code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowercase_ ( pl.LightningModule ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : str ): super().__init__() _A = model _A = 2 _A = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCAmelCase_ ( self : Optional[int] ): pass def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : str ) -> str: '''simple docstring''' _A = LongformerModel.from_pretrained(UpperCamelCase_ ) _A = LightningModel(UpperCamelCase_ ) _A = torch.load(UpperCamelCase_ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model _A = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
315
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __A : '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : int=[1, 1, 2] , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Any="gelu_new" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[int]=False , ) ->str: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = block_sizes snake_case_ = num_decoder_layers snake_case_ = d_model snake_case_ = n_head snake_case_ = d_head snake_case_ = d_inner snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = 2 snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = initializer_std # Used in the tests to check the size of the first attention layer snake_case_ = n_head # Used in the tests to check the size of the first hidden state snake_case_ = self.d_model # Used in the tests to check the number of output hidden states/attentions snake_case_ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: snake_case_ = self.num_hidden_layers + 2 def lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ) ->Tuple: """simple docstring""" snake_case_ = TFFunnelModel(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case_ = False snake_case_ = TFFunnelModel(config=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case_ = False snake_case_ = TFFunnelModel(config=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , ) ->Dict: """simple docstring""" snake_case_ = TFFunnelBaseModel(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) snake_case_ = False snake_case_ = TFFunnelBaseModel(config=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) snake_case_ = False snake_case_ = TFFunnelBaseModel(config=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , ) ->int: """simple docstring""" snake_case_ = TFFunnelForPreTraining(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , ) ->str: """simple docstring""" snake_case_ = TFFunnelForMaskedLM(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , ) ->Any: """simple docstring""" snake_case_ = self.num_labels snake_case_ = TFFunnelForSequenceClassification(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , ) ->Optional[int]: """simple docstring""" snake_case_ = self.num_choices snake_case_ = TFFunnelForMultipleChoice(config=UpperCAmelCase_ ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , ) ->List[Any]: """simple docstring""" snake_case_ = self.num_labels snake_case_ = TFFunnelForTokenClassification(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , ) ->List[Any]: """simple docstring""" snake_case_ = TFFunnelForQuestionAnswering(config=UpperCAmelCase_ ) snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Union[str, Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __lowercase: Optional[Any] = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __lowercase: List[str] = False __lowercase: Optional[Any] = False def lowerCAmelCase ( self : int ) ->int: """simple docstring""" snake_case_ = TFFunnelModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @require_tf class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Union[str, Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __lowercase: int = False __lowercase: Dict = False def lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" snake_case_ = TFFunnelModelTester(self , base=UpperCAmelCase_ ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ )
233
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: if attention_mask is None: snake_case_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: snake_case_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: snake_case_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A : '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : int=99 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[Any]="relu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : List[str]=20 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Optional[Any]=0 , ) ->Dict: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = self.eos_token_id # Eos Token snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case_ = input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = self.get_config() snake_case_ = prepare_mam_aaa_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ , snake_case_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" snake_case_ = MaMaaaModel(config=UpperCAmelCase_ ).get_decoder().to(UpperCAmelCase_ ).eval() snake_case_ = inputs_dict["""input_ids"""] snake_case_ = inputs_dict["""attention_mask"""] snake_case_ = inputs_dict["""head_mask"""] # first forward pass snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )["""last_hidden_state"""] snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[ """last_hidden_state""" ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-2 ) ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) ->int: """simple docstring""" snake_case_ = MaMaaaModel(config=UpperCAmelCase_ ).to(UpperCAmelCase_ ).eval() snake_case_ = model(**UpperCAmelCase_ ) snake_case_ = outputs.encoder_last_hidden_state snake_case_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = model.get_encoder() encoder.save_pretrained(UpperCAmelCase_ ) snake_case_ = MaMaaaEncoder.from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ ) snake_case_ = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = model.get_decoder() decoder.save_pretrained(UpperCAmelCase_ ) snake_case_ = MaMaaaDecoder.from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ ) snake_case_ = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __lowercase: Tuple = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __lowercase: Dict = True __lowercase: List[Any] = True __lowercase: Union[str, Any] = False __lowercase: Optional[int] = False def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) ->str: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" snake_case_ = MaMaaaModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_ ) snake_case_ , snake_case_ = model_class.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase_ ) def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = copy.deepcopy(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) if not self.is_encoder_decoder: snake_case_ = inputs["""input_ids"""] del inputs["input_ids"] else: snake_case_ = inputs["""input_ids"""] snake_case_ = inputs.get("""decoder_input_ids""" , UpperCAmelCase_ ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , UpperCAmelCase_ ) snake_case_ = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case_ = wte(UpperCAmelCase_ ) else: snake_case_ = wte(UpperCAmelCase_ ) snake_case_ = wte(UpperCAmelCase_ ) with torch.no_grad(): model(**UpperCAmelCase_ )[0] def lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = input_dict["""input_ids"""] snake_case_ = input_ids.ne(1 ).to(UpperCAmelCase_ ) snake_case_ = MaMaaaForConditionalGeneration(UpperCAmelCase_ ).eval().to(UpperCAmelCase_ ) if torch_device == "cuda": model.half() model.generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) model.generate(num_beams=4 , do_sample=UpperCAmelCase_ , early_stopping=UpperCAmelCase_ , num_return_sequences=3 ) def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def lowerCAmelCase ( self : str ) ->Any: """simple docstring""" snake_case_ = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase_ ) snake_case_ = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) snake_case_ = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) snake_case_ = prepare_mam_aaa_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ )[0] snake_case_ = torch.Size((1, 11, 1_024) ) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here snake_case_ = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=UpperCAmelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" snake_case_ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase_ ) # change to intended input snake_case_ = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) snake_case_ = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) snake_case_ = prepare_mam_aaa_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ )[0] snake_case_ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here snake_case_ = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=UpperCAmelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase_ ) snake_case_ = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) snake_case_ = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case_ = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors="""pt""" ) snake_case_ = model.generate( input_ids=dct["""input_ids"""].to(UpperCAmelCase_ ) , attention_mask=dct["""attention_mask"""].to(UpperCAmelCase_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) snake_case_ = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] snake_case_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) assert generated == expected_en
233
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = (DDPMScheduler,) def _lowercase ( self : Optional[int], **UpperCAmelCase__ : List[Any] ): __lowercase = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase__ ) return config def _lowercase ( self : Tuple ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def _lowercase ( self : Any ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase__, beta_end=UpperCAmelCase__ ) def _lowercase ( self : Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def _lowercase ( self : int ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase__ ) def _lowercase ( self : str ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__ ) def _lowercase ( self : Tuple ): self.check_over_configs(thresholding=UpperCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__, prediction_type=UpperCAmelCase__, sample_max_value=UpperCAmelCase__, ) def _lowercase ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def _lowercase ( self : Dict ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def _lowercase ( self : Union[str, Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = len(UpperCAmelCase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual __lowercase = model(UpperCAmelCase__, UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(UpperCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _lowercase ( self : List[str] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type="v_prediction" ) __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = len(UpperCAmelCase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual __lowercase = model(UpperCAmelCase__, UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(UpperCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _lowercase ( self : Optional[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) __lowercase = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase__ ): if i == len(UpperCAmelCase__ ) - 1: __lowercase = -1 else: __lowercase = timesteps[i + 1] __lowercase = scheduler.previous_timestep(UpperCAmelCase__ ) __lowercase = prev_t.item() self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCAmelCase__, msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) def _lowercase ( self : List[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = [1_0_0, 8_7, 5_0, 1, 0] __lowercase = len(UpperCAmelCase__ ) with self.assertRaises(UpperCAmelCase__, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__, timesteps=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**UpperCAmelCase__ ) __lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__, msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ )
17
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case : Any = logging.getLogger(__name__) @dataclass class A : lowercase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase_ = field( default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase_ = field( default='NER' ,metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) lowercase_ = field( default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase_ = field( default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) @dataclass class A : lowercase_ = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) lowercase_ = field( default=_a ,metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} ,) lowercase_ = field( default=128 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowercase_ = field( default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case_ (): '''simple docstring''' _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) _a = import_module('''tasks''' ) try: _a = getattr(UpperCamelCase , model_args.task_type ) _a = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _a = token_classification_task.get_labels(data_args.labels ) _a = dict(enumerate(UpperCamelCase ) ) _a = len(UpperCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase , idalabel=UpperCamelCase , labelaid={label: i for i, label in enumerate(UpperCamelCase )} , cache_dir=model_args.cache_dir , ) _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _a = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets _a = ( TokenClassificationDataset( token_classification_task=UpperCamelCase , data_dir=data_args.data_dir , tokenizer=UpperCamelCase , labels=UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _a = ( TokenClassificationDataset( token_classification_task=UpperCamelCase , data_dir=data_args.data_dir , tokenizer=UpperCamelCase , labels=UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ) -> Tuple[List[int], List[int]]: _a = np.argmax(UpperCamelCase , axis=2 ) _a , _a = preds.shape _a = [[] for _ in range(UpperCamelCase )] _a = [[] for _ in range(UpperCamelCase )] for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict: _a , _a = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCamelCase , UpperCamelCase ), "precision": precision_score(UpperCamelCase , UpperCamelCase ), "recall": recall_score(UpperCamelCase , UpperCamelCase ), "f1": fa_score(UpperCamelCase , UpperCamelCase ), } # Data collator _a = DataCollatorWithPadding(UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _a = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , data_collator=UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _a = trainer.evaluate() _a = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , UpperCamelCase , UpperCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(UpperCamelCase ) # Predict if training_args.do_predict: _a = TokenClassificationDataset( token_classification_task=UpperCamelCase , data_dir=data_args.data_dir , tokenizer=UpperCamelCase , labels=UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _a , _a , _a = trainer.predict(UpperCamelCase ) _a , _a = align_predictions(UpperCamelCase , UpperCamelCase ) _a = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , UpperCamelCase , UpperCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions _a = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return results def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
179
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : Dict = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
1
"""simple docstring""" def _A ( lowercase ): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def _A ( lowercase ): """simple docstring""" a =credit_card_number a =0 a =len(lowercase ) - 2 for i in range(lowercase , -1 , -2 ): # double the value of every second digit a =int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 a =cc_number[:i] + str(lowercase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowercase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _A ( lowercase ): """simple docstring""" a =f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(lowercase ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(lowercase ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(lowercase ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
81
"""simple docstring""" from scipy.stats import pearsonr import datasets lowerCamelCase_ : Optional[int] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ lowerCamelCase_ : Optional[Any] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ lowerCamelCase_ : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Optional[Any]: if return_pvalue: a =pearsonr(__A , __A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__A , __A )[0] )}
81
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : str = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = DPTConfig() if "large" in checkpoint_url: lowerCamelCase_ = 10_24 lowerCamelCase_ = 40_96 lowerCamelCase_ = 24 lowerCamelCase_ = 16 lowerCamelCase_ = [5, 11, 17, 23] lowerCamelCase_ = [2_56, 5_12, 10_24, 10_24] lowerCamelCase_ = (1, 3_84, 3_84) if "ade" in checkpoint_url: lowerCamelCase_ = True lowerCamelCase_ = 1_50 lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = 'ade20k-id2label.json' lowerCamelCase_ = json.load(open(cached_download(hf_hub_url(lowercase , lowercase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = [1, 1_50, 4_80, 4_80] return config, expected_shape def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase_ = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: lowerCamelCase_ = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: lowerCamelCase_ = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: lowerCamelCase_ = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: lowerCamelCase_ = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCamelCase_ = name.replace('proj' , 'projection' ) if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: lowerCamelCase_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase_ = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: lowerCamelCase_ = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: lowerCamelCase_ = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: lowerCamelCase_ = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: lowerCamelCase_ = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: lowerCamelCase_ = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: lowerCamelCase_ = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: lowerCamelCase_ = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase_ = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowerCamelCase_ = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: lowerCamelCase_ = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: lowerCamelCase_ = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: lowerCamelCase_ = name.replace('conv1' , 'convolution1' ) if "conv2" in name: lowerCamelCase_ = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCamelCase_ = name.replace('pretrained' , 'dpt' ) if "bn" in name: lowerCamelCase_ = name.replace('bn' , 'batch_norm' ) if "head" in name: lowerCamelCase_ = name.replace('head' , 'head.head' ) if "encoder.norm" in name: lowerCamelCase_ = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: lowerCamelCase_ = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : List[Any] ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowerCamelCase_ = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[Any] , lowercase : str , lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = get_dpt_config(lowercase ) # load original state_dict from URL lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(lowercase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowercase ) lowerCamelCase_ = val # read in qkv matrices read_in_q_k_v(lowercase , lowercase ) # load HuggingFace model lowerCamelCase_ = DPTForSemanticSegmentation(lowercase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowercase ) model.load_state_dict(lowercase ) model.eval() # Check outputs on an image lowerCamelCase_ = 4_80 if 'ade' in checkpoint_url else 3_84 lowerCamelCase_ = DPTImageProcessor(size=lowercase ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(lowercase , return_tensors='pt' ) # forward pass lowerCamelCase_ = model(**lowercase ).logits if 'ade' in checkpoint_url else model(**lowercase ).predicted_depth # Assert logits lowerCamelCase_ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: lowerCamelCase_ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(lowercase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowercase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowercase ) ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowercase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowercase , ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) lowerCamelCase : Optional[int] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
208
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase : Optional[int] = float("nan") class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : int ) -> Dict: """simple docstring""" lowerCamelCase_ = sys.stdout lowerCamelCase_ = open(A_ , 'a' ) def __getattr__( self : List[Any] , A_ : Optional[int] ) -> str: """simple docstring""" return getattr(self.stdout , A_ ) def a__ ( self : int , A_ : int ) -> List[str]: """simple docstring""" self.stdout.write(A_ ) # strip tqdm codes self.file.write(re.sub(r'^.*\r' , '' , A_ , 0 , re.M ) ) def _SCREAMING_SNAKE_CASE ( lowercase : str=80 , lowercase : Tuple=False ): '''simple docstring''' lowerCamelCase_ = [] # deal with critical env vars lowerCamelCase_ = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: lowerCamelCase_ = os.environ.get(lowercase , lowercase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) lowerCamelCase_ = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(lowercase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase_ = [] lowerCamelCase_ = '' while len(lowercase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(lowercase ) == 0 or len(lowercase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowercase ) lowerCamelCase_ = '' return "\\\n".join(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own lowerCamelCase_ = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir lowerCamelCase_ = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : int , lowercase : Dict , lowercase : List[str] , lowercase : List[str] , lowercase : List[str] , lowercase : Dict ): '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) lowerCamelCase_ = subprocess.run(lowercase , capture_output=lowercase , text=lowercase ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams lowerCamelCase_ = variation.replace(' ' , '-' ) with open(Path(lowercase ) / f"""log.{prefix}.stdout.txt""" , 'w' ) as f: f.write(result.stdout ) with open(Path(lowercase ) / f"""log.{prefix}.stderr.txt""" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = json.load(lowercase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Dict , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : Dict , lowercase : Any , lowercase : int , ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = f"""{id}: {variation:<{longest_variation_len}}""" lowerCamelCase_ = f"""{preamble}: """ lowerCamelCase_ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowercase ) , desc=lowercase , leave=lowercase ): lowerCamelCase_ = process_run_single( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = single_run_metrics[target_metric_key] if not math.isnan(lowercase ): metrics.append(lowercase ) results.append(lowercase ) outcome += "✓" else: outcome += "✘" lowerCamelCase_ = f"""\33[2K\r{outcome}""" if len(lowercase ) > 0: lowerCamelCase_ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCamelCase_ = round(mean_metrics[target_metric_key] , 2 ) lowerCamelCase_ = f"""{outcome} {mean_target}""" if len(lowercase ) > 1: results_str += f""" {tuple(round(lowercase , 2 ) for x in results )}""" print(lowercase ) lowerCamelCase_ = variation return mean_metrics else: print(lowercase ) return {variation_key: variation, target_metric_key: nan} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = pd.DataFrame(lowercase ) lowerCamelCase_ = 'variation' lowerCamelCase_ = 'diff_%' lowerCamelCase_ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCamelCase_ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowercase ): # as a fallback, use the minimal value as the sentinel lowerCamelCase_ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowercase ): lowerCamelCase_ = df.apply( lambda lowercase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns lowerCamelCase_ = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase_ = df.reindex(lowercase , axis='columns' ) # reorder cols # capitalize lowerCamelCase_ = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible lowerCamelCase_ = df.rename(lambda lowercase : c.replace('_' , '<br>' ) , axis='columns' ) lowerCamelCase_ = df.rename(lambda lowercase : c.replace('_' , '\n' ) , axis='columns' ) lowerCamelCase_ = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowercase , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowercase , floatfmt='.2f' )] print('\n\n'.join(lowercase ) ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=lowercase , type=lowercase , required=lowercase , help='Base cmd' , ) parser.add_argument( '--variations' , default=lowercase , type=lowercase , nargs='+' , required=lowercase , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=lowercase , type=lowercase , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=lowercase , type=lowercase , required=lowercase , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=lowercase , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=lowercase , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=lowercase , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=lowercase , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.output_dir Path(lowercase ).mkdir(exist_ok=lowercase ) lowerCamelCase_ = get_base_command(lowercase , lowercase ) # split each dimension into its --foo variations lowerCamelCase_ = [list(map(str.strip , re.split(r'\|' , lowercase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase_ = list(map(str.strip , map(' '.join , itertools.product(*lowercase ) ) ) ) lowerCamelCase_ = max(len(lowercase ) for x in variations ) # split wanted keys lowerCamelCase_ = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase_ = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) lowerCamelCase_ = Tee(lowercase ) print(f"""\n*** Running {len(lowercase )} benchmarks:""" ) print(f"""Base command: {" ".join(lowercase )}""" ) lowerCamelCase_ = 'variation' lowerCamelCase_ = [] for id, variation in enumerate(tqdm(lowercase , desc='Total completion: ' , leave=lowercase ) ): lowerCamelCase_ = base_cmd + variation.split() results.append( process_run( id + 1 , lowercase , lowercase , lowercase , lowercase , args.target_metric_key , lowercase , args.repeat_times , lowercase , args.verbose , ) ) process_results(lowercase , args.target_metric_key , lowercase , args.base_variation , lowercase ) if __name__ == "__main__": main()
208
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__): _lowercase : Dict = """pixel_values""" _lowercase : List[Any] = False _lowercase : int = TimmBackboneConfig def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , "timm" ) super().__init__(lowerCAmelCase__ ) a__ : Optional[Any] =config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(lowerCAmelCase__ , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) a__ : List[Any] =getattr(lowerCAmelCase__ , "use_pretrained_backbone" , lowerCAmelCase__ ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. a__ : Dict =config.out_indices if getattr(lowerCAmelCase__ , "out_indices" , lowerCAmelCase__ ) is not None else (-1,) a__ : List[Any] =timm.create_model( config.backbone , pretrained=lowerCAmelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase__ , **lowerCAmelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a__ : Optional[int] =self._backbone.return_layers a__ : Union[str, Any] ={layer["module"]: str(lowerCAmelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase__ ) @classmethod def _lowercase ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig a__ : Any =kwargs.pop("config" , TimmBackboneConfig() ) a__ : List[Any] =kwargs.pop("use_timm_backbone" , lowerCAmelCase__ ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) a__ : Optional[Any] =kwargs.pop("num_channels" , config.num_channels ) a__ : List[Any] =kwargs.pop("features_only" , config.features_only ) a__ : List[Any] =kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) a__ : Any =kwargs.pop("out_indices" , config.out_indices ) a__ : List[Any] =TimmBackboneConfig( backbone=lowerCAmelCase__ , num_channels=lowerCAmelCase__ , features_only=lowerCAmelCase__ , use_pretrained_backbone=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , ) return super()._from_config(lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' pass def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a__ : int =return_dict if return_dict is not None else self.config.use_return_dict a__ : List[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ : Any =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone a__ : List[str] =self._all_layers a__ : Optional[Any] =self._backbone(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Union[str, Any] =self._return_layers a__ : str =tuple(hidden_states[i] for i in self.out_indices ) else: a__ : Union[str, Any] =self._backbone(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : List[str] =None a__ : Optional[Any] =tuple(lowerCAmelCase__ ) a__ : int =tuple(lowerCAmelCase__ ) if hidden_states is not None else None if not return_dict: a__ : str =(feature_maps,) if output_hidden_states: a__ : Union[str, Any] =output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , attentions=lowerCAmelCase__ )
95
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : int = 3 lowerCAmelCase_ : Dict = (32, 32) lowerCAmelCase_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a_ ) return image @property def lowerCamelCase ( self : List[Any] ): torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowerCamelCase ( self : Tuple ): torch.manual_seed(0 ) lowerCAmelCase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowerCamelCase ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(a_ ) @property def lowerCamelCase ( self : Union[str, Any] ): def extract(*a_ : Tuple , **a_ : Tuple ): class __lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = torch.ones([0] ) def lowerCamelCase ( self : str , a_ : Optional[int] ): self.pixel_values.to(a_ ) return self return Out() return extract def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[Any] = self.dummy_cond_unet lowerCAmelCase_ : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) lowerCAmelCase_ : List[Any] = self.dummy_vae lowerCAmelCase_ : List[str] = self.dummy_text_encoder lowerCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ : Optional[Any] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : str = "A painting of a squirrel eating a burger" lowerCAmelCase_ : Any = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = sd_pipe([prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ : str = output.images lowerCAmelCase_ : Dict = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : str = sd_pipe( [prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=a_ , )[0] lowerCAmelCase_ : str = image[0, -3:, -3:, -1] lowerCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Any = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Union[str, Any] = self.dummy_cond_unet lowerCAmelCase_ : Any = PNDMScheduler(skip_prk_steps=a_ ) lowerCAmelCase_ : List[Any] = self.dummy_vae lowerCAmelCase_ : List[str] = self.dummy_text_encoder lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ : List[str] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[Any] = "A painting of a squirrel eating a burger" lowerCAmelCase_ : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Any = sd_pipe([prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : List[str] = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Optional[int] = sd_pipe( [prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=a_ , )[0] lowerCAmelCase_ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=a_ ) assert isinstance(a_ , a_ ) assert isinstance(pipe.scheduler , a_ ) assert pipe.safety_checker is None lowerCAmelCase_ : str = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) lowerCAmelCase_ : List[str] = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase_ : Any = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : str = self.dummy_cond_unet lowerCAmelCase_ : str = PNDMScheduler(skip_prk_steps=a_ ) lowerCAmelCase_ : Tuple = self.dummy_vae lowerCAmelCase_ : Dict = self.dummy_text_encoder lowerCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 lowerCAmelCase_ : int = unet.half() lowerCAmelCase_ : Dict = vae.half() lowerCAmelCase_ : List[Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ : Optional[int] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : List[str] = "A painting of a squirrel eating a burger" lowerCAmelCase_ : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=a_ ) lowerCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : List[str] = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) lowerCAmelCase_ : Optional[int] = 40_03_66_03_46 lowerCAmelCase_ : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(a_ ) lowerCAmelCase_ : Union[str, Any] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Union[str, Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCAmelCase_ : List[str] = torch.manual_seed(a_ ) lowerCAmelCase_ : Any = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Optional[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : str ): lowerCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=a_ ) lowerCAmelCase_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Union[str, Any] = "padme amidala taking a bath artwork, safe for work, no nudity" lowerCAmelCase_ : Union[str, Any] = 27_34_97_17_55 lowerCAmelCase_ : Union[str, Any] = 7 lowerCAmelCase_ : str = torch.manual_seed(a_ ) lowerCAmelCase_ : Dict = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] lowerCAmelCase_ : int = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCAmelCase_ : Optional[int] = torch.manual_seed(a_ ) lowerCAmelCase_ : Union[str, Any] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) lowerCAmelCase_ : Any = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) lowerCAmelCase_ : List[Any] = 10_44_35_52_34 lowerCAmelCase_ : Dict = 12 lowerCAmelCase_ : int = torch.manual_seed(a_ ) lowerCAmelCase_ : List[str] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : int = output.images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] lowerCAmelCase_ : int = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCAmelCase_ : int = torch.manual_seed(a_ ) lowerCAmelCase_ : Any = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : str = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
241
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=2 ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=10 ,__UpperCamelCase=3 ,__UpperCamelCase=32 * 4 ,__UpperCamelCase=32 * 6 ,__UpperCamelCase=4 ,__UpperCamelCase=32 ,) -> str: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Any = batch_size lowercase_ : Any = is_training lowercase_ : Tuple = use_auxiliary_loss lowercase_ : int = num_queries lowercase_ : Optional[Any] = num_channels lowercase_ : Optional[int] = min_size lowercase_ : Optional[int] = max_size lowercase_ : List[str] = num_labels lowercase_ : Optional[Any] = mask_feature_size def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _A ) lowercase_ : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_A ) lowercase_ : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_A ) > 0.5 ).float() lowercase_ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) ,device=_A ) > 0.5).long() lowercase_ : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.prepare_config_and_inputs() lowercase_ : Any = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = output.encoder_hidden_states lowercase_ : List[Any] = output.pixel_decoder_hidden_states lowercase_ : Optional[int] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_A ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) ,config.decoder_config.decoder_layers ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=False ) -> int: '''simple docstring''' with torch.no_grad(): lowercase_ : Optional[Any] = MaskFormerModel(config=_A ) model.to(_A ) model.eval() lowercase_ : str = model(pixel_values=_A ,pixel_mask=_A ) lowercase_ : Tuple = model(_A ,output_hidden_states=_A ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_A ,_A ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[Any] = MaskFormerForInstanceSegmentation(config=_A ) model.to(_A ) model.eval() def comm_check_on_output(__UpperCamelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase_ : Union[str, Any] = model(pixel_values=_A ,pixel_mask=_A ) lowercase_ : Tuple = model(_A ) comm_check_on_output(_A ) lowercase_ : List[str] = model( pixel_values=_A ,pixel_mask=_A ,mask_labels=_A ,class_labels=_A ) comm_check_on_output(_A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class UpperCamelCase ( snake_case__ , snake_case__ , unittest.TestCase ): lowercase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowercase = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Tuple = MaskFormerModelTester(self ) lowercase_ : Any = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_A ,**_A ,output_hidden_states=_A ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_A ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='MaskFormer is not a generative model' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[Any] = model_class(_A ) lowercase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[int] = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: lowercase_ : Optional[Any] = MaskFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[Any] = (self.model_tester.min_size,) * 2 lowercase_ : Optional[Any] = { 'pixel_values': torch.randn((2, 3, *size) ,device=_A ), 'mask_labels': torch.randn((2, 10, *size) ,device=_A ), 'class_labels': torch.zeros(2 ,10 ,device=_A ).long(), } lowercase_ : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_A ) lowercase_ : List[str] = model(**_A ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_A ,**_A ,output_hidden_states=_A ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(_A ).to(_A ) lowercase_ : Dict = model(**_A ,output_attentions=_A ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowercase_ : Optional[int] = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() lowercase_ : Dict = model_class(_A ) model.to(_A ) model.train() lowercase_ : Any = model(_A ,mask_labels=_A ,class_labels=_A ).loss loss.backward() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Tuple = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() lowercase_ : List[Any] = True lowercase_ : List[Any] = True lowercase_ : List[Any] = model_class(_A ) model.to(_A ) model.train() lowercase_ : List[str] = model(_A ,mask_labels=_A ,class_labels=_A ) lowercase_ : Dict = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase_ : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowercase_ : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase_ : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __SCREAMING_SNAKE_CASE =1E-4 def lowercase__( ): lowercase_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCamelCase ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[str] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(_A ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : int = prepare_img() lowercase_ : List[Any] = image_processor(_A ,return_tensors='pt' ).to(_A ) lowercase_ : Optional[int] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A ,(1, 3, 800, 1088) ) with torch.no_grad(): lowercase_ : List[Any] = model(**_A ) lowercase_ : Any = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_A ,atol=_A ) ) lowercase_ : Tuple = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_A ,atol=_A ) ) lowercase_ : Optional[int] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_A ,atol=_A ) ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_A ) .eval() ) lowercase_ : Optional[int] = self.default_image_processor lowercase_ : int = prepare_img() lowercase_ : Dict = image_processor(_A ,return_tensors='pt' ).to(_A ) lowercase_ : Optional[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A ,(1, 3, 800, 1088) ) with torch.no_grad(): lowercase_ : int = model(**_A ) # masks_queries_logits lowercase_ : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowercase_ : Union[str, Any] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] lowercase_ : Optional[int] = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_A ,atol=_A ) ) # class_queries_logits lowercase_ : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : Any = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_A ,atol=_A ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : int = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(_A ) .eval() ) lowercase_ : List[str] = self.default_image_processor lowercase_ : str = prepare_img() lowercase_ : Dict = image_processor(_A ,return_tensors='pt' ).to(_A ) lowercase_ : Optional[int] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A ,(1, 3, 800, 1088) ) with torch.no_grad(): lowercase_ : str = model(**_A ) # masks_queries_logits lowercase_ : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowercase_ : Optional[int] = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] lowercase_ : List[str] = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_A ,atol=_A ) ) # class_queries_logits lowercase_ : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : Tuple = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_A ,atol=_A ) ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_A ) .eval() ) lowercase_ : List[str] = self.default_image_processor lowercase_ : Any = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) lowercase_ : int = inputs['pixel_values'].to(_A ) lowercase_ : Tuple = [el.to(_A ) for el in inputs['mask_labels']] lowercase_ : List[Any] = [el.to(_A ) for el in inputs['class_labels']] with torch.no_grad(): lowercase_ : Union[str, Any] = model(**_A ) self.assertTrue(outputs.loss is not None )
364
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
0
def snake_case_ ( lowerCAmelCase_ : int ): return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Tuple = 0 __lowercase : Optional[int] = number while duplicate > 0: __lowercase , __lowercase : Tuple = divmod(lowerCAmelCase_ , 10 ) fact_sum += factorial(lowerCAmelCase_ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') lowerCamelCase : int = int(input('''Enter number: ''').strip()) print( f'''{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.''' )
233
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : List[str] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[Any] = '''canine''' def __init__( self : List[str] , __a : Optional[int]=768 , __a : Any=12 , __a : Any=12 , __a : Dict=3072 , __a : Dict="gelu" , __a : List[Any]=0.1 , __a : List[Any]=0.1 , __a : Tuple=16384 , __a : List[Any]=16 , __a : List[Any]=0.02 , __a : Optional[Any]=1E-12 , __a : Dict=0 , __a : List[Any]=0xe_0_0_0 , __a : Optional[int]=0xe_0_0_1 , __a : Any=4 , __a : Dict=4 , __a : Optional[int]=8 , __a : Any=16384 , __a : Optional[Any]=128 , **__a : List[str] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : int = max_position_embeddings __lowercase : List[str] = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : int = intermediate_size __lowercase : Dict = hidden_act __lowercase : Tuple = hidden_dropout_prob __lowercase : Union[str, Any] = attention_probs_dropout_prob __lowercase : Union[str, Any] = initializer_range __lowercase : Any = type_vocab_size __lowercase : int = layer_norm_eps # Character config: __lowercase : int = downsampling_rate __lowercase : str = upsampling_kernel_size __lowercase : Union[str, Any] = num_hash_functions __lowercase : Optional[Any] = num_hash_buckets __lowercase : Optional[int] = local_transformer_stride
233
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __lowercase ( snake_case_ : str ) ->List[Any]: '''simple docstring''' if isinstance(snake_case_ ,collections.abc.Iterable ): return x return (x, x) @require_flax class __snake_case : """simple docstring""" def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Any = np.abs((a - b) ).max() self.assertLessEqual(__lowerCamelCase , __lowerCamelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ): '''simple docstring''' __A : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase ) __A : List[Any] = FlaxVisionTextDualEncoderModel(__lowerCamelCase ) __A : int = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ): '''simple docstring''' __A , __A : List[str] = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) __A : List[str] = {'''vision_model''': vision_model, '''text_model''': text_model} __A : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase ) __A : Dict = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ): '''simple docstring''' __A , __A : List[Any] = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) __A : int = {'''vision_model''': vision_model, '''text_model''': text_model} __A : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase ) __A : Any = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) __A : Optional[int] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) __A : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) __A : Tuple = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) __A : Any = after_output[0] __A : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1e-3 ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ): '''simple docstring''' __A , __A : Any = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) __A : Optional[int] = {'''vision_model''': vision_model, '''text_model''': text_model} __A : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase ) __A : Any = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) __A : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __A : Optional[Any] = to_atuple(vision_model.config.image_size ) __A : Any = to_atuple(vision_model.config.patch_size ) __A : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __A : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __A : str = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' pt_model.to(__lowerCamelCase ) pt_model.eval() # prepare inputs __A : Dict = inputs_dict __A : str = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __A : Optional[Any] = pt_model(**__lowerCamelCase ).to_tuple() __A : int = fx_model(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__lowerCamelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__lowerCamelCase ) __A : int = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase , from_pt=__lowerCamelCase ) __A : List[Any] = fx_model_loaded(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__lowerCamelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__lowerCamelCase ) __A : List[str] = VisionTextDualEncoderModel.from_pretrained(__lowerCamelCase , from_flax=__lowerCamelCase ) pt_model_loaded.to(__lowerCamelCase ) pt_model_loaded.eval() with torch.no_grad(): __A : Optional[int] = pt_model_loaded(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__lowerCamelCase , pt_output_loaded.numpy() , 4e-2 ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase ) __A : Optional[Any] = VisionTextDualEncoderModel(__lowerCamelCase ) __A : Any = FlaxVisionTextDualEncoderModel(__lowerCamelCase ) __A : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __lowerCamelCase ) __A : Optional[Any] = fx_state self.check_pt_flax_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase ) __A : Any = VisionTextDualEncoderModel(__lowerCamelCase ) __A : List[Any] = FlaxVisionTextDualEncoderModel(__lowerCamelCase ) __A : Tuple = load_flax_weights_in_pytorch_model(__lowerCamelCase , fx_model.params ) self.check_pt_flax_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowerCamelCase ) @is_pt_flax_cross_test def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() __A : Optional[Any] = config_inputs_dict.pop('''vision_config''' ) __A : Tuple = config_inputs_dict.pop('''text_config''' ) __A : List[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.check_equivalence_flax_to_pt(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A , __A : List[Any] = self.get_pretrained_model_and_inputs() __A : str = model_a(**__lowerCamelCase ) __A : Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowerCamelCase ) __A : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) __A : str = model_a(**__lowerCamelCase ) __A : Tuple = after_outputs[0] __A : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1e-5 ) @require_flax class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__lowerCamelCase , text_from_pt=__lowerCamelCase , ) __A : Union[str, Any] = 13 __A : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __A : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __A : Optional[Any] = random_attention_mask([batch_size, 4] ) __A : Optional[Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Dict = FlaxViTModel(__lowerCamelCase ) __A : str = FlaxBertModel(__lowerCamelCase ) return vision_model, text_model def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = FlaxViTModelTester(self ) __A : Optional[int] = FlaxBertModelTester(self ) __A : Any = vit_model_tester.prepare_config_and_inputs() __A : List[Any] = bert_model_tester.prepare_config_and_inputs() __A , __A : int = vision_config_and_inputs __A , __A , __A , __A : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__lowerCamelCase , text_from_pt=__lowerCamelCase , ) __A : Tuple = 13 __A : Dict = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __A : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __A : Any = random_attention_mask([batch_size, 4] ) __A : Dict = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = FlaxCLIPVisionModel(__lowerCamelCase ) __A : Dict = FlaxBertModel(__lowerCamelCase ) return vision_model, text_model def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = FlaxCLIPVisionModelTester(self ) __A : str = FlaxBertModelTester(self ) __A : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() __A : Tuple = bert_model_tester.prepare_config_and_inputs() __A , __A : Optional[int] = vision_config_and_inputs __A , __A , __A , __A : List[str] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__( self ): '''simple docstring''' __A : str = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) __A : str = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __A : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __A : Optional[int] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__lowerCamelCase , padding=__lowerCamelCase , return_tensors='''np''' ) __A : Optional[Any] = model(**__lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __A : Optional[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __lowerCamelCase , atol=1e-3 ) )
179
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig a_ = logging.getLogger(__name__) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """masked_bert""" def __init__( self , __lowerCamelCase=3_0522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=0 , __lowerCamelCase="topK" , __lowerCamelCase="constant" , __lowerCamelCase=0.0 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : Dict = vocab_size __A : Union[str, Any] = hidden_size __A : Tuple = num_hidden_layers __A : Tuple = num_attention_heads __A : Optional[Any] = hidden_act __A : List[str] = intermediate_size __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : Any = max_position_embeddings __A : str = type_vocab_size __A : List[Any] = initializer_range __A : str = layer_norm_eps __A : Optional[int] = pruning_method __A : str = mask_init __A : Any = mask_scale
179
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __magic_name__ (unittest.TestCase ): def __a ( self , _a ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase_ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(_a ) def __a ( self ) -> Tuple: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "sgugger/tiny-distilbert-classification" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[str]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def __a ( self ) -> Tuple: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[str]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` lowerCAmelCase_ = None lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Dict: lowerCAmelCase_ = "sshleifer/tinier_bart" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> int: lowerCAmelCase_ = "sshleifer/tinier_bart" lowerCAmelCase_ = AutoConfig.from_pretrained(_a ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , "inf_time.csv" ) , train_memory_csv_file=os.path.join(_a , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(_a , "inf_mem.csv" ) , train_time_csv_file=os.path.join(_a , "train_time.csv" ) , env_info_csv_file=os.path.join(_a , "env.csv" ) , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "env.csv" ) ).exists() ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , "sequential" ) ) self.assertTrue(hasattr(_a , "cumulative" ) ) self.assertTrue(hasattr(_a , "current" ) ) self.assertTrue(hasattr(_a , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , "log.txt" ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) lowerCAmelCase_ = PyTorchBenchmark(_a ) lowerCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , "log.txt" ) ).exists() )
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =PriorTransformer a_ ="""hidden_states""" @property def _lowercase ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase : List[str] = 4 __lowerCamelCase : Tuple = 8 __lowerCamelCase : Tuple = 7 __lowerCamelCase : Union[str, Any] = floats_tensor((batch_size, embedding_dim) ).to(_a ) __lowerCamelCase : Tuple = floats_tensor((batch_size, embedding_dim) ).to(_a ) __lowerCamelCase : Optional[Any] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_a ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowercase ( self : List[Any] , _a : int=0 ) -> Optional[Any]: torch.manual_seed(_a ) __lowerCamelCase : List[Any] = 4 __lowerCamelCase : Tuple = 8 __lowerCamelCase : List[str] = 7 __lowerCamelCase : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(_a ) __lowerCamelCase : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(_a ) __lowerCamelCase : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_a ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _lowercase ( self : Optional[int] ) -> Tuple: return (4, 8) @property def _lowercase ( self : int ) -> int: return (4, 8) def _lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCamelCase : Any = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } __lowerCamelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def _lowercase ( self : Union[str, Any] ) -> Any: __lowerCamelCase ,__lowerCamelCase : Union[str, Any] = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_a ) __lowerCamelCase : Any = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _lowercase ( self : Union[str, Any] ) -> Any: __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.prepare_init_args_and_inputs_for_common() __lowerCamelCase : Any = self.model_class(**_a ) __lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[int] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , _a ) def _lowercase ( self : Tuple ) -> List[Any]: __lowerCamelCase : str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __lowerCamelCase : Tuple = model.to(_a ) if hasattr(_a , 'set_default_attn_processor' ): model.set_default_attn_processor() __lowerCamelCase : List[Any] = self.get_dummy_seed_input() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**_a )[0] __lowerCamelCase : Optional[int] = output[0, :5].flatten().cpu() print(_a ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowerCamelCase : int = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(_a , _a , rtol=1e-2 ) ) @slow class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any , _a : Optional[Any]=1 , _a : Dict=768 , _a : List[Any]=77 , _a : List[str]=0 ) -> int: torch.manual_seed(_a ) __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[Any] = embedding_dim __lowerCamelCase : Any = num_embeddings __lowerCamelCase : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(_a ) __lowerCamelCase : int = torch.randn((batch_size, embedding_dim) ).to(_a ) __lowerCamelCase : Tuple = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_a ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowercase ( self : Optional[int] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def _lowercase ( self : Optional[int] , _a : Union[str, Any] , _a : Any ) -> List[str]: __lowerCamelCase : Optional[Any] = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(_a ) __lowerCamelCase : List[str] = self.get_dummy_seed_input(seed=_a ) with torch.no_grad(): __lowerCamelCase : List[Any] = model(**_a )[0] assert list(sample.shape ) == [1, 768] __lowerCamelCase : Tuple = sample[0, :8].flatten().cpu() print(_a ) __lowerCamelCase : Dict = torch.tensor(_a ) assert torch_all_close(_a , _a , atol=1e-3 )
208
'''simple docstring''' from collections.abc import Sequence def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> float: return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> float: __lowerCamelCase : Any = 0.0 for coeff in reversed(_lowerCAmelCase ): __lowerCamelCase : Tuple = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
208
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ): return (preds == labels).mean() @dataclass class __lowercase : '''simple docstring''' a : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) a : str = field(metadata={"help": "Should contain the data files for the task."} ) a : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) try: __lowercase = processors[data_args.task_name]() __lowercase = processor.get_labels() __lowercase = len(lowerCamelCase_ ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase_ : EvalPrediction ) -> Dict: __lowercase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase_ , p.label_ids )} # Data collator __lowercase = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , lowerCamelCase_ , lowerCamelCase_ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
217
'''simple docstring''' import heapq def _lowerCAmelCase ( lowerCamelCase_ : dict ): __lowercase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase_ , [-1 * len(lowerCamelCase_ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowercase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowercase = heapq.heappop(lowerCamelCase_ )[1][0] chosen_vertices.add(lowerCamelCase_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowercase = elem[1][1].index(lowerCamelCase_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
217
1
import os import re import shutil import sys import tempfile import unittest import black snake_case : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. snake_case : int = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) a :List[str] = self.transformer_dir shutil.copy( os.path.join(_lowerCamelCase , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): a :Dict = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: a :str = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result a :Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) a :Any = black.format_str(_lowerCamelCase , mode=_lowerCamelCase ) a :List[str] = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(_lowerCamelCase , '''w''' , newline='''\n''' ) as f: f.write(_lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCamelCase ) with open(_lowerCamelCase , '''r''' ) as f: self.assertTrue(f.read() , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _lowerCamelCase ) , ) # Copy consistency with a really long name a :str = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('''Bert''' , _lowerCamelCase , _lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _lowerCamelCase , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _lowerCamelCase ) , ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] a :List[str] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) a :Union[str, Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) a :List[str] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) a , a :Optional[Any] = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) self.assertFalse(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) a , a :Optional[int] = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCamelCase ) a :str = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) a :Dict = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) a :str = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) a , a :int = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(_lowerCamelCase , _lowerCamelCase )
94
'''simple docstring''' import math def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> float: if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
321
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __magic_name__ ( snake_case ): UpperCamelCase_ :Tuple = """time_series_transformer""" UpperCamelCase_ :Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , _lowercase = None , _lowercase = None , _lowercase = "student_t" , _lowercase = "nll" , _lowercase = 1 , _lowercase = [1, 2, 3, 4, 5, 6, 7] , _lowercase = "mean" , _lowercase = 0 , _lowercase = 0 , _lowercase = 0 , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase = 32 , _lowercase = 32 , _lowercase = 2 , _lowercase = 2 , _lowercase = 2 , _lowercase = 2 , _lowercase = True , _lowercase = "gelu" , _lowercase = 64 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 100 , _lowercase = 0.02 , _lowercase=True , **_lowercase , )-> Optional[Any]: # time series specific configuration UpperCamelCase_ = prediction_length UpperCamelCase_ = context_length or prediction_length UpperCamelCase_ = distribution_output UpperCamelCase_ = loss UpperCamelCase_ = input_size UpperCamelCase_ = num_time_features UpperCamelCase_ = lags_sequence UpperCamelCase_ = scaling UpperCamelCase_ = num_dynamic_real_features UpperCamelCase_ = num_static_real_features UpperCamelCase_ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_lowercase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) UpperCamelCase_ = cardinality else: UpperCamelCase_ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_lowercase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) UpperCamelCase_ = embedding_dimension else: UpperCamelCase_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase_ = num_parallel_samples # Transformer architecture configuration UpperCamelCase_ = input_size * len(_lowercase ) + self._number_of_features UpperCamelCase_ = d_model UpperCamelCase_ = encoder_attention_heads UpperCamelCase_ = decoder_attention_heads UpperCamelCase_ = encoder_ffn_dim UpperCamelCase_ = decoder_ffn_dim UpperCamelCase_ = encoder_layers UpperCamelCase_ = decoder_layers UpperCamelCase_ = dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = activation_dropout UpperCamelCase_ = encoder_layerdrop UpperCamelCase_ = decoder_layerdrop UpperCamelCase_ = activation_function UpperCamelCase_ = init_std UpperCamelCase_ = use_cache super().__init__(is_encoder_decoder=_lowercase , **_lowercase ) @property def UpperCAmelCase_ ( self )-> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
60
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer SCREAMING_SNAKE_CASE :List[str] = logging.getLogger(__name__) def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=SCREAMING_SNAKE_CASE_ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=SCREAMING_SNAKE_CASE_ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=SCREAMING_SNAKE_CASE_ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=SCREAMING_SNAKE_CASE_ , default=1_0_0_0 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=SCREAMING_SNAKE_CASE_ , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=SCREAMING_SNAKE_CASE_ , default=5_1_2 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=SCREAMING_SNAKE_CASE_ , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) UpperCamelCase_ = parser.parse_args() return args def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Tuple: """simple docstring""" def fn(SCREAMING_SNAKE_CASE_ ): return tokenizer(examples["text"] ) return fn def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = [] for i in range(len(tokenized_data["input_ids"] ) ): UpperCamelCase_ = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } UpperCamelCase_ = tf.train.Features(feature=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = tf.train.Example(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE_ ) return records def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCamelCase_ = min(len(SCREAMING_SNAKE_CASE_ ) , args.limit ) UpperCamelCase_ = dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) print(f"Limiting the dataset to {args.limit} entries." ) UpperCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCamelCase_ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase_ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCamelCase_ = tokenize_function(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE_ ): # Concatenate all texts. UpperCamelCase_ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCamelCase_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCamelCase_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCamelCase_ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE_ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCamelCase_ = dataset_tokenized.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , batch_size=1_0_0_0 , num_proc=4 ) UpperCamelCase_ = 0 UpperCamelCase_ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE_ ) , args.shard_size ): UpperCamelCase_ = grouped_dataset[shard : shard + args.shard_size] UpperCamelCase_ = len(dataset_snapshot["input_ids"] ) UpperCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , f"dataset-{shard_count}-{records_containing}.tfrecord" ) UpperCamelCase_ = get_serialized_examples(SCREAMING_SNAKE_CASE_ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE_ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase_ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE_ ) print("Wrote file {} containing {} records".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shard_count += 1 total_records += records_containing with open(f"split-{args.split}-records-count.txt" , "w" ) as f: print(f"Total {args.split} records: {total_records}" , file=SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = parse_args() main(args)
60
1
from __future__ import annotations def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: int =len(__a ) // 2 # choose the middle 3 elements lowerCamelCase__: int =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowercase__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowercase__ = {"unk_token": "<unk>"} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowercase ) ) lowercase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } lowercase__ = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowercase , _lowercase ) def UpperCAmelCase ( self :Optional[Any] , **_lowercase :Dict ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **_lowercase ) def UpperCAmelCase ( self :Optional[Any] , **_lowercase :int ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **_lowercase ) def UpperCAmelCase ( self :List[str] , **_lowercase :List[Any] ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ = self.get_image_processor(do_normalize=_lowercase ) lowercase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_lowercase , return_tensors="np" ) lowercase__ = processor(images=_lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = "lower newer" lowercase__ = processor(text=_lowercase , return_tensors="np" ) lowercase__ = tokenizer(_lowercase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = "lower newer" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = "google/owlvit-base-patch32" lowercase__ = OwlViTProcessor.from_pretrained(_lowercase ) lowercase__ = ["cat", "nasa badge"] lowercase__ = processor(text=_lowercase ) lowercase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = "google/owlvit-base-patch32" lowercase__ = OwlViTProcessor.from_pretrained(_lowercase ) lowercase__ = [["cat", "nasa badge"], ["person"]] lowercase__ = processor(text=_lowercase ) lowercase__ = 16 lowercase__ = len(_lowercase ) lowercase__ = max([len(_lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = "google/owlvit-base-patch32" lowercase__ = OwlViTProcessor.from_pretrained(_lowercase ) lowercase__ = ["cat", "nasa badge"] lowercase__ = processor(text=_lowercase ) lowercase__ = 16 lowercase__ = inputs["input_ids"] lowercase__ = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = self.prepare_image_inputs() lowercase__ = self.prepare_image_inputs() lowercase__ = processor(images=_lowercase , query_images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_lowercase ) lowercase__ = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase )
201
def _A ( __magic_name__ ): lowercase__ = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _A ( __magic_name__ ): lowercase__ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowercase__ = remove_duplicates(key.upper() ) lowercase__ = len(__magic_name__ ) # First fill cipher with key characters lowercase__ = {alphabet[i]: char for i, char in enumerate(__magic_name__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__magic_name__ ) , 26 ): lowercase__ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowercase__ = alphabet[i - offset] lowercase__ = char return cipher_alphabet def _A ( __magic_name__ , __magic_name__ ): return "".join(cipher_map.get(__magic_name__ , __magic_name__ ) for ch in message.upper() ) def _A ( __magic_name__ , __magic_name__ ): lowercase__ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__magic_name__ , __magic_name__ ) for ch in message.upper() ) def _A ( ): lowercase__ = input("Enter message to encode or decode: " ).strip() lowercase__ = input("Enter keyword: " ).strip() lowercase__ = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: lowercase__ = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) lowercase__ = create_cipher_map(__magic_name__ ) print(func(__magic_name__ , __magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
201
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __snake_case : Union[str, Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __snake_case : Union[str, Any] = logging.getLogger() def _lowercase ( ) -> List[str]: __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) __lowerCAmelCase : List[str] = parser.parse_args() return args.f def _lowercase ( __snake_case ,__snake_case="eval" ) -> Tuple: __lowerCAmelCase : Union[str, Any] = os.path.join(__lowercase ,F"""{split}_results.json""" ) if os.path.exists(__lowercase ): with open(__lowercase ,"r" ) as f: return json.load(__lowercase ) raise ValueError(F"""can\'t find {path}""" ) __snake_case : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A__ ( lowerCAmelCase_ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[Any] = F"""\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n """.split() with patch.object(snake_case_ , "argv" , snake_case_): run_flax_glue.main() __lowerCAmelCase : Union[str, Any] = get_results(snake_case_) self.assertGreaterEqual(result["eval_accuracy"] , 0.75) @slow def _SCREAMING_SNAKE_CASE ( self: int) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __lowerCAmelCase : int = F"""\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n """.split() with patch.object(snake_case_ , "argv" , snake_case_): run_clm_flax.main() __lowerCAmelCase : Optional[Any] = get_results(snake_case_) self.assertLess(result["eval_perplexity"] , 100) @slow def _SCREAMING_SNAKE_CASE ( self: str) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __lowerCAmelCase : Union[str, Any] = F"""\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n """.split() with patch.object(snake_case_ , "argv" , snake_case_): run_summarization_flax.main() __lowerCAmelCase : Union[str, Any] = get_results(snake_case_ , split="test") self.assertGreaterEqual(result["test_rouge1"] , 10) self.assertGreaterEqual(result["test_rouge2"] , 2) self.assertGreaterEqual(result["test_rougeL"] , 7) self.assertGreaterEqual(result["test_rougeLsum"] , 7) @slow def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> str: """simple docstring""" __lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() __lowerCAmelCase : int = F"""\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n """.split() with patch.object(snake_case_ , "argv" , snake_case_): run_mlm_flax.main() __lowerCAmelCase : Optional[Any] = get_results(snake_case_) self.assertLess(result["eval_perplexity"] , 42) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : int = F"""\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n """.split() with patch.object(snake_case_ , "argv" , snake_case_): run_ta_mlm_flax.main() __lowerCAmelCase : Tuple = get_results(snake_case_) self.assertGreaterEqual(result["eval_accuracy"] , 0.42) @slow def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = 7 if get_gpu_count() > 1 else 2 __lowerCAmelCase : str = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[Any] = F"""\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n """.split() with patch.object(snake_case_ , "argv" , snake_case_): run_flax_ner.main() __lowerCAmelCase : Optional[Any] = get_results(snake_case_) self.assertGreaterEqual(result["eval_accuracy"] , 0.75) self.assertGreaterEqual(result["eval_f1"] , 0.3) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : str = F"""\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n """.split() with patch.object(snake_case_ , "argv" , snake_case_): run_qa.main() __lowerCAmelCase : str = get_results(snake_case_) self.assertGreaterEqual(result["eval_f1"] , 30) self.assertGreaterEqual(result["eval_exact"] , 30)
269
'''simple docstring''' import os from datetime import datetime as dt from github import Github __SCREAMING_SNAKE_CASE :str = [ '''good first issue''', '''feature request''', '''wip''', ] def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) _UpperCAmelCase = g.get_repo("huggingface/accelerate" ) _UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: _UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowercase : i.created_at , reverse=__lowercase ) _UpperCAmelCase = comments[0] if len(__lowercase ) > 0 else None _UpperCAmelCase = dt.utcnow() _UpperCAmelCase = (current_time - issue.updated_at).days _UpperCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
22
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = StableDiffusionControlNetImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase = CLIPTextModel(_snake_case ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = 2 lowerCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ) lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class a ( a__ , a__ , unittest.TestCase ): snake_case__ = StableDiffusionControlNetImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_snake_case ): if isinstance(_snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase = CLIPTextModel(_snake_case ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = 2 lowerCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), ] lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowerCAmelCase = 10.0 lowerCAmelCase = 4 lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=_snake_case , controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase = 'evil space-punk bird' lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_12, 5_12) ) lowerCAmelCase = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_12, 5_12) ) lowerCAmelCase = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='np' , num_inference_steps=50 , strength=0.6 , ) lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
356
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase : int = ['''small''', '''medium''', '''large'''] __UpperCamelCase : str = '''lm_head.decoder.weight''' __UpperCamelCase : Dict = '''lm_head.weight''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = torch.load(_UpperCAmelCase ) lowerCAmelCase = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCamelCase : Optional[int] = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __UpperCamelCase : str = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
309
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( __snake_case ): def __init__( self : Optional[Any] , UpperCamelCase__ : str = "▁" , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[str, AddedToken] = "<unk>" , UpperCamelCase__ : Union[str, AddedToken] = "</s>" , UpperCamelCase__ : Union[str, AddedToken] = "<pad>" , )-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } __lowerCAmelCase: Union[str, Any] = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): __lowerCAmelCase: List[Any] = token_dict["token"] __lowerCAmelCase: Dict = Tokenizer(Unigram()) __lowerCAmelCase: Optional[int] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) __lowerCAmelCase: Union[str, Any] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCamelCase__ , add_prefix_space=UpperCamelCase__), pre_tokenizers.Digits(individual_digits=UpperCamelCase__), pre_tokenizers.Punctuation(), ]) __lowerCAmelCase: Tuple = decoders.Metaspace(replacement=UpperCamelCase__ , add_prefix_space=UpperCamelCase__) __lowerCAmelCase: int = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) __lowerCAmelCase: Union[str, Any] = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Union[str, List[str]] , UpperCamelCase__ : int = 8_0_0_0 , UpperCamelCase__ : bool = True , )-> str: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = trainers.UnigramTrainer( vocab_size=UpperCamelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCamelCase__ , ) if isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: str = [files] self._tokenizer.train(UpperCamelCase__ , trainer=UpperCamelCase__) self.add_unk_id() def lowercase_ ( self : List[Any] , UpperCamelCase__ : Union[Iterator[str], Iterator[Iterator[str]]] , UpperCamelCase__ : int = 8_0_0_0 , UpperCamelCase__ : bool = True , )-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Dict = trainers.UnigramTrainer( vocab_size=UpperCamelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCamelCase__ , ) self._tokenizer.train_from_iterator(UpperCamelCase__ , trainer=UpperCamelCase__) self.add_unk_id() def lowercase_ ( self : int)-> List[str]: '''simple docstring''' __lowerCAmelCase: List[str] = json.loads(self._tokenizer.to_str()) __lowerCAmelCase: Union[str, Any] = self.special_tokens["unk"]["id"] __lowerCAmelCase: Any = Tokenizer.from_str(json.dumps(UpperCamelCase__))
217
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def a__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def a__ ( __SCREAMING_SNAKE_CASE ) -> str: class snake_case : def __init__( self : int , UpperCamelCase__ : Optional[int])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: str = metric_id class snake_case : SCREAMING_SNAKE_CASE_ : List[Any] = [MetricMock(__snake_case ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: if "tmp_path" in args: __lowerCAmelCase: Tuple = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__SCREAMING_SNAKE_CASE , match="https://huggingface.co/docs/evaluate" ): func(*__SCREAMING_SNAKE_CASE )
217
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Tuple=99 , __UpperCAmelCase : int=36 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : List[Any]=37 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Tuple=16 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple=6 , __UpperCAmelCase : Dict=6 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : int=4 , __UpperCAmelCase : int=None , __UpperCAmelCase : List[str]=1_000 , ) ->List[str]: """simple docstring""" a = parent a = batch_size a = num_channels a = image_size a = patch_size a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = coordinate_size a = shape_size a = num_labels a = num_choices a = scope a = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a = text_seq_length a = (image_size // patch_size) ** 2 + 1 a = self.text_seq_length + self.image_seq_length def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) a = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a = bbox[i, j, 3] a = bbox[i, j, 1] a = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: a = bbox[i, j, 2] a = bbox[i, j, 0] a = tmp_coordinate a = tf.constant(__UpperCAmelCase ) a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.text_seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) a = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) ->Optional[int]: """simple docstring""" a = TFLayoutLMvaModel(config=__UpperCAmelCase ) # text + image a = model(__UpperCAmelCase , pixel_values=__UpperCAmelCase , training=__UpperCAmelCase ) a = model( __UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , training=__UpperCAmelCase , ) a = model(__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only a = model(__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a = model({'''pixel_values''': pixel_values} , training=__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Any: """simple docstring""" a = self.num_labels a = TFLayoutLMvaForSequenceClassification(config=__UpperCAmelCase ) a = model( __UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" a = self.num_labels a = TFLayoutLMvaForTokenClassification(config=__UpperCAmelCase ) a = model( __UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) ->str: """simple docstring""" a = 2 a = TFLayoutLMvaForQuestionAnswering(config=__UpperCAmelCase ) a = model( __UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , training=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = self.prepare_config_and_inputs() ((a) , (a) , (a) , (a) , (a) , (a) , (a) , (a)) = config_and_inputs a = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __snake_case = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) ->Dict: """simple docstring""" return True def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any]=False ) ->dict: """simple docstring""" a = copy.deepcopy(__UpperCAmelCase ) if model_class in get_values(__UpperCAmelCase ): a = { k: tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__UpperCAmelCase ): a = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__UpperCAmelCase ): a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__UpperCAmelCase ): a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__UpperCAmelCase ): a = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = TFLayoutLMvaModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__UpperCAmelCase ) if getattr(__UpperCAmelCase , '''hf_compute_loss''' , __UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label a = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__UpperCAmelCase )[0] ] a = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs a = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a = prepared_for_class.pop('''input_ids''' ) a = model(__UpperCAmelCase , **__UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions a = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: a = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: a = -100 a = tf.convert_to_tensor(__UpperCAmelCase ) a = model(__UpperCAmelCase , **__UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict a = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a = model(__UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple a = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function a = prepared_for_class.keys() - inputs_dict.keys() a = inspect.signature(model.call ).parameters a = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple a = {0: '''input_ids'''} for label_key in label_keys: a = signature_names.index(__UpperCAmelCase ) a = label_key a = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple a = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: a = prepared_for_class[value] a = tuple(__UpperCAmelCase ) # Send to model a = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TFLayoutLMvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> Optional[int]: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" a = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''tf''' ).pixel_values a = tf.constant([[1, 2]] ) a = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass a = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , training=__UpperCAmelCase ) # verify the logits a = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , __UpperCAmelCase ) a = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
26
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
1
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = GPTSanJapaneseTokenizer __UpperCamelCase = False __UpperCamelCase = {'''do_clean_text''': False, '''add_prefix_space''': False} def lowerCamelCase__ ( self : Optional[int] ): super().setUp() # fmt: off lowerCAmelCase : List[str] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase : int = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 lowerCAmelCase : List[str] = {'''unk_token''': '''<unk>'''} lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Union[str, Any] , **UpperCamelCase_ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : int = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' lowerCAmelCase : List[Any] = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Dict ): lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_input_output_texts(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) return text, ids def lowerCamelCase__ ( self : Any ): pass # TODO add if relevant def lowerCamelCase__ ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase__ ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = self.get_tokenizer() # Testing tokenization lowerCAmelCase : int = '''こんにちは、世界。 こんばんは、㔺界。''' lowerCAmelCase : Union[str, Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Testing conversion to ids without special tokens lowerCAmelCase : int = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Testing conversion to ids with special tokens lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] lowerCAmelCase : Tuple = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization lowerCAmelCase : str = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' lowerCAmelCase : List[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。''' lowerCAmelCase : Dict = tokenizer.encode(UpperCamelCase_ ) lowerCAmelCase : Dict = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : str ): lowerCAmelCase : str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowerCAmelCase : Optional[int] = '''こんにちは、世界。''' lowerCAmelCase : Dict = '''こんばんは、㔺界。😀''' lowerCAmelCase : int = '''こんにちは、世界。こんばんは、世界。😀''' lowerCAmelCase : Any = tokenizer.encode(prefix_text + input_text ) lowerCAmelCase : List[str] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) lowerCAmelCase : Any = tokenizer.encode(UpperCamelCase_ , prefix_text=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenizer.decode(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowerCAmelCase : Optional[int] = '''こんにちは、世界。''' lowerCAmelCase : Union[str, Any] = '''こんばんは、㔺界。😀''' lowerCAmelCase : Dict = len(tokenizer.encode(UpperCamelCase_ ) ) - 2 lowerCAmelCase : List[Any] = len(tokenizer.encode(UpperCamelCase_ ) ) - 2 lowerCAmelCase : List[Any] = [1] + [0] * (len_prefix + len_text + 1) lowerCAmelCase : Tuple = [1] * (len_prefix + len_text + 1) + [0] lowerCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCAmelCase : Dict = tokenizer(prefix_text + input_text ).token_type_ids lowerCAmelCase : Optional[int] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids lowerCAmelCase : Dict = tokenizer(UpperCamelCase_ , prefix_text=UpperCamelCase_ ).token_type_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowerCAmelCase : List[Any] = tokenizer.encode('''あンいワ''' ) lowerCAmelCase : List[Any] = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) lowerCAmelCase : List[Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , tokenizer.decode(UpperCamelCase_ ) ) self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , tokenizer.decode(UpperCamelCase_ ) ) self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowerCAmelCase : List[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] lowerCAmelCase : List[str] = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer.batch_encode_plus(UpperCamelCase_ , padding=UpperCamelCase_ ) # fmt: off lowerCAmelCase : Optional[Any] = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] lowerCAmelCase : Tuple = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCamelCase_ ) self.assertListEqual(x_token.token_type_ids , UpperCamelCase_ ) self.assertListEqual(x_token.attention_mask , UpperCamelCase_ ) self.assertListEqual(x_token_a.input_ids , UpperCamelCase_ ) self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase_ ) self.assertListEqual(x_token_a.attention_mask , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase__ ( self : int ): # tokenizer has no padding token pass
60
"""simple docstring""" def _snake_case ( _snake_case : list ): def merge(_snake_case : list , _snake_case : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_snake_case ) <= 1: return collection lowerCAmelCase : Union[str, Any] = len(_snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
60
1
class lowerCamelCase : """simple docstring""" def __init__( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = {} def __A ( self : Tuple ) -> None: print(self.vertex ) for i in self.vertex: print(__magic_name__ , " -> " , " -> ".join([str(__magic_name__ ) for j in self.vertex[i]] ) ) def __A ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__magic_name__ ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def __A ( self : List[Any] ) -> None: # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__magic_name__ , __magic_name__ ) def __A ( self : Tuple , __magic_name__ : int , __magic_name__ : list ) -> None: # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(__magic_name__ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__magic_name__ , __magic_name__ ) if __name__ == "__main__": A : Tuple = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
305
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : Optional[int] ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id="test-model-flax" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id="valid_org/test-model-flax-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE_ = False return models_are_equal @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size="10KB" ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] ) -> Union[str, Any]: UpperCamelCase__ : List[str] = checkpoints.load_tax_checkpoint(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = flatten_dict(__UpperCAmelCase ) return flax_params def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Union[str, Any]: UpperCamelCase__ : List[str] = {} UpperCamelCase__ : List[str] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } UpperCamelCase__ : Any = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCamelCase__ : str = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCamelCase__ : int = new_key.replace(__UpperCAmelCase , __UpperCAmelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCamelCase__ : Union[str, Any] = new_key.replace(__UpperCAmelCase , __UpperCAmelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCamelCase__ : Optional[Any] = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , __UpperCAmelCase ) UpperCamelCase__ : Optional[int] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCamelCase__ : List[str] = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , __UpperCAmelCase ) UpperCamelCase__ : Dict = flax_dict[key] UpperCamelCase__ : Dict = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCamelCase__ : Optional[Any] = torch.from_numpy(converted_dict[key].T ) else: UpperCamelCase__ : str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: List[str] , __UpperCAmelCase: str=False , __UpperCAmelCase: List[Any]=False ) -> Tuple: UpperCamelCase__ : Union[str, Any] = get_flax_param(__UpperCAmelCase ) if not use_large: UpperCamelCase__ : Any = PixaStructVisionConfig() UpperCamelCase__ : List[str] = PixaStructTextConfig() else: UpperCamelCase__ : Dict = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) UpperCamelCase__ : Tuple = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) UpperCamelCase__ : Any = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = PixaStructForConditionalGeneration(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = rename_and_convert_flax_params(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) UpperCamelCase__ : Any = PixaStructImageProcessor() UpperCamelCase__ : str = PixaStructProcessor(image_processor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) if use_large: UpperCamelCase__ : str = 4096 UpperCamelCase__ : str = True # mkdir if needed os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) print('''Model saved in {}'''.format(__UpperCAmelCase ) ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') UpperCAmelCase_ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
201
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase_ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: int , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: str , __UpperCAmelCase: Any ) -> List[str]: for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : Tuple = '''lm_head''' UpperCamelCase__ : Optional[int] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: UpperCamelCase__ : List[str] = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: UpperCamelCase__ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase__ : List[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : List[str] = value elif weight_type == "weight_v": UpperCamelCase__ : str = value elif weight_type == "bias": UpperCamelCase__ : Tuple = value else: UpperCamelCase__ : int = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Dict , __UpperCAmelCase: str ) -> List[Any]: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : str = fairseq_model.state_dict() UpperCamelCase__ : Optional[int] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Dict = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCamelCase__ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : int = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCamelCase__ : Tuple = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] UpperCamelCase__ : Optional[Any] = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: UpperCamelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCamelCase__ : List[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Optional[Any] = '''weight''' else: UpperCamelCase__ : List[Any] = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Any , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Tuple ) -> Optional[int]: UpperCamelCase__ : List[str] = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ : List[str] = name.split('''.''' ) UpperCamelCase__ : str = int(items[0] ) UpperCamelCase__ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase__ : Tuple = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase__ : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Dict=None , __UpperCAmelCase: Optional[Any]=None , __UpperCAmelCase: Optional[int]=True ) -> Union[str, Any]: if config_path is not None: UpperCamelCase__ : str = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: UpperCamelCase__ : List[Any] = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : str = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : Any = target_dict.pad_index UpperCamelCase__ : str = target_dict.bos_index UpperCamelCase__ : Any = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols ) UpperCamelCase__ : List[str] = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCamelCase__ : Dict = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Optional[Any] = 42 UpperCamelCase__ : List[str] = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Dict = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) UpperCamelCase__ : List[Any] = True if config.feat_extract_norm == '''layer''' else False UpperCamelCase__ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) UpperCamelCase__ : str = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = UniSpeechForCTC(__UpperCAmelCase ) else: UpperCamelCase__ : Any = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCamelCase__ : Tuple = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCAmelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
201
1
from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {} __UpperCAmelCase = {} __UpperCAmelCase = {} def _snake_case ( A , A , A = None , ) -> str: lowerCAmelCase__ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) lowerCAmelCase__ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) lowerCAmelCase__ = format_type def _snake_case ( A , A , A = None ) -> List[Any]: lowerCAmelCase__ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCAmelCase__ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCAmelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCAmelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCAmelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def _snake_case ( A ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _snake_case ( A , **A ) -> Formatter: lowerCAmelCase__ = get_format_type_from_alias(A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
353
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _snake_case ( A , A , A , A=5 ) -> List[str]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 lowerCAmelCase__ = torch.tensor(tokenizer.encode(A , add_special_tokens=A ) ).unsqueeze(0 ) # Batch size 1 lowerCAmelCase__ = model(A )[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase__ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase__ = logits[0, masked_index, :] lowerCAmelCase__ = logits.softmax(dim=0 ) lowerCAmelCase__ , lowerCAmelCase__ = prob.topk(k=A , dim=0 ) lowerCAmelCase__ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A ) )] ) lowerCAmelCase__ = tokenizer.mask_token lowerCAmelCase__ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): lowerCAmelCase__ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(A ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(A ) , A ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A , A ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __UpperCAmelCase = CamembertTokenizer.from_pretrained('''camembert-base''') __UpperCAmelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() __UpperCAmelCase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
228
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowercase__ ( _a): UpperCamelCase_ = """MCTCTFeatureExtractor""" UpperCamelCase_ = """AutoTokenizer""" def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' super().__init__(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor SCREAMING_SNAKE_CASE : Any = False def __call__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*snake_case_ , **snake_case_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''audio''' , snake_case_ ) SCREAMING_SNAKE_CASE : str = kwargs.pop('''sampling_rate''' , snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''text''' , snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : Optional[Any] = args[0] SCREAMING_SNAKE_CASE : Dict = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor(snake_case_ , *snake_case_ , sampling_rate=snake_case_ , **snake_case_ ) if text is not None: SCREAMING_SNAKE_CASE : int = self.tokenizer(snake_case_ , **snake_case_ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE : int = encodings["""input_ids"""] return inputs def __A ( self : int , *UpperCamelCase__ : Any , **UpperCamelCase__ : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __A ( self : int , *UpperCamelCase__ : Any , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*snake_case_ , **snake_case_ ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''input_features''' , snake_case_ ) SCREAMING_SNAKE_CASE : str = kwargs.pop('''labels''' , snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : Tuple = args[0] SCREAMING_SNAKE_CASE : Tuple = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE : str = self.feature_extractor.pad(snake_case_ , *snake_case_ , **snake_case_ ) if labels is not None: SCREAMING_SNAKE_CASE : Any = self.tokenizer.pad(snake_case_ , **snake_case_ ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE : str = labels["""input_ids"""] return input_features def __A ( self : Optional[Any] , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str] ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @contextmanager def __A ( self : Dict ): '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer yield SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor SCREAMING_SNAKE_CASE : Any = False
182
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand _lowerCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_lowerCamelCase ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : str = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _lowerCamelCase : List[Any] = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format _lowerCamelCase : Optional[Any] = PipelineDataFormat.from_str( format=_lowerCamelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_lowerCamelCase , _lowerCamelCase ) class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: Pipeline ,__lowerCAmelCase: PipelineDataFormat ): '''simple docstring''' _lowerCamelCase : List[str] = nlp _lowerCamelCase : str = reader @staticmethod def _lowercase ( __lowerCAmelCase: ArgumentParser ): '''simple docstring''' _lowerCamelCase : List[str] = parser.add_parser("run" ,help="Run a pipeline through the CLI" ) run_parser.add_argument("--task" ,choices=get_supported_tasks() ,help="Task to run" ) run_parser.add_argument("--input" ,type=__lowerCAmelCase ,help="Path to the file to use for inference" ) run_parser.add_argument("--output" ,type=__lowerCAmelCase ,help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model" ,type=__lowerCAmelCase ,help="Name or path to the model to instantiate." ) run_parser.add_argument("--config" ,type=__lowerCAmelCase ,help="Name or path to the model's config to instantiate." ) run_parser.add_argument( "--tokenizer" ,type=__lowerCAmelCase ,help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column" ,type=__lowerCAmelCase ,help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" ,) run_parser.add_argument( "--format" ,type=__lowerCAmelCase ,default="infer" ,choices=PipelineDataFormat.SUPPORTED_FORMATS ,help="Input format to read from" ,) run_parser.add_argument( "--device" ,type=__lowerCAmelCase ,default=-1 ,help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" ,) run_parser.add_argument("--overwrite" ,action="store_true" ,help="Allow overwriting the output file." ) run_parser.set_defaults(func=__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self._nlp, [] for entry in self._reader: _lowerCamelCase : List[str] = nlp(**__lowerCAmelCase ) if self._reader.is_multi_columns else nlp(__lowerCAmelCase ) if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): outputs.append(__lowerCAmelCase ) else: outputs += output # Saving data if self._nlp.binary_output: _lowerCamelCase : str = self._reader.save_binary(__lowerCAmelCase ) logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(__lowerCAmelCase )
340
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): _a = None _a = "utf-8" _a = None _a = None _a = True # deprecated _a = None # deprecated _a = 1_0 << 2_0 # 10MB _a = None class lowercase ( datasets.ArrowBasedBuilder ): _a = JsonConfig def a__ ( self ) -> Union[str, Any]: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _A : Optional[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def a__ ( self , _a ) -> Union[str, Any]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _A : List[str] = data_files if isinstance(_a , _a ): _A : Optional[int] = [files] _A : str = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _A : Tuple = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _A : Optional[int] = [files] _A : Tuple = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) ) return splits def a__ ( self , _a ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _A : List[Any] = self.config.features.arrow_schema.field(_a ).type _A : str = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _A : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def a__ ( self , _a ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : Any = json.load(_a ) # We keep only the field we are interested in _A : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a , (list, tuple) ): _A : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) _A : Union[str, Any] = {col: [row.get(_a ) for row in dataset] for col in keys} else: _A : List[str] = dataset _A : Optional[Any] = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a , """rb""" ) as f: _A : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _A : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) _A : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: _A : List[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _A : List[str] = batch.decode(self.config.encoding , errors=_a ).encode("""utf-8""" ) try: while True: try: _A : Union[str, Any] = paj.read_json( io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a , pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : List[str] = json.load(_a ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a , _a ): # list is the only sequence type supported in JSON try: _A : str = set().union(*[row.keys() for row in dataset] ) _A : Dict = {col: [row.get(_a ) for row in dataset] for col in keys} _A : List[Any] = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
26
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = os.path.join(args.tf_model_dir , """parameters.json""" ) UpperCAmelCase = json.loads(open(_snake_case ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(""".pt""" ): UpperCAmelCase = args.output + """.pt""" UpperCAmelCase = OrderedDict() with tf.device("""/CPU:0""" ): UpperCAmelCase = tf.train.load_checkpoint(args.tf_model_dir ) UpperCAmelCase = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCAmelCase = reader.get_tensor(_snake_case ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): UpperCAmelCase = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): UpperCAmelCase = 8 UpperCAmelCase = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.startswith("""model/moe""" ): UpperCAmelCase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): UpperCAmelCase = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player UpperCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.endswith("""/softmlp/kernel""" ): UpperCAmelCase = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player UpperCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): UpperCAmelCase = key_name[-9:-7] for i in range(16 ): UpperCAmelCase = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) UpperCAmelCase = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.startswith("""model/mlp""" ): UpperCAmelCase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): UpperCAmelCase = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player UpperCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.endswith("""/p1/bias""" ): UpperCAmelCase = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player UpperCAmelCase = vnp.copy() # same because it is one dimensional UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.endswith("""/p2/kernel""" ): UpperCAmelCase = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player UpperCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.endswith("""/p2/bias""" ): UpperCAmelCase = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player UpperCAmelCase = vnp.copy() # same because it is one dimensional UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.startswith("""model/ln""" ): UpperCAmelCase = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): UpperCAmelCase = """model.blocks.%d.feed_forward.norm.bias""" % player UpperCAmelCase = vnp.copy() # same because it is one dimensional UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.endswith("""/g""" ): UpperCAmelCase = """model.blocks.%d.feed_forward.norm.weight""" % player UpperCAmelCase = vnp.copy() # same because it is one dimensional UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.startswith("""model/att""" ): UpperCAmelCase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): UpperCAmelCase = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCAmelCase = state[:, 0, :, :] UpperCAmelCase = state[:, 1, :, :] UpperCAmelCase = state[:, 2, :, :] UpperCAmelCase = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player UpperCAmelCase = torch.tensor(_snake_case ) UpperCAmelCase = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player UpperCAmelCase = torch.tensor(_snake_case ) UpperCAmelCase = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.endswith("""/o/kernel""" ): UpperCAmelCase = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player UpperCAmelCase = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.startswith("""model/an""" ): UpperCAmelCase = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): UpperCAmelCase = """model.blocks.%d.self_attn.norm.bias""" % player UpperCAmelCase = vnp.copy() # same because it is one dimensional UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.endswith("""/g""" ): UpperCAmelCase = """model.blocks.%d.self_attn.norm.weight""" % player UpperCAmelCase = vnp.copy() # same because it is one dimensional UpperCAmelCase = torch.tensor(_snake_case ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): UpperCAmelCase = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] UpperCAmelCase = """model.%s.weight""" % nlayer UpperCAmelCase = vnp.copy() # same in embedded UpperCAmelCase = torch.tensor(_snake_case ) if key_name.startswith("""model/wte""" ): UpperCAmelCase = """lm_head.weight""" UpperCAmelCase = vnp.copy() # same in embedded UpperCAmelCase = torch.tensor(_snake_case ) elif key_name.startswith("""model/wob""" ): UpperCAmelCase = """final_logits_bias""" UpperCAmelCase = vnp.copy() # same in embedded UpperCAmelCase = state.reshape((1, -1) ) UpperCAmelCase = torch.tensor(_snake_case ) elif key_name == "model/dense/kernel": UpperCAmelCase = """model.last_project.weight""" UpperCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase = torch.tensor(_snake_case ) elif key_name == "model/dense_1/bias": UpperCAmelCase = """model.last_project.bias""" UpperCAmelCase = vnp.copy() # same because it is one dimensional UpperCAmelCase = torch.tensor(_snake_case ) torch.save(_snake_case , args.output ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") _UpperCamelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
368
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _UpperCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: UpperCAmelCase = getattr(_snake_case , _snake_case ).shape else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(_snake_case )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , _snake_case ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "bias" in name: UpperCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = """weight""" else: UpperCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=True ): """simple docstring""" if config_path is not None: UpperCAmelCase = UniSpeechSatConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = UniSpeechSatConfig() UpperCAmelCase = """""" if is_finetuned: UpperCAmelCase = UniSpeechSatForCTC(_snake_case ) else: UpperCAmelCase = UniSpeechSatForPreTraining(_snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) UpperCAmelCase = model[0].eval() recursively_load_weights(_snake_case , _snake_case ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _UpperCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
234
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Tuple = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "levit" def __init__( self : List[str] , lowerCAmelCase_ : List[Any]=2_2_4 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : int=1_6 , lowerCAmelCase_ : str=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase_ : Optional[int]=[4, 8, 1_2] , lowerCAmelCase_ : Optional[int]=[4, 4, 4] , lowerCAmelCase_ : Dict=[1_6, 1_6, 1_6] , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : List[str]=[2, 2, 2] , lowerCAmelCase_ : List[Any]=0.02 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = image_size lowercase_ = num_channels lowercase_ = kernel_size lowercase_ = stride lowercase_ = padding lowercase_ = hidden_sizes lowercase_ = num_attention_heads lowercase_ = depths lowercase_ = key_dim lowercase_ = drop_path_rate lowercase_ = patch_size lowercase_ = attention_ratio lowercase_ = mlp_ratio lowercase_ = initializer_range lowercase_ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = version.parse("1.11" ) @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : str = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """xlnet""" UpperCamelCase__ = ["""mems"""] UpperCamelCase__ = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Dict , __UpperCamelCase : Optional[int]=3_2_0_0_0 , __UpperCamelCase : Union[str, Any]=1_0_2_4 , __UpperCamelCase : str=2_4 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : Tuple=4_0_9_6 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : str="bi" , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : List[str]=1e-12 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : List[str]=5_1_2 , __UpperCamelCase : Any=None , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]=False , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Union[str, Any]=-1 , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Dict="last" , __UpperCamelCase : str=True , __UpperCamelCase : List[Any]="tanh" , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Optional[Any]=5 , __UpperCamelCase : int=5 , __UpperCamelCase : Union[str, Any]=5 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : str=2 , **__UpperCamelCase : List[Any] , )->List[Any]: _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = n_layer _UpperCAmelCase = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) _UpperCAmelCase = d_model // n_head _UpperCAmelCase = ff_activation _UpperCAmelCase = d_inner _UpperCAmelCase = untie_r _UpperCAmelCase = attn_type _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = dropout _UpperCAmelCase = mem_len _UpperCAmelCase = reuse_len _UpperCAmelCase = bi_data _UpperCAmelCase = clamp_len _UpperCAmelCase = same_length _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_last_dropout _UpperCAmelCase = start_n_top _UpperCAmelCase = end_n_top _UpperCAmelCase = bos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __UpperCamelCase , ) _UpperCAmelCase = kwargs['''use_cache'''] _UpperCAmelCase = use_mems_eval _UpperCAmelCase = use_mems_train super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) @property def lowercase__ ( self : Union[str, Any] )->List[Any]: logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def lowercase__ ( self : Any , __UpperCamelCase : Union[str, Any] )->Dict: raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
260
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase = None ) -> list[list[str]]: a = word_bank or [] # create a table a = len(__lowerCamelCase ) + 1 a = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value a = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
228
0
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list: UpperCamelCase = word.split() def justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: UpperCamelCase = max_width - width UpperCamelCase = len(__UpperCamelCase ) if len(__UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase = [] for i in range(__UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCamelCase ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = 0 for word in words: if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCamelCase ) width += len(__UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) # reset new line and new width UpperCamelCase ,UpperCamelCase = [word], len(__UpperCamelCase ) UpperCamelCase = max_width - width - len(__UpperCamelCase ) answer.append(""" """.join(__UpperCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
183
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a_ ( lowerCamelCase ): lowercase = """Salesforce/blip-image-captioning-base""" lowercase = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) lowercase = """image_captioner""" lowercase = AutoModelForVisionaSeq lowercase = ["""image"""] lowercase = ["""text"""] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.pre_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.model.generate(**_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0].strip()
183
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a_ = logging.get_logger(__name__) # pylint: disable=invalid-name def _a ( UpperCamelCase_ : str ) -> Dict: """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCamelCase_ ): return ext raise Exception( F"Unable to determine file format from file extension {path}. " F"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowerCAmelCase__ = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format lowerCAmelCase__ = PipelineDataFormat.from_str( format=UpperCamelCase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCamelCase_ , UpperCamelCase_ ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = nlp lowerCAmelCase__ = reader @staticmethod def UpperCAmelCase ( __UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = parser.add_parser("run" , help="Run a pipeline through the CLI" ) run_parser.add_argument("--task" , choices=get_supported_tasks() , help="Task to run" ) run_parser.add_argument("--input" , type=__UpperCAmelCase , help="Path to the file to use for inference" ) run_parser.add_argument("--output" , type=__UpperCAmelCase , help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model" , type=__UpperCAmelCase , help="Name or path to the model to instantiate." ) run_parser.add_argument("--config" , type=__UpperCAmelCase , help="Name or path to the model's config to instantiate." ) run_parser.add_argument( "--tokenizer" , type=__UpperCAmelCase , help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column" , type=__UpperCAmelCase , help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" , ) run_parser.add_argument( "--format" , type=__UpperCAmelCase , default="infer" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="Input format to read from" , ) run_parser.add_argument( "--device" , type=__UpperCAmelCase , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) run_parser.add_argument("--overwrite" , action="store_true" , help="Allow overwriting the output file." ) run_parser.set_defaults(func=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self._nlp, [] for entry in self._reader: lowerCAmelCase__ = nlp(**__UpperCAmelCase ) if self._reader.is_multi_columns else nlp(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): outputs.append(__UpperCAmelCase ) else: outputs += output # Saving data if self._nlp.binary_output: lowerCAmelCase__ = self._reader.save_binary(__UpperCAmelCase ) logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}" ) else: self._reader.save(__UpperCAmelCase )
340
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ : Optional[Any] = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] lowercase__ : int = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] lowercase__ : Optional[int] = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): lowercase__ : Tuple = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : str = get_logger(__name__) lowercase__ : List[str] = Path(__file__).parent / '''model_card_template.md''' lowercase__ : Union[str, Any] = uuida().hex lowercase__ : Tuple = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[int] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowercase ( _a = None ): snake_case_ : List[str] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def __lowercase ( _a , _a = None , _a = None ): if token is None: snake_case_ : Union[str, Any] = HfFolder.get_token() if organization is None: snake_case_ : int = whoami(_a )['''name'''] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def __lowercase ( _a , _a ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ : Union[str, Any] = args.hub_token if hasattr(_a , '''hub_token''' ) else None snake_case_ : Dict = get_full_repo_name(_a , token=_a ) snake_case_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ : Tuple = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def __lowercase ( _a , _a = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : Tuple = str(Path(_a ).as_posix() ) snake_case_ : int = re.search(r'''snapshots/([^/]+)/''' , _a ) if search is None: return None snake_case_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : str = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase__ : List[Any] = os.path.join(hf_cache_home, '''diffusers''') def __lowercase ( _a = None , _a = None ): if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : List[str] = old_diffusers_cache snake_case_ : Union[str, Any] = Path(_a ).expanduser() snake_case_ : str = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : List[Any] = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase__ : Optional[int] = 0 else: with open(cache_version_file) as f: try: lowercase__ : Optional[Any] = int(f.read()) except ValueError: lowercase__ : Optional[Any] = 0 if cache_version < 1: lowercase__ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase__ : Optional[Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __lowercase ( _a , _a = None ): if variant is not None: snake_case_ : str = weights_name.split('''.''' ) snake_case_ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] snake_case_ : List[Any] = '''.'''.join(_a ) return weights_name def __lowercase ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): snake_case_ : Dict = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint snake_case_ : Dict = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): snake_case_ : List[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ : str = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _a , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}' so that the correct variant file can be added." , _a , ) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
155
0
'''simple docstring''' from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a__( UpperCAmelCase__ ): lowercase__ = "dandelin/vilt-b32-finetuned-vqa" lowercase__ = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) lowercase__ = "image_qa" lowercase__ = AutoProcessor lowercase__ = AutoModelForVisualQuestionAnswering lowercase__ = ["image", "text"] lowercase__ = ["text"] def __init__( self : Any , *__snake_case : List[str] , **__snake_case : Any ): requires_backends(self , ['vision'] ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self : List[Any] , __snake_case : "Image" , __snake_case : str ): return self.pre_processor(lowerCamelCase__ , lowerCamelCase__ , return_tensors='pt' ) def lowercase_ ( self : str , __snake_case : List[str] ): with torch.no_grad(): return self.model(**lowerCamelCase__ ).logits def lowercase_ ( self : Any , __snake_case : Union[str, Any] ): a : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
297
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = "deta" lowerCAmelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[Any] , lowerCamelCase__ : str=None , lowerCamelCase__ : str=9_00 , lowerCamelCase__ : Any=20_48 , lowerCamelCase__ : Optional[int]=6 , lowerCamelCase__ : str=20_48 , lowerCamelCase__ : Dict=8 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Union[str, Any]=10_24 , lowerCamelCase__ : Optional[int]=8 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int="relu" , lowerCamelCase__ : str=2_56 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Dict=0.0 , lowerCamelCase__ : Dict=0.0 , lowerCamelCase__ : Optional[int]=0.0_2 , lowerCamelCase__ : List[Any]=1.0 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=False , lowerCamelCase__ : Any="sine" , lowerCamelCase__ : str=5 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : int=4 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Dict=3_00 , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Union[str, Any]=1 , lowerCamelCase__ : Any=5 , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : Union[str, Any]=1 , lowerCamelCase__ : str=1 , lowerCamelCase__ : Union[str, Any]=5 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Union[str, Any]=0.2_5 , **lowerCamelCase__ : Optional[Any] , ) ->List[str]: '''simple docstring''' if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _UpperCAmelCase : int = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Any = backbone_config.pop("model_type" ) _UpperCAmelCase : Optional[int] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : List[str] = config_class.from_dict(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = backbone_config _UpperCAmelCase : Optional[int] = num_queries _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : str = encoder_ffn_dim _UpperCAmelCase : Optional[int] = encoder_layers _UpperCAmelCase : int = encoder_attention_heads _UpperCAmelCase : Union[str, Any] = decoder_ffn_dim _UpperCAmelCase : Tuple = decoder_layers _UpperCAmelCase : Union[str, Any] = decoder_attention_heads _UpperCAmelCase : Any = dropout _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Optional[int] = activation_function _UpperCAmelCase : str = init_std _UpperCAmelCase : Tuple = init_xavier_std _UpperCAmelCase : Optional[Any] = encoder_layerdrop _UpperCAmelCase : int = auxiliary_loss _UpperCAmelCase : Union[str, Any] = position_embedding_type # deformable attributes _UpperCAmelCase : List[Any] = num_feature_levels _UpperCAmelCase : List[Any] = encoder_n_points _UpperCAmelCase : Tuple = decoder_n_points _UpperCAmelCase : Optional[int] = two_stage _UpperCAmelCase : Dict = two_stage_num_proposals _UpperCAmelCase : int = with_box_refine _UpperCAmelCase : str = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _UpperCAmelCase : Optional[int] = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : int = giou_cost # Loss coefficients _UpperCAmelCase : int = mask_loss_coefficient _UpperCAmelCase : List[Any] = dice_loss_coefficient _UpperCAmelCase : Dict = bbox_loss_coefficient _UpperCAmelCase : int = giou_loss_coefficient _UpperCAmelCase : Optional[Any] = eos_coefficient _UpperCAmelCase : int = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' return self.encoder_attention_heads @property def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' return self.d_model def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Tuple = self.backbone_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output
234
0
import comet # From: unbabel-comet import torch import datasets _A = datasets.logging.get_logger(__name__) _A = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _A = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _A = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.config_name == "default": UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ): """simple docstring""" if gpus is None: UpperCamelCase_ = 1 if torch.cuda.is_available() else 0 UpperCamelCase_ = {"""src""": sources, """mt""": predictions, """ref""": references} UpperCamelCase_ = [dict(zip(__UpperCamelCase , __UpperCamelCase ) ) for t in zip(*data.values() )] UpperCamelCase_ , UpperCamelCase_ = self.scorer.predict(__UpperCamelCase , gpus=__UpperCamelCase , progress_bar=__UpperCamelCase ) return {"mean_score": mean_score, "scores": scores}
360
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = """EncodecFeatureExtractor""" A__ : Tuple = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = self.feature_extractor UpperCamelCase_ = False def lowerCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__UpperCamelCase , language=__UpperCamelCase , no_timestamps=__UpperCamelCase ) def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""sampling_rate""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""text""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: UpperCamelCase_ = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if audio is not None: UpperCamelCase_ = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCamelCase_ = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: UpperCamelCase_ = audio_inputs["""padding_mask"""] return inputs def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = kwargs.pop("""audio""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""padding_mask""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if audio_values is not None: return self._decode_audio(__UpperCamelCase , padding_mask=__UpperCamelCase ) else: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = to_numpy(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = audio_values.shape if padding_mask is None: return list(__UpperCamelCase ) UpperCamelCase_ = to_numpy(__UpperCamelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCamelCase_ = seq_len - padding_mask.shape[-1] UpperCamelCase_ = 1 - self.feature_extractor.padding_value UpperCamelCase_ = np.pad(__UpperCamelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=__UpperCamelCase ) UpperCamelCase_ = audio_values.tolist() for i in range(__UpperCamelCase ): UpperCamelCase_ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCamelCase_ = sliced_audio.reshape(__UpperCamelCase , -1 ) return audio_values
261
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : int ={ '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a_ ( a__ ): __A = 'perceiver' def __init__( self : Optional[int] , lowercase : Optional[int]=256 , lowercase : Any=1_280 , lowercase : Union[str, Any]=768 , lowercase : List[str]=1 , lowercase : List[Any]=26 , lowercase : int=8 , lowercase : Dict=8 , lowercase : List[str]=None , lowercase : Union[str, Any]=None , lowercase : List[Any]="kv" , lowercase : Any=1 , lowercase : Optional[Any]=1 , lowercase : str="gelu" , lowercase : str=0.1 , lowercase : Dict=0.02 , lowercase : Optional[int]=1e-1_2 , lowercase : Optional[int]=True , lowercase : str=262 , lowercase : Tuple=2_048 , lowercase : Dict=56 , lowercase : Any=[368, 496] , lowercase : Any=16 , lowercase : Union[str, Any]=1_920 , lowercase : Optional[int]=16 , lowercase : Union[str, Any]=[1, 16, 224, 224] , **lowercase : Optional[int] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) lowercase_ :Union[str, Any] = num_latents lowercase_ :Any = d_latents lowercase_ :List[Any] = d_model lowercase_ :str = num_blocks lowercase_ :Optional[Any] = num_self_attends_per_block lowercase_ :int = num_self_attention_heads lowercase_ :Any = num_cross_attention_heads lowercase_ :List[Any] = qk_channels lowercase_ :Dict = v_channels lowercase_ :List[Any] = cross_attention_shape_for_attention lowercase_ :Union[str, Any] = self_attention_widening_factor lowercase_ :Tuple = cross_attention_widening_factor lowercase_ :Optional[Any] = hidden_act lowercase_ :List[Any] = attention_probs_dropout_prob lowercase_ :Optional[Any] = initializer_range lowercase_ :Any = layer_norm_eps lowercase_ :Union[str, Any] = use_query_residual # masked language modeling attributes lowercase_ :int = vocab_size lowercase_ :Optional[Any] = max_position_embeddings # image classification attributes lowercase_ :Tuple = image_size # flow attributes lowercase_ :Union[str, Any] = train_size # multimodal autoencoding attributes lowercase_ :Tuple = num_frames lowercase_ :List[Any] = audio_samples_per_frame lowercase_ :str = samples_per_patch lowercase_ :List[str] = output_shape class a_ ( a__ ): @property def lowercase__ ( self : str ): """simple docstring""" if self.task == "multiple-choice": lowercase_ :List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase_ :List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowercase__ ( self : List[str] ): """simple docstring""" return 1e-4 def lowercase__ ( self : Dict , lowercase : Dict , lowercase : Any = -1 , lowercase : List[str] = -1 , lowercase : Dict = -1 , lowercase : Union[str, Any] = False , lowercase : Optional[Any] = None , lowercase : Dict = 3 , lowercase : Union[str, Any] = 40 , lowercase : Tuple = 40 , ): """simple docstring""" if isinstance(_lowerCamelCase , _lowerCamelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ :Any = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ :Union[str, Any] = preprocessor.num_special_tokens_to_add(_lowerCamelCase ) lowercase_ :Dict = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowercase_ :Union[str, Any] = [''' '''.join(["a"] ) * seq_length] * batch_size lowercase_ :Any = dict(preprocessor(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) lowercase_ :Optional[Any] = inputs.pop("input_ids" ) return inputs elif isinstance(_lowerCamelCase , _lowerCamelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ :str = compute_effective_axis_dimension(_lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase_ :Tuple = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase_ :str = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) lowercase_ :Optional[int] = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
223
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCAmelCase_ ( _A , _A , _A , _A=10_24 ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = [], [] SCREAMING_SNAKE_CASE__ = list(zip(__A , __A ) ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = sorted_examples[0] def is_too_big(_A ): return tok(__A , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE__ = new_src + ''' ''' + src SCREAMING_SNAKE_CASE__ = new_tgt + ''' ''' + tgt if is_too_big(__A ) or is_too_big(__A ): # cant fit, finalize example finished_src.append(__A ) finished_tgt.append(__A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__A ) finished_tgt.append(__A ) return finished_src, finished_tgt def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Path(__A ) save_path.mkdir(exist_ok=__A ) for split in ["train"]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in Path(__A ).open().readlines()] SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in Path(__A ).open().readlines()] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = pack_examples(__A , __A , __A , __A ) print(F'''packed {split} split from {len(__A )} examples -> {len(__A )}.''' ) Path(save_path / F'''{split}.source''' ).open('''w''' ).write('''\n'''.join(__A ) ) Path(save_path / F'''{split}.target''' ).open('''w''' ).write('''\n'''.join(__A ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(__A , save_path / F'''{split}.source''' ) shutil.copyfile(__A , save_path / F'''{split}.target''' ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__A , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__A , default=1_28 ) parser.add_argument('''--data_dir''' , type=__A ) parser.add_argument('''--save_path''' , type=__A ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__A , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
357
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
218
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : int = BartphoTokenizer SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : List[Any] = True def UpperCamelCase ( self : Dict ) -> Dict: super().setUp() lowerCamelCase_ = ['▁This', '▁is', '▁a', '▁t', 'est'] lowerCamelCase_ = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) lowerCamelCase_ = BartphoTokenizer(__SCREAMING_SNAKE_CASE , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : str ) -> Tuple: lowerCamelCase_ = 'This is a là test' lowerCamelCase_ = 'This is a<unk><unk> test' return input_text, output_text def UpperCamelCase ( self : int ) -> str: lowerCamelCase_ = BartphoTokenizer(__SCREAMING_SNAKE_CASE , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCamelCase_ = 'This is a là test' lowerCamelCase_ = '▁This ▁is ▁a ▁l à ▁t est'.split() lowerCamelCase_ = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
183
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase : int ) -> list[int]: lowerCamelCase_ = [True] * limit lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ = i * 2 while index < limit: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def lowerCamelCase__ ( _lowerCamelCase : int = 1000000 ) -> int: lowerCamelCase_ = prime_sieve(_lowerCamelCase ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length , len(_lowerCamelCase ) ): lowerCamelCase_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ = j - i lowerCamelCase_ = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
183
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase__ = TypeVar("T") class snake_case__ ( Generic[T] ): """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" snake_case : Any = data snake_case : Optional[Any] = None def __str__( self : int ) -> str: """simple docstring""" return f'{self.data}' class snake_case__ ( Generic[T] ): """simple docstring""" def __init__( self : Dict ) -> None: """simple docstring""" snake_case : Union[str, Any] = None def __iter__( self : int ) -> Iterator[T]: """simple docstring""" snake_case : int = self.top while node: yield node.data snake_case : Optional[int] = node.next def __str__( self : Tuple ) -> str: """simple docstring""" return "->".join([str(a__ ) for item in self] ) def __len__( self : Union[str, Any] ) -> int: """simple docstring""" return len(tuple(iter(self ) ) ) def lowerCAmelCase ( self : Optional[int] ) -> bool: """simple docstring""" return self.top is None def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : List[Any] ) -> None: """simple docstring""" snake_case : str = Node(a__ ) if not self.is_empty(): snake_case : Union[str, Any] = self.top snake_case : str = node def lowerCAmelCase ( self : Optional[Any] ) -> T: """simple docstring""" if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , a__ ) snake_case : List[Any] = self.top snake_case : Union[str, Any] = self.top.next return pop_node.data def lowerCAmelCase ( self : Any ) -> T: """simple docstring""" if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def lowerCAmelCase ( self : str ) -> None: """simple docstring""" snake_case : List[Any] = None if __name__ == "__main__": from doctest import testmod testmod()
353
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[Any]=32 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Dict=10 , UpperCamelCase__ : Any=[10, 20, 30, 40] , UpperCamelCase__ : Any=[1, 1, 2, 1] , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : str="relu" , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Tuple=None , ) -> List[str]: """simple docstring""" snake_case : List[str] = parent snake_case : Tuple = batch_size snake_case : int = image_size snake_case : Any = num_channels snake_case : Optional[int] = embeddings_size snake_case : Optional[int] = hidden_sizes snake_case : str = depths snake_case : Tuple = is_training snake_case : List[str] = use_labels snake_case : List[str] = hidden_act snake_case : Tuple = num_labels snake_case : Tuple = scope snake_case : List[str] = len(UpperCamelCase__ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Any = self.get_config() return config, pixel_values def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" snake_case : List[str] = FlaxRegNetModel(config=UpperCamelCase__ ) snake_case : str = model(UpperCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" snake_case : int = self.num_labels snake_case : List[str] = FlaxRegNetForImageClassification(config=UpperCamelCase__ ) snake_case : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" snake_case : str = self.prepare_config_and_inputs() snake_case ,snake_case : Tuple = config_and_inputs snake_case : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : List[str] ) -> None: """simple docstring""" snake_case : List[str] = FlaxRegNetModelTester(self ) snake_case : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" snake_case ,snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) snake_case : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : int = [*signature.parameters.keys()] snake_case : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ): snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) snake_case : Any = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) snake_case ,snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : List[str] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case : Any = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = model_class(UpperCamelCase__ ) @jax.jit def model_jitted(UpperCamelCase__ : Dict , **UpperCamelCase__ : Tuple ): return model(pixel_values=UpperCamelCase__ , **UpperCamelCase__ ) with self.subTest('''JIT Enabled''' ): snake_case : Optional[int] = model_jitted(**UpperCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): snake_case : Tuple = model_jitted(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for jitted_output, output in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def lowerCAmelCase ( self : int ) -> int: """simple docstring""" snake_case : str = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) snake_case : Any = self.default_image_processor snake_case : Any = prepare_img() snake_case : Union[str, Any] = image_processor(images=UpperCamelCase__ , return_tensors='''np''' ) snake_case : List[str] = model(**UpperCamelCase__ ) # verify the logits snake_case : Optional[int] = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Dict = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
83
0
"""simple docstring""" __lowercase = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 1055.05585, "footpound": 1.35_58_18, } def lowercase ( A_ , A_ , A_ )-> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: a : Optional[int] = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(A_ )}''' ) raise ValueError(A_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
40
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase () -> Dict: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=snake_case__ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=snake_case__ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=snake_case__ , help="""where to store parsed gold_data_path file""" , ) lowerCAmelCase = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: lowerCAmelCase = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): lowerCAmelCase = dpr_record["""question"""] lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case__ ) + """\n""" ) if __name__ == "__main__": main()
155
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : int = {"vocab_file": "vocab.json"} _lowerCamelCase : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } _lowerCamelCase : Optional[Any] = {"mgp-str": 27} class SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int="[GO]" , UpperCamelCase__ : Dict="[GO]" , UpperCamelCase__ : Union[str, Any]="[s]" , UpperCamelCase__ : Optional[Any]="[GO]" , **UpperCamelCase__ : Optional[int] ): """simple docstring""" super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(lowerCAmelCase__ ) UpperCamelCase = {v: k for k, v in self.vocab.items()} @property def A ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def A ( self : Tuple ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def A ( self : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" UpperCamelCase = [] for s in text: char_tokens.extend(lowerCAmelCase__ ) return char_tokens def A ( self : Optional[int] , UpperCamelCase__ : str ): """simple docstring""" return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def A ( self : Optional[Any] , UpperCamelCase__ : Any ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def A ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '\n' ) return (vocab_file,)
366
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = '' for i in table: res += inp[i - 1] return res def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" return data[1:] + data[0] def __lowerCamelCase ( A__ , A__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = '' for i in range(len(A__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase = int('0b' + data[0] + data[-1] , 2 ) UpperCamelCase = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> List[str]: """simple docstring""" UpperCamelCase = message[:4] UpperCamelCase = message[4:] UpperCamelCase = apply_table(A__ , A__ ) UpperCamelCase = xor(A__ , A__ ) UpperCamelCase = apply_sbox(A__ , temp[:4] ) # noqa: E741 UpperCamelCase = apply_sbox(A__ , temp[4:] ) UpperCamelCase = '0' * (2 - len(A__ )) + l # noqa: E741 UpperCamelCase = '0' * (2 - len(A__ )) + r UpperCamelCase = apply_table(l + r , A__ ) UpperCamelCase = xor(A__ , A__ ) return temp + right if __name__ == "__main__": _lowerCamelCase : str = input("Enter 10 bit key: ") _lowerCamelCase : Optional[Any] = input("Enter 8 bit message: ") _lowerCamelCase : Tuple = [6, 3, 7, 4, 8, 5, 10, 9] _lowerCamelCase : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _lowerCamelCase : Union[str, Any] = [2, 4, 3, 1] _lowerCamelCase : int = [2, 6, 3, 1, 4, 8, 5, 7] _lowerCamelCase : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] _lowerCamelCase : Any = [4, 1, 2, 3, 2, 3, 4, 1] _lowerCamelCase : Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _lowerCamelCase : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _lowerCamelCase : str = apply_table(key, paa_table) _lowerCamelCase : str = temp[:5] _lowerCamelCase : Any = temp[5:] _lowerCamelCase : Dict = left_shift(left) _lowerCamelCase : int = left_shift(right) _lowerCamelCase : Optional[int] = apply_table(left + right, pa_table) _lowerCamelCase : Optional[int] = left_shift(left) _lowerCamelCase : Union[str, Any] = left_shift(right) _lowerCamelCase : Tuple = left_shift(left) _lowerCamelCase : Optional[int] = left_shift(right) _lowerCamelCase : Optional[int] = apply_table(left + right, pa_table) # encryption _lowerCamelCase : Dict = apply_table(message, IP) _lowerCamelCase : Optional[int] = function(expansion, sa, sa, keya, temp) _lowerCamelCase : Any = temp[4:] + temp[:4] _lowerCamelCase : List[Any] = function(expansion, sa, sa, keya, temp) _lowerCamelCase : Tuple = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _lowerCamelCase : List[str] = apply_table(CT, IP) _lowerCamelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) _lowerCamelCase : Tuple = temp[4:] + temp[:4] _lowerCamelCase : Any = function(expansion, sa, sa, keya, temp) _lowerCamelCase : Optional[int] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
249
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a :List[str] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Optional[Any] = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a :Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
132
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _lowerCamelCase( a , a , a , a , a=True , a="pt" ): __a = {"add_prefix_space": True} if isinstance(a , a ) and not line.startswith(" " ) else {} __a = padding_side return tokenizer( [line] , max_length=a , padding="max_length" if pad_to_max_length else None , truncation=a , return_tensors=a , add_special_tokens=a , **a , ) def _lowerCamelCase( a , a , a=None , ): __a = input_ids.ne(a ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase="train" , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="" , ): super().__init__() __a = Path(lowerCamelCase ).joinpath(type_path + ".source" ) __a = Path(lowerCamelCase ).joinpath(type_path + ".target" ) __a = self.get_char_lens(self.src_file ) __a = max_source_length __a = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" __a = tokenizer __a = prefix if n_obs is not None: __a = self.src_lens[:n_obs] __a = src_lang __a = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , lowerCamelCase ): __a = index + 1 # linecache starts at 1 __a = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase ).rstrip("\n" ) __a = linecache.getline(str(self.tgt_file ) , lowerCamelCase ).rstrip("\n" ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __a = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer ) __a = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer __a = encode_line(lowerCamelCase , lowerCamelCase , self.max_source_length , "right" ) __a = encode_line(lowerCamelCase , lowerCamelCase , self.max_target_length , "right" ) __a = source_inputs["input_ids"].squeeze() __a = target_inputs["input_ids"].squeeze() __a = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a__ ( lowerCamelCase ): return [len(lowerCamelCase ) for x in Path(lowerCamelCase ).open().readlines()] def a__ ( self , lowerCamelCase ): __a = torch.stack([x["input_ids"] for x in batch] ) __a = torch.stack([x["attention_mask"] for x in batch] ) __a = torch.stack([x["decoder_input_ids"] for x in batch] ) __a = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer.pad_token_id ) __a = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer.pad_token_id ) __a = trim_batch(lowerCamelCase , lowerCamelCase ) __a , __a = trim_batch(lowerCamelCase , lowerCamelCase , attention_mask=lowerCamelCase ) __a = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch SCREAMING_SNAKE_CASE__:Tuple = getLogger(__name__) def _lowerCamelCase( a ): return list(itertools.chain.from_iterable(a ) ) def _lowerCamelCase( a ): __a = get_git_info() save_json(a , os.path.join(a , "git_log.json" ) ) def _lowerCamelCase( a , a , a=4 , **a ): with open(a , "w" ) as f: json.dump(a , a , indent=a , **a ) def _lowerCamelCase( a ): with open(a ) as f: return json.load(a ) def _lowerCamelCase( ): __a = git.Repo(search_parent_directories=a ) __a = { "repo_id": str(a ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def _lowerCamelCase( a , a ): return list(map(a , a ) ) def _lowerCamelCase( a , a ): with open(a , "wb" ) as f: return pickle.dump(a , a ) def _lowerCamelCase( a ): def remove_articles(a ): return re.sub(R"\b(a|an|the)\b" , " " , a ) def white_space_fix(a ): return " ".join(text.split() ) def remove_punc(a ): __a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a ) ) ) ) def _lowerCamelCase( a , a ): __a = normalize_answer(a ).split() __a = normalize_answer(a ).split() __a = Counter(a ) & Counter(a ) __a = sum(common.values() ) if num_same == 0: return 0 __a = 1.0 * num_same / len(a ) __a = 1.0 * num_same / len(a ) __a = (2 * precision * recall) / (precision + recall) return fa def _lowerCamelCase( a , a ): return normalize_answer(a ) == normalize_answer(a ) def _lowerCamelCase( a , a ): assert len(a ) == len(a ) __a = 0 for hypo, pred in zip(a , a ): em += exact_match_score(a , a ) if len(a ) > 0: em /= len(a ) return {"em": em} def _lowerCamelCase( a ): return model_prefix.startswith("rag" ) def _lowerCamelCase( a , a , a ): __a = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __a = "dropout_rate" for p in extra_params: if getattr(a , a , a ): if not hasattr(a , a ) and not hasattr(a , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(a ) ) delattr(a , a ) continue __a = p if hasattr(a , a ) else equivalent_param[p] setattr(a , a , getattr(a , a ) ) delattr(a , a ) return hparams, config
261
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) A__ : Tuple = logging.getLogger(__name__) @dataclass class lowercase__ : _UpperCAmelCase :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase :Optional[str] = field( default=SCREAMING_SNAKE_CASE__, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase :Optional[str] = field( default=SCREAMING_SNAKE_CASE__, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase :Optional[str] = field( default=SCREAMING_SNAKE_CASE__, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) _UpperCAmelCase :bool = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "Whether tp freeze the encoder."} ) _UpperCAmelCase :bool = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class lowercase__ : _UpperCAmelCase :str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _UpperCAmelCase :Optional[str] = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) _UpperCAmelCase :Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) _UpperCAmelCase :Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) _UpperCAmelCase :Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) _UpperCAmelCase :Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) _UpperCAmelCase :Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."} ) _UpperCAmelCase :Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."} ) _UpperCAmelCase :Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."} ) _UpperCAmelCase :Optional[str] = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "Source language id for translation."} ) _UpperCAmelCase :Optional[str] = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "Target language id for translation."} ) _UpperCAmelCase :Optional[int] = field(default=SCREAMING_SNAKE_CASE__, metadata={"help": "# num_beams to use for evaluation."} ) _UpperCAmelCase :bool = field( default=SCREAMING_SNAKE_CASE__, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any ) -> Tuple: logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , F"""{split}_results.json""" ) ) def _snake_case ( ) -> str: lowerCamelCase_ : Optional[int] =HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =parser.parse_args_into_dataclasses() check_output_dir(lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : Tuple =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase_ : List[Any] =("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): assert hasattr(lowerCAmelCase__ , lowerCAmelCase__ ), F"""({config.__class__.__name__}) doesn\'t have a `{p}` attribute""" setattr(lowerCAmelCase__ , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCamelCase_ : List[str] =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase_ : int =AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCAmelCase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowerCamelCase_ : Dict =model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCAmelCase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCamelCase_ : Optional[Any] =tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowerCamelCase_ : int =tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCAmelCase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowerCamelCase_ : List[str] =SeqaSeqDataset # Get datasets lowerCamelCase_ : str =( dataset_class( lowerCAmelCase__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) lowerCamelCase_ : Any =( dataset_class( lowerCAmelCase__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowerCamelCase_ : str =( dataset_class( lowerCAmelCase__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer lowerCamelCase_ : Optional[int] =( build_compute_metrics_fn(data_args.task , lowerCAmelCase__ ) if training_args.predict_with_generate else None ) lowerCamelCase_ : Dict =SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , data_args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , data_collator=SeqaSeqDataCollator( lowerCAmelCase__ , lowerCAmelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) lowerCamelCase_ : Optional[int] ={} # Training if training_args.do_train: logger.info("*** Train ***" ) lowerCamelCase_ : Tuple =trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowerCamelCase_ : Tuple =train_result.metrics lowerCamelCase_ : List[Any] =data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ : Optional[int] =trainer.evaluate(metric_key_prefix="val" ) lowerCamelCase_ : int =data_args.n_val lowerCamelCase_ : int =round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ : List[Any] =trainer.predict(test_dataset=lowerCAmelCase__ , metric_key_prefix="test" ) lowerCamelCase_ : Any =test_output.metrics lowerCamelCase_ : Dict =data_args.n_test if trainer.is_world_process_zero(): lowerCamelCase_ : Union[str, Any] =round(metrics["test_loss"] , 4 ) handle_metrics("test" , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) if training_args.predict_with_generate: lowerCamelCase_ : Tuple =tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) lowerCamelCase_ : Dict =lmap(str.strip , lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(lowerCAmelCase__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def _snake_case ( lowerCamelCase__ : int ) -> Tuple: main() if __name__ == "__main__": main()
359
"""simple docstring""" import torch def _snake_case ( ) -> Union[str, Any]: if torch.cuda.is_available(): lowerCamelCase_ : int =torch.cuda.device_count() else: lowerCamelCase_ : List[str] =0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
209
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowerCAmelCase : Optional[Any] = False class __magic_name__ ( unittest.TestCase ): pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a =torch.manual_seed(0 ) __a =pipe( image=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
218
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase: List[str] = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[Any] = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Dict = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCAmelCase: Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
1
from itertools import permutations def lowerCamelCase_ ( UpperCamelCase__ : tuple ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __lowerCamelCase = [7, 11, 13, 17] for i, test in enumerate(UpperCamelCase__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCamelCase_ ( UpperCamelCase__ : int = 10 ) -> int: """simple docstring""" return sum( int(''.join(map(UpperCamelCase__ , UpperCamelCase__ ) ) ) for num in permutations(range(UpperCamelCase__ ) ) if is_substring_divisible(UpperCamelCase__ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
90
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase__ ( unittest.TestCase ): def __init__( self : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str]=13 ,lowerCamelCase__ : Dict=7 ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Dict=99 ,lowerCamelCase__ : int=32 ,lowerCamelCase__ : Tuple=5 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Any=37 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=512 ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : int=4 ,): '''simple docstring''' _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : Optional[int] = use_attention_mask _UpperCamelCase : Any = use_token_type_ids _UpperCamelCase : str = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : str = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Any = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : Optional[int] = type_vocab_size _UpperCamelCase : str = type_sequence_label_size _UpperCamelCase : Dict = initializer_range _UpperCamelCase : List[Any] = num_choices def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCamelCase : Union[str, Any] = None if self.use_attention_mask: _UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Any = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=lowerCamelCase__ ,) return config, input_ids, attention_mask def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase : Dict = model_class_name.from_pretrained('distilbert-base-uncased' ) _UpperCamelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _UpperCamelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase : Dict = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ )[0] _UpperCamelCase : Any = (1, 11, 768) self.assertEqual(output.shape ,lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,lowerCamelCase__ ,atol=1E-4 ) )
83
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) UpperCamelCase_ = DetaConfig( backbone_config=UpperCamelCase_ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=UpperCamelCase_ , with_box_refine=UpperCamelCase_ , two_stage=UpperCamelCase_ , ) # set labels UpperCamelCase_ = """huggingface/label-files""" if "o365" in model_name: UpperCamelCase_ = 366 UpperCamelCase_ = """object365-id2label.json""" else: UpperCamelCase_ = 91 UpperCamelCase_ = """coco-detection-id2label.json""" UpperCamelCase_ = num_labels UpperCamelCase_ = json.load(open(cached_download(hf_hub_url(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) ) , "r" ) ) UpperCamelCase_ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[int]: UpperCamelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = dct.pop(UpperCamelCase_ ) UpperCamelCase_ = val def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase_ = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) UpperCamelCase_ = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ = in_proj_weight[:dim, :] UpperCamelCase_ = in_proj_bias[: dim] UpperCamelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCamelCase_ = in_proj_weight[ -dim :, : ] UpperCamelCase_ = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: # transformer decoder self-attention layers UpperCamelCase_ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase_ = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCamelCase_ = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ = in_proj_weight[:hidden_size, :] UpperCamelCase_ = in_proj_bias[:hidden_size] UpperCamelCase_ = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase_ = in_proj_weight[-hidden_size:, :] UpperCamelCase_ = in_proj_bias[-hidden_size:] def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = get_deta_config(UpperCamelCase_ ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase_ = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": UpperCamelCase_ = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F'''Model name {model_name} not supported''' ) UpperCamelCase_ = torch.load(UpperCamelCase_ , map_location="cpu" )["""model"""] # original state dict for name, param in state_dict.items(): print(UpperCamelCase_ , param.shape ) # rename keys UpperCamelCase_ = create_rename_keys(UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_swin_q_k_v(UpperCamelCase_ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase_ , UpperCamelCase_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase_ = state_dict.pop(UpperCamelCase_ ) UpperCamelCase_ = val if "input_proj" in key: UpperCamelCase_ = state_dict.pop(UpperCamelCase_ ) UpperCamelCase_ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase_ = state_dict.pop(UpperCamelCase_ ) UpperCamelCase_ = val # finally, create HuggingFace model and load state dict UpperCamelCase_ = DetaForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(UpperCamelCase_ ) # load image processor UpperCamelCase_ = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image UpperCamelCase_ = prepare_img() UpperCamelCase_ = processor(images=UpperCamelCase_ , return_tensors="pt" ) UpperCamelCase_ = encoding["""pixel_values"""] UpperCamelCase_ = model(pixel_values.to(UpperCamelCase_ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase_ = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) UpperCamelCase_ = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase_ = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) UpperCamelCase_ = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCamelCase_ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCamelCase_ ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _UpperCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
360
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCAmelCase_ : Tuple = numpy.array([0, 0]) UpperCAmelCase_ : Any = numpy.array([0.5, 0.8_6_6_0_2_5_4]) UpperCAmelCase_ : Tuple = numpy.array([1, 0]) UpperCAmelCase_ : Optional[int] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def SCREAMING_SNAKE_CASE_ ( __A : list[numpy.ndarray] , __A : int ) -> list[numpy.ndarray]: """simple docstring""" a_ : Tuple = initial_vectors for _ in range(__A ): a_ : Tuple = iteration_step(__A ) return vectors def SCREAMING_SNAKE_CASE_ ( __A : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" a_ : Optional[int] = [] for i, start_vector in enumerate(vectors[:-1] ): a_ : int = vectors[i + 1] new_vectors.append(__A ) a_ : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def SCREAMING_SNAKE_CASE_ ( __A : numpy.ndarray , __A : float ) -> numpy.ndarray: """simple docstring""" a_ : Tuple = numpy.radians(__A ) a_ , a_ : List[str] = numpy.cos(__A ), numpy.sin(__A ) a_ : Optional[int] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : list[numpy.ndarray] ) -> None: """simple docstring""" a_ : int = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ : Any = zip(*__A ) plt.plot(__A , __A ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=18 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , ) -> List[Any]: __lowercase : Any = size if size is not None else {'''height''': 18, '''width''': 18} __lowercase : Dict = parent __lowercase : Dict = batch_size __lowercase : int = num_channels __lowercase : Union[str, Any] = image_size __lowercase : Optional[int] = min_resolution __lowercase : List[str] = max_resolution __lowercase : Dict = do_resize __lowercase : Any = size __lowercase : Any = do_normalize __lowercase : int = image_mean __lowercase : Tuple = image_std def _lowerCamelCase ( self ) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase_ ( snake_case , unittest.TestCase ): UpperCamelCase =DPTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = DPTImageProcessingTester(self ) @property def _lowerCamelCase ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ) -> Tuple: __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __lowercase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _lowerCamelCase ( self ) -> Optional[int]: # Initialize image_processing __lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __lowercase : Optional[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ) -> List[Any]: # Initialize image_processing __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input __lowercase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __lowercase : Any = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ) -> Tuple: # Initialize image_processing __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __lowercase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
249
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'wavlm' def __init__(self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=320 , _lowerCamelCase=800 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.05 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=(512, 512, 512, 512, 1500) , _lowerCamelCase=(5, 3, 3, 1, 1) , _lowerCamelCase=(1, 2, 3, 1, 1) , _lowerCamelCase=512 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=None , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : str = feat_extract_norm UpperCAmelCase__ : Optional[int] = feat_extract_activation UpperCAmelCase__ : Optional[Any] = list(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = list(_lowerCamelCase ) UpperCAmelCase__ : List[str] = list(_lowerCamelCase ) UpperCAmelCase__ : str = conv_bias UpperCAmelCase__ : Tuple = num_buckets UpperCAmelCase__ : str = max_bucket_distance UpperCAmelCase__ : Dict = num_conv_pos_embeddings UpperCAmelCase__ : List[str] = num_conv_pos_embedding_groups UpperCAmelCase__ : List[Any] = len(self.conv_dim ) UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Optional[int] = hidden_dropout UpperCAmelCase__ : Union[str, Any] = attention_dropout UpperCAmelCase__ : Optional[int] = activation_dropout UpperCAmelCase__ : Optional[int] = feat_proj_dropout UpperCAmelCase__ : List[str] = final_dropout UpperCAmelCase__ : Union[str, Any] = layerdrop UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Union[str, Any] = num_ctc_classes UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Optional[Any] = do_stable_layer_norm UpperCAmelCase__ : Optional[int] = use_weighted_layer_sum UpperCAmelCase__ : int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ : Tuple = apply_spec_augment UpperCAmelCase__ : str = mask_time_prob UpperCAmelCase__ : Any = mask_time_length UpperCAmelCase__ : str = mask_time_min_masks UpperCAmelCase__ : List[Any] = mask_feature_prob UpperCAmelCase__ : Optional[int] = mask_feature_length # parameters for pretraining with codevector quantized representations UpperCAmelCase__ : int = num_codevectors_per_group UpperCAmelCase__ : List[Any] = num_codevector_groups UpperCAmelCase__ : Optional[Any] = contrastive_logits_temperature UpperCAmelCase__ : int = num_negatives UpperCAmelCase__ : List[str] = codevector_dim UpperCAmelCase__ : Tuple = proj_codevector_dim UpperCAmelCase__ : str = diversity_loss_weight # ctc loss UpperCAmelCase__ : List[str] = ctc_loss_reduction UpperCAmelCase__ : str = ctc_zero_infinity # adapter UpperCAmelCase__ : List[Any] = add_adapter UpperCAmelCase__ : Dict = adapter_kernel_size UpperCAmelCase__ : Dict = adapter_stride UpperCAmelCase__ : Optional[Any] = num_adapter_layers UpperCAmelCase__ : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase__ : Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase__ : Tuple = list(_lowerCamelCase ) UpperCAmelCase__ : Any = list(_lowerCamelCase ) UpperCAmelCase__ : List[str] = list(_lowerCamelCase ) UpperCAmelCase__ : Any = xvector_output_dim @property def _a (self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""LayoutLMv3FeatureExtractor"""] _A = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
0
import pickle import numpy as np from matplotlib import pyplot as plt class a__ : def __init__( self , _A , _A , _A , _A , _A , _A=0.2 , _A=0.2 ): """simple docstring""" __lowerCAmelCase = bp_numa __lowerCAmelCase = bp_numa __lowerCAmelCase = bp_numa __lowerCAmelCase = conva_get[:2] __lowerCAmelCase = conva_get[2] __lowerCAmelCase = size_pa __lowerCAmelCase = rate_w __lowerCAmelCase = rate_t __lowerCAmelCase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __lowerCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1 __lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 __lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(_A , "wb" ) as f: pickle.dump(_A , _A ) print(f"""Model saved: {save_path}""" ) @classmethod def __SCREAMING_SNAKE_CASE( cls , _A ): """simple docstring""" with open(_A , "rb" ) as f: __lowerCAmelCase = pickle.load(_A ) # noqa: S301 __lowerCAmelCase = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) __lowerCAmelCase = model_dic.get("size_pooling1" ) __lowerCAmelCase = model_dic.get("num_bp1" ) __lowerCAmelCase = model_dic.get("num_bp2" ) __lowerCAmelCase = model_dic.get("num_bp3" ) __lowerCAmelCase = model_dic.get("rate_weight" ) __lowerCAmelCase = model_dic.get("rate_thre" ) # create model instance __lowerCAmelCase = CNN(_A , _A , _A , _A , _A , _A , _A ) # modify model parameter __lowerCAmelCase = model_dic.get("w_conv1" ) __lowerCAmelCase = model_dic.get("wkj" ) __lowerCAmelCase = model_dic.get("vji" ) __lowerCAmelCase = model_dic.get("thre_conv1" ) __lowerCAmelCase = model_dic.get("thre_bp2" ) __lowerCAmelCase = model_dic.get("thre_bp3" ) return conv_ins def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return round(_A , 3 ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = convs[0] __lowerCAmelCase = convs[1] __lowerCAmelCase = np.shape(_A )[0] # get the data slice of original image data, data_focus __lowerCAmelCase = [] for i_focus in range(0 , size_data - size_conv + 1 , _A ): for j_focus in range(0 , size_data - size_conv + 1 , _A ): __lowerCAmelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_A ) # calculate the feature map of every single kernel, and saved as list of matrix __lowerCAmelCase = [] __lowerCAmelCase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_A ): __lowerCAmelCase = [] for i_focus in range(len(_A ) ): __lowerCAmelCase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_A ) ) __lowerCAmelCase = np.asmatrix(_A ).reshape( _A , _A ) data_featuremap.append(_A ) # expanding the data slice to One dimenssion __lowerCAmelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_A ) ) __lowerCAmelCase = np.asarray(_A ) return focus_list, data_featuremap def __SCREAMING_SNAKE_CASE( self , _A , _A , _A="average_pool" ): """simple docstring""" __lowerCAmelCase = len(featuremaps[0] ) __lowerCAmelCase = int(size_map / size_pooling ) __lowerCAmelCase = [] for i_map in range(len(_A ) ): __lowerCAmelCase = featuremaps[i_map] __lowerCAmelCase = [] for i_focus in range(0 , _A , _A ): for j_focus in range(0 , _A , _A ): __lowerCAmelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_A ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_A ) ) __lowerCAmelCase = np.asmatrix(_A ).reshape(_A , _A ) featuremap_pooled.append(_A ) return featuremap_pooled def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [] for i in range(len(_A ) ): __lowerCAmelCase = np.shape(data[i] ) __lowerCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] ) __lowerCAmelCase = data_listed.getA().tolist()[0] data_expanded.extend(_A ) __lowerCAmelCase = np.asarray(_A ) return data_expanded def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = np.asarray(_A ) __lowerCAmelCase = np.shape(_A ) __lowerCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = [] __lowerCAmelCase = 0 for i_map in range(_A ): __lowerCAmelCase = np.ones((size_map, size_map) ) for i in range(0 , _A , _A ): for j in range(0 , _A , _A ): __lowerCAmelCase = pd_pool[ i_pool ] __lowerCAmelCase = i_pool + 1 __lowerCAmelCase = np.multiply( _A , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_A ) return pd_all def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A=bool ): """simple docstring""" print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(_A )) ) print((" - - Shape: Teach_Data ", np.shape(_A )) ) __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: __lowerCAmelCase = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_A ) ): # print('------------Learning Image: %d--------------'%p) __lowerCAmelCase = np.asmatrix(datas_train[p] ) __lowerCAmelCase = np.asarray(datas_teach[p] ) __lowerCAmelCase , __lowerCAmelCase = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase = self.pooling(_A , self.size_poolinga ) __lowerCAmelCase = np.shape(_A ) __lowerCAmelCase = self._expand(_A ) __lowerCAmelCase = data_bp_input __lowerCAmelCase = np.dot(_A , self.vji.T ) - self.thre_bpa __lowerCAmelCase = self.sig(_A ) __lowerCAmelCase = np.dot(_A , self.wkj.T ) - self.thre_bpa __lowerCAmelCase = self.sig(_A ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __lowerCAmelCase = np.multiply( (data_teach - bp_outa) , np.multiply(_A , (1 - bp_outa) ) ) __lowerCAmelCase = np.multiply( np.dot(_A , self.wkj ) , np.multiply(_A , (1 - bp_outa) ) ) __lowerCAmelCase = np.dot(_A , self.vji ) __lowerCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) __lowerCAmelCase = pd_conva_pooled.T.getA().tolist() __lowerCAmelCase = self._calculate_gradient_from_pool( _A , _A , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __lowerCAmelCase = self._expand_mat(pd_conva_all[k_conv] ) __lowerCAmelCase = self.rate_weight * np.dot(_A , _A ) __lowerCAmelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __lowerCAmelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __lowerCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __lowerCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight __lowerCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre __lowerCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __lowerCAmelCase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __lowerCAmelCase = rp + 1 __lowerCAmelCase = error_count / patterns all_mse.append(_A ) def draw_error(): __lowerCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_A , "+-" ) plt.plot(_A , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(_A , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(_A )) ) for p in range(len(_A ) ): __lowerCAmelCase = np.asmatrix(datas_test[p] ) __lowerCAmelCase , __lowerCAmelCase = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase = self.pooling(_A , self.size_poolinga ) __lowerCAmelCase = self._expand(_A ) __lowerCAmelCase = data_bp_input __lowerCAmelCase = bp_outa * self.vji.T - self.thre_bpa __lowerCAmelCase = self.sig(_A ) __lowerCAmelCase = bp_outa * self.wkj.T - self.thre_bpa __lowerCAmelCase = self.sig(_A ) produce_out.extend(bp_outa.getA().tolist() ) __lowerCAmelCase = [list(map(self.do_round , _A ) ) for each in produce_out] return np.asarray(_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = np.asmatrix(_A ) __lowerCAmelCase , __lowerCAmelCase = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase = self.pooling(_A , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
92
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): lowerCamelCase__ = getattr(__snake_case ,__snake_case ) if weight_type is not None: lowerCamelCase__ = getattr(__snake_case ,__snake_case ).shape else: lowerCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase__ = None for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( __snake_case ,__snake_case ,__snake_case ,__snake_case ,hf_model.config.feat_extract_norm == '''group''' ,) lowerCamelCase__ = True elif name.split('''.''' )[0] == "proj": lowerCamelCase__ = fairseq_model.proj lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(__snake_case )[0].split('''.''' )[-2] lowerCamelCase__ = mapped_key.replace('''*''' ,__snake_case ) if "weight_g" in name: lowerCamelCase__ = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ = '''weight_v''' elif "bias" in name: lowerCamelCase__ = '''bias''' elif "weight" in name: lowerCamelCase__ = '''weight''' else: lowerCamelCase__ = None set_recursively(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ = name.split('''.''' ) lowerCamelCase__ = int(items[0] ) lowerCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__snake_case ,__snake_case ,bias=__snake_case ) lowerCamelCase__ = emb.weight.data return lin_layer def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' with open(__snake_case ,'''r''' ,encoding='''utf-8''' ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.split(''' ''' )[0] for line in lines] lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__snake_case ,range(4 ,num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = WavaVecaConfig.from_pretrained(__snake_case ) lowerCamelCase__ = SpeechaTextaConfig.from_pretrained( __snake_case ,vocab_size=__snake_case ,decoder_layers=__snake_case ,do_stable_layer_norm=__snake_case ) lowerCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=__snake_case ,return_attention_mask=__snake_case ,) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCamelCase__ = model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase__ = WavaVecaModel(__snake_case ) lowerCamelCase__ = recursively_load_weights_wavaveca(model.encoder ,__snake_case ) lowerCamelCase__ = SpeechaTextaForCausalLM(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=__snake_case ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCamelCase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCamelCase__ = SpeechEncoderDecoderModel(encoder=__snake_case ,decoder=__snake_case ) lowerCamelCase__ = False # add projection layer lowerCamelCase__ = nn.Parameter(projection_layer.weight ) lowerCamelCase__ = nn.Parameter(projection_layer.bias ) lowerCamelCase__ = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case ,'''vocab.json''' ) ,'''w''' ) as fp: json.dump(__snake_case ,__snake_case ) lowerCamelCase__ = SpeechaTextaTokenizer(os.path.join(__snake_case ,'''vocab.json''' ) ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase__ = hf_wavavec.config.to_dict() lowerCamelCase__ = tokenizer.pad_token_id lowerCamelCase__ = tokenizer.bos_token_id lowerCamelCase__ = tokenizer.eos_token_id lowerCamelCase__ = '''speech_to_text_2''' lowerCamelCase__ = '''wav2vec2''' lowerCamelCase__ = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
209
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = 'microsoft/speecht5_tts' _SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) _SCREAMING_SNAKE_CASE : Optional[int] = 'text_reader' _SCREAMING_SNAKE_CASE : Dict = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Dict = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : int = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : List[Any] = ['text'] _SCREAMING_SNAKE_CASE : Tuple = ['audio'] def _lowerCamelCase ( self ): """simple docstring""" if self.post_processor is None: _lowercase : Optional[Any] = "microsoft/speecht5_hifigan" super().setup() def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" _lowercase : Any = self.pre_processor(text=_UpperCamelCase , return_tensors="pt" , truncation=_UpperCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) _lowercase : Optional[Any] = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) _lowercase : Dict = torch.tensor(embeddings_dataset[7305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.post_processor(_UpperCamelCase ).cpu().detach()
199
'''simple docstring''' from timeit import timeit def _A ( snake_case ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _lowercase : Union[str, Any] = 0 while number: number &= number - 1 result += 1 return result def _A ( snake_case ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _lowercase : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _A ( ) -> None: def do_benchmark(snake_case ) -> None: _lowercase : Optional[int] = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(snake_case ) = }''' ) _lowercase : int = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=snake_case ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(snake_case ) = }''' ) _lowercase : Optional[int] = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=snake_case , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
199
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase : List[str] = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : Union[str, Any] = load_tool("text-question-answering" , remote=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Dict = self.tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.remote_tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Dict = self.tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[Any] = self.remote_tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" )
310
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_text_model' def __init__( self , lowercase=250002 , lowercase=1024 , lowercase=24 , lowercase=16 , lowercase=4096 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=514 , lowercase=1 , lowercase=0.02 , lowercase=0.02 , lowercase=1e-05 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=768 , **lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = initializer_factor A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = project_dim class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_vision_model' def __init__( self , lowercase=768 , lowercase=3072 , lowercase=512 , lowercase=12 , lowercase=12 , lowercase=3 , lowercase=224 , lowercase=32 , lowercase="quick_gelu" , lowercase=1e-5 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase ) A__ = hidden_size A__ = intermediate_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = initializer_factor A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def UpperCamelCase ( cls , lowercase , **lowercase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase ) A__ , A__ = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": A__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowercase , **lowercase ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip' __lowerCamelCase = True def __init__( self , lowercase=None , lowercase=None , lowercase=768 , lowercase=2.6592 , **lowercase ) -> List[str]: '''simple docstring''' A__ = kwargs.pop("text_config_dict" , lowercase ) A__ = kwargs.pop("vision_config_dict" , lowercase ) super().__init__(**lowercase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A__ = {} # This is the complete result when using `text_config_dict`. A__ = AltCLIPTextConfig(**lowercase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A__ = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A__ = {} # This is the complete result when using `vision_config_dict`. A__ = AltCLIPVisionConfig(**lowercase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A__ = { str(lowercase ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A__ = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A__ = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: A__ = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) A__ = AltCLIPTextConfig(**lowercase ) A__ = AltCLIPVisionConfig(**lowercase ) A__ = projection_dim A__ = logit_scale_init_value A__ = 1.0 @classmethod def UpperCamelCase ( cls , lowercase , lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
68
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __A ( self: str ) -> str: _A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__A , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__A , '''num_attention_heads''' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: Union[str, Any] , __A: Union[str, Any] , __A: Optional[Any]=13 , __A: List[Any]=32 , __A: Optional[Any]=2 , __A: Optional[Any]=3 , __A: Optional[Any]=6_40 , __A: Union[str, Any]=4 , __A: Tuple="silu" , __A: Tuple=3 , __A: Union[str, Any]=32 , __A: Any=0.1 , __A: Optional[int]=0.1 , __A: Optional[int]=0.1 , __A: List[Any]=0.02 , __A: str=True , __A: Union[str, Any]=True , __A: Any=10 , __A: Optional[Any]=None , ) -> str: _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = last_hidden_size _A = num_attention_heads _A = hidden_act _A = conv_kernel_size _A = output_stride _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = classifier_dropout_prob _A = use_labels _A = is_training _A = num_labels _A = initializer_range _A = scope def __A ( self: Optional[Any] ) -> Any: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.num_labels ) _A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self: Optional[int] ) -> Optional[Any]: return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __A ( self: Optional[Any] , __A: Optional[Any] , __A: Optional[int] , __A: int , __A: Any ) -> Optional[Any]: _A = MobileViTModel(config=__A ) model.to(__A ) model.eval() _A = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self: Dict , __A: Tuple , __A: Optional[int] , __A: Union[str, Any] , __A: List[Any] ) -> Any: _A = self.num_labels _A = MobileViTForImageClassification(__A ) model.to(__A ) model.eval() _A = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self: Dict , __A: Tuple , __A: Tuple , __A: int , __A: int ) -> Optional[Any]: _A = self.num_labels _A = MobileViTForSemanticSegmentation(__A ) model.to(__A ) model.eval() _A = model(__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _A = model(__A , labels=__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self: Union[str, Any] ) -> Union[str, Any]: _A = self.prepare_config_and_inputs() _A ,_A ,_A ,_A = config_and_inputs _A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" A_ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A_ = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def __A ( self: Any ) -> List[str]: _A = MobileViTModelTester(self ) _A = MobileViTConfigTester(self , config_class=__A , has_text_modality=__A ) def __A ( self: Any ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def __A ( self: Tuple ) -> str: pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def __A ( self: Any ) -> List[Any]: pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def __A ( self: Union[str, Any] ) -> Optional[int]: pass def __A ( self: Optional[Any] ) -> List[str]: _A ,_A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__A ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self: Tuple ) -> Union[str, Any]: pass def __A ( self: Optional[int] ) -> Union[str, Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __A ( self: List[Any] ) -> Tuple: def check_hidden_states_output(__A: Union[str, Any] , __A: str , __A: Dict ): _A = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(__A , __A ) ) _A = outputs.hidden_states _A = 5 self.assertEqual(len(__A ) , __A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _A = 2 for i in range(len(__A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _A ,_A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(__A , __A , __A ) def __A ( self: int ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __A ( self: str ) -> Union[str, Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __A ( self: Union[str, Any] ) -> int: for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = MobileViTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __A ( ) -> int: '''simple docstring''' _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self: List[str] ) -> Optional[Any]: return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def __A ( self: List[str] ) -> Optional[Any]: _A = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(__A ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): _A = model(**__A ) # verify the logits _A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __A ) _A = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) ) @slow def __A ( self: Optional[int] ) -> List[str]: _A = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _A = model.to(__A ) _A = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _A = prepare_img() _A = image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): _A = model(**__A ) _A = outputs.logits # verify the logits _A = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __A ) _A = torch.tensor( [ [[6.9_713, 6.9_786, 7.2_422], [7.2_893, 7.2_825, 7.4_446], [7.6_580, 7.8_797, 7.9_420]], [[-10.6_869, -10.3_250, -10.3_471], [-10.4_228, -9.9_868, -9.7_132], [-11.0_405, -11.0_221, -10.7_318]], [[-3.3_089, -2.8_539, -2.6_740], [-3.2_706, -2.5_621, -2.5_108], [-3.2_534, -2.6_615, -2.6_651]], ] , device=__A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4 ) ) @slow def __A ( self: List[str] ) -> Tuple: _A = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _A = model.to(__A ) _A = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _A = prepare_img() _A = image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): _A = model(**__A ) _A = outputs.logits.detach().cpu() _A = image_processor.post_process_semantic_segmentation(outputs=__A , target_sizes=[(50, 60)] ) _A = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __A ) _A = image_processor.post_process_semantic_segmentation(outputs=__A ) _A = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __A )
367
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "facebook/bart-large-mnli" A_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) A_ = "text_classifier" A_ = AutoTokenizer A_ = AutoModelForSequenceClassification A_ = ["text", ["text"]] A_ = ["text"] def __A ( self: int ) -> str: super().setup() _A = self.model.config _A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _A = int(__A ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __A ( self: Union[str, Any] , __A: Union[str, Any] , __A: List[str] ) -> int: _A = labels return self.pre_processor( [text] * len(__A ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __A ( self: str , __A: List[Any] ) -> Union[str, Any]: _A = outputs.logits _A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
75
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __A : Tuple = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = SpeechTaTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def _lowercase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = SpeechTaTokenizer(_lowerCAmelCase ) UpperCAmelCase = AddedToken('''<mask>''' , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) UpperCAmelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = '''this is a test''' UpperCAmelCase = '''this is a test''' return input_text, output_text def _lowercase ( self , _A , _A=False , _A=2_0 , _A=5 ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.get_input_output_texts(_lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) return text, ids def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(_lowerCAmelCase ) , 8_1 ) def _lowercase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(_lowerCAmelCase ) self.assertNotEqual(_lowerCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] UpperCAmelCase = tokenizer.add_tokens(_lowerCAmelCase ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(_lowerCAmelCase ) self.assertNotEqual(_lowerCAmelCase , 0 ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , all_size + len(_lowerCAmelCase ) ) UpperCAmelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_lowerCAmelCase ) self.assertGreaterEqual(len(_lowerCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} UpperCAmelCase = tokenizer.add_special_tokens(_lowerCAmelCase ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(_lowerCAmelCase ) self.assertNotEqual(_lowerCAmelCase , 0 ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , all_size_a + len(_lowerCAmelCase ) ) UpperCAmelCase = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_lowerCAmelCase ) self.assertGreaterEqual(len(_lowerCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(_lowerCAmelCase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) # fmt: off self.assertListEqual(_lowerCAmelCase , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off UpperCAmelCase = { '''input_ids''': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_lowerCAmelCase , )
273
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """mgp-str""" def __init__( self : int , _lowerCAmelCase : str=[3_2, 1_2_8] , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : int=3 , _lowerCAmelCase : str=2_7 , _lowerCAmelCase : List[str]=3_8 , _lowerCAmelCase : Tuple=5_0_2_5_7 , _lowerCAmelCase : str=3_0_5_2_2 , _lowerCAmelCase : Optional[int]=7_6_8 , _lowerCAmelCase : Optional[int]=1_2 , _lowerCAmelCase : Optional[Any]=1_2 , _lowerCAmelCase : Optional[int]=4.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[Any]=1e-5 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : str=False , _lowerCAmelCase : List[Any]=0.02 , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) __lowercase =image_size __lowercase =patch_size __lowercase =num_channels __lowercase =max_token_length __lowercase =num_character_labels __lowercase =num_bpe_labels __lowercase =num_wordpiece_labels __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =mlp_ratio __lowercase =distilled __lowercase =layer_norm_eps __lowercase =drop_rate __lowercase =qkv_bias __lowercase =attn_drop_rate __lowercase =drop_path_rate __lowercase =output_aa_attentions __lowercase =initializer_range
166
0
import os import pytest from attr import dataclass _UpperCAmelCase = 'us-east-1' # defaults region @dataclass class _UpperCamelCase : _UpperCamelCase : str _UpperCamelCase : Any = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _UpperCamelCase : List[str] = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 1_6, '''per_device_eval_batch_size''': 1_6, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 5_0_0, '''save_steps''': 5_5_0_0, } _UpperCamelCase : Tuple = {**hyperparameters, '''max_steps''': 1_0_0_0} @property def lowercase ( self: Tuple ) -> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def lowercase ( self: int ) -> str: """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowercase ( self: Dict ) -> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: UpperCamelCase_ = SageMakerTestEnvironment(framework=request.cls.framework )
328
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
1
def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowerCamelCase , _lowerCamelCase : List[str] =y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def a_ ( ): '''simple docstring''' try: _lowerCamelCase : Tuple =input('Enter two integers separated by comma (,): ' ).split(',' ) _lowerCamelCase : Any =int(nums[0] ) _lowerCamelCase : Dict =int(nums[1] ) print( F'''greatest_common_divisor({num_a}, {num_a}) = ''' F'''{greatest_common_divisor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
199
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 5_00_03 lowerCamelCase = 5_00_02 @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : int =PLBartTokenizer UpperCamelCase__ : Dict =None UpperCamelCase__ : Optional[Any] =False def lowerCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Any =PLBartTokenizer(lowercase_ , language_codes='base' , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =PLBartTokenizer(lowercase_ , language_codes='base' , keep_accents=lowercase_ ) _lowerCamelCase : Optional[int] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : str =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : List[Any] =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCamelCase : str =tokenizer.vocab_size _lowerCamelCase : List[str] =[tokenizer.convert_ids_to_tokens(lowercase_ ) for x in range(end - 4 , lowercase_ )] self.assertListEqual(lowercase_ , ['__java__', '__python__', '__en_XX__', '<mask>'] ) _lowerCamelCase : Optional[Any] ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCamelCase : Dict =tokenizer(lowercase_ ).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) , lowercase_ , ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : Tuple =PLBartTokenizer(lowercase_ , language_codes='multi' , keep_accents=lowercase_ ) _lowerCamelCase : Any =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : Optional[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Dict =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCamelCase : Dict =tokenizer.vocab_size _lowerCamelCase : Optional[int] =[tokenizer.convert_ids_to_tokens(lowercase_ ) for x in range(end - 7 , lowercase_ )] self.assertListEqual( lowercase_ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) _lowerCamelCase : int ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCamelCase : Any =tokenizer(lowercase_ ).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) , lowercase_ , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): UpperCamelCase__ : List[Any] ='uclanlp/plbart-python-en_XX' UpperCamelCase__ : List[str] =[ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] UpperCamelCase__ : Optional[int] =[ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] UpperCamelCase__ : str =[ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCamelCase ( cls : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) _lowerCamelCase : Any =1 return cls def lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0003 ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) _lowerCamelCase : Dict =[EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] _lowerCamelCase : Optional[int] =self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) _lowerCamelCase : int =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , lowercase_ ) _lowerCamelCase : Tuple =10 _lowerCamelCase : Optional[int] =self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_0004, 5_0001] ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =tempfile.mkdtemp() _lowerCamelCase : Dict =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) _lowerCamelCase : Any =PLBartTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[Any] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='pt' ) _lowerCamelCase : List[Any] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowercase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCamelCase : List[Any] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _lowerCamelCase : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='pt' ) _lowerCamelCase : Dict =self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='pt' ) _lowerCamelCase : List[str] =targets['input_ids'] _lowerCamelCase : Optional[Any] =shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : Any =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 5_0003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_0001, } , )
199
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer A : Any = logging.get_logger(__name__) A : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } A : Dict = { 'allenai/led-base-16384': 1_6_3_8_4, } class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case="replace" , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case=False , _snake_case=True , **_snake_case , ) -> str: '''simple docstring''' super().__init__( _snake_case , _snake_case , tokenizer_file=_snake_case , errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case , **_snake_case , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _snake_case ) != add_prefix_space: __a = getattr(_snake_case , pre_tok_state.pop('''type''' ) ) __a = add_prefix_space __a = pre_tok_class(**_snake_case ) __a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __a = '''post_processor''' __a = getattr(self.backend_tokenizer , _snake_case , _snake_case ) if tokenizer_component_instance: __a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a = tuple(state['''sep'''] ) if "cls" in state: __a = tuple(state['''cls'''] ) __a = False if state.get('''add_prefix_space''' , _snake_case ) != add_prefix_space: __a = add_prefix_space __a = True if state.get('''trim_offsets''' , _snake_case ) != trim_offsets: __a = trim_offsets __a = True if changes_to_apply: __a = getattr(_snake_case , state.pop('''type''' ) ) __a = component_class(**_snake_case ) setattr(self.backend_tokenizer , _snake_case , _snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' __a = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else value __a = value def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> BatchEncoding: '''simple docstring''' __a = kwargs.get('''is_split_into_words''' , _snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> BatchEncoding: '''simple docstring''' __a = kwargs.get('''is_split_into_words''' , _snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: '''simple docstring''' __a = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> Union[str, Any]: '''simple docstring''' __a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> List[int]: '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = PaddingStrategy.DO_NOT_PAD , _snake_case = None , _snake_case = None , ) -> dict: '''simple docstring''' __a = super()._pad( encoded_inputs=_snake_case , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , ) # Load from model defaults if return_attention_mask is None: __a = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __a = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __a = len(encoded_inputs['''global_attention_mask'''] ) != len(_snake_case ) if needs_to_be_padded: __a = len(_snake_case ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __a = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __a = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
33
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( a__ ) -> List[str]: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += [key] setattr(a__ , '''handle_key''' , a__ ) return func return decorator def __lowerCAmelCase ( *a__ ) -> str: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += keys setattr(a__ , '''handle_key''' , a__ ) return func return decorator class __A( a ): def __new__( cls , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , '''key_handler''' ): setattr(_snake_case , '''key_handler''' , {} ) setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a = getattr(_snake_case , '''handle_key''' , [] ) for key in handled_keys: __a = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> List[str]: '''simple docstring''' __a = get_character() if char != KEYMAP["undefined"]: __a = ord(_snake_case ) __a = cls.key_handler.get(_snake_case ) if handler: __a = char return handler(cls ) else: return None def __lowerCAmelCase ( cls ) -> Union[str, Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
33
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __snake_case = {'''UserAgent''': UserAgent().random} def _A ( _lowercase ) -> dict: """simple docstring""" __UpperCamelCase = script.contents[0] __UpperCamelCase = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __lowerCamelCase : def __init__( self: int,A_: int ): '''simple docstring''' __UpperCamelCase = F'''https://www.instagram.com/{username}/''' __UpperCamelCase = self.get_json() def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = requests.get(self.url,headers=A_ ).text __UpperCamelCase = BeautifulSoup(A_,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: List[str] ): '''simple docstring''' return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[str] ): '''simple docstring''' return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return self.user_data["username"] @property def snake_case_ ( self: Any ): '''simple docstring''' return self.user_data["full_name"] @property def snake_case_ ( self: str ): '''simple docstring''' return self.user_data["biography"] @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return self.user_data["business_email"] @property def snake_case_ ( self: Dict ): '''simple docstring''' return self.user_data["external_url"] @property def snake_case_ ( self: Any ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def snake_case_ ( self: str ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def snake_case_ ( self: Any ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def snake_case_ ( self: Any ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.user_data["is_verified"] @property def snake_case_ ( self: List[Any] ): '''simple docstring''' return self.user_data["is_private"] def _A ( _lowercase = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions __UpperCamelCase = InstagramUser(_lowercase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowercase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __snake_case = InstagramUser('''github''') print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase_ : '''simple docstring''' __lowercase : int __lowercase : TreeNode | None = None __lowercase : TreeNode | None = None _lowerCAmelCase = namedtuple('''CoinsDistribResult''', '''moves excess''') def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(UpperCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(UpperCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__SCREAMING_SNAKE_CASE ) != count_coins(__SCREAMING_SNAKE_CASE ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(UpperCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCAmelCase__ : Optional[Any] = get_distrib(node.left ) lowerCAmelCase__ : Optional[int] = get_distrib(node.right ) lowerCAmelCase__ : Any = 1 - left_distrib_excess lowerCAmelCase__ : str = 1 - right_distrib_excess lowerCAmelCase__ : Dict = ( left_distrib_moves + right_distrib_moves + abs(__SCREAMING_SNAKE_CASE ) + abs(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return get_distrib(__SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : str = tempfile.mkdtemp() lowerCAmelCase__ : List[Any] = 8 # DPR tok lowerCAmelCase__ : int = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) os.makedirs(__UpperCAmelCase ,exist_ok=__UpperCAmelCase ) lowerCAmelCase__ : Dict = os.path.join(__UpperCAmelCase ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok lowerCAmelCase__ : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase__ : List[Any] = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase__ : Any = {"""unk_token""": """<unk>"""} lowerCAmelCase__ : str = os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) os.makedirs(__UpperCAmelCase ,exist_ok=__UpperCAmelCase ) lowerCAmelCase__ : Any = os.path.join(__UpperCAmelCase ,BART_VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : Dict = os.path.join(__UpperCAmelCase ,BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def UpperCAmelCase_ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) ) def UpperCAmelCase_ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Any = os.path.join(self.tmpdirname ,"""rag_tokenizer""" ) lowerCAmelCase__ : Any = RagConfig(question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ) lowerCAmelCase__ : str = RagTokenizer(question_encoder=self.get_dpr_tokenizer() ,generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__UpperCAmelCase ) rag_tokenizer.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Any = RagTokenizer.from_pretrained(__UpperCAmelCase ,config=__UpperCAmelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder ,__UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() ,rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator ,__UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() ,rag_tokenizer.generator.get_vocab() ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) lowerCAmelCase__ : Optional[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowerCAmelCase__ : Dict = tokenizer(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : str = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) lowerCAmelCase__ : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowerCAmelCase__ : Tuple = tokenizer(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
184
0
"""simple docstring""" __a = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __a = concatenate_datasets __a = DownloadConfig __a = DownloadManager __a = DownloadMode __a = DownloadConfig __a = DownloadMode __a = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
66
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Optional[int] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a_ : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a_ : Optional[int] = {"""facebook/blenderbot_small-90M""": 5_12} def a_ ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ =set() lowerCamelCase_ =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ =char lowerCamelCase_ =set(__snake_case ) return pairs class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : Tuple =PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase="__start__", lowerCAmelCase="__end__", lowerCAmelCase="__unk__", lowerCAmelCase="__null__", **lowerCAmelCase, ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, pad_token=lowerCAmelCase, **lowerCAmelCase ) with open(lowerCAmelCase, encoding='''utf-8''' ) as vocab_handle: lowerCamelCase_ =json.load(lowerCAmelCase ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase, encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ =merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase_ =[tuple(merge.split() ) for merge in merges] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ ={} @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ =re.sub('''([.,!?()])''', R''' \1''', lowerCAmelCase ) lowerCamelCase_ =re.sub('''(\')''', R''' \1 ''', lowerCAmelCase ) lowerCamelCase_ =re.sub(R'''\s{2,}''', ''' ''', lowerCAmelCase ) if "\n" in token: lowerCamelCase_ =token.replace('''\n''', ''' __newln__''' ) lowerCamelCase_ =token.split(''' ''' ) lowerCamelCase_ =[] for token in tokens: if not len(lowerCAmelCase ): continue lowerCamelCase_ =token.lower() lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCamelCase_ =get_pairs(lowerCAmelCase ) if not pairs: words.append(lowerCAmelCase ) continue while True: lowerCamelCase_ =min(lowerCAmelCase, key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_, lowerCamelCase_ =bigram lowerCamelCase_ =[] lowerCamelCase_ =0 while i < len(lowerCAmelCase ): try: lowerCamelCase_ =word.index(lowerCAmelCase, lowerCAmelCase ) new_word.extend(word[i:j] ) lowerCamelCase_ =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =new_word if len(lowerCAmelCase ) == 1: break else: lowerCamelCase_ =get_pairs(lowerCAmelCase ) lowerCamelCase_ ='''@@ '''.join(lowerCAmelCase ) lowerCamelCase_ =word[:-4] lowerCamelCase_ =word words.append(lowerCAmelCase ) return " ".join(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =re.findall(R'''\S+\n?''', lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =token.lower() return self.encoder.get(lowerCAmelCase, self.encoder.get(self.unk_token ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase, self.unk_token ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =''' '''.join(lowerCAmelCase ).replace('''@@ ''', '''''' ).strip() return out_string def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCAmelCase, ensure_ascii=lowerCAmelCase ) + '''\n''' ) lowerCamelCase_ =0 with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase_ =token_index writer.write(''' '''.join(lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
75
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : int = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: str = '''xlm-roberta''' def __init__( self , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=3072 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=2 , A__=0.0_2 , A__=1e-12 , A__=1 , A__=0 , A__=2 , A__="absolute" , A__=True , A__=None , **A__ , ): super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) A__ : Optional[Any] = vocab_size A__ : Optional[int] = hidden_size A__ : str = num_hidden_layers A__ : Any = num_attention_heads A__ : Union[str, Any] = hidden_act A__ : Any = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : List[str] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : Any = type_vocab_size A__ : Dict = initializer_range A__ : Dict = layer_norm_eps A__ : Tuple = position_embedding_type A__ : List[str] = use_cache A__ : Optional[int] = classifier_dropout class _a (__magic_name__ ): '''simple docstring''' @property def __A ( self ): if self.task == "multiple-choice": A__ : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
141
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : List[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
1
from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : List[Any] = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'mctct' def __init__( self , SCREAMING_SNAKE_CASE_=8065 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=36 , SCREAMING_SNAKE_CASE_=6144 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=384 , SCREAMING_SNAKE_CASE_=920 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.3 , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=0.3 , SCREAMING_SNAKE_CASE_=0.3 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0.3 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=(7,) , SCREAMING_SNAKE_CASE_=(3,) , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="sum" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , )-> Dict: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = num_attention_heads __UpperCamelCase = attention_head_dim __UpperCamelCase = max_position_embeddings __UpperCamelCase = layer_norm_eps __UpperCamelCase = layerdrop __UpperCamelCase = hidden_act __UpperCamelCase = initializer_range __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id __UpperCamelCase = conv_glu_dim __UpperCamelCase = conv_dropout __UpperCamelCase = num_conv_layers __UpperCamelCase = input_feat_per_channel __UpperCamelCase = input_channels __UpperCamelCase = conv_channels __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json __UpperCamelCase = list(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = list(SCREAMING_SNAKE_CASE_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." )
328
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
1
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class A__ : '''simple docstring''' def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any]) -> str: """simple docstring""" __lowerCAmelCase : Tuple = data __lowerCAmelCase : int = [0X67_45_23_01, 0XEF_CD_AB_89, 0X98_BA_DC_FE, 0X10_32_54_76, 0XC3_D2_E1_F0] @staticmethod def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: str) -> int: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XFF_FF_FF_FF def _SCREAMING_SNAKE_CASE ( self: str) -> Dict: """simple docstring""" __lowerCAmelCase : Any = b"\x80" + b"\x00" * (63 - (len(self.data) + 8) % 64) __lowerCAmelCase : int = self.data + padding + struct.pack(">Q" , 8 * len(self.data)) return padded_data def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = list(struct.unpack(">16L" , _SCREAMING_SNAKE_CASE)) + [0] * 64 for i in range(16 , 80): __lowerCAmelCase : Optional[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.padding() __lowerCAmelCase : str = self.split_blocks() for block in self.blocks: __lowerCAmelCase : int = self.expand_block(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.h for i in range(0 , 80): if 0 <= i < 20: __lowerCAmelCase : Dict = (b & c) | ((~b) & d) __lowerCAmelCase : Optional[int] = 0X5A_82_79_99 elif 20 <= i < 40: __lowerCAmelCase : Dict = b ^ c ^ d __lowerCAmelCase : Optional[int] = 0X6E_D9_EB_A1 elif 40 <= i < 60: __lowerCAmelCase : str = (b & c) | (b & d) | (c & d) __lowerCAmelCase : Union[str, Any] = 0X8F_1B_BC_DC elif 60 <= i < 80: __lowerCAmelCase : Optional[Any] = b ^ c ^ d __lowerCAmelCase : List[Any] = 0XCA_62_C1_D6 __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = ( self.rotate(_SCREAMING_SNAKE_CASE , 5) + f + e + k + expanded_block[i] & 0XFF_FF_FF_FF, a, self.rotate(_SCREAMING_SNAKE_CASE , 30), c, d, ) __lowerCAmelCase : List[str] = ( self.h[0] + a & 0XFF_FF_FF_FF, self.h[1] + b & 0XFF_FF_FF_FF, self.h[2] + c & 0XFF_FF_FF_FF, self.h[3] + d & 0XFF_FF_FF_FF, self.h[4] + e & 0XFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h) def _lowercase ( ) -> Optional[int]: __lowerCAmelCase : List[Any] = B"Test String" assert SHAaHash(__snake_case ).final_hash() == hashlib.shaa(__snake_case ).hexdigest() # noqa: S324 def _lowercase ( ) -> Dict: __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" ,dest="input_string" ,default="Hello World!! Welcome to Cryptography" ,help="Hash the string" ,) parser.add_argument("--file" ,dest="input_file" ,help="Hash contents of a file" ) __lowerCAmelCase : Tuple = parser.parse_args() __lowerCAmelCase : Union[str, Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"rb" ) as f: __lowerCAmelCase : str = f.read() else: __lowerCAmelCase : int = bytes(__snake_case ,"utf-8" ) print(SHAaHash(__snake_case ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
58
"""simple docstring""" __snake_case : Any = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __snake_case : Union[str, Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __snake_case : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __snake_case : Dict = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __snake_case : Dict = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __snake_case : Any = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __snake_case : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __snake_case : str = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
58
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) __A : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } __A : Tuple = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def lowercase ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : List[Any] ): for attribute in key.split('''.''' ): lowercase_ : Union[str, Any] = getattr(__snake_case , __snake_case ) if weight_type is not None: lowercase_ : List[str] = getattr(__snake_case , __snake_case ).shape else: lowercase_ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ : Union[str, Any] = value elif weight_type == "weight_g": lowercase_ : Union[str, Any] = value elif weight_type == "weight_v": lowercase_ : Optional[Any] = value elif weight_type == "bias": lowercase_ : Tuple = value else: lowercase_ : List[Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase ( __snake_case : Tuple , __snake_case : Dict ): lowercase_ : str = [] lowercase_ : int = fairseq_model.state_dict() lowercase_ : List[str] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase_ : List[Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) lowercase_ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): lowercase_ : Dict = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue lowercase_ : Optional[int] = True if "*" in mapped_key: lowercase_ : Optional[Any] = name.split(__snake_case )[0].split('''.''' )[-2] lowercase_ : Optional[Any] = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: lowercase_ : List[str] = '''weight_g''' elif "weight_v" in name: lowercase_ : str = '''weight_v''' elif "bias" in name: lowercase_ : Optional[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase_ : str = '''weight''' else: lowercase_ : Union[str, Any] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[Any] ): lowercase_ : Tuple = full_name.split('''conv_layers.''' )[-1] lowercase_ : Union[str, Any] = name.split('''.''' ) lowercase_ : str = int(items[0] ) lowercase_ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ : Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase_ : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowercase ( __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[Any]=None , __snake_case : Optional[Any]=None , __snake_case : List[Any]=True ): if config_path is not None: lowercase_ : List[Any] = UniSpeechSatConfig.from_pretrained(__snake_case ) else: lowercase_ : List[str] = UniSpeechSatConfig() lowercase_ : Union[str, Any] = '''''' if is_finetuned: lowercase_ : List[Any] = UniSpeechSatForCTC(__snake_case ) else: lowercase_ : Dict = UniSpeechSatForPreTraining(__snake_case ) lowercase_ , lowercase_ , lowercase_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowercase_ : Any = model[0].eval() recursively_load_weights(__snake_case , __snake_case ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __A : Optional[int] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowercase ( __snake_case : str , __snake_case : str , __snake_case : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path lowercase_ : Union[str, Any] = quote(__snake_case ) return hfh.hf_hub_url(__snake_case , __snake_case , repo_type='''dataset''' , revision=__snake_case )
33
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 88 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = None , )-> Dict: super().__init__() lowerCamelCase_ =nn.ModuleList( [ TransformeraDModel( num_attention_heads=_SCREAMING_SNAKE_CASE , attention_head_dim=_SCREAMING_SNAKE_CASE , in_channels=_SCREAMING_SNAKE_CASE , num_layers=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , norm_num_groups=_SCREAMING_SNAKE_CASE , cross_attention_dim=_SCREAMING_SNAKE_CASE , attention_bias=_SCREAMING_SNAKE_CASE , sample_size=_SCREAMING_SNAKE_CASE , num_vector_embeds=_SCREAMING_SNAKE_CASE , activation_fn=_SCREAMING_SNAKE_CASE , num_embeds_ada_norm=_SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCamelCase_ =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCamelCase_ =[77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCamelCase_ =[1, 0] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , )-> Optional[Any]: lowerCamelCase_ =hidden_states lowerCamelCase_ =[] lowerCamelCase_ =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCamelCase_ =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCamelCase_ =self.transformer_index_for_condition[i] lowerCamelCase_ =self.transformers[transformer_index]( _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , cross_attention_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCamelCase_ =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCamelCase_ =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_SCREAMING_SNAKE_CASE )
49
__A : List[Any] = [ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] __A : int = [ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] __A : Any = [ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Dict = [ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] __A : List[str] = [ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] __A : List[str] = [ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] __A : Dict = [ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] __A : str = [ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
49
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCAmelCase__ = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') lowerCAmelCase__ = f'https://www.google.com/search?q={query}&num=100' lowerCAmelCase__ = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: lowerCAmelCase__ = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: lowerCAmelCase__ = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
104
def lowercase_ ( _A : int , _A : int ): """simple docstring""" while a != 0: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = b % a, a return b def lowercase_ ( _A : int , _A : int ): """simple docstring""" if gcd(_A , _A ) != 1: lowerCamelCase__ : List[str] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(_A ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = 1, 0, a lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = 0, 1, m while va != 0: lowerCamelCase__ : Tuple = ua // va lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
184
0
"""simple docstring""" __UpperCamelCase = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
312
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
1
'''simple docstring''' import heapq def __UpperCamelCase ( lowercase__ : dict ): '''simple docstring''' __lowercase =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase__, [-1 * len(lowercase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowercase =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowercase =heapq.heappop(lowercase__ )[1][0] chosen_vertices.add(lowercase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowercase =elem[1][1].index(lowercase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
141
'''simple docstring''' UpperCAmelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' UpperCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] UpperCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
141
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __A = HUGGINGFACE_HUB_CACHE __A = 'config.json' __A = 'diffusion_pytorch_model.bin' __A = 'diffusion_flax_model.msgpack' __A = 'model.onnx' __A = 'diffusion_pytorch_model.safetensors' __A = 'weights.pb' __A = 'https://huggingface.co' __A = default_cache_path __A = 'diffusers_modules' __A = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) __A = ['fp16', 'non-ema'] __A = '.self_attn'
370
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __A = input('Enter image url: ').strip() print(f'Downloading image from {url} ...') __A = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image __A = soup.find('meta', {'property': 'og:image'})['content'] __A = requests.get(image_url).content __A = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, 'wb') as fp: fp.write(image_data) print(f'Done. Image saved to disk as {file_name}.')
75
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets lowercase_ = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ lowercase_ = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ lowercase_ = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def snake_case_( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def snake_case_( self , A , A , A=None ) -> Tuple: return { "matthews_correlation": float(matthews_corrcoef(A , A , sample_weight=A ) ), }
58
'''simple docstring''' from collections.abc import Sequence def lowerCamelCase ( __lowerCamelCase : Sequence[float] , __lowerCamelCase : bool = False ) ->float: if not arr: return 0 _SCREAMING_SNAKE_CASE = 0 if allow_empty_subarrays else float("""-inf""" ) _SCREAMING_SNAKE_CASE = 0.0 for num in arr: _SCREAMING_SNAKE_CASE = max(0 if allow_empty_subarrays else num , curr_sum + num ) _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , __lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys A__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ShapEPipeline A__ = ['''prompt'''] A__ = ['''prompt'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def A_ ( self : Optional[Any] ) -> str: '''simple docstring''' return 32 @property def A_ ( self : str ) -> Optional[int]: '''simple docstring''' return 32 @property def A_ ( self : Tuple ) -> List[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self : Tuple ) -> Dict: '''simple docstring''' return 8 @property def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __snake_case : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Dict = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Optional[Any] = PriorTransformer(**__a ) return model @property def A_ ( self : Dict ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Optional[int] = ShapERenderer(**__a ) return model def A_ ( self : Tuple ) -> Tuple: '''simple docstring''' __snake_case : Tuple = self.dummy_prior __snake_case : Union[str, Any] = self.dummy_text_encoder __snake_case : List[str] = self.dummy_tokenizer __snake_case : Optional[Any] = self.dummy_renderer __snake_case : List[Any] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __snake_case : int = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def A_ ( self : Union[str, Any] , __a : Dict , __a : int=0 ) -> Optional[Any]: '''simple docstring''' if str(__a ).startswith('mps' ): __snake_case : List[str] = torch.manual_seed(__a ) else: __snake_case : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) __snake_case : Optional[int] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def A_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Dict = 'cpu' __snake_case : Dict = self.get_dummy_components() __snake_case : int = self.pipeline_class(**__a ) __snake_case : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(__a ) ) __snake_case : Dict = output.images[0] __snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : str = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self : Any ) -> List[str]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A_ ( self : int ) -> Tuple: '''simple docstring''' __snake_case : int = torch_device == 'cpu' __snake_case : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def A_ ( self : List[str] ) -> Dict: '''simple docstring''' __snake_case : str = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**__a ) __snake_case : Dict = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : int = 1 __snake_case : Tuple = 2 __snake_case : Tuple = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : str = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def A_ ( self : str ) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Union[str, Any] = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : Any = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[int] = torch.Generator(device=__a ).manual_seed(0 ) __snake_case : Union[str, Any] = pipe( 'a shark' , generator=__a , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
0
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = mock.Mock() __a = 500 __a = {} __a = HTTPError __a = {} # Download this model to make sure it's in the cache. __a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__SCREAMING_SNAKE_CASE) as mock_head: __a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCamelCase ( self : int): '''simple docstring''' __a = mock.Mock() __a = 500 __a = {} __a = HTTPError __a = {} # Download this model to make sure it's in the cache. __a = GPTaTokenizerFast.from_pretrained('''gpt2''') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__SCREAMING_SNAKE_CASE) as mock_head: __a = GPTaTokenizerFast.from_pretrained('''gpt2''') # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' try: __a = tempfile.mktemp() with open(__SCREAMING_SNAKE_CASE , '''wb''') as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , __SCREAMING_SNAKE_CASE) __a = AlbertTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE) finally: os.remove(__SCREAMING_SNAKE_CASE) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json'''): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''') as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , __SCREAMING_SNAKE_CASE) __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''') def _lowerCamelCase ( self : str): '''simple docstring''' __a = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''') @is_staging_test class _A ( unittest.TestCase ): UpperCamelCase__ : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _lowerCamelCase ( cls : List[Any]): '''simple docstring''' __a = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE) @classmethod def _lowerCamelCase ( cls : Optional[Any]): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-tokenizer''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''') except HTTPError: pass def _lowerCamelCase ( self : List[str]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __a = os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.txt''') with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __a = BertTokenizer(__SCREAMING_SNAKE_CASE) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token) __a = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id='''test-tokenizer''' , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) __a = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def _lowerCamelCase ( self : Any): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __a = os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.txt''') with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __a = BertTokenizer(__SCREAMING_SNAKE_CASE) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token) __a = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) __a = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def _lowerCamelCase ( self : Any): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __a = os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.txt''') with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __a = CustomTokenizer(__SCREAMING_SNAKE_CASE) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token) __a = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=__SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __a = os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.txt''') with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __a = BertTokenizerFast.from_pretrained(__SCREAMING_SNAKE_CASE) bert_tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE) __a = CustomTokenizerFast.from_pretrained(__SCREAMING_SNAKE_CASE) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token) __a = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=__SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''') __a = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''') class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = Trie() trie.add('''Hello 友達''') self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}}) trie.add('''Hello''') trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}}) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''') , ['''[CLS] This is a extra_id_100''']) trie.add('''[CLS]''') trie.add('''extra_id_1''') trie.add('''extra_id_100''') self.assertEqual(trie.split('''[CLS] This is a extra_id_100''') , ['''[CLS]''', ''' This is a ''', '''extra_id_100''']) def _lowerCamelCase ( self : int): '''simple docstring''' __a = Trie() trie.add('''A''') self.assertEqual(trie.split('''ABC''') , ['''A''', '''BC''']) self.assertEqual(trie.split('''BCA''') , ['''BC''', '''A''']) def _lowerCamelCase ( self : int): '''simple docstring''' __a = Trie() trie.add('''TOKEN]''') trie.add('''[SPECIAL_TOKEN]''') self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''') , ['''This is something ''', '''[SPECIAL_TOKEN]''']) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = Trie() trie.add('''A''') trie.add('''P''') trie.add('''[SPECIAL_TOKEN]''') self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''') , ['''This is something ''', '''[SPECIAL_TOKEN]''']) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = Trie() trie.add('''AB''') trie.add('''B''') trie.add('''C''') self.assertEqual(trie.split('''ABC''') , ['''AB''', '''C''']) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = Trie() trie.add('''ABC''') trie.add('''B''') trie.add('''CD''') self.assertEqual(trie.split('''ABCD''') , ['''ABC''', '''D''']) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = Trie() __a = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3]) self.assertEqual(__SCREAMING_SNAKE_CASE , ['''AB''', '''C'''])
49
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __snake_case :List[Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : Dict , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) requires_backends(self , '''vision''') requires_backends(self , '''torch''') if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.') self.check_model_type(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = {} __a = {} __a = {} # preprocess args if "points_per_batch" in kwargs: __a = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __a = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __a = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __a = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __a = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __a = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __a = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __a = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __a = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __a = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __a = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __a = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' return super().__call__(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , num_workers=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any=64 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : float = 512 / 1_500 , __SCREAMING_SNAKE_CASE : Optional[int] = 32 , __SCREAMING_SNAKE_CASE : Optional[int] = 1 , ): '''simple docstring''' __a = load_image(__SCREAMING_SNAKE_CASE) __a = self.image_processor.size['''longest_edge'''] __a , __a , __a , __a = self.image_processor.generate_crop_boxes( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''') with self.device_placement(): if self.framework == "pt": __a = self.get_inference_context() with inference_context(): __a = self._ensure_tensor_on_device(__SCREAMING_SNAKE_CASE , device=self.device) __a = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''')) __a = image_embeddings __a = grid_points.shape[1] __a = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''') for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = grid_points[:, i : i + points_per_batch, :, :] __a = input_labels[:, i : i + points_per_batch] __a = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int=0.88 , __SCREAMING_SNAKE_CASE : List[Any]=0.95 , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : int=1 , ): '''simple docstring''' __a = model_inputs.pop('''input_boxes''') __a = model_inputs.pop('''is_last''') __a = model_inputs.pop('''original_sizes''').tolist() __a = model_inputs.pop('''reshaped_input_sizes''').tolist() __a = self.model(**__SCREAMING_SNAKE_CASE) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __a = model_outputs['''pred_masks'''] __a = self.image_processor.post_process_masks( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , binarize=__SCREAMING_SNAKE_CASE) __a = model_outputs['''iou_scores'''] __a , __a , __a = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : int=0.7 , ): '''simple docstring''' __a = [] __a = [] __a = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''')) all_masks.extend(model_output.pop('''masks''')) all_boxes.append(model_output.pop('''boxes''')) __a = torch.cat(__SCREAMING_SNAKE_CASE) __a = torch.cat(__SCREAMING_SNAKE_CASE) __a , __a , __a , __a = self.image_processor.post_process_for_mask_generation( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = defaultdict(__SCREAMING_SNAKE_CASE) for output in model_outputs: for k, v in output.items(): extra[k].append(__SCREAMING_SNAKE_CASE) __a = {} if output_rle_mask: __a = rle_mask if output_bboxes_mask: __a = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
49
1
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase_ = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : bool , lowerCAmelCase_ : str = None , lowerCAmelCase_ : list = None ) -> Optional[int]: UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Dict = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCAmelCase_ : str = os.path.abspath("examples" ) for item in os.listdir(lowerCAmelCase_ ): if item not in EXCLUDE_EXAMPLES: UpperCAmelCase_ : str = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase_ , feature_script=lowerCAmelCase_ , tested_section="main()" if parser_only else "training_function()" , ): UpperCAmelCase_ : Any = compare_against_test( os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = "\n".join(lowerCAmelCase_ ) if special_strings is not None: for string in special_strings: UpperCAmelCase_ : Dict = diff.replace(lowerCAmelCase_ , "" ) self.assertEqual(lowerCAmelCase_ , "" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: self.one_complete_example("complete_nlp_example.py" , lowerCAmelCase_ ) self.one_complete_example("complete_nlp_example.py" , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: UpperCAmelCase_ : Any = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCAmelCase_ : List[Any] = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.one_complete_example("complete_cv_example.py" , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class UpperCamelCase_ (__A ): __magic_name__ = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ) -> Dict: super().setUpClass() UpperCAmelCase_ : List[str] = tempfile.mkdtemp() UpperCAmelCase_ : Tuple = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase_ : str = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ) -> Dict: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : str = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() UpperCAmelCase_ : Optional[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_ : List[str] = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() UpperCAmelCase_ : List[Any] = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) self.assertNotIn("epoch 0:" , lowerCAmelCase_ ) self.assertIn("epoch 1:" , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: UpperCAmelCase_ : Tuple = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() UpperCAmelCase_ : List[Any] = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) if torch.cuda.is_available(): UpperCAmelCase_ : Dict = torch.cuda.device_count() else: UpperCAmelCase_ : Dict = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , lowerCAmelCase_ ) self.assertIn("epoch 1:" , lowerCAmelCase_ ) else: self.assertIn("epoch 0:" , lowerCAmelCase_ ) self.assertIn("epoch 1:" , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: UpperCAmelCase_ : Tuple = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCAmelCase_ : List[Any] = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = re.findall("({.+})" , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = [r for r in results if "accuracy" in r][-1] UpperCAmelCase_ : Any = ast.literal_eval(lowerCAmelCase_ ) self.assertGreaterEqual(results["accuracy"] , 0.7_5 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: UpperCAmelCase_ : str = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: UpperCAmelCase_ : Optional[int] = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , "tracking" ) ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_ : Any = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
366
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class UpperCamelCase_ : def __init__( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None: if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) UpperCAmelCase_ : list[float] = list(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = degree def __add__( self : int , lowerCAmelCase_ : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: UpperCAmelCase_ : List[str] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: UpperCAmelCase_ : Optional[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self : Union[str, Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[str] ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Optional[Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int | float ) -> int | float: UpperCAmelCase_ : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) -> str: UpperCAmelCase_ : str = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self : Union[str, Any] ) -> str: return self.__str__() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase_ : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int | float = 0 ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * (self.degree + 2) UpperCAmelCase_ : List[Any] = constant for i in range(self.degree + 1 ): UpperCAmelCase_ : Union[str, Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self : Union[str, Any] , lowerCAmelCase_ : object ) -> bool: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowerCAmelCase_ : object ) -> bool: return not self.__eq__(lowerCAmelCase_ )
253
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = int(__UpperCamelCase ) A_ , A_ , A_ = t // 3600, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict=300 ): """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: A_ = f'''{elt:.6f}''' if isinstance(__UpperCamelCase ,__UpperCamelCase ) else str(__UpperCamelCase ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _a : """simple docstring""" _lowerCamelCase : List[str] = 5 _lowerCamelCase : List[str] = 0.2 def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 300 , ): A_ = total A_ = "" if prefix is None else prefix A_ = leave A_ = parent A_ = width A_ = None A_ = None A_ = None def __A ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ): A_ = value if comment is not None: A_ = comment if self.last_value is None: A_ = A_ = time.time() A_ = A_ = value A_ = A_ = None A_ = self.warmup A_ = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 A_ = time.time() A_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: A_ = self.elapsed_time / (value - self.start_value) else: A_ = None if value >= self.total: A_ = self.total A_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: A_ = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) A_ = value A_ = current_time if self.average_time_per_item is None: A_ = 1 else: A_ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Any=None ): A_ = " " * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: A_ = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: A_ = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: A_ = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def __A ( self : str ): A_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: A_ = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self : Dict ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int=None ): super().__init__(UpperCAmelCase ) A_ = None if column_names is None else [column_names] A_ = None def __A ( self : Any ): A_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: A_ = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self : List[Any] , UpperCAmelCase : Optional[Any] ): if self.inner_table is None: A_ = [list(values.keys() ), list(values.values() )] else: A_ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) A_ = columns self.inner_table.append([values[c] for c in columns] ) def __A ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=300 ): A_ = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def __A ( self : List[Any] ): A_ = None self.display() class _a ( snake_case_ ): """simple docstring""" def __init__( self : Union[str, Any] ): A_ = None A_ = None A_ = False def __A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ): A_ = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" A_ = 0 A_ = 0 A_ = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) A_ = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , **UpperCAmelCase : Dict ): A_ = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) A_ = False def __A ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[str]=None , **UpperCAmelCase : Optional[Any] ): if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: A_ = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: A_ = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ): if self.prediction_bar is not None: self.prediction_bar.close() A_ = None def __A ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: A_ = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy A_ = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def __A ( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict=None , **UpperCAmelCase : Optional[Any] ): if self.training_tracker is not None: A_ = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: A_ = log["loss"] break if self.first_column == "Epoch": A_ = int(state.epoch ) else: A_ = state.global_step A_ = "eval" for k in metrics: if k.endswith("_loss" ): A_ = re.sub(R"\_loss$" , "" , UpperCAmelCase ) A_ = metrics.pop("total_flos" , UpperCAmelCase ) A_ = metrics.pop("epoch" , UpperCAmelCase ) A_ = metrics.pop(f'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) A_ = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) A_ = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) A_ = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': A_ = v else: A_ = k.split("_" ) A_ = " ".join([part.capitalize() for part in splits[1:]] ) A_ = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() A_ = None # Evaluation takes a long time so we should force the next update. A_ = True def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , **UpperCAmelCase : Any ): self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) A_ = None
312
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def snake_case_ (__A : Any ) -> str: __lowerCAmelCase : Tuple = args.pruning_method __lowerCAmelCase : List[str] = args.threshold __lowerCAmelCase : Dict = args.model_name_or_path.rstrip("""/""" ) __lowerCAmelCase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) __lowerCAmelCase : Any = torch.load(os.path.join(__A , """pytorch_model.bin""" ) ) __lowerCAmelCase : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __lowerCAmelCase : Dict = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __lowerCAmelCase : Optional[Any] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: __lowerCAmelCase : List[str] = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __lowerCAmelCase : str = MagnitudeBinarizer.apply(inputs=__A , threshold=__A ) __lowerCAmelCase : Dict = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __lowerCAmelCase : List[Any] = name[:-6] __lowerCAmelCase : Any = model[f'''{prefix_}mask_scores'''] __lowerCAmelCase : Optional[Any] = TopKBinarizer.apply(__A , __A ) __lowerCAmelCase : int = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __lowerCAmelCase : Any = name[:-6] __lowerCAmelCase : Dict = model[f'''{prefix_}mask_scores'''] __lowerCAmelCase : List[Any] = ThresholdBinarizer.apply(__A , __A , __A ) __lowerCAmelCase : List[str] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __lowerCAmelCase : str = name[:-6] __lowerCAmelCase : Optional[Any] = model[f'''{prefix_}mask_scores'''] __lowerCAmelCase ,__lowerCAmelCase : Optional[int] = -0.1, 1.1 __lowerCAmelCase : str = torch.sigmoid(__A ) __lowerCAmelCase : Optional[int] = s * (r - l) + l __lowerCAmelCase : Any = s_bar.clamp(min=0.0 , max=1.0 ) __lowerCAmelCase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: __lowerCAmelCase : Optional[Any] = os.path.join( os.path.dirname(__A ) , f'''bertarized_{os.path.basename(__A )}''' ) if not os.path.isdir(__A ): shutil.copytree(__A , __A ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(__A , os.path.join(__A , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) __UpperCAmelCase = parser.parse_args() main(args)
139
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : int=18 , lowerCAmelCase : int=30 , lowerCAmelCase : Optional[int]=4_00 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=True , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} __lowerCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCAmelCase : str = parent __lowerCAmelCase : List[str] = batch_size __lowerCAmelCase : int = num_channels __lowerCAmelCase : List[str] = image_size __lowerCAmelCase : Optional[int] = min_resolution __lowerCAmelCase : List[str] = max_resolution __lowerCAmelCase : List[Any] = do_resize __lowerCAmelCase : Optional[int] = size __lowerCAmelCase : List[Any] = do_center_crop __lowerCAmelCase : Optional[Any] = crop_size __lowerCAmelCase : int = do_flip_channel_order def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_flip_channel_order""" ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : str = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
139
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Any = logging.get_logger(__name__) A__ : Optional[Any] = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ = 'time_series_transformer' lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Union[str, Any], lowerCamelCase : Optional[Any] = None, lowerCamelCase : Optional[Any] = None, lowerCamelCase : Any = "student_t", lowerCamelCase : str = "nll", lowerCamelCase : Any = 1, lowerCamelCase : List[str] = [1, 2, 3, 4, 5, 6, 7], lowerCamelCase : List[str] = "mean", lowerCamelCase : Dict = 0, lowerCamelCase : str = 0, lowerCamelCase : List[str] = 0, lowerCamelCase : Tuple = 0, lowerCamelCase : Optional[Any] = None, lowerCamelCase : List[Any] = None, lowerCamelCase : Dict = 32, lowerCamelCase : int = 32, lowerCamelCase : Dict = 2, lowerCamelCase : Union[str, Any] = 2, lowerCamelCase : Union[str, Any] = 2, lowerCamelCase : Optional[int] = 2, lowerCamelCase : Dict = True, lowerCamelCase : Dict = "gelu", lowerCamelCase : Optional[int] = 64, lowerCamelCase : Tuple = 0.1, lowerCamelCase : Dict = 0.1, lowerCamelCase : Union[str, Any] = 0.1, lowerCamelCase : int = 0.1, lowerCamelCase : Dict = 0.1, lowerCamelCase : Union[str, Any] = 100, lowerCamelCase : Optional[Any] = 0.02, lowerCamelCase : List[Any]=True, **lowerCamelCase : Optional[int], ): '''simple docstring''' lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = cardinality else: lowercase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = embedding_dimension else: lowercase__ = [min(50, (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(lowerCamelCase ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : int ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
207
'''simple docstring''' def a_ ( __snake_case : Any , __snake_case : List[str] ) -> str: """simple docstring""" lowerCamelCase_ ='''''' for i in table: res += inp[i - 1] return res def a_ ( __snake_case : List[str] ) -> Optional[int]: """simple docstring""" return data[1:] + data[0] def a_ ( __snake_case : str , __snake_case : Tuple ) -> int: """simple docstring""" lowerCamelCase_ ='''''' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a_ ( __snake_case : Optional[Any] , __snake_case : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ =int('''0b''' + data[0] + data[-1] , 2 ) lowerCamelCase_ =int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def a_ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : int , __snake_case : Tuple , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =message[:4] lowerCamelCase_ =message[4:] lowerCamelCase_ =apply_table(__snake_case , __snake_case ) lowerCamelCase_ =xor(__snake_case , __snake_case ) lowerCamelCase_ =apply_sbox(__snake_case , temp[:4] ) # noqa: E741 lowerCamelCase_ =apply_sbox(__snake_case , temp[4:] ) lowerCamelCase_ ='''0''' * (2 - len(__snake_case )) + l # noqa: E741 lowerCamelCase_ ='''0''' * (2 - len(__snake_case )) + r lowerCamelCase_ =apply_table(l + r , __snake_case ) lowerCamelCase_ =xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": a_ : Any = input("""Enter 10 bit key: """) a_ : Any = input("""Enter 8 bit message: """) a_ : str = [6, 3, 7, 4, 8, 5, 10, 9] a_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] a_ : str = [2, 4, 3, 1] a_ : Optional[int] = [2, 6, 3, 1, 4, 8, 5, 7] a_ : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] a_ : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] a_ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a_ : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a_ : List[Any] = apply_table(key, paa_table) a_ : str = temp[:5] a_ : Optional[Any] = temp[5:] a_ : Tuple = left_shift(left) a_ : Optional[Any] = left_shift(right) a_ : str = apply_table(left + right, pa_table) a_ : Optional[Any] = left_shift(left) a_ : Tuple = left_shift(right) a_ : Union[str, Any] = left_shift(left) a_ : List[str] = left_shift(right) a_ : Optional[int] = apply_table(left + right, pa_table) # encryption a_ : Optional[int] = apply_table(message, IP) a_ : List[Any] = function(expansion, sa, sa, keya, temp) a_ : str = temp[4:] + temp[:4] a_ : List[str] = function(expansion, sa, sa, keya, temp) a_ : Union[str, Any] = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a_ : Optional[int] = apply_table(CT, IP) a_ : List[Any] = function(expansion, sa, sa, keya, temp) a_ : int = temp[4:] + temp[:4] a_ : int = function(expansion, sa, sa, keya, temp) a_ : Optional[int] = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
75
0
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Tuple ,*lowercase__ : Any ,lowercase__ : Any=None ,lowercase__ : int=None ,**lowercase__ : List[str] ): super().__init__(*lowercase__ ,**lowercase__ ) __lowercase = eval_examples __lowercase = post_process_function def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int=None ,lowercase__ : int=None ,lowercase__ : List[Any]=None ,lowercase__ : str = "eval" ): __lowercase = self.eval_dataset if eval_dataset is None else eval_dataset __lowercase = self.get_eval_dataloader(lowercase__ ) __lowercase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase = self.compute_metrics __lowercase = None __lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase = time.time() try: __lowercase = eval_loop( lowercase__ ,description='''Evaluation''' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=lowercase__ ,metric_key_prefix=lowercase__ ,) finally: __lowercase = compute_metrics __lowercase = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase__ ,lowercase__ ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase = self.post_process_function(lowercase__ ,lowercase__ ,output.predictions ) __lowercase = self.compute_metrics(lowercase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): __lowercase = metrics.pop(lowercase__ ) metrics.update(output.metrics ) else: __lowercase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,lowercase__ ) return metrics def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any]=None ,lowercase__ : str = "test" ): __lowercase = self.get_test_dataloader(lowercase__ ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase = self.compute_metrics __lowercase = None __lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase = time.time() try: __lowercase = eval_loop( lowercase__ ,description='''Prediction''' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=lowercase__ ,metric_key_prefix=lowercase__ ,) finally: __lowercase = compute_metrics __lowercase = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase__ ,lowercase__ ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase = self.post_process_function(lowercase__ ,lowercase__ ,output.predictions ,'''predict''' ) __lowercase = self.compute_metrics(lowercase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): __lowercase = metrics.pop(lowercase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=lowercase__ )
52
'''simple docstring''' # Function to print upper half of diamond (pyramid) def _A ( A__ ): """simple docstring""" for i in range(0 , A__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def _A ( A__ ): """simple docstring""" for i in range(A__ , 0 , -1 ): for _ in range(A__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def _A ( A__ ): """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(A__ ) # upper half reverse_floyd(A__ ) # lower half if __name__ == "__main__": print(R'''| /\ | |- | |- |--| |\ /| |-''') print(R'''|/ \| |- |_ |_ |__| | \/ | |_''') lowerCAmelCase__ = 1 while K: lowerCAmelCase__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) lowerCAmelCase__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
52
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict =3_84 UpperCAmelCase : Tuple =7 if "tiny" in model_name: UpperCAmelCase : List[str] =96 UpperCAmelCase : Any =(2, 2, 6, 2) UpperCAmelCase : List[str] =(3, 6, 12, 24) elif "small" in model_name: UpperCAmelCase : List[Any] =96 UpperCAmelCase : str =(2, 2, 18, 2) UpperCAmelCase : List[str] =(3, 6, 12, 24) elif "base" in model_name: UpperCAmelCase : Dict =1_28 UpperCAmelCase : Tuple =(2, 2, 18, 2) UpperCAmelCase : str =(4, 8, 16, 32) UpperCAmelCase : int =12 UpperCAmelCase : int =5_12 elif "large" in model_name: UpperCAmelCase : Optional[Any] =1_92 UpperCAmelCase : Any =(2, 2, 18, 2) UpperCAmelCase : List[str] =(6, 12, 24, 48) UpperCAmelCase : Tuple =12 UpperCAmelCase : int =7_68 # set label information UpperCAmelCase : List[Any] =1_50 UpperCAmelCase : Dict ='''huggingface/label-files''' UpperCAmelCase : List[str] ='''ade20k-id2label.json''' UpperCAmelCase : List[str] =json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Tuple ={int(__lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Any ={v: k for k, v in idalabel.items()} UpperCAmelCase : str =SwinConfig( embed_dim=__lowerCAmelCase , depths=__lowerCAmelCase , num_heads=__lowerCAmelCase , window_size=__lowerCAmelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) UpperCAmelCase : Any =UperNetConfig( backbone_config=__lowerCAmelCase , auxiliary_in_channels=__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , ) return config def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' UpperCAmelCase : Tuple =[] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =dct.pop(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =val def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase : Tuple =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase : int =state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) UpperCAmelCase : Union[str, Any] =state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple =in_proj_weight[:dim, :] UpperCAmelCase : List[Any] =in_proj_bias[: dim] UpperCAmelCase : Union[str, Any] =in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase : int =in_proj_bias[ dim : dim * 2 ] UpperCAmelCase : Optional[int] =in_proj_weight[ -dim :, : ] UpperCAmelCase : int =in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[int] =x.shape UpperCAmelCase : str =x.reshape(__lowerCAmelCase , 4 , in_channel // 4 ) UpperCAmelCase : Tuple =x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__lowerCAmelCase , __lowerCAmelCase ) return x def lowerCAmelCase_ ( __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =x.shape UpperCAmelCase : Dict =x.reshape(__lowerCAmelCase , in_channel // 4 , 4 ) UpperCAmelCase : Union[str, Any] =x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__lowerCAmelCase , __lowerCAmelCase ) return x def lowerCAmelCase_ ( __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] =x.shape[0] UpperCAmelCase : Optional[Any] =x.reshape(4 , in_channel // 4 ) UpperCAmelCase : Dict =x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__lowerCAmelCase ) return x def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' UpperCAmelCase : Tuple =x.shape[0] UpperCAmelCase : int =x.reshape(in_channel // 4 , 4 ) UpperCAmelCase : Dict =x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__lowerCAmelCase ) return x def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : List[Any] ={ '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } UpperCAmelCase : str =model_name_to_url[model_name] UpperCAmelCase : Any =torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' , file_name=__lowerCAmelCase )[ '''state_dict''' ] for name, param in state_dict.items(): print(__lowerCAmelCase , param.shape ) UpperCAmelCase : Optional[Any] =get_upernet_config(__lowerCAmelCase ) UpperCAmelCase : Optional[int] =UperNetForSemanticSegmentation(__lowerCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase : int =state_dict.pop(__lowerCAmelCase ) if "bn" in key: UpperCAmelCase : str =key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase : Any =val # rename keys UpperCAmelCase : Union[str, Any] =create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: UpperCAmelCase : str =reverse_correct_unfold_reduction_order(__lowerCAmelCase ) if "norm" in key: UpperCAmelCase : int =reverse_correct_unfold_norm_order(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) # verify on image UpperCAmelCase : List[Any] ='''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase : str =Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('''RGB''' ) UpperCAmelCase : Tuple =SegformerImageProcessor() UpperCAmelCase : List[str] =processor(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase : Tuple =model(__lowerCAmelCase ) UpperCAmelCase : Optional[int] =outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": UpperCAmelCase : str =torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": UpperCAmelCase : List[str] =torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": UpperCAmelCase : str =torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": UpperCAmelCase : Tuple =torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[f'upernet-swin-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ShapEPipeline __snake_case = ['''prompt'''] __snake_case = ['''prompt'''] __snake_case = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return 8 @property def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) a = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } a = PriorTransformer(**__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" torch.manual_seed(0 ) a = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**__UpperCAmelCase ) return model def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = self.dummy_prior a = self.dummy_text_encoder a = self.dummy_tokenizer a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , ) a = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]: """simple docstring""" if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = torch_device == '''cpu''' a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = 1 a = 2 a = self.get_dummy_inputs(__UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) ->Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) a = ShapEPipeline.from_pretrained('''openai/shap-e''' ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) a = pipe( '''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
0
0
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] = 200_0000 ): '''simple docstring''' UpperCamelCase__ = [0 for i in range(n + 1 )] UpperCamelCase__ = 1 UpperCamelCase__ = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, UpperCamelCase__ ): UpperCamelCase__ = 1 UpperCamelCase__ = 0 for i in range(UpperCamelCase__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'{solution() = }')
366
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[Any] ): UpperCamelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCamelCase__ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_a ) , torch_builtin(_a ) ) ) self.assertFalse(torch.allclose(gelu_python(_a ) , gelu_new(_a ) ) ) def A_ ( self : Tuple ): UpperCamelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCamelCase__ = get_activation('''gelu''' ) UpperCamelCase__ = get_activation('''gelu_10''' ) UpperCamelCase__ = torch_builtin(_a ) UpperCamelCase__ = geluaa(_a ) UpperCamelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def A_ ( self : str ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_a ): get_activation('''bogus''' ) with self.assertRaises(_a ): get_activation(_a ) def A_ ( self : List[Any] ): UpperCamelCase__ = get_activation('''gelu''' ) UpperCamelCase__ = 1 UpperCamelCase__ = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_a ): UpperCamelCase__ = acta.a
35
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=100 , snake_case=13 , snake_case=30 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , snake_case=3 , ): lowercase = parent lowercase = vocab_size lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase = (image_size // patch_size) ** 2 lowercase = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = FlaxBeitModel(config=_SCREAMING_SNAKE_CASE ) lowercase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = FlaxBeitForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) lowercase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = self.type_sequence_label_size lowercase = FlaxBeitForImageClassification(config=_SCREAMING_SNAKE_CASE ) lowercase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase = 1 lowercase = FlaxBeitForImageClassification(_SCREAMING_SNAKE_CASE ) lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() ( lowercase ) = config_and_inputs lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = FlaxBeitModelTester(self ) lowercase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_SCREAMING_SNAKE_CASE ) lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(snake_case , **snake_case ): return model(pixel_values=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with self.subTest('JIT Enabled' ): lowercase = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) lowercase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( ): lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' ).pixel_values # prepare bool_masked_pos lowercase = np.ones((1, 196) , dtype=_SCREAMING_SNAKE_CASE ) # forward pass lowercase = model(pixel_values=_SCREAMING_SNAKE_CASE , bool_masked_pos=_SCREAMING_SNAKE_CASE ) lowercase = outputs.logits # verify the logits lowercase = (1, 196, 8192) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' ) # forward pass lowercase = model(**_SCREAMING_SNAKE_CASE ) lowercase = outputs.logits # verify the logits lowercase = (1, 1000) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) lowercase = 281 self.assertEqual(logits.argmax(-1 ).item() , _SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' ) # forward pass lowercase = model(**_SCREAMING_SNAKE_CASE ) lowercase = outputs.logits # verify the logits lowercase = (1, 2_1841) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) lowercase = 2396 self.assertEqual(logits.argmax(-1 ).item() , _SCREAMING_SNAKE_CASE )
195
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[str] = logging.get_logger(__name__) class _A ( __magic_name__ , __magic_name__): SCREAMING_SNAKE_CASE : Dict = '''maskformer-swin''' SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = embed_dim SCREAMING_SNAKE_CASE_ : Dict = depths SCREAMING_SNAKE_CASE_ : Dict = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = num_heads SCREAMING_SNAKE_CASE_ : List[Any] = window_size SCREAMING_SNAKE_CASE_ : List[Any] = mlp_ratio SCREAMING_SNAKE_CASE_ : Tuple = qkv_bias SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = use_absolute_embeddings SCREAMING_SNAKE_CASE_ : int = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ : str = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) SCREAMING_SNAKE_CASE_ : List[str] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
253
0
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( A_ , A_ ): @register_to_config def __init__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): super().__init__() __lowercase= learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowercase= torch.zeros(lowerCAmelCase , lowerCAmelCase ) else: __lowercase= None __lowercase= torch.nn.Parameter(lowerCAmelCase ) class A ( A_ ): UpperCamelCase_ : VQModel UpperCamelCase_ : CLIPTextModel UpperCamelCase_ : CLIPTokenizer UpperCamelCase_ : TransformeraDModel UpperCamelCase_ : LearnedClassifierFreeSamplingEmbeddings UpperCamelCase_ : VQDiffusionScheduler def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): super().__init__() self.register_modules( vqvae=lowerCAmelCase , transformer=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , scheduler=lowerCAmelCase , learned_classifier_free_sampling_embeddings=lowerCAmelCase , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= len(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else 1 # get prompt text embeddings __lowercase= self.tokenizer( lowerCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __lowercase= text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase= self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowercase= text_input_ids[:, : self.tokenizer.model_max_length] __lowercase= self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowercase= prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowerCAmelCase ) # duplicate text embeddings for each generation per prompt __lowercase= prompt_embeds.repeat_interleave(lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowercase= self.learned_classifier_free_sampling_embeddings.embeddings __lowercase= negative_prompt_embeds.unsqueeze(0 ).repeat(lowerCAmelCase , 1 , 1 ) else: __lowercase= [''] * batch_size __lowercase= text_input_ids.shape[-1] __lowercase= self.tokenizer( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='pt' , ) __lowercase= self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowercase= negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowerCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase= negative_prompt_embeds.shape[1] __lowercase= negative_prompt_embeds.repeat(1 , lowerCAmelCase , 1 ) __lowercase= negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase= torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__(self , lowerCAmelCase , lowerCAmelCase = 1_0_0 , lowerCAmelCase = 5.0 , lowerCAmelCase = 1.0 , lowerCAmelCase = 1 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = 1 , ): if isinstance(lowerCAmelCase , lowerCAmelCase ): __lowercase= 1 elif isinstance(lowerCAmelCase , lowerCAmelCase ): __lowercase= len(lowerCAmelCase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase )}' ) __lowercase= batch_size * num_images_per_prompt __lowercase= guidance_scale > 1.0 __lowercase= self._encode_prompt(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase , lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(lowerCAmelCase )}.' ) # get the initial completely masked latents unless the user supplied it __lowercase= (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowercase= self.transformer.num_vector_embeds - 1 __lowercase= torch.full(lowerCAmelCase , lowerCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowercase= latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase , device=self.device ) __lowercase= self.scheduler.timesteps.to(self.device ) __lowercase= latents for i, t in enumerate(self.progress_bar(lowerCAmelCase ) ): # expand the sample if we are doing classifier free guidance __lowercase= torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowercase= self.transformer(lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , timestep=lowerCAmelCase ).sample if do_classifier_free_guidance: __lowercase, __lowercase= model_output.chunk(2 ) __lowercase= model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowerCAmelCase , dim=1 , keepdim=lowerCAmelCase ) __lowercase= self.truncate(lowerCAmelCase , lowerCAmelCase ) # remove `log(0)`'s (`-inf`s) __lowercase= model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase= self.scheduler.step(lowerCAmelCase , timestep=lowerCAmelCase , sample=lowerCAmelCase , generator=lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= self.vqvae.config.vq_embed_dim __lowercase= (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowercase= self.vqvae.quantize.get_codebook_entry(lowerCAmelCase , shape=lowerCAmelCase ) __lowercase= self.vqvae.decode(lowerCAmelCase , force_not_quantize=lowerCAmelCase ).sample __lowercase= (image / 2 + 0.5).clamp(0 , 1 ) __lowercase= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase= self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase, __lowercase= torch.sort(lowerCAmelCase , 1 , descending=lowerCAmelCase ) __lowercase= torch.exp(lowerCAmelCase ) __lowercase= sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowercase= torch.full_like(keep_mask[:, 0:1, :] , lowerCAmelCase ) __lowercase= torch.cat((all_true, keep_mask) , dim=1 ) __lowercase= keep_mask[:, :-1, :] __lowercase= keep_mask.gather(1 , indices.argsort(1 ) ) __lowercase= log_p_x_0.clone() __lowercase= -torch.inf # -inf = log(0) return rv
304
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ = logging.get_logger(__name__) class _snake_case ( _a ): _A : Optional[int] = ['''pixel_values'''] def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : int = 0.9 ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = size if size is not None else {"shortest_edge": 224} SCREAMING_SNAKE_CASE:Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE:List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name="crop_size" ) SCREAMING_SNAKE_CASE:Optional[Any] = do_resize SCREAMING_SNAKE_CASE:List[Any] = size SCREAMING_SNAKE_CASE:Tuple = crop_pct SCREAMING_SNAKE_CASE:Tuple = resample SCREAMING_SNAKE_CASE:List[str] = do_center_crop SCREAMING_SNAKE_CASE:Union[str, Any] = crop_size SCREAMING_SNAKE_CASE:Dict = do_rescale SCREAMING_SNAKE_CASE:int = rescale_factor SCREAMING_SNAKE_CASE:Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE:Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE:Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[float] = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[str] ,): SCREAMING_SNAKE_CASE:Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: SCREAMING_SNAKE_CASE:Any = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: SCREAMING_SNAKE_CASE:List[str] = int(size["height"] / crop_pct ) else: SCREAMING_SNAKE_CASE:int = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:Tuple = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) else: if "shortest_edge" in size: SCREAMING_SNAKE_CASE:Optional[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=size["shortest_edge"] ,default_to_square=SCREAMING_SNAKE_CASE__ ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE:str = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(SCREAMING_SNAKE_CASE__ ) ) return resize(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): SCREAMING_SNAKE_CASE:Any = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE__ ,size=(size["height"], size["width"]) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : int = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): SCREAMING_SNAKE_CASE:Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE:List[Any] = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE:Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE:Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE:str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE:List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE:int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE:Dict = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE:Dict = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE:Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE:Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE:Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name="crop_size" ) SCREAMING_SNAKE_CASE:List[str] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE:Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE:Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,crop_pct=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE:Any = [self.center_crop(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE:List[str] = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE:List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:int = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:Union[str, Any] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__ )
139
'''simple docstring''' from __future__ import annotations def A_ ( snake_case , snake_case , snake_case , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
139
1
import math def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(SCREAMING_SNAKE_CASE_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
364
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _snake_case : int = True except (ImportError, AttributeError): _snake_case : int = object def a_ ( *lowerCAmelCase_ : List[str], **lowerCAmelCase_ : Optional[Any] ): pass _snake_case : Union[str, Any] = False _snake_case : int = logging.get_logger('transformers-cli/serving') def a_ ( lowerCAmelCase_ : Namespace ): __lowerCAmelCase = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(lowerCAmelCase_, args.host, args.port, args.workers ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 a_ = 42 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @staticmethod def lowercase ( lowerCAmelCase_ : ArgumentParser ) -> Union[str, Any]: __lowerCAmelCase = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=lowerCAmelCase_ , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=lowerCAmelCase_ , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=lowerCAmelCase_ , default=8_8_8_8 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=lowerCAmelCase_ , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=lowerCAmelCase_ , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=lowerCAmelCase_ , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=lowerCAmelCase_ , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=lowerCAmelCase_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self : List[str] , lowerCAmelCase_ : Pipeline , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> str: __lowerCAmelCase = pipeline __lowerCAmelCase = host __lowerCAmelCase = port __lowerCAmelCase = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f"""Serving model over {host}:{port}""" ) __lowerCAmelCase = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=lowerCAmelCase_ , response_class=lowerCAmelCase_ , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=lowerCAmelCase_ , response_class=lowerCAmelCase_ , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=lowerCAmelCase_ , response_class=lowerCAmelCase_ , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=lowerCAmelCase_ , response_class=lowerCAmelCase_ , methods=['POST'] , ), ] , timeout=6_0_0 , ) def lowercase ( self : Tuple ) -> str: run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase ( self : Any ) -> List[str]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase ( self : int , lowerCAmelCase_ : str = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) , lowerCAmelCase_ : bool = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) ) -> Dict: try: __lowerCAmelCase = self._pipeline.tokenizer.tokenize(lowerCAmelCase_ ) if return_ids: __lowerCAmelCase = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) return ServeTokenizeResult(tokens=lowerCAmelCase_ , tokens_ids=lowerCAmelCase_ ) else: return ServeTokenizeResult(tokens=lowerCAmelCase_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'model': '', 'error': str(lowerCAmelCase_ )} ) def lowercase ( self : int , lowerCAmelCase_ : List[int] = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) , lowerCAmelCase_ : bool = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) , lowerCAmelCase_ : bool = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) , ) -> Union[str, Any]: try: __lowerCAmelCase = self._pipeline.tokenizer.decode(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return ServeDeTokenizeResult(model='' , text=lowerCAmelCase_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'model': '', 'error': str(lowerCAmelCase_ )} ) async def lowercase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any]=Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) ) -> int: # Check we don't have empty string if len(lowerCAmelCase_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __lowerCAmelCase = self._pipeline(lowerCAmelCase_ ) return ServeForwardResult(output=lowerCAmelCase_ ) except Exception as e: raise HTTPException(5_0_0 , {'error': str(lowerCAmelCase_ )} )
207
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __lowerCamelCase : Dict = logging.getLogger(__name__) class A__ ( __snake_case ): def __UpperCamelCase( self , A_ , A_ , A_=None , A_=None ): '''simple docstring''' UpperCamelCase : Any = self.layer[current_layer](A_ , A_ , head_mask[current_layer] ) UpperCamelCase : List[str] = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __snake_case , ) class A__ ( __snake_case ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) UpperCamelCase : Optional[int] = BertEncoderWithPabee(A_ ) self.init_weights() UpperCamelCase : int = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : str = 0 def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : int = threshold def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = patience def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = 0 UpperCamelCase : List[str] = 0 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.inference_layers_num / self.inference_instances_num UpperCamelCase : Optional[int] = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(A_ ) @add_start_docstrings_to_model_forward(A_ ) def __UpperCamelCase( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=False , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: UpperCamelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: UpperCamelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) UpperCamelCase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCamelCase : Optional[int] = torch.ones(A_ , device=A_ ) if token_type_ids is None: UpperCamelCase : Optional[int] = torch.zeros(A_ , dtype=torch.long , device=A_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCamelCase : torch.Tensor = self.get_extended_attention_mask(A_ , A_ , A_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = encoder_hidden_states.size() UpperCamelCase : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCamelCase : Union[str, Any] = torch.ones(A_ , device=A_ ) UpperCamelCase : Any = self.invert_attention_mask(A_ ) else: UpperCamelCase : Optional[int] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCamelCase : Any = self.get_head_mask(A_ , self.config.num_hidden_layers ) UpperCamelCase : Tuple = self.embeddings( input_ids=A_ , position_ids=A_ , token_type_ids=A_ , inputs_embeds=A_ ) UpperCamelCase : Union[str, Any] = embedding_output if self.training: UpperCamelCase : List[str] = [] for i in range(self.config.num_hidden_layers ): UpperCamelCase : Optional[Any] = self.encoder.adaptive_forward( A_ , current_layer=A_ , attention_mask=A_ , head_mask=A_ ) UpperCamelCase : Optional[Any] = self.pooler(A_ ) UpperCamelCase : List[str] = output_layers[i](output_dropout(A_ ) ) res.append(A_ ) elif self.patience == 0: # Use all layers for inference UpperCamelCase : Optional[int] = self.encoder( A_ , attention_mask=A_ , head_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) UpperCamelCase : Any = self.pooler(encoder_outputs[0] ) UpperCamelCase : int = [output_layers[self.config.num_hidden_layers - 1](A_ )] else: UpperCamelCase : Any = 0 UpperCamelCase : Tuple = None UpperCamelCase : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCamelCase : Any = self.encoder.adaptive_forward( A_ , current_layer=A_ , attention_mask=A_ , head_mask=A_ ) UpperCamelCase : Dict = self.pooler(A_ ) UpperCamelCase : Optional[Any] = output_layers[i](A_ ) if regression: UpperCamelCase : int = logits.detach() if patient_result is not None: UpperCamelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCamelCase : Tuple = 0 else: UpperCamelCase : str = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCamelCase : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A_ ) ): patient_counter += 1 else: UpperCamelCase : Dict = 0 UpperCamelCase : Optional[Any] = logits if patient_counter == self.patience: break UpperCamelCase : List[Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __snake_case , ) class A__ ( __snake_case ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) UpperCamelCase : Tuple = config.num_labels UpperCamelCase : Union[str, Any] = BertModelWithPabee(A_ ) UpperCamelCase : Tuple = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase : Optional[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A_ ) def __UpperCamelCase( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , ): '''simple docstring''' UpperCamelCase : Dict = self.bert( input_ids=A_ , attention_mask=A_ , token_type_ids=A_ , position_ids=A_ , head_mask=A_ , inputs_embeds=A_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCamelCase : Union[str, Any] = (logits[-1],) if labels is not None: UpperCamelCase : Tuple = None UpperCamelCase : Tuple = 0 for ix, logits_item in enumerate(A_ ): if self.num_labels == 1: # We are doing regression UpperCamelCase : List[Any] = MSELoss() UpperCamelCase : Optional[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase : Any = CrossEntropyLoss() UpperCamelCase : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCamelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCamelCase : List[Any] = (total_loss / total_weights,) + outputs return outputs
52
from __future__ import annotations from functools import lru_cache from math import ceil __lowerCamelCase : str = 100 __lowerCamelCase : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) __lowerCamelCase : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def A_ ( _lowerCAmelCase ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} UpperCamelCase : set[int] = set() UpperCamelCase : int UpperCamelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A_ ( _lowerCAmelCase = 5000 ) -> int | None: for number_to_partition in range(1 , _lowerCAmelCase ): if len(partition(_lowerCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
52
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } lowerCAmelCase_ = '▁' class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : str = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : Optional[Any] = BarthezTokenizer def __init__( self : int , _A : int=None , _A : List[Any]=None , _A : str="<s>" , _A : Dict="</s>" , _A : List[Any]="</s>" , _A : Union[str, Any]="<s>" , _A : List[str]="<unk>" , _A : Dict="<pad>" , _A : int="<mask>" , **_A : str , ) -> Tuple: """simple docstring""" lowercase : Dict = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( _A , tokenizer_file=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , **_A , ) lowercase : Union[str, Any] = vocab_file lowercase : List[str] = False if not self.vocab_file else True def __a ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[Any] = [self.cls_token_id] lowercase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : List[Any] = [self.sep_token_id] lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Union[str, Any] = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
116
import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase_ = os.path.join(git_repo_path, 'src', 'diffusers') class _A ( unittest.TestCase ): def __a ( self : Any ) -> str: """simple docstring""" lowercase : List[str] = find_backend(''' if not is_torch_available():''' ) self.assertEqual(_A , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") lowercase : str = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(_A , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") lowercase : str = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(_A , '''torch_and_transformers_and_onnx''' ) def __a ( self : Optional[int] ) -> Any: """simple docstring""" lowercase : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , _A ) self.assertIn('''torch_and_transformers''' , _A ) self.assertIn('''flax_and_transformers''' , _A ) self.assertIn('''torch_and_transformers_and_onnx''' , _A ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __a ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase : List[str] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(_A , '''\nCONSTANT = None\n''' ) lowercase : List[Any] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( _A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowercase : Tuple = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' lowercase : List[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(_A , _A ) def __a ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase : Optional[int] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' lowercase : int = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , _A )
116
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' from math import factorial class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = real if isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Dict = [1] * rank else: _lowerCAmelCase : str = rank def __repr__( self ): '''simple docstring''' return ( F'{self.real}+' F'{"+".join(str(snake_case__ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , snake_case__ ) def __add__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): return Dual(self.real + other , self.duals ) _lowerCAmelCase : Tuple = self.duals.copy() _lowerCAmelCase : Optional[int] = other.duals.copy() if len(snake_case__ ) > len(snake_case__ ): o_dual.extend([1] * (len(snake_case__ ) - len(snake_case__ )) ) elif len(snake_case__ ) < len(snake_case__ ): s_dual.extend([1] * (len(snake_case__ ) - len(snake_case__ )) ) _lowerCAmelCase : int = [] for i in range(len(snake_case__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , snake_case__ ) __magic_name__ = __add__ def __sub__( self , snake_case__ ): '''simple docstring''' return self + other * -1 def __mul__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Optional[int] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , snake_case__ ) _lowerCAmelCase : Optional[int] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , snake_case__ ) __magic_name__ = __mul__ def __truediv__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , snake_case__ ) raise ValueError def __floordiv__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Dict = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , snake_case__ ) raise ValueError def __pow__( self , snake_case__ ): '''simple docstring''' if n < 0 or isinstance(snake_case__ , snake_case__ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _lowerCAmelCase : Dict = self for _ in range(n - 1 ): x *= self return x def lowercase (_A , _A , _A ): """simple docstring""" if not callable(_UpperCAmelCase ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(_UpperCAmelCase , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('differentiate() requires an int as input for order' ) _lowerCAmelCase : str = Dual(_UpperCAmelCase , 1 ) _lowerCAmelCase : Tuple = func(_UpperCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def lowercase (_A ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' from __future__ import annotations import numpy as np def __UpperCAmelCase ( A : list[float] ) -> Tuple: return np.maximum(0 , A ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A = logging.get_logger(__name__) A = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''longformer''' def __init__( self , _UpperCAmelCase = 512 , _UpperCAmelCase = 2 , _UpperCAmelCase = 1 , _UpperCAmelCase = 0 , _UpperCAmelCase = 2 , _UpperCAmelCase = 30522 , _UpperCAmelCase = 768 , _UpperCAmelCase = 12 , _UpperCAmelCase = 12 , _UpperCAmelCase = 3072 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 512 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 1e-1_2 , _UpperCAmelCase = False , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __a : int = attention_window __a : Tuple = sep_token_id __a : Union[str, Any] = bos_token_id __a : int = eos_token_id __a : int = vocab_size __a : Any = hidden_size __a : Tuple = num_hidden_layers __a : str = num_attention_heads __a : List[Any] = hidden_act __a : Any = intermediate_size __a : List[str] = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Dict = max_position_embeddings __a : Any = type_vocab_size __a : Any = initializer_range __a : str = layer_norm_eps __a : Any = onnx_export class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None ): super().__init__(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = True @property def _lowerCamelCase ( self ): if self.task == "multiple-choice": __a : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def _lowerCamelCase ( self ): __a : Tuple = super().outputs if self.task == "default": __a : List[str] = {0: '''batch'''} return outputs @property def _lowerCamelCase ( self ): return 1e-4 @property def _lowerCamelCase ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): __a : Union[str, Any] = super().generate_dummy_inputs( preprocessor=_UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __a : Optional[int] = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global __a : Dict = 1 return inputs
353
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' __lowerCAmelCase = '''image_segmenter''' __lowerCAmelCase = CLIPSegForImageSegmentation __lowerCAmelCase = ['''image''', '''text'''] __lowerCAmelCase = ['''image'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): return self.pre_processor(text=[label] , images=[image] , padding=_UpperCAmelCase , return_tensors='''pt''' ) def _lowerCamelCase ( self , _UpperCAmelCase ): with torch.no_grad(): __a : List[str] = self.model(**_UpperCAmelCase ).logits return logits def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = outputs.cpu().detach().numpy() __a : int = 0 __a : Optional[int] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
188
0
'''simple docstring''' def a ( __a , __a ) -> str: '''simple docstring''' if not isinstance(__a , __a ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__a , __a ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) UpperCamelCase__ :Optional[int] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__a ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
97
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Dict, *lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Any=None, **lowerCamelCase : str ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) lowercase__ = eval_examples lowercase__ = post_process_function def lowercase__ ( self : int, lowerCamelCase : str=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : str = "eval" ): '''simple docstring''' lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(lowerCamelCase ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( lowerCamelCase, description='''Evaluation''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions ) lowercase__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(lowerCamelCase ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase ) return metrics def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : int=None, lowerCamelCase : str = "test" ): '''simple docstring''' lowercase__ = self.get_test_dataloader(lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( lowerCamelCase, description='''Prediction''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions, '''predict''' ) lowercase__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase )
207
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : List[str] = {"vocab_file": "spiece.model"} lowercase : Optional[Any] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } lowercase : Tuple = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } lowercase : int = "▁" class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : int = PRETRAINED_VOCAB_FILES_MAP lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCamelCase , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="[CLS]" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<unk>" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<pad>" , __UpperCamelCase="[CLS]" , __UpperCamelCase="[MASK]" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' __UpperCamelCase : int = ( AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase , normalized=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token ) __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) __UpperCamelCase : Tuple = do_lower_case __UpperCamelCase : str = remove_space __UpperCamelCase : str = keep_accents __UpperCamelCase : Optional[int] = vocab_file __UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[int] = self.__dict__.copy() __UpperCamelCase : Dict = None return state def __setstate__( self , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : List[Any] = {} __UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' if self.remove_space: __UpperCamelCase : List[str] = " ".join(inputs.strip().split() ) else: __UpperCamelCase : Union[str, Any] = inputs __UpperCamelCase : Tuple = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __UpperCamelCase : str = unicodedata.normalize("NFKD" , __UpperCamelCase ) __UpperCamelCase : Any = "".join([c for c in outputs if not unicodedata.combining(__UpperCamelCase )] ) if self.do_lower_case: __UpperCamelCase : str = outputs.lower() return outputs def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase : Tuple = self.preprocess_text(__UpperCamelCase ) __UpperCamelCase : List[str] = self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) __UpperCamelCase : Optional[int] = [] for piece in pieces: if len(__UpperCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __UpperCamelCase : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase : int = cur_pieces[1:] else: __UpperCamelCase : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCamelCase ) else: new_pieces.append(__UpperCamelCase ) return new_pieces def __lowerCamelCase ( self , __UpperCamelCase ) -> int: '''simple docstring''' return self.sp_model.PieceToId(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' __UpperCamelCase : List[str] = [] __UpperCamelCase : List[str] = "" __UpperCamelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCamelCase ) + token __UpperCamelCase : str = True __UpperCamelCase : Tuple = [] else: current_sub_tokens.append(__UpperCamelCase ) __UpperCamelCase : Tuple = False out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' __UpperCamelCase : Dict = [self.sep_token_id] __UpperCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' __UpperCamelCase : Tuple = [self.sep_token_id] __UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase : Union[str, Any] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: __UpperCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
171
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[Any] = 'canine' def __init__( self , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=1_63_84 , __UpperCamelCase=16 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase=0Xe000 , __UpperCamelCase=0Xe001 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase=8 , __UpperCamelCase=1_63_84 , __UpperCamelCase=1_28 , **__UpperCamelCase , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : List[str] = max_position_embeddings __UpperCamelCase : int = hidden_size __UpperCamelCase : Tuple = num_hidden_layers __UpperCamelCase : str = num_attention_heads __UpperCamelCase : Optional[int] = intermediate_size __UpperCamelCase : int = hidden_act __UpperCamelCase : Dict = hidden_dropout_prob __UpperCamelCase : List[str] = attention_probs_dropout_prob __UpperCamelCase : Optional[Any] = initializer_range __UpperCamelCase : List[str] = type_vocab_size __UpperCamelCase : str = layer_norm_eps # Character config: __UpperCamelCase : str = downsampling_rate __UpperCamelCase : Tuple = upsampling_kernel_size __UpperCamelCase : Union[str, Any] = num_hash_functions __UpperCamelCase : List[str] = num_hash_buckets __UpperCamelCase : List[Any] = local_transformer_stride
171
1
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. A : Union[str, Any] = [p / w for p, w in zip(_lowerCAmelCase , _lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order A : List[Any] = sorted(_lowerCAmelCase ) # declaring useful variables A : str = len(_lowerCAmelCase ) A : str = 0 A : int = 0 A : str = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight A : Dict = sorted_profit_by_weight[length - i - 1] A : Optional[Any] = profit_by_weight.index(_lowerCAmelCase ) A : List[str] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) SCREAMING_SNAKE_CASE_:Union[str, Any] = [int(x) for x in input("""Input profits separated by spaces: """).split()] SCREAMING_SNAKE_CASE_:Union[str, Any] = [int(x) for x in input("""Input weights separated by spaces: """).split()] SCREAMING_SNAKE_CASE_:Tuple = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
116
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[str] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Any = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] )
116
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def _A (__a ) -> YolosConfig: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: SCREAMING_SNAKE_CASE_ : List[Any] = 1_92 SCREAMING_SNAKE_CASE_ : Any = 7_68 SCREAMING_SNAKE_CASE_ : Tuple = 12 SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : List[str] = [8_00, 13_33] SCREAMING_SNAKE_CASE_ : List[Any] = False elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE_ : int = 3_30 SCREAMING_SNAKE_CASE_ : Optional[int] = 14 SCREAMING_SNAKE_CASE_ : int = 6 SCREAMING_SNAKE_CASE_ : str = 13_20 elif "yolos_s" in yolos_name: SCREAMING_SNAKE_CASE_ : Optional[Any] = 3_84 SCREAMING_SNAKE_CASE_ : List[Any] = 15_36 SCREAMING_SNAKE_CASE_ : Dict = 12 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 6 elif "yolos_b" in yolos_name: SCREAMING_SNAKE_CASE_ : Optional[Any] = [8_00, 13_44] SCREAMING_SNAKE_CASE_ : List[Any] = 91 SCREAMING_SNAKE_CASE_ : str = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ : List[Any] = '''coco-detection-id2label.json''' SCREAMING_SNAKE_CASE_ : Any = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE_ : List[Any] = {int(__a ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Dict = idalabel SCREAMING_SNAKE_CASE_ : Dict = {v: k for k, v in idalabel.items()} return config def _A (__a , __a , __a = False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ : Union[str, Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) SCREAMING_SNAKE_CASE_ : List[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ : List[str] = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE_ : str = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ : Any = in_proj_weight[-config.hidden_size :, :] SCREAMING_SNAKE_CASE_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def _A (__a ) -> str: """simple docstring""" if "backbone" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def _A (__a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : Dict = orig_state_dict.pop(__a ) if "qkv" in key: SCREAMING_SNAKE_CASE_ : List[Any] = key.split('''.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(key_split[2] ) SCREAMING_SNAKE_CASE_ : str = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE_ : Optional[Any] = val[:dim, :] SCREAMING_SNAKE_CASE_ : List[str] = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE_ : int = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ : List[str] = val[:dim] SCREAMING_SNAKE_CASE_ : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : Dict = val[-dim:] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return orig_state_dict def _A () -> torch.Tensor: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ : Tuple = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def _A (__a , __a , __a , __a = False ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_yolos_config(__a ) # load original state_dict SCREAMING_SNAKE_CASE_ : Tuple = torch.load(__a , map_location='''cpu''' )['''model'''] # load 🤗 model SCREAMING_SNAKE_CASE_ : int = YolosForObjectDetection(__a ) model.eval() SCREAMING_SNAKE_CASE_ : int = convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor SCREAMING_SNAKE_CASE_ : List[str] = 8_00 if yolos_name != '''yolos_ti''' else 5_12 SCREAMING_SNAKE_CASE_ : Tuple = YolosImageProcessor(format='''coco_detection''' , size=__a ) SCREAMING_SNAKE_CASE_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(**__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = outputs.logits, outputs.pred_boxes SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = None, None if yolos_name == "yolos_ti": SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": SCREAMING_SNAKE_CASE_ : Dict = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) SCREAMING_SNAKE_CASE_ : int = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__a ) if push_to_hub: SCREAMING_SNAKE_CASE_ : List[str] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) SCREAMING_SNAKE_CASE_ : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__a , organization='''hustvl''' ) model.push_to_hub(__a , organization='''hustvl''' ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ : Dict = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
318
"""simple docstring""" import argparse from collections import defaultdict import yaml UpperCAmelCase_ : Optional[Any] = """docs/source/en/_toctree.yml""" def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE_ : List[Any] = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE_ : int = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE_ : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def _A (__a=False ) -> Tuple: """simple docstring""" with open(__a , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ : Dict = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE_ : str = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE_ : List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = api_doc[model_idx]['''sections'''] SCREAMING_SNAKE_CASE_ : str = [(idx, section) for idx, section in enumerate(__a ) if '''sections''' in section] SCREAMING_SNAKE_CASE_ : Optional[Any] = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE_ : List[str] = modality_doc['''sections'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE_ : str = True if overwrite: SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE_ : List[Any] = model_doc SCREAMING_SNAKE_CASE_ : int = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ : Tuple = parser.parse_args() check_model_doc(args.fix_and_overwrite)
318
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __lowerCamelCase : str = random.Random() if is_torch_available(): import torch def A_ ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: if rng is None: UpperCamelCase : Optional[int] = global_rng UpperCamelCase : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A__ ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=1 , A_=0.0 , A_=1_6000 , A_=True , A_=True , ): '''simple docstring''' UpperCamelCase : Tuple = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : List[Any] = min_seq_length UpperCamelCase : List[str] = max_seq_length UpperCamelCase : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Union[str, Any] = feature_size UpperCamelCase : List[str] = padding_value UpperCamelCase : Optional[Any] = sampling_rate UpperCamelCase : List[str] = return_attention_mask UpperCamelCase : List[Any] = do_normalize def __UpperCamelCase( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase( self , A_=False , A_=False ): '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Dict = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase : Union[str, Any] = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :Optional[Any] = ASTFeatureExtractor def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = ASTFeatureExtractionTester(self ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : Dict = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched UpperCamelCase : Any = feat_extract(A_ , padding=A_ , return_tensors="np" ).input_values UpperCamelCase : Any = feat_extract(A_ , padding=A_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : int = np.asarray(A_ ) UpperCamelCase : Any = feat_extract(A_ , return_tensors="np" ).input_values UpperCamelCase : List[str] = feat_extract(A_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) @require_torch def __UpperCamelCase( self ): '''simple docstring''' import torch UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : int = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : List[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : List[str] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCamelCase( self , A_ ): '''simple docstring''' from datasets import load_dataset UpperCamelCase : Dict = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase : Any = ds.sort("id" ).select(range(A_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on UpperCamelCase : List[Any] = self._load_datasamples(1 ) UpperCamelCase : Tuple = ASTFeatureExtractor() UpperCamelCase : str = feature_extractor(A_ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A_ , atol=1e-4 ) )
52
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE__ : int = Accelerator() SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
25
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase = StableDiffusionSAGPipeline lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCamelCase = CLIPTextModel(__UpperCAmelCase ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __UpperCamelCase = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = '.' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sag_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __UpperCamelCase = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = '.' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sag_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __UpperCamelCase = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = '.' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) __UpperCamelCase = output.images assert image.shape == (1, 512, 768, 3)
350
"""simple docstring""" def A ( snake_case :int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCamelCase : Union[str, Any] = int(input("Enter number: ").strip()) print(f'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
263
0