paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/improving-response-selection-in-multi-turn
|
Improving Response Selection in Multi-Turn Dialogue Systems by Incorporating Domain Knowledge
|
1809.03194
|
http://arxiv.org/abs/1809.03194v3
|
http://arxiv.org/pdf/1809.03194v3.pdf
|
https://github.com/SmartDataAnalytics/AK-DE-biGRU
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hyperminhash-minhash-in-loglog-space
|
HyperMinHash: MinHash in LogLog space
|
1710.08436
|
https://arxiv.org/abs/1710.08436v4
|
https://arxiv.org/pdf/1710.08436v4.pdf
|
https://github.com/yunwilliamyu/hyperminhash
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/far-beyond-stacking-fully-bayesian
|
Far beyond stacking: Fully bayesian constraints on sub-microJy radio source populations over the XMM-LSS-VIDEO field
|
1503.02493
|
http://arxiv.org/abs/1503.02493v1
|
http://arxiv.org/pdf/1503.02493v1.pdf
|
https://github.com/jtlz2/bayestack
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-spectroscopic-and-photometric-exploration
|
A Spectroscopic and Photometric Exploration of the C/M Ratio in the Disk of M31
|
1507.06687
|
https://arxiv.org/abs/1507.06687v1
|
https://arxiv.org/pdf/1507.06687v1.pdf
|
https://github.com/rachelraikar/WeakCN2019
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/data-compression-in-cosmology-a-compressed
|
Data compression in cosmology: A compressed likelihood for Planck data
|
1909.05869
|
https://arxiv.org/abs/1909.05869v1
|
https://arxiv.org/pdf/1909.05869v1.pdf
|
https://github.com/heatherprince/cosmoped
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/CarpdiemLiang/style_transfer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-softmax-approximation-for-gpus
|
Efficient softmax approximation for GPUs
|
1609.04309
|
http://arxiv.org/abs/1609.04309v3
|
http://arxiv.org/pdf/1609.04309v3.pdf
|
https://github.com/rdspring1/PyTorch_GBW_LM
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/12-in-1-multi-task-vision-and-language
|
12-in-1: Multi-Task Vision and Language Representation Learning
|
1912.02315
|
https://arxiv.org/abs/1912.02315v2
|
https://arxiv.org/pdf/1912.02315v2.pdf
|
https://github.com/jialinwu17/tmpimgs
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/lovedavidsilva/bert_old_version
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/let-me-not-lie-learning-multinomial-logit
|
Enhancing Discrete Choice Models with Representation Learning
|
1812.09747
|
https://arxiv.org/abs/1812.09747v3
|
https://arxiv.org/pdf/1812.09747v3.pdf
|
https://github.com/BSifringer/EnhancedDCM
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/synthesizing-number-generators-for-stochastic
|
Synthesizing Number Generators for Stochastic Computing using Mixed Integer Programming
|
1902.05971
|
https://arxiv.org/abs/1902.05971v2
|
https://arxiv.org/pdf/1902.05971v2.pdf
|
https://github.com/sweetwenwen/Stochastic-computing-based-neural-network-accelerator
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sparse-perturbations-for-improved-convergence
|
Sparse Perturbations for Improved Convergence in Stochastic Zeroth-Order Optimization
|
2006.01759
|
https://arxiv.org/abs/2006.01759v2
|
https://arxiv.org/pdf/2006.01759v2.pdf
|
https://github.com/StatNLP/sparse_szo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-estimation-of-mutual-information
|
Efficient Estimation of Mutual Information for Strongly Dependent Variables
|
1411.2003
|
http://arxiv.org/abs/1411.2003v3
|
http://arxiv.org/pdf/1411.2003v3.pdf
|
https://github.com/BiuBiuBiLL/NPEET_LNC
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/swinir-image-restoration-using-swin
|
SwinIR: Image Restoration Using Swin Transformer
|
2108.10257
|
https://arxiv.org/abs/2108.10257v1
|
https://arxiv.org/pdf/2108.10257v1.pdf
|
https://github.com/XPixelGroup/BasicSR
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/topics-to-avoid-demoting-latent-confounds-in
|
Topics to Avoid: Demoting Latent Confounds in Text Classification
|
1909.00453
|
https://arxiv.org/abs/1909.00453v2
|
https://arxiv.org/pdf/1909.00453v2.pdf
|
https://github.com/Sachin19/adversarial-classify
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/depth-bounding-is-effective-improvements-and
|
Depth-bounding is effective: Improvements and evaluation of unsupervised PCFG induction
|
1809.03112
|
http://arxiv.org/abs/1809.03112v1
|
http://arxiv.org/pdf/1809.03112v1.pdf
|
https://github.com/lifengjin/dimi_emnlp18
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/181001993
|
Exascale Deep Learning for Climate Analytics
|
1810.01993
|
http://arxiv.org/abs/1810.01993v1
|
http://arxiv.org/pdf/1810.01993v1.pdf
|
https://github.com/PointKernel/climate-seg-benchmark
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/axial-attention-in-multidimensional-1
|
Axial Attention in Multidimensional Transformers
|
1912.12180
|
https://arxiv.org/abs/1912.12180v1
|
https://arxiv.org/pdf/1912.12180v1.pdf
|
https://github.com/mindspore-courses/External-Attention-MindSpore/blob/main/model/attention/Axial_attention.py
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
|
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
|
1712.01815
|
http://arxiv.org/abs/1712.01815v1
|
http://arxiv.org/pdf/1712.01815v1.pdf
|
https://github.com/fantianwen/leela13_training
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/the-privacy-policy-landscape-after-the-gdpr
|
The Privacy Policy Landscape After the GDPR
|
1809.08396
|
https://arxiv.org/abs/1809.08396v3
|
https://arxiv.org/pdf/1809.08396v3.pdf
|
https://github.com/wi-pi/GDPR
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/tisat-time-series-anomaly-transformer
|
TiSAT: Time Series Anomaly Transformer
|
2203.05167
|
https://arxiv.org/abs/2203.05167v1
|
https://arxiv.org/pdf/2203.05167v1.pdf
|
https://github.com/kevaldoshi17/TiSAT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/explaining-deep-learning-based-networked
|
Interpreting Deep Learning-Based Networking Systems
|
1910.03835
|
https://arxiv.org/abs/1910.03835v3
|
https://arxiv.org/pdf/1910.03835v3.pdf
|
https://github.com/TranSys2020/TranSys
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/clft-camera-lidar-fusion-transformer-for
|
CLFT: Camera-LiDAR Fusion Transformer for Semantic Segmentation in Autonomous Driving
|
2404.17793
|
https://arxiv.org/abs/2404.17793v3
|
https://arxiv.org/pdf/2404.17793v3.pdf
|
https://github.com/claud1234/fcn_transformer_object_segmentation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-depth-from-focus
|
Deep Depth From Focus
|
1704.01085
|
http://arxiv.org/abs/1704.01085v3
|
http://arxiv.org/pdf/1704.01085v3.pdf
|
https://github.com/gameover27/ddff-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/average-individual-fairness-algorithms
|
Average Individual Fairness: Algorithms, Generalization and Experiments
|
1905.10607
|
https://arxiv.org/abs/1905.10607v2
|
https://arxiv.org/pdf/1905.10607v2.pdf
|
https://github.com/SaeedSharifiMa/AIF
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/efficient-mdp-analysis-for-selfish-mining-in
|
Efficient MDP Analysis for Selfish-Mining in Blockchains
|
2007.05614
|
https://arxiv.org/abs/2007.05614v1
|
https://arxiv.org/pdf/2007.05614v1.pdf
|
https://github.com/roibarzur/pto-selfish-mining
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-latent-vector-spaces-for-product
|
Learning Latent Vector Spaces for Product Search
|
1608.07253
|
http://arxiv.org/abs/1608.07253v1
|
http://arxiv.org/pdf/1608.07253v1.pdf
|
https://github.com/cvangysel/SERT
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/feidfoe/AdjustBnd4Imbalance
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-clear-age-velocity-dispersion-correlation
|
A clear age-velocity dispersion correlation in Andromeda's stellar disk
|
1502.03820
|
https://arxiv.org/abs/1502.03820v1
|
https://arxiv.org/pdf/1502.03820v1.pdf
|
https://github.com/rachelraikar/WeakCN2019
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/anupamsingh610/bert_ner_stride
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/reproducible-workflow-on-a-public-cloud-for
|
Reproducible Workflow on a Public Cloud for Computational Fluid Dynamics
|
1904.07981
|
https://arxiv.org/abs/1904.07981v2
|
https://arxiv.org/pdf/1904.07981v2.pdf
|
https://github.com/barbagroup/cloud-repro
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/interpreting-video-features-a-comparison-of-1
|
Interpreting video features: a comparison of 3D convolutional networks and convolutional LSTM networks
|
2002.00367
|
https://arxiv.org/abs/2002.00367v2
|
https://arxiv.org/pdf/2002.00367v2.pdf
|
https://github.com/interpreting-video-features/interpreting-video-features
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/long-term-causal-effects-estimation-via
|
Long-term Causal Effects Estimation via Latent Surrogates Representation Learning
|
2208.04589
|
https://arxiv.org/abs/2208.04589v3
|
https://arxiv.org/pdf/2208.04589v3.pdf
|
https://github.com/WeilinChen507/LASER
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/sequential-feature-classification-in-the
|
Sequential Feature Classification in the Context of Redundancies
|
2004.00658
|
https://arxiv.org/abs/2004.00658v2
|
https://arxiv.org/pdf/2004.00658v2.pdf
|
https://github.com/lpfann/squamish
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/effective-waves-for-random-three-dimensional
|
Effective Waves for Random Three-dimensional Particulate Materials
|
2010.00934
|
https://arxiv.org/abs/2010.00934v1
|
https://arxiv.org/pdf/2010.00934v1.pdf
|
https://github.com/arturgower/EffectiveWaves.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/nubes-a-corpus-of-negation-and-uncertainty-in
|
NUBES: A Corpus of Negation and Uncertainty in Spanish Clinical Texts
|
2004.01092
|
https://arxiv.org/abs/2004.01092v1
|
https://arxiv.org/pdf/2004.01092v1.pdf
|
https://github.com/Vicomtech/NUBes-negation-uncertainty-biomedical-corpus
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-explanation-game-explaining-machine
|
The Explanation Game: Explaining Machine Learning Models Using Shapley Values
|
1909.08128
|
https://arxiv.org/abs/1909.08128v3
|
https://arxiv.org/pdf/1909.08128v3.pdf
|
https://github.com/fiddler-labs/the-explanation-game-supplemental
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-neural-conversational-model
|
A Neural Conversational Model
|
1506.05869
|
http://arxiv.org/abs/1506.05869v3
|
http://arxiv.org/pdf/1506.05869v3.pdf
|
https://github.com/shahrukhsf/Chatbot
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/nonnegative-gaussian-process-tomography-for
|
Nonnegative Gaussian process tomography for generalized segmented planar detectors
|
1912.01058
|
https://arxiv.org/abs/1912.01058v1
|
https://arxiv.org/pdf/1912.01058v1.pdf
|
https://github.com/decibelcooper/nngpt
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/Maninder10/face
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-declarative-validator-for-gsos-languages
|
A Declarative Validator for GSOS Languages
|
2304.06397
|
https://arxiv.org/abs/2304.06397v1
|
https://arxiv.org/pdf/2304.06397v1.pdf
|
https://github.com/mcimini/gsos-validator
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-new-coefficient-of-correlation
|
A new coefficient of correlation
|
1909.10140
|
https://arxiv.org/abs/1909.10140v4
|
https://arxiv.org/pdf/1909.10140v4.pdf
|
https://github.com/czbiohub/pyxi
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
|
Efficient Estimation of Word Representations in Vector Space
|
1301.3781
|
http://arxiv.org/abs/1301.3781v3
|
http://arxiv.org/pdf/1301.3781v3.pdf
|
https://github.com/adaisti/fin-eval
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/statistical-properties-of-paired-fixed-fields
|
Statistical properties of paired fixed fields
|
1806.01871
|
https://arxiv.org/abs/1806.01871v1
|
https://arxiv.org/pdf/1806.01871v1.pdf
|
https://github.com/HAWinther/MG-PICOLA-PUBLIC
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-an-optimally-reduced-formulation-of
|
Learning an Optimally Reduced Formulation of OPF through Meta-optimization
|
1911.06784
|
https://arxiv.org/abs/1911.06784v3
|
https://arxiv.org/pdf/1911.06784v3.pdf
|
https://github.com/invenia/MetaOptOPF.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/k-nearest-neighbour-classifiers-2nd-edition
|
k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples)
|
2004.04523
|
https://arxiv.org/abs/2004.04523v2
|
https://arxiv.org/pdf/2004.04523v2.pdf
|
https://github.com/PadraigC/kNNTutorial
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/off-the-beaten-sidewalk-pedestrian-prediction
|
Off The Beaten Sidewalk: Pedestrian Prediction In Shared Spaces For Autonomous Vehicles
|
2006.00962
|
https://arxiv.org/abs/2006.00962v1
|
https://arxiv.org/pdf/2006.00962v1.pdf
|
https://github.com/umautobots/osp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/larnet-lie-algebra-residual-network-for
|
LARNet: Lie Algebra Residual Network for Face Recognition
|
2103.08147
|
https://arxiv.org/abs/2103.08147v2
|
https://arxiv.org/pdf/2103.08147v2.pdf
|
https://github.com/paradocx/LARNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/analysis-of-eeg-frequency-bands-for
|
Analysis of EEG frequency bands for Envisioned Speech Recognition
|
2203.15250
|
https://arxiv.org/abs/2203.15250v1
|
https://arxiv.org/pdf/2203.15250v1.pdf
|
https://github.com/ayushayt/imaginedspeechrecognition
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/real-time-evasion-attacks-with-physical
|
Constrained Concealment Attacks against Reconstruction-based Anomaly Detectors in Industrial Control Systems
|
1907.07487
|
https://arxiv.org/abs/1907.07487v3
|
https://arxiv.org/pdf/1907.07487v3.pdf
|
https://github.com/scy-phy/ICS-Evasion-Attacks
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/adaptive-representation-selection-in
|
Contextual Bandit with Adaptive Feature Extraction
|
1802.00981
|
https://arxiv.org/abs/1802.00981v4
|
https://arxiv.org/pdf/1802.00981v4.pdf
|
https://github.com/doerlbh/ABaCoDE
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/manifold-regularization-for-adversarial
|
Manifold Regularization for Locally Stable Deep Neural Networks
|
2003.04286
|
https://arxiv.org/abs/2003.04286v2
|
https://arxiv.org/pdf/2003.04286v2.pdf
|
https://github.com/charlesjin/adversarial_regularization
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mnist-c-a-robustness-benchmark-for-computer
|
MNIST-C: A Robustness Benchmark for Computer Vision
|
1906.02337
|
https://arxiv.org/abs/1906.02337v1
|
https://arxiv.org/pdf/1906.02337v1.pdf
|
https://github.com/google-research/mnist-c
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
|
1905.11946
|
https://arxiv.org/abs/1905.11946v5
|
https://arxiv.org/pdf/1905.11946v5.pdf
|
https://github.com/rwightman/efficientnet-jax
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/self-monitoring-navigation-agent-via
|
Self-Monitoring Navigation Agent via Auxiliary Progress Estimation
|
1901.03035
|
http://arxiv.org/abs/1901.03035v1
|
http://arxiv.org/pdf/1901.03035v1.pdf
|
https://github.com/ayusefi/Localization-Papers
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-image-clustering-with-category-style
|
Deep Image Clustering with Category-Style Representation
|
2007.10004
|
https://arxiv.org/abs/2007.10004v1
|
https://arxiv.org/pdf/2007.10004v1.pdf
|
https://github.com/sKamiJ/DCCS
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/qmeq-10-an-open-source-python-package-for
|
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
|
1706.10104
|
http://arxiv.org/abs/1706.10104v2
|
http://arxiv.org/pdf/1706.10104v2.pdf
|
https://github.com/gedaskir/qmeq
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/non-gaussian-gaussian-processes-for-few-shot
|
Non-Gaussian Gaussian Processes for Few-Shot Regression
|
2110.13561
|
https://arxiv.org/abs/2110.13561v1
|
https://arxiv.org/pdf/2110.13561v1.pdf
|
https://github.com/gmum/non-gaussian-gaussian-processes
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/Abdelhamid-bouzid/Deep-metric-learning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/metric-learning-with-adaptive-density
|
Metric Learning with Adaptive Density Discrimination
|
1511.05939
|
http://arxiv.org/abs/1511.05939v2
|
http://arxiv.org/pdf/1511.05939v2.pdf
|
https://github.com/Abdelhamid-bouzid/Deep-metric-learning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/abcnet-an-attention-based-method-for-particle
|
ABCNet: An attention-based method for particle tagging
|
2001.05311
|
https://arxiv.org/abs/2001.05311v2
|
https://arxiv.org/pdf/2001.05311v2.pdf
|
https://github.com/ViniciusMikuni/ABCNet
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/mask-shadowgan-learning-to-remove-shadows
|
Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data
|
1903.10683
|
https://arxiv.org/abs/1903.10683v3
|
https://arxiv.org/pdf/1903.10683v3.pdf
|
https://github.com/wkhademi/ImageEnhancement
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/gapnet-graph-attention-based-point-neural
|
GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud
|
1905.08705
|
https://arxiv.org/abs/1905.08705v1
|
https://arxiv.org/pdf/1905.08705v1.pdf
|
https://github.com/ViniciusMikuni/ABCNet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/solving-inverse-problems-with-deep-neural
|
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
|
2011.04268
|
https://arxiv.org/abs/2011.04268v1
|
https://arxiv.org/pdf/2011.04268v1.pdf
|
https://github.com/jmaces/robust-nets
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/style-transfer-by-rigid-alignment-in-neural
|
Style Transfer by Rigid Alignment in Neural Net Feature Space
|
1909.13690
|
https://arxiv.org/abs/1909.13690v2
|
https://arxiv.org/pdf/1909.13690v2.pdf
|
https://github.com/ManthanBhala/Style-Transfer-by-Rigid-Alignment
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/noilin-do-noisy-labels-always-hurt
|
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
|
2105.14676
|
https://arxiv.org/abs/2105.14676v2
|
https://arxiv.org/pdf/2105.14676v2.pdf
|
https://github.com/zjfheart/noilin
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/crx934080895/Bert-CRF_New2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/uncrowded-hypervolume-based-multi-objective
|
Uncrowded Hypervolume-based Multi-objective Optimization with Gene-pool Optimal Mixing
|
2004.05068
|
https://arxiv.org/abs/2004.05068v1
|
https://arxiv.org/pdf/2004.05068v1.pdf
|
https://github.com/DudewithPigskin/EvolutionaryAlgorithms
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/blazeface-sub-millisecond-neural-face
|
BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs
|
1907.05047
|
https://arxiv.org/abs/1907.05047v2
|
https://arxiv.org/pdf/1907.05047v2.pdf
|
https://github.com/longnguyen2/blazeface
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/interactive-classification-by-asking-1
|
Interactive Classification by Asking Informative Questions
|
1911.03598
|
https://arxiv.org/abs/1911.03598v2
|
https://arxiv.org/pdf/1911.03598v2.pdf
|
https://github.com/asappresearch/interactive-classification
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/hiun/learning-transformers
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-machine-translation-by-jointly
|
Neural Machine Translation by Jointly Learning to Align and Translate
|
1409.0473
|
http://arxiv.org/abs/1409.0473v7
|
http://arxiv.org/pdf/1409.0473v7.pdf
|
https://github.com/hiun/learning-transformers
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/oteann-estimating-the-transparency-of
|
OTEANN: Estimating the Transparency of Orthographies with an Artificial Neural Network
|
1912.13321
|
https://arxiv.org/abs/1912.13321v4
|
https://arxiv.org/pdf/1912.13321v4.pdf
|
https://github.com/marxav/oteann3
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/target-driven-visual-navigation-exploiting
|
Learning hierarchical relationships for object-goal navigation
|
2003.06749
|
https://arxiv.org/abs/2003.06749v2
|
https://arxiv.org/pdf/2003.06749v2.pdf
|
https://github.com/cassieqiuyd/MJOLNIR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/params-parameter-optimization-for-atomistic
|
ParAMS: Parameter Optimization for Atomistic and Molecular Simulations
|
2102.08843
|
https://arxiv.org/abs/2102.08843v3
|
https://arxiv.org/pdf/2102.08843v3.pdf
|
https://github.com/oiao/params_si
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/requirements-and-motivations-of-low-resource
|
Requirements and Motivations of Low-Resource Speech Synthesis for Language Revitalization
| null |
https://aclanthology.org/2022.acl-long.507
|
https://aclanthology.org/2022.acl-long.507.pdf
|
https://github.com/roedoejet/fastspeech2
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/resolving-anomalies-in-the-behaviour-of-a
|
Resolving Anomalies in the Behaviour of a Modularity Inducing Problem Domain with Distributional Fitness Evaluation
|
2110.13609
|
https://arxiv.org/abs/2110.13609v2
|
https://arxiv.org/pdf/2110.13609v2.pdf
|
https://github.com/zhenyueqin/project-maotai-modularity
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/lhco-reader-a-new-code-for-reading-and
|
LHCO_reader: A new code for reading and analyzing detector-level events stored in LHCO format
|
1510.07319
|
http://arxiv.org/abs/1510.07319v2
|
http://arxiv.org/pdf/1510.07319v2.pdf
|
https://github.com/innisfree/LHCO_reader
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/approximate-probabilistic-verification-of
|
Approximate probabilistic verification of hybrid systems
|
1412.6953
|
http://arxiv.org/abs/1412.6953v2
|
http://arxiv.org/pdf/1412.6953v2.pdf
|
https://github.com/bgyori/hybrid
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/determining-hyperbolicity-of-compact
|
Determining hyperbolicity of compact orientable 3-manifolds with torus boundary
|
1410.7115
|
http://arxiv.org/abs/1410.7115v5
|
http://arxiv.org/pdf/1410.7115v5.pdf
|
https://github.com/bobbycyiii/carrot
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/initial-semantics-for-reduction-rules
|
Initial Semantics for Reduction Rules
|
1212.5668
|
http://arxiv.org/abs/1212.5668v3
|
http://arxiv.org/pdf/1212.5668v3.pdf
|
https://github.com/benediktahrens/monads
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/log-complex-color-for-visual-pattern
|
Log Complex Color for Visual Pattern Recognition of Total Sound
|
1907.09936
|
https://arxiv.org/abs/1907.09936v1
|
https://arxiv.org/pdf/1907.09936v1.pdf
|
https://github.com/qx4845/TotalSound
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-learning-of-dynamics-and-signal-noise
|
Deep learning of dynamics and signal-noise decomposition with time-stepping constraints
|
1808.02578
|
https://arxiv.org/abs/1808.02578v2
|
https://arxiv.org/pdf/1808.02578v2.pdf
|
https://github.com/oclaudio/cubic-oscillator
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/multiple-waves-propagate-in-random
|
Multiple Waves Propagate in Random Particulate Materials
|
1810.10816
|
https://arxiv.org/abs/1810.10816v3
|
https://arxiv.org/pdf/1810.10816v3.pdf
|
https://github.com/arturgower/EffectiveWaves.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/slow-cooling-of-hot-polarons-in-halide
|
Slow cooling of hot polarons in halide perovskite solar cells
|
1708.04158
|
http://arxiv.org/abs/1708.04158v1
|
http://arxiv.org/pdf/1708.04158v1.pdf
|
https://github.com/WMD-group/hot-carrier-cooling
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/analysis-of-a-certain-polycyclic-group-based
|
Analysis of a certain polycyclic-group-based cryptosystem
|
1504.05040
|
http://arxiv.org/abs/1504.05040v1
|
http://arxiv.org/pdf/1504.05040v1.pdf
|
https://github.com/mkotov/polycyclic
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hmfcalc-an-online-tool-for-calculating-dark
|
HMFcalc: An Online Tool for Calculating Dark Matter Halo Mass Functions
|
1306.6721
|
https://arxiv.org/abs/1306.6721v1
|
https://arxiv.org/pdf/1306.6721v1.pdf
|
https://github.com/steven-murray/halomod
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-neuro-inspired-autoencoding-defense-against
|
A Neuro-Inspired Autoencoding Defense Against Adversarial Perturbations
|
2011.10867
|
https://arxiv.org/abs/2011.10867v2
|
https://arxiv.org/pdf/2011.10867v2.pdf
|
https://github.com/canbakiskan/neuro-inspired-defense
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/denoising-quantum-states-with-quantum
|
Denoising quantum states with Quantum Autoencoders -- Theory and Applications
|
2012.14714
|
https://arxiv.org/abs/2012.14714v1
|
https://arxiv.org/pdf/2012.14714v1.pdf
|
https://github.com/Tom-Achache/QAEs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/multilingual-email-zoning
|
Multilingual Email Zoning
|
2102.00461
|
https://arxiv.org/abs/2102.00461v2
|
https://arxiv.org/pdf/2102.00461v2.pdf
|
https://github.com/cleverly-ai/multilingual-email-zoning
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/coherent-point-drift-networks-unsupervised
|
Coherent Point Drift Networks: Unsupervised Learning of Non-Rigid Point Set Registration
|
1906.03039
|
https://arxiv.org/abs/1906.03039v5
|
https://arxiv.org/pdf/1906.03039v5.pdf
|
https://github.com/krentzd/cpd-net
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/physics-informed-kan-pointnet-deep-learning
|
Physics-informed KAN PointNet: Deep learning for simultaneous solutions to inverse problems in incompressible flow on numerous irregular geometries
|
2504.06327
|
https://arxiv.org/abs/2504.06327v2
|
https://arxiv.org/pdf/2504.06327v2.pdf
|
https://github.com/Ali-Stanford/Physics_Informed_KAN_PointNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/large-scale-neural-recordings-call-for-new
|
Large-scale neural recordings call for new insights to link brain and behavior
|
2103.14662
|
https://arxiv.org/abs/2103.14662v2
|
https://arxiv.org/pdf/2103.14662v2.pdf
|
https://github.com/anne-urai/largescale_recordings
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/incremental-visual-inertial-3d-mesh
|
Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities
|
1903.01067
|
https://arxiv.org/abs/1903.01067v2
|
https://arxiv.org/pdf/1903.01067v2.pdf
|
https://github.com/MIT-SPARK/Kimera-Evaluation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ptt5-pretraining-and-validating-the-t5-model
|
PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data
|
2008.09144
|
https://arxiv.org/abs/2008.09144v2
|
https://arxiv.org/pdf/2008.09144v2.pdf
|
https://github.com/unicamp-dl/cross-lingual-analysis
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/offline-reinforcement-learning-with-implicit
|
Offline Reinforcement Learning with Implicit Q-Learning
|
2110.06169
|
https://arxiv.org/abs/2110.06169v1
|
https://arxiv.org/pdf/2110.06169v1.pdf
|
https://github.com/ikostrikov/implicit_q_learning
| true
| false
| true
|
jax
|
https://paperswithcode.com/paper/mocogan-decomposing-motion-and-content-for
|
MoCoGAN: Decomposing Motion and Content for Video Generation
|
1707.04993
|
http://arxiv.org/abs/1707.04993v2
|
http://arxiv.org/pdf/1707.04993v2.pdf
|
https://github.com/DLHacks/mocogan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/machine-learning-in-precision-medicine-to
|
Machine Learning in Precision Medicine to Preserve Privacy via Encryption
|
2102.03412
|
https://arxiv.org/abs/2102.03412v1
|
https://arxiv.org/pdf/2102.03412v1.pdf
|
https://github.com/isotlaboratory/Healthcare-Security-Analysis-MLE
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/revisiting-performance-of-bicgstab-methods
|
Revisiting Performance of BiCGStab Methods for Solving Systems with Multiple Right-Hand Sides
|
1907.12874
|
http://arxiv.org/abs/1907.12874v3
|
http://arxiv.org/pdf/1907.12874v3.pdf
|
https://gitlab.com/xamg/xamg
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.