpperCAmelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCAmelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase_ : '''simple docstring''' def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None: """simple docstring""" a = claim_vector a = allocated_resources_table a = maximum_claim_table def __lowerCAmelCase ( self : Any ) ->list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCAmelCase ( self : Optional[int] ) ->list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]: """simple docstring""" return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None: """simple docstring""" a = self.__need() a = self.__allocated_resources_table a = self.__available_resources() a = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: a = False for each_need in need_list: a = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: a = False break if execution: a = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: a = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack a = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
"""simple docstring""" from functools import lru_cache @lru_cache def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> int: '''simple docstring''' if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]="[GO]", UpperCAmelCase__ : str="[GO]", UpperCAmelCase__ : Dict="[s]", UpperCAmelCase__ : Union[str, Any]="[GO]", **UpperCAmelCase__ : Tuple ): super().__init__( unk_token=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, **UpperCAmelCase__, ) with open(UpperCAmelCase__, encoding="utf-8" ) as vocab_handle: __lowercase = json.load(UpperCAmelCase__ ) __lowercase = {v: k for k, v in self.vocab.items()} @property def _lowercase ( self : List[Any] ): return len(self.vocab ) def _lowercase ( self : int ): return dict(self.vocab, **self.added_tokens_encoder ) def _lowercase ( self : Any, UpperCAmelCase__ : Tuple ): __lowercase = [] for s in text: char_tokens.extend(UpperCAmelCase__ ) return char_tokens def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Any ): return self.vocab.get(UpperCAmelCase__, self.vocab.get(self.unk_token ) ) def _lowercase ( self : int, UpperCAmelCase__ : List[str] ): return self.decoder.get(UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error("Vocabulary path ({}) should be a directory".format(UpperCAmelCase__ ) ) return __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(UpperCAmelCase__, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=UpperCAmelCase__, ensure_ascii=UpperCAmelCase__ ) + "\n" ) return (vocab_file,)
17
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str =logging.get_logger() @dataclass class _A : snake_case__ : nn.Module snake_case__ : List[nn.Module] = field(default_factory=lowerCamelCase__ ) snake_case__ : list = field(default_factory=lowerCamelCase__ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = len(list(m.modules() ) ) == 1 or isinstance(lowercase__ , nn.Convad ) or isinstance(lowercase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowercase__ ) def __call__( self , __lowerCAmelCase ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowercase__ ) [x.remove() for x in self.handles] return self @property def A__ ( self ): """simple docstring""" return list(filter(lambda __lowerCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _A : snake_case__ : nn.Module snake_case__ : nn.Module snake_case__ : int = 1 snake_case__ : List = field(default_factory=lowerCamelCase__ ) snake_case__ : List = field(default_factory=lowerCamelCase__ ) snake_case__ : bool = True def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = Tracker(self.dest )(lowercase__ ).parametrized lowercase = Tracker(self.src )(lowercase__ ).parametrized lowercase = list(filter(lambda __lowerCAmelCase : type(lowercase__ ) not in self.src_skip , lowercase__ ) ) lowercase = list(filter(lambda __lowerCAmelCase : type(lowercase__ ) not in self.dest_skip , lowercase__ ) ) if len(lowercase__ ) != len(lowercase__ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(lowercase__ )} operations while' f' destination module has {len(lowercase__ )}.' ) for dest_m, src_m in zip(lowercase__ , lowercase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class _A ( nn.Module ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__() lowercase = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f'Unexpected layer name {k}' lowercase = len(lowercase__ ) + 1 feature_blocks.append((f'res{block_index}', v) ) lowercase = nn.ModuleDict(lowercase__ ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return get_trunk_forward_outputs( lowercase__ , out_feat_keys=lowercase__ , feature_blocks=self._feature_blocks , ) class _A ( lowerCamelCase__ ): def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" if x not in self: lowercase = self.convert_name_to_timm(lowercase__ ) lowercase = partial(lambda: (timm.create_model(lowercase__ , pretrained=lowercase__ ).eval(), None) ) else: lowercase = super().__getitem__(lowercase__ ) return val class _A ( lowerCamelCase__ ): def __getitem__( self , __lowerCAmelCase ): """simple docstring""" if "seer" in x and "in1k" not in x: lowercase = RegNetModel else: lowercase = RegNetForImageClassification return val def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str ) -> Optional[Any]: '''simple docstring''' for from_key, to_key in keys: lowercase = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict = True , ) -> Any: '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): lowercase , lowercase = from_model_func() lowercase = our_model_func(A__ ).eval() lowercase = ModuleTransfer(src=A__ , dest=A__ , raise_if_mismatch=A__ ) lowercase = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(A__ ) if from_state_dict is not None: lowercase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowercase = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] lowercase = manually_copy_vissl_head(A__ , our_model.state_dict() , A__ ) our_model.load_state_dict(A__ ) lowercase = our_model(A__ , output_hidden_states=A__ ) lowercase = ( our_outputs.logits if isinstance(A__ , A__ ) else our_outputs.last_hidden_state ) lowercase = from_model(A__ ) lowercase = from_output[-1] if type(A__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowercase = our_outputs.hidden_states[-1] assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=A__ , ) lowercase = 2_2_4 if """seer""" not in name else 3_8_4 # we can use the convnext one lowercase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=A__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=A__ , ) print(f'Pushed {name}' ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] = None , lowerCAmelCase__ :Any = True ) -> Optional[Any]: '''simple docstring''' lowercase = """imagenet-1k-id2label.json""" lowercase = 1_0_0_0 lowercase = (1, num_labels) lowercase = """huggingface/label-files""" lowercase = num_labels lowercase = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase = {int(A__ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) lowercase = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } lowercase = NameToOurModelFuncMap() lowercase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict ) -> Tuple[nn.Module, Dict]: lowercase = torch.hub.load_state_dict_from_url(A__ , model_dir=str(A__ ) , map_location="""cpu""" ) lowercase = model_func() # check if we have a head, if yes add it lowercase = files["""classy_state_dict"""]["""base_model"""]["""model"""] lowercase = model_state_dict["""trunk"""] model.load_state_dict(A__ ) return model.eval(), model_state_dict["heads"] # pretrained lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.52 ) ) ) , ) # IN1K finetuned lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( A__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , A__ , A__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( A__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , A__ , A__ , A__ , ) return config, expected_shape if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __lowerCAmelCase : List[str] =parser.parse_args() __lowerCAmelCase : Optional[int] =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowercase ) , """Tatoeba directory does not exist.""" ) class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): self.resolver.convert_models(["""heb-eng"""] ) @slow def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ , lowerCamelCase__ : Dict = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=UpperCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
41
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowercase ( A_ )-> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def lowercase ( A_ )-> Tuple: '''simple docstring''' class _A : """simple docstring""" def __init__( self : str , __UpperCAmelCase : int): a : List[Any] = metric_id class _A : """simple docstring""" UpperCAmelCase : Union[str, Any] = [MetricMock(_a ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __snake_case ( self : List[str]): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def lowercase ( A_ , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' if "tmp_path" in args: a : Union[str, Any] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(A_ , match="https://huggingface.co/docs/evaluate" ): func(*A_ )
40
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = get_activation('swish') self.assertIsInstance(_UpperCAmelCase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = get_activation('silu') self.assertIsInstance(_UpperCAmelCase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = get_activation('mish') self.assertIsInstance(_UpperCAmelCase , nn.Mish) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = get_activation('gelu') self.assertIsInstance(_UpperCAmelCase , nn.GELU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
367
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int | str] ) -> None: create_state_space_tree(__snake_case , [] , 0 , [0 for i in range(len(__snake_case ) )] ) def _lowerCAmelCase ( __snake_case : list[int | str] , __snake_case : list[int | str] , __snake_case : int , __snake_case : list[int] , ) -> None: if index == len(__snake_case ): print(__snake_case ) return for i in range(len(__snake_case ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __A : Any = True create_state_space_tree(__snake_case , __snake_case , index + 1 , __snake_case ) current_sequence.pop() __A : Any = False lowercase__ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) lowercase__ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
190
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = ['''pixel_values'''] def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PIL.Image.BICUBIC ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} __lowerCamelCase : int = get_size_dict(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name='crop_size') __lowerCamelCase : Optional[int] = do_resize __lowerCamelCase : List[Any] = size __lowerCamelCase : Any = resample __lowerCamelCase : Optional[int] = do_center_crop __lowerCamelCase : Any = crop_size __lowerCamelCase : Optional[int] = do_rescale __lowerCamelCase : int = rescale_factor __lowerCamelCase : str = do_normalize __lowerCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PIL.Image.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Any ,): __lowerCamelCase : List[str] = get_size_dict(SCREAMING_SNAKE_CASE__) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}") return resize( SCREAMING_SNAKE_CASE__ ,size=(size['height'], size['width']) ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : str ,): __lowerCamelCase : List[str] = get_size_dict(SCREAMING_SNAKE_CASE__) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}") return center_crop(SCREAMING_SNAKE_CASE__ ,size=(size['height'], size['width']) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : str ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : Dict ,): __lowerCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : int = resample if resample is not None else self.resample __lowerCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Any = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : str = image_std if image_std is not None else self.image_std __lowerCamelCase : Union[str, Any] = size if size is not None else self.size __lowerCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __lowerCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name='crop_size') __lowerCamelCase : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE__) if not valid_images(SCREAMING_SNAKE_CASE__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. __lowerCamelCase : Union[str, Any] = [to_numpy_array(SCREAMING_SNAKE_CASE__) for image in images] if do_resize: __lowerCamelCase : Any = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__) for image in images] if do_center_crop: __lowerCamelCase : Dict = [self.center_crop(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__) for image in images] if do_rescale: __lowerCamelCase : Dict = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__) for image in images] if do_normalize: __lowerCamelCase : Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__) for image in images] __lowerCamelCase : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) for image in images] __lowerCamelCase : Optional[int] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__)
73
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" if isinstance(__snake_case, torch.Tensor ): return image elif isinstance(__snake_case, PIL.Image.Image ): _UpperCamelCase = [image] if isinstance(image[0], PIL.Image.Image ): _UpperCamelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] _UpperCamelCase = np.concatenate(__snake_case, axis=0 ) _UpperCamelCase = np.array(__snake_case ).astype(np.floataa ) / 255.0 _UpperCamelCase = image.transpose(0, 3, 1, 2 ) _UpperCamelCase = 2.0 * image - 1.0 _UpperCamelCase = torch.from_numpy(__snake_case ) elif isinstance(image[0], torch.Tensor ): _UpperCamelCase = torch.cat(__snake_case, dim=0 ) return image def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=0.9995 ) -> List[Any]: """simple docstring""" if not isinstance(__snake_case, np.ndarray ): _UpperCamelCase = True _UpperCamelCase = va.device _UpperCamelCase = va.cpu().numpy() _UpperCamelCase = va.cpu().numpy() _UpperCamelCase = np.sum(va * va / (np.linalg.norm(__snake_case ) * np.linalg.norm(__snake_case )) ) if np.abs(__snake_case ) > DOT_THRESHOLD: _UpperCamelCase = (1 - t) * va + t * va else: _UpperCamelCase = np.arccos(__snake_case ) _UpperCamelCase = np.sin(__snake_case ) _UpperCamelCase = theta_a * t _UpperCamelCase = np.sin(__snake_case ) _UpperCamelCase = np.sin(theta_a - theta_t ) / sin_theta_a _UpperCamelCase = sin_theta_t / sin_theta_a _UpperCamelCase = sa * va + sa * va if inputs_are_torch: _UpperCamelCase = torch.from_numpy(__snake_case ).to(__snake_case ) return va def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = F.normalize(__snake_case, dim=-1 ) _UpperCamelCase = F.normalize(__snake_case, dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" for param in model.parameters(): _UpperCamelCase = value class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a , __a , __a , __a , __a , __a=None , __a=None , __a=None , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules( vae=__a , text_encoder=__a , clip_model=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , coca_model=__a , coca_tokenizer=__a , coca_transform=__a , ) _UpperCamelCase = ( feature_extractor.size if isinstance(feature_extractor.size , __a) else feature_extractor.size['''shortest_edge'''] ) _UpperCamelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std) set_requires_grad(self.text_encoder , __a) set_requires_grad(self.clip_model , __a) def UpperCAmelCase ( self , __a = "auto") -> Union[str, Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' set_requires_grad(self.vae , __a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' set_requires_grad(self.vae , __a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' set_requires_grad(self.unet , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' set_requires_grad(self.unet , __a) def UpperCAmelCase ( self , __a , __a , __a) -> Any: '''simple docstring''' # get the original timestep using init_timestep _UpperCamelCase = min(int(num_inference_steps * strength) , __a) _UpperCamelCase = max(num_inference_steps - init_timestep , 0) _UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a=None) -> Tuple: '''simple docstring''' if not isinstance(__a , torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(__a)}''') _UpperCamelCase = image.to(device=__a , dtype=__a) if isinstance(__a , __a): _UpperCamelCase = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(__a) ] _UpperCamelCase = torch.cat(__a , dim=0) else: _UpperCamelCase = self.vae.encode(__a).latent_dist.sample(__a) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase = 0.1_8215 * init_latents _UpperCamelCase = init_latents.repeat_interleave(__a , dim=0) _UpperCamelCase = randn_tensor(init_latents.shape , generator=__a , device=__a , dtype=__a) # get latents _UpperCamelCase = self.scheduler.add_noise(__a , __a , __a) _UpperCamelCase = init_latents return latents def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = self.coca_transform(__a).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _UpperCamelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype)) _UpperCamelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('''<end_of_text>''')[0].replace('''<start_of_text>''' , '''''').rstrip(''' .,''') def UpperCAmelCase ( self , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.feature_extractor.preprocess(__a) _UpperCamelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0]).unsqueeze(0).to(self.device).half() _UpperCamelCase = self.clip_model.get_image_features(__a) _UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a) _UpperCamelCase = image_embeddings_clip.repeat_interleave(__a , dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , ) -> Tuple: '''simple docstring''' _UpperCamelCase = latents.detach().requires_grad_() _UpperCamelCase = self.scheduler.scale_model_input(__a , __a) # predict the noise residual _UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _UpperCamelCase = self.scheduler.alphas_cumprod[timestep] _UpperCamelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _UpperCamelCase = torch.sqrt(__a) _UpperCamelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.sigmas[index] _UpperCamelCase = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase = 1 / 0.1_8215 * sample _UpperCamelCase = self.vae.decode(__a).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = transforms.Resize(self.feature_extractor_size)(__a) _UpperCamelCase = self.normalize(__a).to(latents.dtype) _UpperCamelCase = self.clip_model.get_image_features(__a) _UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a) _UpperCamelCase = spherical_dist_loss(__a , __a).mean() * clip_guidance_scale _UpperCamelCase = -torch.autograd.grad(__a , __a)[0] if isinstance(self.scheduler , __a): _UpperCamelCase = latents.detach() + grads * (sigma**2) _UpperCamelCase = noise_pred_original else: _UpperCamelCase = noise_pred_original - torch.sqrt(__a) * grads return noise_pred, latents @torch.no_grad() def __call__( self , __a , __a , __a = None , __a = None , __a = 5_12 , __a = 5_12 , __a = 0.6 , __a = 50 , __a = 7.5 , __a = 1 , __a = 0.0 , __a = 1_00 , __a = None , __a = "pil" , __a = True , __a = 0.8 , __a = 0.1 , __a = 0.1 , ) -> Dict: '''simple docstring''' if isinstance(__a , __a) and len(__a) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(__a)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(__a , torch.Generator) and batch_size > 1: _UpperCamelCase = [generator] + [None] * (batch_size - 1) _UpperCamelCase = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _UpperCamelCase = [x[0] for x in coca_is_none if x[1]] _UpperCamelCase = ''', '''.join(__a) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__a): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _UpperCamelCase = self.get_image_description(__a) if style_prompt is None: if len(__a): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _UpperCamelCase = self.get_image_description(__a) # get prompt text embeddings for content and style _UpperCamelCase = self.tokenizer( __a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _UpperCamelCase = self.tokenizer( __a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _UpperCamelCase = slerp(__a , __a , __a) # duplicate text embeddings for each generation per prompt _UpperCamelCase = text_embeddings.repeat_interleave(__a , dim=0) # set timesteps _UpperCamelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _UpperCamelCase = {} if accepts_offset: _UpperCamelCase = 1 self.scheduler.set_timesteps(__a , **__a) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _UpperCamelCase , _UpperCamelCase = self.get_timesteps(__a , __a , self.device) _UpperCamelCase = timesteps[:1].repeat(__a) # Preprocess image _UpperCamelCase = preprocess(__a , __a , __a) _UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a) _UpperCamelCase = preprocess(__a , __a , __a) _UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a) _UpperCamelCase = slerp(__a , __a , __a) if clip_guidance_scale > 0: _UpperCamelCase = self.get_clip_image_embeddings(__a , __a) _UpperCamelCase = self.get_clip_image_embeddings(__a , __a) _UpperCamelCase = slerp( __a , __a , __a) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCamelCase = content_text_input.input_ids.shape[-1] _UpperCamelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=__a , return_tensors='''pt''') _UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _UpperCamelCase = uncond_embeddings.repeat_interleave(__a , dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCamelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _UpperCamelCase = torch.randn(__a , generator=__a , device='''cpu''' , dtype=__a).to( self.device) else: _UpperCamelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _UpperCamelCase = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta # check if the scheduler accepts generator _UpperCamelCase = '''generator''' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _UpperCamelCase = generator with self.progress_bar(total=__a): for i, t in enumerate(__a): # expand the latents if we are doing classifier free guidance _UpperCamelCase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _UpperCamelCase = self.scheduler.scale_model_input(__a , __a) # predict the noise residual _UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a).sample # perform classifier free guidance if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase = noise_pred.chunk(2) _UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _UpperCamelCase = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _UpperCamelCase , _UpperCamelCase = self.cond_fn( __a , __a , __a , __a , __a , __a , __a , ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__a , __a , __a , **__a).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase = 1 / 0.1_8215 * latents _UpperCamelCase = self.vae.decode(__a).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a)
194
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase ( __lowercase : int ): '''simple docstring''' def is_in_circle(__lowercase : float ,__lowercase : float ) -> bool: A_ : Tuple = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle A_ : Dict = mean( int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) ) for _ in range(__lowercase ) ) # The ratio of the area for circle to square is pi/4. A_ : int = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def UpperCamelCase ( __lowercase : int ,__lowercase : Callable[[float], float] ,__lowercase : float = 0.0 ,__lowercase : float = 1.0 ,): '''simple docstring''' return mean( function_to_integrate(uniform(__lowercase ,__lowercase ) ) for _ in range(__lowercase ) ) * (max_value - min_value) def UpperCamelCase ( __lowercase : int ,__lowercase : float = 0.0 ,__lowercase : float = 1.0 ): '''simple docstring''' def identity_function(__lowercase : float ) -> float: return x A_ : List[Any] = area_under_curve_estimator( __lowercase ,__lowercase ,__lowercase ,__lowercase ) A_ : str = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def UpperCamelCase ( __lowercase : int ): '''simple docstring''' def function_to_integrate(__lowercase : float ) -> float: return sqrt(4.0 - x * x ) A_ : List[str] = area_under_curve_estimator( __lowercase ,__lowercase ,0.0 ,2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
368
_UpperCAmelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def UpperCamelCase ( ): '''simple docstring''' A_ : Tuple = input('Enter message: ' ) A_ : int = input('Enter key [alphanumeric]: ' ) A_ : Optional[Any] = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): A_ : List[Any] = 'encrypt' A_ : int = encrypt_message(__lowercase ,__lowercase ) elif mode.lower().startswith('d' ): A_ : Optional[Any] = 'decrypt' A_ : Dict = decrypt_message(__lowercase ,__lowercase ) print(f'''\n{mode.title()}ed message:''' ) print(__lowercase ) def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' return translate_message(__lowercase ,__lowercase ,'encrypt' ) def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' return translate_message(__lowercase ,__lowercase ,'decrypt' ) def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : str ): '''simple docstring''' A_ : Tuple = [] A_ : str = 0 A_ : Optional[int] = key.upper() for symbol in message: A_ : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowercase ): A_ : str = 0 else: translated.append(__lowercase ) return "".join(__lowercase ) if __name__ == "__main__": main()
192
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class A ( unittest.TestCase ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=3_0 , _UpperCAmelCase=4_0_0 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 2_5_5 , _UpperCAmelCase=True , ) -> int: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __UpperCamelCase : Any = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} __UpperCamelCase : Any = parent __UpperCamelCase : Optional[Any] = batch_size __UpperCamelCase : List[Any] = num_channels __UpperCamelCase : Union[str, Any] = min_resolution __UpperCamelCase : Dict = max_resolution __UpperCamelCase : List[str] = do_resize __UpperCamelCase : Optional[int] = size __UpperCamelCase : List[str] = do_normalize __UpperCamelCase : str = image_mean __UpperCamelCase : Dict = image_std __UpperCamelCase : Dict = do_rescale __UpperCamelCase : int = rescale_factor __UpperCamelCase : int = do_pad def a_ (self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def a_ (self , _UpperCAmelCase , _UpperCAmelCase=False ) -> List[Any]: if not batched: __UpperCamelCase : str = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): __UpperCamelCase , __UpperCamelCase : Dict = image.size else: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = image.shape[1], image.shape[2] if w < h: __UpperCamelCase : Tuple = int(self.size["shortest_edge"] * h / w ) __UpperCamelCase : Optional[Any] = self.size["shortest_edge"] elif w > h: __UpperCamelCase : Optional[Any] = self.size["shortest_edge"] __UpperCamelCase : str = int(self.size["shortest_edge"] * w / h ) else: __UpperCamelCase : List[str] = self.size["shortest_edge"] __UpperCamelCase : Tuple = self.size["shortest_edge"] else: __UpperCamelCase : Optional[Any] = [] for image in image_inputs: __UpperCamelCase , __UpperCamelCase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase : Tuple = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] __UpperCamelCase : str = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = DeformableDetrImageProcessor if is_vision_available() else None def a_ (self ) -> List[str]: __UpperCamelCase : Tuple = DeformableDetrImageProcessingTester(self ) @property def a_ (self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a_ (self ) -> str: __UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_rescale" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_pad" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "size" ) ) def a_ (self ) -> Optional[Any]: __UpperCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) __UpperCamelCase : int = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def a_ (self ) -> Optional[Any]: pass def a_ (self ) -> List[str]: # Initialize image_processing __UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __UpperCamelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase , __UpperCamelCase : str = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) __UpperCamelCase : Optional[int] = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a_ (self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __UpperCamelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase : List[str] = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a_ (self ) -> List[str]: # Initialize image_processing __UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase : List[str] = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values __UpperCamelCase , __UpperCamelCase : Tuple = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a_ (self ) -> List[Any]: # prepare image and target __UpperCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __UpperCamelCase : List[Any] = json.loads(f.read() ) __UpperCamelCase : Dict = {"image_id": 3_9_7_6_9, "annotations": target} # encode them __UpperCamelCase : List[str] = DeformableDetrImageProcessor() __UpperCamelCase : Union[str, Any] = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors="pt" ) # verify pixel values __UpperCamelCase : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCAmelCase ) __UpperCamelCase : Dict = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify area __UpperCamelCase : Any = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCAmelCase ) ) # verify boxes __UpperCamelCase : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCAmelCase ) __UpperCamelCase : Any = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCAmelCase , atol=1E-3 ) ) # verify image_id __UpperCamelCase : Optional[Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCAmelCase ) ) # verify is_crowd __UpperCamelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCAmelCase ) ) # verify class_labels __UpperCamelCase : List[str] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCAmelCase ) ) # verify orig_size __UpperCamelCase : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCAmelCase ) ) # verify size __UpperCamelCase : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCAmelCase ) ) @slow def a_ (self ) -> str: # prepare image, target and masks_path __UpperCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __UpperCamelCase : Dict = json.loads(f.read() ) __UpperCamelCase : Union[str, Any] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} __UpperCamelCase : str = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __UpperCamelCase : List[Any] = DeformableDetrImageProcessor(format="coco_panoptic" ) __UpperCamelCase : List[Any] = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors="pt" ) # verify pixel values __UpperCamelCase : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCAmelCase ) __UpperCamelCase : Dict = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify area __UpperCamelCase : List[Any] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCAmelCase ) ) # verify boxes __UpperCamelCase : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCAmelCase ) __UpperCamelCase : List[str] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCAmelCase , atol=1E-3 ) ) # verify image_id __UpperCamelCase : Optional[Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCAmelCase ) ) # verify is_crowd __UpperCamelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCAmelCase ) ) # verify class_labels __UpperCamelCase : Dict = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCAmelCase ) ) # verify masks __UpperCamelCase : Dict = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _UpperCAmelCase ) # verify orig_size __UpperCamelCase : List[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCAmelCase ) ) # verify size __UpperCamelCase : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCAmelCase ) )
298
'''simple docstring''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): __UpperCamelCase : Dict = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: __UpperCamelCase : str = 1 - (matter_density + radiation_density + dark_energy) __UpperCamelCase : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __UpperCamelCase : Optional[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowerCAmelCase = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
298
1
"""simple docstring""" import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
79
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class __UpperCamelCase ( a__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase : str =field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase : ClassVar[Features] =Features({"""text""": Value("""string""" )} ) lowerCamelCase : ClassVar[Features] =Features({"""summary""": Value("""string""" )} ) lowerCamelCase : str ="text" lowerCamelCase : str ="summary" @property def __a ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
79
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __snake_case ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)]) def lowerCamelCase ( self : Optional[int] , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = GenerationConfig( do_sample=_snake_case , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , config_name=_snake_case) UpperCAmelCase_ = GenerationConfig.from_pretrained(_snake_case , config_name=_snake_case) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _snake_case) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''gpt2''') UpperCAmelCase_ = GenerationConfig.from_model_config(_snake_case) UpperCAmelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_snake_case , _snake_case) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = GenerationConfig() UpperCAmelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } UpperCAmelCase_ = copy.deepcopy(_snake_case) UpperCAmelCase_ = generation_config.update(**_snake_case) # update_kwargs was not modified (no side effects) self.assertEqual(_snake_case , _snake_case) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_snake_case , {'''foo''': '''bar'''}) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GenerationConfig() UpperCAmelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir: generation_config.save_pretrained(_snake_case) UpperCAmelCase_ = GenerationConfig.from_pretrained(_snake_case) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''') UpperCAmelCase_ = GenerationConfig.from_model_config(_snake_case) assert not hasattr(_snake_case , '''foo''') # no new kwargs should be initialized if from config def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , _snake_case) self.assertEqual(default_config.num_beams , 1) UpperCAmelCase_ = GenerationConfig( do_sample=_snake_case , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , _snake_case) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case) UpperCAmelCase_ = GenerationConfig.from_pretrained(_snake_case , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , _snake_case) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Tuple): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : Tuple): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-generation-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''') except HTTPError: pass def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = GenerationConfig( do_sample=_snake_case , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token) UpperCAmelCase_ = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''test-generation-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = GenerationConfig( do_sample=_snake_case , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
51
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase_ : Tuple = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''facebook/nllb-200-distilled-600M''' snake_case__ : Union[str, Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) snake_case__ : Optional[Any] = '''translator''' snake_case__ : Tuple = AutoTokenizer snake_case__ : Union[str, Any] = AutoModelForSeqaSeqLM snake_case__ : Dict = LANGUAGE_CODES snake_case__ : str = ['''text''', '''text''', '''text'''] snake_case__ : Tuple = ['''text'''] def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) a_ : str = self.lang_to_code[src_lang] a_ : Any = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( SCREAMING_SNAKE_CASE__ , return_tensors='pt' , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: return self.model.generate(**SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
32
0
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') __lowercase = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) __lowercase = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __lowercase = BeautifulSoup(res.text, '''html.parser''') __lowercase = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(f'''https://google.com{link.get("href")}''')
85
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int = 3 , __UpperCamelCase : int = 7 , __UpperCamelCase : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCamelCase =0 __UpperCamelCase =1 for current_denominator in range(1 , limit + 1 ): __UpperCamelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCamelCase =current_numerator __UpperCamelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
85
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class __A( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = """utf-8""" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True # deprecated SCREAMING_SNAKE_CASE__ = None # deprecated SCREAMING_SNAKE_CASE__ = 10 << 20 # 10MB SCREAMING_SNAKE_CASE__ = None class __A( datasets.ArrowBasedBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE__ = JsonConfig def UpperCAmelCase_ (self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) UpperCamelCase__ = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) UpperCamelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): UpperCamelCase__ = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase__ = [files] UpperCamelCase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCamelCase__ = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase__ = [files] UpperCamelCase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCamelCase__ = self.config.features.arrow_schema.field(_UpperCAmelCase ).type UpperCamelCase__ = pa_table.append_column(_UpperCAmelCase , pa.array([None] * len(_UpperCAmelCase ) , type=_UpperCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase__ = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase__ = json.load(_UpperCAmelCase ) # We keep only the field we are interested in UpperCamelCase__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_UpperCAmelCase , (list, tuple) ): UpperCamelCase__ = set().union(*[row.keys() for row in dataset] ) UpperCamelCase__ = {col: [row.get(_UpperCAmelCase ) for row in dataset] for col in keys} else: UpperCamelCase__ = dataset UpperCamelCase__ = pa.Table.from_pydict(_UpperCAmelCase ) yield file_idx, self._cast_table(_UpperCAmelCase ) # If the file has one json object per line else: with open(_UpperCAmelCase , """rb""" ) as f: UpperCamelCase__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCamelCase__ = max(self.config.chunksize // 32 , 16 << 10 ) UpperCamelCase__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: UpperCamelCase__ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_UpperCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCamelCase__ = batch.decode(self.config.encoding , errors=_UpperCAmelCase ).encode("""utf-8""" ) try: while True: try: UpperCamelCase__ = paj.read_json( io.BytesIO(_UpperCAmelCase ) , read_options=paj.ReadOptions(block_size=_UpperCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_UpperCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(_UpperCAmelCase ) or block_size > len(_UpperCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(_UpperCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase__ = json.load(_UpperCAmelCase ) except json.JSONDecodeError: logger.error(F"Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # list is the only sequence type supported in JSON try: UpperCamelCase__ = set().union(*[row.keys() for row in dataset] ) UpperCamelCase__ = {col: [row.get(_UpperCAmelCase ) for row in dataset] for col in keys} UpperCamelCase__ = pa.Table.from_pydict(_UpperCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}" ) raise ValueError(F"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(_UpperCAmelCase ) break else: logger.error(F"Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}" ) raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " F"Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCAmelCase ) batch_idx += 1
244
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]: __A : List[str] = k_size // 2 __A ,__A : List[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __A : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(__snake_case ) + square(__snake_case )) / (2 * square(__snake_case )) ) return g def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : int ) -> Union[str, Any]: __A ,__A : Tuple = image.shape[0], image.shape[1] # dst image height and width __A : Tuple = height - k_size + 1 __A : Optional[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __A : str = zeros((dst_height * dst_width, k_size * k_size) ) __A : Optional[Any] = 0 for i, j in product(range(__snake_case ) , range(__snake_case ) ): __A : int = ravel(image[i : i + k_size, j : j + k_size] ) __A : List[str] = window row += 1 # turn the kernel into shape(k*k, 1) __A : List[Any] = gen_gaussian_kernel(__snake_case , __snake_case ) __A : Any = ravel(__snake_case ) # reshape and get the dst image __A : Dict = dot(__snake_case , __snake_case ).reshape(__snake_case , __snake_case ).astype(__snake_case ) return dst if __name__ == "__main__": # read original image lowercase__ : List[Any] = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value lowercase__ : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowercase__ : Any = gaussian_filter(gray, 3, sigma=1) lowercase__ : str = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
190
0
from math import factorial def lowerCamelCase_ ( UpperCamelCase__ : int = 20 ): '''simple docstring''' UpperCamelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCamelCase__ = n // 2 return int(factorial(UpperCamelCase__ ) / (factorial(UpperCamelCase__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: lowercase = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
35
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowercase = get_logger(__name__) class __lowercase : '''simple docstring''' def __init__( self : Dict , _a : Optional[str] = None ): UpperCamelCase__ = ( os.path.join(_a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase__ = Extractor def A_ ( self : str , _a : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase__ = os.path.abspath(_a ) return os.path.join(self.extract_dir , hash_url_to_filename(_a ) ) def A_ ( self : Optional[Any] , _a : str , _a : bool ): return force_extract or ( not os.path.isfile(_a ) and not (os.path.isdir(_a ) and os.listdir(_a )) ) def A_ ( self : int , _a : str , _a : bool = False ): UpperCamelCase__ = self.extractor.infer_extractor_format(_a ) if not extractor_format: return input_path UpperCamelCase__ = self._get_output_path(_a ) if self._do_extract(_a , _a ): self.extractor.extract(_a , _a , _a ) return output_path class __lowercase ( A ): '''simple docstring''' @classmethod @abstractmethod def A_ ( cls : List[Any] , _a : Union[Path, str] , **_a : List[str] ): ... @staticmethod @abstractmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): ... class __lowercase ( A, A ): '''simple docstring''' _A : List[bytes] = [] @staticmethod def A_ ( _a : Union[Path, str] , _a : int ): with open(_a , '''rb''' ) as f: return f.read(_a ) @classmethod def A_ ( cls : str , _a : Union[Path, str] , _a : bytes = b"" ): if not magic_number: UpperCamelCase__ = max(len(_a ) for cls_magic_number in cls.magic_numbers ) try: UpperCamelCase__ = cls.read_magic_number(_a , _a ) except OSError: return False return any(magic_number.startswith(_a ) for cls_magic_number in cls.magic_numbers ) class __lowercase ( A ): '''simple docstring''' @classmethod def A_ ( cls : Union[str, Any] , _a : Union[Path, str] , **_a : Any ): return tarfile.is_tarfile(_a ) @staticmethod def A_ ( _a : int , _a : List[str] ): def resolved(_a : str ) -> str: return os.path.realpath(os.path.abspath(_a ) ) def badpath(_a : str , _a : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_a , _a ) ).startswith(_a ) def badlink(_a : Tuple , _a : str ) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase__ = resolved(os.path.join(_a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_a ) UpperCamelCase__ = resolved(_a ) for finfo in members: if badpath(finfo.name , _a ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(_a , _a ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(_a , _a ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): os.makedirs(_a , exist_ok=_a ) UpperCamelCase__ = tarfile.open(_a ) tar_file.extractall(_a , members=TarExtractor.safemembers(_a , _a ) ) tar_file.close() class __lowercase ( A ): '''simple docstring''' _A : int = [b'''\x1F\x8B'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with gzip.open(_a , '''rb''' ) as gzip_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : int = [ b'''PK\x03\x04''', b'''PK\x05\x06''', # empty archive b'''PK\x07\x08''', # spanned archive ] @classmethod def A_ ( cls : Dict , _a : Union[Path, str] , _a : bytes = b"" ): if super().is_extractable(_a , magic_number=_a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_a , '''rb''' ) as fp: UpperCamelCase__ = _EndRecData(_a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase__ = fp.read(_a ) # CD is where we expect it to be if len(_a ) == sizeCentralDir: UpperCamelCase__ = struct.unpack(_a , _a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): os.makedirs(_a , exist_ok=_a ) with zipfile.ZipFile(_a , '''r''' ) as zip_file: zip_file.extractall(_a ) zip_file.close() class __lowercase ( A ): '''simple docstring''' _A : Tuple = [b'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with lzma.open(_a ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Union[str, Any] = [b'''Rar!\x1a\x07\x00''', b'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_a , exist_ok=_a ) UpperCamelCase__ = rarfile.RarFile(_a ) rf.extractall(_a ) rf.close() class __lowercase ( A ): '''simple docstring''' _A : Optional[Any] = [b'''\x28\xb5\x2F\xFD'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd UpperCamelCase__ = zstd.ZstdDecompressor() with open(_a , '''rb''' ) as ifh, open(_a , '''wb''' ) as ofh: dctx.copy_stream(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Any = [b'''\x42\x5A\x68'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with bza.open(_a , '''rb''' ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Optional[int] = [b'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_a , exist_ok=_a ) with pyazr.SevenZipFile(_a , '''r''' ) as archive: archive.extractall(_a ) class __lowercase ( A ): '''simple docstring''' _A : Union[str, Any] = [b'''\x04\x22\x4D\x18'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_a , '''rb''' ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase : '''simple docstring''' _A : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def A_ ( cls : Dict ): return max( len(_a ) for extractor in cls.extractors.values() if issubclass(_a , _a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def A_ ( _a : Union[Path, str] , _a : int ): try: return MagicNumberBaseExtractor.read_magic_number(_a , magic_number_length=_a ) except OSError: return b"" @classmethod def A_ ( cls : Optional[Any] , _a : Union[Path, str] , _a : bool = False ): warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_a , ) UpperCamelCase__ = cls.infer_extractor_format(_a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def A_ ( cls : str , _a : Union[Path, str] ): # <Added version="2.4.0"/> UpperCamelCase__ = cls._get_magic_number_max_length() UpperCamelCase__ = cls._read_magic_number(_a , _a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_a , magic_number=_a ): return extractor_format @classmethod def A_ ( cls : List[Any] , _a : Union[Path, str] , _a : Union[Path, str] , _a : Optional[str] = None , _a : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(_a ) , exist_ok=_a ) # Prevent parallel extractions UpperCamelCase__ = str(Path(_a ).with_suffix('''.lock''' ) ) with FileLock(_a ): shutil.rmtree(_a , ignore_errors=_a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_a , _a ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_a , ) UpperCamelCase__ = extractor if extractor != '''deprecated''' else extractor_format else: UpperCamelCase__ = cls.extractors[extractor_format] return extractor.extract(_a , _a ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_a ): return extractor.extract(_a , _a )
35
1