paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/construction-of-large-scale-english-verbal
|
Construction of Large-scale English Verbal Multiword Expression Annotated Corpus
| null |
https://aclanthology.org/L18-1396
|
https://aclanthology.org/L18-1396.pdf
|
https://github.com/naist-cl-parsing/Verbal-MWE-annotations
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/astronomaly-protege-discovery-through-human
|
Astronomaly Protege: Discovery Through Human-Machine Collaboration
|
2411.04188
|
https://arxiv.org/abs/2411.04188v3
|
https://arxiv.org/pdf/2411.04188v3.pdf
|
https://github.com/michellelochner/mgcls.protege
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/traffic4cast-large-scale-traffic-prediction
|
Traffic4cast -- Large-scale Traffic Prediction using 3DResNet and Sparse-UNet
|
2111.05990
|
https://arxiv.org/abs/2111.05990v1
|
https://arxiv.org/pdf/2111.05990v1.pdf
|
https://github.com/resuly/traffic4cast-2021
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-deep-generative-framework-for-paraphrase
|
A Deep Generative Framework for Paraphrase Generation
|
1709.05074
|
http://arxiv.org/abs/1709.05074v1
|
http://arxiv.org/pdf/1709.05074v1.pdf
|
https://github.com/arvind385801/paraphrasegen
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/frank-wolfe-methods-with-an-unbounded
|
Frank-Wolfe Methods with an Unbounded Feasible Region and Applications to Structured Learning
|
2012.15361
|
https://arxiv.org/abs/2012.15361v2
|
https://arxiv.org/pdf/2012.15361v2.pdf
|
https://github.com/wanghaoyue123/frank-wolfe-with-unbounded-constraints
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
|
Deep Reinforcement Learning with Double Q-learning
|
1509.06461
|
http://arxiv.org/abs/1509.06461v3
|
http://arxiv.org/pdf/1509.06461v3.pdf
|
https://github.com/ianlimle/ItsMeMario
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-factored-neural-network-model-for
|
A Factored Neural Network Model for Characterizing Online Discussions in Vector Space
| null |
https://aclanthology.org/D17-1243
|
https://aclanthology.org/D17-1243.pdf
|
https://github.com/hao-cheng/factored_neural
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/implicit-neural-representations-with-periodic
|
Implicit Neural Representations with Periodic Activation Functions
|
2006.09661
|
https://arxiv.org/abs/2006.09661v1
|
https://arxiv.org/pdf/2006.09661v1.pdf
|
https://github.com/TalFurman/Implict_neural_representation_of_images
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/what-were-they-thinking-pharmacologic-priors
|
What Were They Thinking? Pharmacologic priors implicit in a choice of 3+3 dose-escalation design
|
2012.05301
|
https://arxiv.org/abs/2012.05301v2
|
https://arxiv.org/pdf/2012.05301v2.pdf
|
https://github.com/dcnorris/precautionary
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/retrospective-analysis-of-a-fatal-dose
|
Retrospective analysis of a fatal dose-finding trial
|
2004.12755
|
http://arxiv.org/abs/2004.12755v1
|
http://arxiv.org/pdf/2004.12755v1.pdf
|
https://github.com/dcnorris/precautionary
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/need-for-speed-a-benchmark-for-higher-frame
|
Need for Speed: A Benchmark for Higher Frame Rate Object Tracking
|
1703.05884
|
http://arxiv.org/abs/1703.05884v2
|
http://arxiv.org/pdf/1703.05884v2.pdf
|
https://github.com/susomena/DeepSlowMotion
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/feature-importance-aware-transferable
|
Feature Importance-aware Transferable Adversarial Attacks
|
2107.14185
|
https://arxiv.org/abs/2107.14185v3
|
https://arxiv.org/pdf/2107.14185v3.pdf
|
https://github.com/ZOMIN28/FIA-pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/flipda-effective-and-robust-data-augmentation
|
FlipDA: Effective and Robust Data Augmentation for Few-Shot Learning
|
2108.06332
|
https://arxiv.org/abs/2108.06332v2
|
https://arxiv.org/pdf/2108.06332v2.pdf
|
https://github.com/zhouj8553/flipda
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/robustfill-neural-program-learning-under
|
RobustFill: Neural Program Learning under Noisy I/O
|
1703.07469
|
http://arxiv.org/abs/1703.07469v1
|
http://arxiv.org/pdf/1703.07469v1.pdf
|
https://github.com/amitz25/PCCoder
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/overfitting-the-data-compact-neural-video
|
Overfitting the Data: Compact Neural Video Delivery via Content-aware Feature Modulation
|
2108.08202
|
https://arxiv.org/abs/2108.08202v2
|
https://arxiv.org/pdf/2108.08202v2.pdf
|
https://github.com/neural-video-delivery/cafm-pytorch-iccv2021
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/out-of-distribution-detection-using-outlier
|
Out-of-Distribution Detection Using Outlier Detection Methods
|
2108.08218
|
https://arxiv.org/abs/2108.08218v2
|
https://arxiv.org/pdf/2108.08218v2.pdf
|
https://github.com/jandiers/ood-detection
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/offline-meta-reinforcement-learning-with-1
|
Offline Meta-Reinforcement Learning with Online Self-Supervision
|
2107.03974
|
https://arxiv.org/abs/2107.03974v4
|
https://arxiv.org/pdf/2107.03974v4.pdf
|
https://github.com/anair13/bullet-manipulation-affordances
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/model-change-active-learning-in-graph-based
|
Model-Change Active Learning in Graph-Based Semi-Supervised Learning
|
2110.07739
|
https://arxiv.org/abs/2110.07739v2
|
https://arxiv.org/pdf/2110.07739v2.pdf
|
https://github.com/millerk22/model-change-paper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/monotonic-chunkwise-attention
|
Monotonic Chunkwise Attention
|
1712.05382
|
http://arxiv.org/abs/1712.05382v2
|
http://arxiv.org/pdf/1712.05382v2.pdf
|
https://github.com/craffel/mocha
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/what-can-i-do-here-learning-new-skills-by
|
What Can I Do Here? Learning New Skills by Imagining Visual Affordances
|
2106.00671
|
https://arxiv.org/abs/2106.00671v2
|
https://arxiv.org/pdf/2106.00671v2.pdf
|
https://github.com/anair13/bullet-manipulation-affordances
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/keynet-keypoint-detection-by-handcrafted-and
|
Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters
|
1904.00889
|
https://arxiv.org/abs/1904.00889v3
|
https://arxiv.org/pdf/1904.00889v3.pdf
|
https://github.com/bluedream1121/Key.Net_PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/plan-attend-generate-character-level-neural-1
|
Plan, Attend, Generate: Character-level Neural Machine Translation with Planning in the Decoder
|
1706.05087
|
http://arxiv.org/abs/1706.05087v2
|
http://arxiv.org/pdf/1706.05087v2.pdf
|
https://github.com/nyu-dl/dl4mt-cdec
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automated-coronal-hole-identification-via
|
Automated Coronal Hole Identification via Multi-Thermal Intensity Segmentation
|
1711.11476
|
http://arxiv.org/abs/1711.11476v1
|
http://arxiv.org/pdf/1711.11476v1.pdf
|
https://github.com/GartontT/CHIMERA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/benchmarking-relief-based-feature-selection
|
Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data Mining
|
1711.08477
|
http://arxiv.org/abs/1711.08477v2
|
http://arxiv.org/pdf/1711.08477v2.pdf
|
https://github.com/EpistasisLab/ReBATE
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/readers-vs-writers-vs-texts-coping-with
|
Readers vs. Writers vs. Texts: Coping with Different Perspectives of Text Understanding in Emotion Annotation
| null |
https://aclanthology.org/W17-0801
|
https://aclanthology.org/W17-0801.pdf
|
https://github.com/JULIELab/EmoBank
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automating-the-search-for-a-patents-prior-art
|
Automating the search for a patent's prior art with a full text similarity search
|
1901.03136
|
http://arxiv.org/abs/1901.03136v2
|
http://arxiv.org/pdf/1901.03136v2.pdf
|
https://github.com/helmersl/patent_similarity_search
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/continuous-cutting-plane-algorithms-in
|
Continuous cutting plane algorithms in integer programming
|
2204.09122
|
https://arxiv.org/abs/2204.09122v3
|
https://arxiv.org/pdf/2204.09122v3.pdf
|
https://github.com/dchetelat/subadditive
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adaptive-convolution-kernel-for-artificial
|
Adaptive Convolution Kernel for Artificial Neural Networks
|
2009.06385
|
https://arxiv.org/abs/2009.06385v1
|
https://arxiv.org/pdf/2009.06385v1.pdf
|
https://github.com/btekgit/AdaptiveCNN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/shield-fast-practical-defense-and-vaccination
|
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
|
1802.06816
|
http://arxiv.org/abs/1802.06816v1
|
http://arxiv.org/pdf/1802.06816v1.pdf
|
https://github.com/Yuxin33/unmask
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unmask-adversarial-detection-and-defense
|
UnMask: Adversarial Detection and Defense Through Robust Feature Alignment
|
2002.09576
|
https://arxiv.org/abs/2002.09576v2
|
https://arxiv.org/pdf/2002.09576v2.pdf
|
https://github.com/Yuxin33/unmask
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-numerics-of-gans
|
The Numerics of GANs
|
1705.10461
|
http://arxiv.org/abs/1705.10461v3
|
http://arxiv.org/pdf/1705.10461v3.pdf
|
https://github.com/nhynes/abc
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/ddajing/multilayer-cnn-text-classification
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/task-aware-information-routing-from-common
|
Task-Aware Information Routing from Common Representation Space in Lifelong Learning
|
2302.11346
|
https://arxiv.org/abs/2302.11346v1
|
https://arxiv.org/pdf/2302.11346v1.pdf
|
https://github.com/neurai-lab/tamil
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/efficientvit-enhanced-linear-attention-for
|
EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
|
2205.14756
|
https://arxiv.org/abs/2205.14756v6
|
https://arxiv.org/pdf/2205.14756v6.pdf
|
https://github.com/2023-MindSpore-4/Code10/tree/main/Efficientnet
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/developing-a-unified-pipeline-for-large-scale-2
|
Developing a unified pipeline for large-scale structure data analysis with angular power spectra -- III. Implementing the multi-tracer technique to constrain neutrino masses
|
2009.05584
|
http://arxiv.org/abs/2009.05584v2
|
http://arxiv.org/pdf/2009.05584v2.pdf
|
https://github.com/ktanidis/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/plato-xl-exploring-the-large-scale-pre
|
PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation
|
2109.09519
|
https://arxiv.org/abs/2109.09519v2
|
https://arxiv.org/pdf/2109.09519v2.pdf
|
https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/plato-xl
| false
| false
| false
|
paddle
|
https://paperswithcode.com/paper/an-upper-bound-for-the-number-of-chess
|
An upper bound for the number of chess diagrams without promotion
|
2112.09386
|
https://arxiv.org/abs/2112.09386v2
|
https://arxiv.org/pdf/2112.09386v2.pdf
|
https://github.com/DanielGourion/ChessDiagrams
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/learning-to-diversify-for-single-domain
|
Learning to Diversify for Single Domain Generalization
|
2108.11726
|
https://arxiv.org/abs/2108.11726v3
|
https://arxiv.org/pdf/2108.11726v3.pdf
|
https://github.com/busername/learning_to_diversify
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/njoy-ncrystal-an-open-source-tool-for
|
NJOY+NCrystal: an open-source tool for creating thermal neutron scattering libraries
|
2108.11737
|
https://arxiv.org/abs/2108.11737v2
|
https://arxiv.org/pdf/2108.11737v2.pdf
|
https://github.com/highness-eu/njoy-ncrystal-library
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic
|
Fully Convolutional Networks for Semantic Segmentation
|
1605.06211
|
http://arxiv.org/abs/1605.06211v1
|
http://arxiv.org/pdf/1605.06211v1.pdf
|
https://github.com/2023-MindSpore-4/Code10/tree/main/FCN8s
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/micromechanical-fatigue-experiments-for
|
Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models
|
2112.04342
|
https://arxiv.org/abs/2112.04342v1
|
https://arxiv.org/pdf/2112.04342v1.pdf
|
https://github.com/boschresearch/vitemi
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/lyra-a-benchmark-for-turducken-style-code
|
Lyra: A Benchmark for Turducken-Style Code Generation
|
2108.12144
|
https://arxiv.org/abs/2108.12144v3
|
https://arxiv.org/pdf/2108.12144v3.pdf
|
https://github.com/liangqingyuan/lyra
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/exploiting-anticommutation-in-hamiltonian
|
Exploiting anticommutation in Hamiltonian simulation
|
2103.07988
|
https://arxiv.org/abs/2103.07988v2
|
https://arxiv.org/pdf/2103.07988v2.pdf
|
https://github.com/zhaoqthu/anticommuHamiltonian
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/an-efficient-lstm-neural-network-based
|
An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting
| null |
https://doi.org/10.1109/TITS.2023.3247993
|
https://scholar.google.com/scholar_url?url=https://ieeexplore.ieee.org/iel7/6979/4358928/10073952.pdf%3Fcasa_token%3Dn7JSzcTZI-YAAAAA:tfrTPUg5tvRJlwMG3EvMTr_TsZw-QlE71AFzpGLJcTU3E5gavmIam3ei0d3vwT7SbbfIW8Rd5Q&hl=el&sa=T&oi=ucasa&ct=ucasa&ei=cT8xZKqfF_6Sy9YPxfKx8A0&scisig=AJ9-iYufiQelQanCZCKIqoqoN2fr
|
https://github.com/eva-chon/VLF_VRF
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/emotion-prediction-oriented-method-with
|
Emotion Prediction Oriented method with Multiple Supervisions for Emotion-Cause Pair Extraction
|
2302.12417
|
https://arxiv.org/abs/2302.12417v1
|
https://arxiv.org/pdf/2302.12417v1.pdf
|
https://github.com/lemei/epo-ecpe
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mlp-mixer-an-all-mlp-architecture-for-vision
|
MLP-Mixer: An all-MLP Architecture for Vision
|
2105.01601
|
https://arxiv.org/abs/2105.01601v4
|
https://arxiv.org/pdf/2105.01601v4.pdf
|
https://github.com/BR-IDL/PaddleViT/blob/main/image_classification/MLP-Mixer
| false
| false
| false
|
paddle
|
https://paperswithcode.com/paper/a-new-procedure-for-selective-inference-with
|
SIGLE: a valid procedure for Selective Inference with the Generalized Linear Lasso
|
2203.15348
|
https://arxiv.org/abs/2203.15348v3
|
https://arxiv.org/pdf/2203.15348v3.pdf
|
https://github.com/quentin-duchemin/sigle
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/Bhavnicksm/vanilla-transformer-jax
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/topic-aware-abstractive-text-summarization
|
Topic-Guided Abstractive Text Summarization: a Joint Learning Approach
|
2010.10323
|
https://arxiv.org/abs/2010.10323v2
|
https://arxiv.org/pdf/2010.10323v2.pdf
|
https://github.com/chz816/tas
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/federated-reconnaissance-efficient
|
Federated Reconnaissance: Efficient, Distributed, Class-Incremental Learning
|
2109.00150
|
https://arxiv.org/abs/2109.00150v1
|
https://arxiv.org/pdf/2109.00150v1.pdf
|
https://github.com/ml4ai/fed-recon
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-multimodal-fusion-with-hierarchical
|
Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis
|
2109.00412
|
https://arxiv.org/abs/2109.00412v2
|
https://arxiv.org/pdf/2109.00412v2.pdf
|
https://github.com/declare-lab/multimodal-infomax
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/torchaudio-building-blocks-for-audio-and
|
TorchAudio: Building Blocks for Audio and Speech Processing
|
2110.15018
|
https://arxiv.org/abs/2110.15018v2
|
https://arxiv.org/pdf/2110.15018v2.pdf
|
https://github.com/pytorch/audio
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/modular-retrieval-for-generalization-and
|
Modular Retrieval for Generalization and Interpretation
|
2303.13419
|
https://arxiv.org/abs/2303.13419v1
|
https://arxiv.org/pdf/2303.13419v1.pdf
|
https://github.com/freedomintelligence/remop
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/creative-diversity-patterns-in-the-creative
|
Creative Diversity: Patterns in the Creative Habits of ~10,000 People
|
2108.12759
|
https://arxiv.org/abs/2108.12759v2
|
https://arxiv.org/pdf/2108.12759v2.pdf
|
https://github.com/ericberlow/creative-diversity
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/have-i-done-enough-planning-or-should-i-plan
|
Have I done enough planning or should I plan more?
|
2201.00764
|
https://arxiv.org/abs/2201.00764v1
|
https://arxiv.org/pdf/2201.00764v1.pdf
|
https://github.com/reeche/planningamount
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/when-does-classical-chinese-help-quantifying
|
When Does Classical Chinese Help? Quantifying Cross-Lingual Transfer in Hanja and Kanbun
|
2411.04822
|
https://arxiv.org/abs/2411.04822v1
|
https://arxiv.org/pdf/2411.04822v1.pdf
|
https://github.com/seyoungsong/classical-chinese-transfer
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/the-newspaper-navigator-dataset-extracting
|
The Newspaper Navigator Dataset: Extracting And Analyzing Visual Content from 16 Million Historic Newspaper Pages in Chronicling America
|
2005.01583
|
https://arxiv.org/abs/2005.01583v1
|
https://arxiv.org/pdf/2005.01583v1.pdf
|
https://github.com/parthasarathy-ss/newspaper-navigator
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/online-generalized-method-of-moments-for-time
|
Online Generalized Method of Moments for Time Series
|
2502.00751
|
https://arxiv.org/abs/2502.00751v1
|
https://arxiv.org/pdf/2502.00751v1.pdf
|
https://github.com/hemanlmf/gmwm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bert-assisted-semantic-annotation-correction
|
BERT-Assisted Semantic Annotation Correction for Emotion-Related Questions
|
2204.00916
|
https://arxiv.org/abs/2204.00916v1
|
https://arxiv.org/pdf/2204.00916v1.pdf
|
https://github.com/abecode/emo20q
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/scalable-feature-matching-across-large-data
|
Scalable Feature Matching Across Large Data Collections
|
2101.02035
|
https://arxiv.org/abs/2101.02035v1
|
https://arxiv.org/pdf/2101.02035v1.pdf
|
https://github.com/ddegras/matchFeat
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-phrase-representations-using-rnn
|
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
|
1406.1078
|
http://arxiv.org/abs/1406.1078v3
|
http://arxiv.org/pdf/1406.1078v3.pdf
|
https://github.com/mindspore-ai/models/tree/master/official/nlp/gru
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/wenet-production-first-and-production-ready
|
WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit
|
2102.01547
|
https://arxiv.org/abs/2102.01547v5
|
https://arxiv.org/pdf/2102.01547v5.pdf
|
https://github.com/wenet-e2e/wenet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/timetraveler-reinforcement-learning-for
|
TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph Forecasting
|
2109.04101
|
https://arxiv.org/abs/2109.04101v1
|
https://arxiv.org/pdf/2109.04101v1.pdf
|
https://github.com/jhl-hust/titer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sampling-in-dirichlet-process-mixture-models
|
Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data
|
2202.13312
|
https://arxiv.org/abs/2202.13312v1
|
https://arxiv.org/pdf/2202.13312v1.pdf
|
https://github.com/bgu-cs-vil/dpmmsubclustersstreaming.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/consensus-learning-from-heterogeneous
|
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering
|
2202.13140
|
https://arxiv.org/abs/2202.13140v1
|
https://arxiv.org/pdf/2202.13140v1.pdf
|
https://github.com/seongku-kang/concf_www22
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/voxel-transformer-for-3d-object-detection
|
Voxel Transformer for 3D Object Detection
|
2109.02497
|
https://arxiv.org/abs/2109.02497v2
|
https://arxiv.org/pdf/2109.02497v2.pdf
|
https://github.com/PointsCoder/VOTR
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/transreid-transformer-based-object-re
|
TransReID: Transformer-based Object Re-Identification
|
2102.04378
|
https://arxiv.org/abs/2102.04378v2
|
https://arxiv.org/pdf/2102.04378v2.pdf
|
https://github.com/darrishabh/coviprox
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/darrishabh/coviprox
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improved-latent-tree-induction-with-distant
|
Improved Latent Tree Induction with Distant Supervision via Span Constraints
|
2109.05112
|
https://arxiv.org/abs/2109.05112v2
|
https://arxiv.org/pdf/2109.05112v2.pdf
|
https://github.com/iesl/distantly-supervised-diora
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/exploring-the-role-of-bert-token
|
Exploring the Role of BERT Token Representations to Explain Sentence Probing Results
|
2104.01477
|
https://arxiv.org/abs/2104.01477v2
|
https://arxiv.org/pdf/2104.01477v2.pdf
|
https://github.com/hmohebbi/explain-probing-results
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/total-recall-a-customized-continual-learning
|
Total Recall: a Customized Continual Learning Method for Neural Semantic Parsers
|
2109.05186
|
https://arxiv.org/abs/2109.05186v2
|
https://arxiv.org/pdf/2109.05186v2.pdf
|
https://github.com/zhuang-li/cl_nsp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/squeezed-very-deep-convolutional-neural
|
Squeezed Very Deep Convolutional Neural Networks for Text Classification
|
1901.09821
|
http://arxiv.org/abs/1901.09821v1
|
http://arxiv.org/pdf/1901.09821v1.pdf
|
https://github.com/lazarotm/SVDCNN
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/on-multi-layer-basis-pursuit-efficient
|
On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks
|
1806.00701
|
http://arxiv.org/abs/1806.00701v5
|
http://arxiv.org/pdf/1806.00701v5.pdf
|
https://github.com/Sulam-Group/ml-ista
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/federated-learning-from-big-data-over
|
Federated Learning From Big Data Over Networks
|
2010.14159
|
https://arxiv.org/abs/2010.14159v1
|
https://arxiv.org/pdf/2010.14159v1.pdf
|
https://github.com/sahelyiyi/FederatedLearning
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fonbund-a-library-for-combining-cross-lingual
|
FonBund: A Library for Combining Cross-lingual Phonological Segment Data
| null |
https://aclanthology.org/L18-1353
|
https://aclanthology.org/L18-1353.pdf
|
https://github.com/googlei18n/language-resources
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/duluth-urop-at-semeval-2018-task-2
|
Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensemble Learning and Oversampling
|
1805.10267
|
http://arxiv.org/abs/1805.10267v1
|
http://arxiv.org/pdf/1805.10267v1.pdf
|
https://github.com/shuningjin/SemEval2018-Task2-EmojiDetection
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/adityarajsahu/UNet-Implementation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/hdr-image-reconstruction-from-a-single
|
HDR image reconstruction from a single exposure using deep CNNs
|
1710.07480
|
http://arxiv.org/abs/1710.07480v1
|
http://arxiv.org/pdf/1710.07480v1.pdf
|
https://github.com/mantiuk/pwcmp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/voxelwise-nonlinear-regression-toolbox-for
|
Voxelwise nonlinear regression toolbox for neuroimage analysis: Application to aging and neurodegenerative disease modeling
|
1612.00667
|
http://arxiv.org/abs/1612.00667v3
|
http://arxiv.org/pdf/1612.00667v3.pdf
|
https://github.com/imatge-upc/VNeAT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deriving-consensus-for-multi-parallel-corpora
|
Deriving Consensus for Multi-Parallel Corpora: an English Bible Study
| null |
https://aclanthology.org/I17-2076
|
https://aclanthology.org/I17-2076.pdf
|
https://github.com/pitrack/monolign
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-general-optimization-framework-for-multi
|
A General Optimization Framework for Multi-Document Summarization Using Genetic Algorithms and Swarm Intelligence
| null |
https://aclanthology.org/C16-1024
|
https://aclanthology.org/C16-1024.pdf
|
https://github.com/UKPLab/coling2016-genetic-swarm-MDS
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improving-low-resource-neural-machine
|
Improving Low-Resource Neural Machine Translation with Filtered Pseudo-Parallel Corpus
| null |
https://aclanthology.org/W17-5704
|
https://aclanthology.org/W17-5704.pdf
|
https://github.com/aizhanti/filtered-pseudo-parallel-corpora
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/resnet-with-one-neuron-hidden-layers-is-a
|
ResNet with one-neuron hidden layers is a Universal Approximator
|
1806.10909
|
http://arxiv.org/abs/1806.10909v2
|
http://arxiv.org/pdf/1806.10909v2.pdf
|
https://github.com/sivakon/resnet-approximator
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fourier-pca-and-robust-tensor-decomposition
|
Fourier PCA and Robust Tensor Decomposition
|
1306.5825
|
http://arxiv.org/abs/1306.5825v5
|
http://arxiv.org/pdf/1306.5825v5.pdf
|
https://github.com/yingusxiaous/libFPCA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/non-convex-global-minimization-and-false
|
Non-convex Global Minimization and False Discovery Rate Control for the TREX
|
1604.06815
|
http://arxiv.org/abs/1604.06815v2
|
http://arxiv.org/pdf/1604.06815v2.pdf
|
https://github.com/muellsen/TREX
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pruning-convolutional-neural-networks-for
|
Pruning Convolutional Neural Networks for Resource Efficient Inference
|
1611.06440
|
http://arxiv.org/abs/1611.06440v2
|
http://arxiv.org/pdf/1611.06440v2.pdf
|
https://github.com/dongkwan-kim/Adaptive-Forgetting
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/GitHberChen/FCN-Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/automatic-skin-lesion-segmentation-on
|
Automatic skin lesion segmentation on dermoscopic images by the means of superpixel merging
|
1808.06759
|
http://arxiv.org/abs/1808.06759v1
|
http://arxiv.org/pdf/1808.06759v1.pdf
|
https://github.com/dipaco/mole-classification
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/detecting-gang-involved-escalation-on-social
|
Detecting Gang-Involved Escalation on Social Media Using Context
|
1809.03632
|
http://arxiv.org/abs/1809.03632v1
|
http://arxiv.org/pdf/1809.03632v1.pdf
|
https://github.com/serinachang5/contextifier
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/180602449
|
Joint Power Allocation in Interference-Limited Networks via Distributed Coordinated Learning
|
1806.02449
|
http://arxiv.org/abs/1806.02449v2
|
http://arxiv.org/pdf/1806.02449v2.pdf
|
https://github.com/roamiri/pa_intf_RL
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/dimspan-transactional-frequent-subgraph
|
DIMSpan - Transactional Frequent Subgraph Mining with Distributed In-Memory Dataflow Systems
|
1703.01910
|
http://arxiv.org/abs/1703.01910v1
|
http://arxiv.org/pdf/1703.01910v1.pdf
|
https://github.com/fuboertech/gradoop
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rand-walk-a-latent-variable-model-approach-to
|
A Latent Variable Model Approach to PMI-based Word Embeddings
|
1502.03520
|
https://arxiv.org/abs/1502.03520v8
|
https://arxiv.org/pdf/1502.03520v8.pdf
|
https://github.com/LivNLP/Relational-Walk-for-Knowledge-Graphs
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/proximal-policy-optimization-algorithms
|
Proximal Policy Optimization Algorithms
|
1707.06347
|
http://arxiv.org/abs/1707.06347v2
|
http://arxiv.org/pdf/1707.06347v2.pdf
|
https://github.com/sc2crazy/StarCrackRL
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/fast-neural-architecture-search-of-compact
|
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
|
1810.10804
|
https://arxiv.org/abs/1810.10804v3
|
https://arxiv.org/pdf/1810.10804v3.pdf
|
https://github.com/drsleep/nas-segm-pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/east-an-efficient-and-accurate-scene-text
|
EAST: An Efficient and Accurate Scene Text Detector
|
1704.03155
|
http://arxiv.org/abs/1704.03155v2
|
http://arxiv.org/pdf/1704.03155v2.pdf
|
https://github.com/BruceChanJianLe/Image-Text-Recognition
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/visual-interpretability-for-deep-learning-a
|
Visual Interpretability for Deep Learning: a Survey
|
1802.00614
|
http://arxiv.org/abs/1802.00614v2
|
http://arxiv.org/pdf/1802.00614v2.pdf
|
https://github.com/JepsonWong/CNN_Visualization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/perturbative-gan-gan-with-perturbation-layers
|
Perturbative GAN: GAN with Perturbation Layers
|
1902.01514
|
http://arxiv.org/abs/1902.01514v1
|
http://arxiv.org/pdf/1902.01514v1.pdf
|
https://github.com/obake2ai/Obake-GAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ranger-a-fast-implementation-of-random
|
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
|
1508.04409
|
http://arxiv.org/abs/1508.04409v2
|
http://arxiv.org/pdf/1508.04409v2.pdf
|
https://github.com/mayer79/missRanger
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/alililia/ms_extend/tree/main/gpu_resnet
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/paying-attention-to-descriptions-generated-by
|
Paying Attention to Descriptions Generated by Image Captioning Models
|
1704.07434
|
http://arxiv.org/abs/1704.07434v3
|
http://arxiv.org/pdf/1704.07434v3.pdf
|
https://github.com/rakshithShetty/captionGAN
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.