paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/multiple-attribute-text-style-transfer
|
Multiple-Attribute Text Style Transfer
|
1811.00552
|
https://arxiv.org/abs/1811.00552v2
|
https://arxiv.org/pdf/1811.00552v2.pdf
|
https://github.com/clock-me/text-restyle
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/shellcode-ia32-a-dataset-for-automatic
|
Shellcode_IA32: A Dataset for Automatic Shellcode Generation
|
2104.13100
|
https://arxiv.org/abs/2104.13100v4
|
https://arxiv.org/pdf/2104.13100v4.pdf
|
https://github.com/dessertlab/Shellcode_IA32
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/staktau-profiling-hpc-applications-operating
|
STaKTAU: profiling HPC applications' operating system usage
|
2304.11205
|
https://arxiv.org/abs/2304.11205v1
|
https://arxiv.org/pdf/2304.11205v1.pdf
|
https://github.com/coti/staktau
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/meta-learners-for-estimating-heterogeneous
|
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
|
1706.03461
|
http://arxiv.org/abs/1706.03461v5
|
http://arxiv.org/pdf/1706.03461v5.pdf
|
https://github.com/forestry-labs/causalToolbox
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/information-theoretic-stochastic-contrastive-1
|
Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN
|
2112.09653
|
https://arxiv.org/abs/2112.09653v1
|
https://arxiv.org/pdf/2112.09653v1.pdf
|
https://github.com/vkinakh/InfoSCC-GAN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/ernet-efficient-and-reliable-human-object
|
ERNet: Efficient and Reliable Human-Object Interaction Detection
| null |
https://ieeexplore.ieee.org/abstract/document/10026602
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10026602
|
https://github.com/Monash-CyPhi-AI-Research-Lab/ernet
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/coherent-semantic-attention-for-image
|
Coherent Semantic Attention for Image Inpainting
|
1905.12384
|
https://arxiv.org/abs/1905.12384v3
|
https://arxiv.org/pdf/1905.12384v3.pdf
|
https://github.com/yangyucheng000/University/tree/main/model-2/cohere
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/utterance-level-aggregation-for-speaker
|
Utterance-level Aggregation For Speaker Recognition In The Wild
|
1902.10107
|
https://arxiv.org/abs/1902.10107v2
|
https://arxiv.org/pdf/1902.10107v2.pdf
|
https://github.com/khassanoff/Speaker_Verification
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/exactly-computing-the-local-lipschitz
|
Exactly Computing the Local Lipschitz Constant of ReLU Networks
|
2003.01219
|
https://arxiv.org/abs/2003.01219v2
|
https://arxiv.org/pdf/2003.01219v2.pdf
|
https://github.com/revbucket/lipMIP
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-network-verification-in-control
|
Neural Network Verification in Control
|
2110.01388
|
https://arxiv.org/abs/2110.01388v1
|
https://arxiv.org/pdf/2110.01388v1.pdf
|
https://github.com/mit-acl/nn_robustness_analysis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/of-models-and-tin-men-a-behavioural-economics
|
Of Models and Tin Men: A Behavioural Economics Study of Principal-Agent Problems in AI Alignment using Large-Language Models
|
2307.11137
|
https://arxiv.org/abs/2307.11137v3
|
https://arxiv.org/pdf/2307.11137v3.pdf
|
https://github.com/phelps-sg/llm-cooperation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/effectiveness-of-anonymization-in-double
|
Effectiveness of Anonymization in Double-Blind Review
|
1709.01609
|
https://arxiv.org/abs/1709.01609v1
|
https://arxiv.org/pdf/1709.01609v1.pdf
|
https://github.com/double-blind-reviewing/double-blind-reviewing.github.io
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/padim-a-patch-distribution-modeling-framework
|
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
|
2011.08785
|
https://arxiv.org/abs/2011.08785v1
|
https://arxiv.org/pdf/2011.08785v1.pdf
|
https://github.com/koheitokda/PaDiM
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/model-construction-for-convex-constrained
|
Model Construction for Convex-Constrained Derivative-Free Optimization
|
2403.14960
|
https://arxiv.org/abs/2403.14960v1
|
https://arxiv.org/pdf/2403.14960v1.pdf
|
https://github.com/numericalalgorithmsgroup/pybobyqa
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/mixmatch-a-holistic-approach-to-semi
|
MixMatch: A Holistic Approach to Semi-Supervised Learning
|
1905.02249
|
https://arxiv.org/abs/1905.02249v2
|
https://arxiv.org/pdf/1905.02249v2.pdf
|
https://github.com/smkim7-kr/albu-MixMatch-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/aspect-sentiment-triplet-extraction-using
|
Aspect Sentiment Triplet Extraction Using Reinforcement Learning
|
2108.06107
|
https://arxiv.org/abs/2108.06107v1
|
https://arxiv.org/pdf/2108.06107v1.pdf
|
https://github.com/declare-lab/aste-rl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/edgeformer-improving-light-weight-convnets-by
|
ParC-Net: Position Aware Circular Convolution with Merits from ConvNets and Transformer
|
2203.03952
|
https://arxiv.org/abs/2203.03952v5
|
https://arxiv.org/pdf/2203.03952v5.pdf
|
https://github.com/hkzhang91/edgeformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/optimal-multiple-change-point-detection-for
|
Optimal multiple change-point detection for high-dimensional data
|
2011.07818
|
https://arxiv.org/abs/2011.07818v2
|
https://arxiv.org/pdf/2011.07818v2.pdf
|
https://github.com/epilliat/multicpdetec
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tower-data-structures-in-quantum
|
Tower: Data Structures in Quantum Superposition
|
2205.10255
|
https://arxiv.org/abs/2205.10255v3
|
https://arxiv.org/pdf/2205.10255v3.pdf
|
https://github.com/psg-mit/tower-oopsla22
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deepsplit-scalable-verification-of-deep
|
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
|
2106.09117
|
https://arxiv.org/abs/2106.09117v3
|
https://arxiv.org/pdf/2106.09117v3.pdf
|
https://github.com/shaoruchen/deepsplit
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/post-selection-inference-for-l1-penalized
|
Post-selection inference for L1-penalized likelihood models
|
1602.07358
|
http://arxiv.org/abs/1602.07358v3
|
http://arxiv.org/pdf/1602.07358v3.pdf
|
https://github.com/quentin-duchemin/sigle
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/relating-human-perception-of-musicality-to
|
Relating Human Perception of Musicality to Prediction in a Predictive Coding Model
|
2210.16587
|
https://arxiv.org/abs/2210.16587v1
|
https://arxiv.org/pdf/2210.16587v1.pdf
|
https://github.com/nikolasmcneal/music-prediction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/jiweibo/imagenet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/squeezenet-alexnet-level-accuracy-with-50x
|
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
|
1602.07360
|
http://arxiv.org/abs/1602.07360v4
|
http://arxiv.org/pdf/1602.07360v4.pdf
|
https://github.com/jiweibo/imagenet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/graph-convolutional-matrix-completion
|
Graph Convolutional Matrix Completion
|
1706.02263
|
http://arxiv.org/abs/1706.02263v2
|
http://arxiv.org/pdf/1706.02263v2.pdf
|
https://github.com/OweysMomenzada/Graph-Neural-Networks-for-effecient-Recommender-Systems
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/objects-as-points
|
Objects as Points
|
1904.07850
|
http://arxiv.org/abs/1904.07850v2
|
http://arxiv.org/pdf/1904.07850v2.pdf
|
https://github.com/mindspore-ai/models/tree/master/research/cv/centernet_resnet50_v1
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/dyverse-dynamic-vertical-scaling-in-multi
|
DYVERSE: DYnamic VERtical Scaling in Multi-tenant Edge Environments
|
1810.04608
|
http://arxiv.org/abs/1810.04608v1
|
http://arxiv.org/pdf/1810.04608v1.pdf
|
https://github.com/qub-blesson/DYVERSE
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/generalization-without-systematicity-on-the
|
Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks
|
1711.00350
|
http://arxiv.org/abs/1711.00350v3
|
http://arxiv.org/pdf/1711.00350v3.pdf
|
https://github.com/yoonkim/neural-qcfg
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/styleptb-a-compositional-benchmark-for-fine
|
StylePTB: A Compositional Benchmark for Fine-grained Controllable Text Style Transfer
|
2104.05196
|
https://arxiv.org/abs/2104.05196v1
|
https://arxiv.org/pdf/2104.05196v1.pdf
|
https://github.com/yoonkim/neural-qcfg
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/special-subsets-of-addresses-for-blockchains
|
Special subsets of addresses for blockchains using the secp256k1 curve
|
2206.14107
|
https://arxiv.org/abs/2206.14107v1
|
https://arxiv.org/pdf/2206.14107v1.pdf
|
https://github.com/gitgab19/blockchain_addresses_list
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/joint-inference-of-multiple-graphs-with
|
Joint inference of multiple graphs with hidden variables from stationary graph signals
|
2110.03666
|
https://arxiv.org/abs/2110.03666v2
|
https://arxiv.org/pdf/2110.03666v2.pdf
|
https://github.com/reysam93/hidden_joint_inference
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/verifiable-smart-contract-portability
|
Verifiable Smart Contract Portability
|
1902.03868
|
http://arxiv.org/abs/1902.03868v1
|
http://arxiv.org/pdf/1902.03868v1.pdf
|
https://github.com/informartin/VeriSmart
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-particulate-matter-forecasting-model
|
Deep Particulate Matter Forecasting Model Using Correntropy-Induced Loss
|
2106.03032
|
https://arxiv.org/abs/2106.03032v2
|
https://arxiv.org/pdf/2106.03032v2.pdf
|
https://github.com/appleparan/mise.py
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/modeling-long-and-short-term-temporal
|
Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks
|
1703.07015
|
http://arxiv.org/abs/1703.07015v3
|
http://arxiv.org/pdf/1703.07015v3.pdf
|
https://github.com/appleparan/mise.py
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/aegis-mitigating-targeted-bit-flip-attacks
|
Aegis: Mitigating Targeted Bit-flip Attacks against Deep Neural Networks
|
2302.13520
|
https://arxiv.org/abs/2302.13520v1
|
https://arxiv.org/pdf/2302.13520v1.pdf
|
https://github.com/wjl123wjl/aegis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/knowledge-graph-informed-fake-news
|
Knowledge Graph informed Fake News Classification via Heterogeneous Representation Ensembles
|
2110.10457
|
https://arxiv.org/abs/2110.10457v2
|
https://arxiv.org/pdf/2110.10457v2.pdf
|
https://gitlab.com/boshko.koloski/codename_fn_b
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-study-in-mathbb-g-mathbb-r-geq-0-from-the
|
A study in $\mathbb{G}_{\mathbb{R}, \geq 0}$: from the geometric case book of Wilson loop diagrams and SYM $N=4$
|
1803.00958
|
https://arxiv.org/abs/1803.00958v1
|
https://arxiv.org/pdf/1803.00958v1.pdf
|
https://github.com/zeefryer/positroids
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-analysis-on-subgraph-isomorphism
|
Deep Analysis on Subgraph Isomorphism
|
2012.06802
|
https://arxiv.org/abs/2012.06802v2
|
https://arxiv.org/pdf/2012.06802v2.pdf
|
https://github.com/bookug/siep
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/optimal-monomial-quadratization-for-ode
|
Optimal monomial quadratization for ODE systems
|
2103.08013
|
https://arxiv.org/abs/2103.08013v3
|
https://arxiv.org/pdf/2103.08013v3.pdf
|
https://github.com/AndreyBychkov/QBee
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/distance-function-for-spike-prediction
|
Spike distance function as a learning objective for spike prediction
|
2312.01966
|
https://arxiv.org/abs/2312.01966v2
|
https://arxiv.org/pdf/2312.01966v2.pdf
|
https://github.com/kevindoran/spikedistance
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/validating-simulations-of-user-query-variants
|
Validating Simulations of User Query Variants
|
2201.07620
|
https://arxiv.org/abs/2201.07620v2
|
https://arxiv.org/pdf/2201.07620v2.pdf
|
https://github.com/irgroup/ecir2022-uqv-sim
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-imspoc-snapshot-imaging-spectrometer
|
Interferometer response characterization algorithm for multi-aperture Fabry-Perot imaging spectrometers
|
2303.14076
|
https://arxiv.org/abs/2303.14076v4
|
https://arxiv.org/pdf/2303.14076v4.pdf
|
https://github.com/danaroth83/irca
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/divnoising-diversity-denoising-with-fully
|
Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders
|
2006.06072
|
https://arxiv.org/abs/2006.06072v2
|
https://arxiv.org/pdf/2006.06072v2.pdf
|
https://github.com/IVRL/w2s
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/joint-self-supervised-blind-denoising-and
|
Joint self-supervised blind denoising and noise estimation
|
2102.08023
|
https://arxiv.org/abs/2102.08023v1
|
https://arxiv.org/pdf/2102.08023v1.pdf
|
https://github.com/IVRL/w2s
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/lessons-on-parameter-sharing-across-layers-in
|
Lessons on Parameter Sharing across Layers in Transformers
|
2104.06022
|
https://arxiv.org/abs/2104.06022v4
|
https://arxiv.org/pdf/2104.06022v4.pdf
|
https://github.com/takase/share_layer_params
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-blind-spot-denoising-for-microscopy
|
Improving Blind Spot Denoising for Microscopy
|
2008.08414
|
https://arxiv.org/abs/2008.08414v1
|
https://arxiv.org/pdf/2008.08414v1.pdf
|
https://github.com/IVRL/w2s
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/energy-efficient-parking-analytics-system
|
Energy-Efficient Parking Analytics System using Deep Reinforcement Learning
|
2202.08973
|
https://arxiv.org/abs/2202.08973v2
|
https://arxiv.org/pdf/2202.08973v2.pdf
|
https://github.com/pittcps/rl-parking
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/let-there-be-a-clock-on-the-beach-reducing
|
Let there be a clock on the beach: Reducing Object Hallucination in Image Captioning
|
2110.01705
|
https://arxiv.org/abs/2110.01705v2
|
https://arxiv.org/pdf/2110.01705v2.pdf
|
https://github.com/furkanbiten/object-bias
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/order-optimal-one-shot-distributed-learning
|
Order Optimal One-Shot Distributed Learning
|
1911.00731
|
https://arxiv.org/abs/1911.00731v1
|
https://arxiv.org/pdf/1911.00731v1.pdf
|
https://github.com/sabersalehk/MRE_C
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/few-shot-clustering-for-indoor-occupancy
|
Few shot clustering for indoor occupancy detection with extremely low-quality images from battery free cameras
|
2008.05654
|
https://arxiv.org/abs/2008.05654v1
|
https://arxiv.org/pdf/2008.05654v1.pdf
|
https://github.com/Homagn/Few_shot_clustering
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/skew-gaussian-processes-for-classification
|
Skew Gaussian Processes for Classification
|
2005.12987
|
https://arxiv.org/abs/2005.12987v1
|
https://arxiv.org/pdf/2005.12987v1.pdf
|
https://github.com/benavoli/SkewGP
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/darts-differentiable-architecture-search
|
DARTS: Differentiable Architecture Search
|
1806.09055
|
http://arxiv.org/abs/1806.09055v2
|
http://arxiv.org/pdf/1806.09055v2.pdf
|
https://github.com/diff7/DARTS-devices
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-non-parametric-proportional-risk-model-to
|
A non-parametric proportional risk model to assess a treatment effect in time-to-event data
|
2303.07479
|
https://arxiv.org/abs/2303.07479v1
|
https://arxiv.org/pdf/2303.07479v1.pdf
|
https://github.com/luciaameis/nppr-model-for-time-to-event-data
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/combining-learned-skills-and-reinforcement
|
Learning to combine primitive skills: A step towards versatile robotic manipulation
|
1908.00722
|
https://arxiv.org/abs/1908.00722v3
|
https://arxiv.org/pdf/1908.00722v3.pdf
|
https://github.com/rstrudel/rlbc
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-augment-synthetic-images-for
|
Learning to Augment Synthetic Images for Sim2Real Policy Transfer
|
1903.07740
|
https://arxiv.org/abs/1903.07740v2
|
https://arxiv.org/pdf/1903.07740v2.pdf
|
https://github.com/rstrudel/rlbc
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hypothesis-tests-for-structured-rank
|
Hypothesis tests for structured rank correlation matrices
|
2007.09738
|
https://arxiv.org/abs/2007.09738v2
|
https://arxiv.org/pdf/2007.09738v2.pdf
|
https://github.com/samperochkin/testing-tau
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/analysing-e-commerce-a-b-tests-with-dependent
|
Measuring e-Commerce Metric Changes in Online Experiments
|
2210.17187
|
https://arxiv.org/abs/2210.17187v2
|
https://arxiv.org/pdf/2210.17187v2.pdf
|
https://github.com/liuchbryan/oce-ecomm-abv-calculation
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/utilizing-automated-breast-cancer-detection
|
Utilizing Automated Breast Cancer Detection to Identify Spatial Distributions of Tumor Infiltrating Lymphocytes in Invasive Breast Cancer
|
1905.10841
|
https://arxiv.org/abs/1905.10841v3
|
https://arxiv.org/pdf/1905.10841v3.pdf
|
https://github.com/SBU-BMI/quip_cancer_segmentation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-percolating-cluster-is-invisible-to-image
|
The percolating cluster is invisible to image recognition with deep learning
|
2303.15298
|
https://arxiv.org/abs/2303.15298v1
|
https://arxiv.org/pdf/2303.15298v1.pdf
|
https://github.com/DisQS/MachineLearning-Percolation
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/semi-supervised-domain-generalizable-person
|
Semi-Supervised Domain Generalizable Person Re-Identification
|
2108.05045
|
https://arxiv.org/abs/2108.05045v2
|
https://arxiv.org/pdf/2108.05045v2.pdf
|
https://github.com/JDAI-CV/fast-reid
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/exact-and-heuristic-algorithms-for-energy
|
Exact and Heuristic Algorithms for Energy-Efficient Scheduling
|
2203.14070
|
https://arxiv.org/abs/2203.14070v2
|
https://arxiv.org/pdf/2203.14070v2.pdf
|
https://github.com/orresearcher/phd-thesis
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cost-sensitive-label-embedding-for-multi
|
Cost-Sensitive Label Embedding for Multi-Label Classification
|
1603.09048
|
http://arxiv.org/abs/1603.09048v5
|
http://arxiv.org/pdf/1603.09048v5.pdf
|
https://github.com/evantkchong/LEPAR
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/fgcrec-fine-grained-geographical
|
FGCRec: Fine-Grained Geographical Characteristics Modeling for Point-of-Interest Recommendation
| null |
https://ieeexplore.ieee.org/document/9148797
|
http://www.suyijun.tech/papers/2020-ICC-FGCRec.pdf
|
https://github.com/YijunSu/ICC2020_FGCRec
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/grape-fast-and-scalable-graph-processing-and
|
GRAPE for Fast and Scalable Graph Processing and random walk-based Embedding
|
2110.06196
|
https://arxiv.org/abs/2110.06196v3
|
https://arxiv.org/pdf/2110.06196v3.pdf
|
https://github.com/AnacletoLAB/ensmallen
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/lnemlc-label-network-embeddings-for-multi
|
LNEMLC: Label Network Embeddings for Multi-Label Classification
|
1812.02956
|
http://arxiv.org/abs/1812.02956v2
|
http://arxiv.org/pdf/1812.02956v2.pdf
|
https://github.com/evantkchong/LEPAR
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/rethinking-of-pedestrian-attribute
|
Rethinking of Pedestrian Attribute Recognition: Realistic Datasets with Efficient Method
|
2005.11909
|
https://arxiv.org/abs/2005.11909v2
|
https://arxiv.org/pdf/2005.11909v2.pdf
|
https://github.com/evantkchong/LEPAR
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-imbalanced-attribute-classification
|
Deep Imbalanced Attribute Classification using Visual Attention Aggregation
|
1807.03903
|
http://arxiv.org/abs/1807.03903v2
|
http://arxiv.org/pdf/1807.03903v2.pdf
|
https://github.com/evantkchong/LEPAR
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/social-welfare-maximization-and-conformism
|
Maximizing Social Welfare and Agreement via Information Design in Linear-Quadratic-Gaussian Games
|
2102.13047
|
https://arxiv.org/abs/2102.13047v2
|
https://arxiv.org/pdf/2102.13047v2.pdf
|
https://github.com/furkansezer/Furkan-Sezer
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/effective-crowd-annotation-of-participants
|
Effective Crowd-Annotation of Participants, Interventions, and Outcomes in the Text of Clinical Trial Reports
| null |
https://aclanthology.org/2020.findings-emnlp.274
|
https://aclanthology.org/2020.findings-emnlp.274.pdf
|
https://github.com/markus-zlabinger/ssts
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/variational-inference-for-infinitely-deep
|
Variational Inference for Infinitely Deep Neural Networks
|
2209.10091
|
https://arxiv.org/abs/2209.10091v1
|
https://arxiv.org/pdf/2209.10091v1.pdf
|
https://github.com/anazaret/unbounded-depth-neural-networks
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/extended-u-net-for-speaker-verification-in
|
Extended U-Net for Speaker Verification in Noisy Environments
|
2206.13044
|
https://arxiv.org/abs/2206.13044v1
|
https://arxiv.org/pdf/2206.13044v1.pdf
|
https://github.com/wngh1187/exu-net
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-spatiotemporal-features-with-3d
|
Learning Spatiotemporal Features with 3D Convolutional Networks
|
1412.0767
|
http://arxiv.org/abs/1412.0767v4
|
http://arxiv.org/pdf/1412.0767v4.pdf
|
https://github.com/facebookarchive/C3D
| true
| false
| false
|
caffe2
|
https://paperswithcode.com/paper/desiderata-for-representation-learning-a
|
Desiderata for Representation Learning: A Causal Perspective
|
2109.03795
|
https://arxiv.org/abs/2109.03795v2
|
https://arxiv.org/pdf/2109.03795v2.pdf
|
https://github.com/yixinwang/representation-causal-public
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/catch-a-waveform-learning-to-generate-audio
|
Catch-A-Waveform: Learning to Generate Audio from a Single Short Example
|
2106.06426
|
https://arxiv.org/abs/2106.06426v2
|
https://arxiv.org/pdf/2106.06426v2.pdf
|
https://github.com/galgreshler/Catch-A-Waveform
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mastering-atari-go-chess-and-shogi-by
|
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
|
1911.08265
|
https://arxiv.org/abs/1911.08265v2
|
https://arxiv.org/pdf/1911.08265v2.pdf
|
https://github.com/k-lombard/CS4641_Project
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/medcare-advancing-medical-llms-through
|
MedCare: Advancing Medical LLMs through Decoupling Clinical Alignment and Knowledge Aggregation
|
2406.17484
|
https://arxiv.org/abs/2406.17484v3
|
https://arxiv.org/pdf/2406.17484v3.pdf
|
https://github.com/bluezeros/medcare
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/icarl-incremental-classifier-and
|
iCaRL: Incremental Classifier and Representation Learning
|
1611.07725
|
http://arxiv.org/abs/1611.07725v2
|
http://arxiv.org/pdf/1611.07725v2.pdf
|
https://github.com/srebuffi/iCaRL
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/analyzing-the-impact-of-meteorological
|
Analyzing the Impact of Meteorological Parameters on Rainfall Prediction
|
2110.11059
|
https://arxiv.org/abs/2110.11059v1
|
https://arxiv.org/pdf/2110.11059v1.pdf
|
https://github.com/sammyy092/impact-of-meteorological-parameters-on-rainfall
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/quantum-flatness-in-two-dimensional-cdt
|
Quantum Flatness in Two-Dimensional CDT Quantum Gravity
|
2110.11100
|
https://arxiv.org/abs/2110.11100v1
|
https://arxiv.org/pdf/2110.11100v1.pdf
|
https://github.com/jorenb/2d-cdt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-learning-approach-for-identification-of
|
Deep learning approach for identification of HII regions during reionization in 21-cm observations
|
2102.06713
|
https://arxiv.org/abs/2102.06713v2
|
https://arxiv.org/pdf/2102.06713v2.pdf
|
https://github.com/micbia/SegU-Net
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-simple-framework-for-text-supervised
|
A Simple Framework for Text-Supervised Semantic Segmentation
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Yi_A_Simple_Framework_for_Text-Supervised_Semantic_Segmentation_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Yi_A_Simple_Framework_for_Text-Supervised_Semantic_Segmentation_CVPR_2023_paper.pdf
|
https://github.com/muyangyi/simseg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/raneus-ray-adaptive-neural-surface
|
RaNeuS: Ray-adaptive Neural Surface Reconstruction
|
2406.09801
|
https://arxiv.org/abs/2406.09801v1
|
https://arxiv.org/pdf/2406.09801v1.pdf
|
https://github.com/wangyida/ra-neus
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/universality-of-critical-exponent-in-scale
|
Scaling properties of scale-free networks in degree-thresholding renormalization flows
|
2109.12309
|
https://arxiv.org/abs/2109.12309v2
|
https://arxiv.org/pdf/2109.12309v2.pdf
|
https://github.com/cdzqf/dtr
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/latentclr-a-contrastive-learning-approach-for
|
LatentCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions
|
2104.00820
|
https://arxiv.org/abs/2104.00820v2
|
https://arxiv.org/pdf/2104.00820v2.pdf
|
https://github.com/gulperii/githubio
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/dense-passage-retrieval-for-open-domain
|
Dense Passage Retrieval for Open-Domain Question Answering
|
2004.04906
|
https://arxiv.org/abs/2004.04906v3
|
https://arxiv.org/pdf/2004.04906v3.pdf
|
https://github.com/alexlimh/DPR_MUF
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/photo-pre-training-but-for-sketch
|
Photo Pre-Training, but for Sketch
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Li_Photo_Pre-Training_but_for_Sketch_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Li_Photo_Pre-Training_but_for_Sketch_CVPR_2023_paper.pdf
|
https://github.com/keli-sketchx/photo-pre-training-but-for-sketch
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/orbit-a-unified-simulation-framework-for
|
Orbit: A Unified Simulation Framework for Interactive Robot Learning Environments
|
2301.04195
|
https://arxiv.org/abs/2301.04195v2
|
https://arxiv.org/pdf/2301.04195v2.pdf
|
https://github.com/NVIDIA-Omniverse/Orbit
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-real-time-deep-network-for-crowd-counting
|
A Real-Time Deep Network for Crowd Counting
|
2002.06515
|
https://arxiv.org/abs/2002.06515v1
|
https://arxiv.org/pdf/2002.06515v1.pdf
|
https://github.com/jplumail/people-counting
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/contracttinker-llm-empowered-vulnerability
|
ContractTinker: LLM-Empowered Vulnerability Repair for Real-World Smart Contracts
|
2409.09661
|
https://arxiv.org/abs/2409.09661v1
|
https://arxiv.org/pdf/2409.09661v1.pdf
|
https://github.com/CheWang09/LLM4SMAPR
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/the-power-of-halometry
|
The Power of Halometry
|
2003.02264
|
https://arxiv.org/abs/2003.02264v1
|
https://arxiv.org/pdf/2003.02264v1.pdf
|
https://github.com/smsharma/neural-global-astrometry
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hci-papers-cite-hci-papers-increasingly-so
|
HCI Papers Cite HCI Papers, Increasingly So
|
2303.07539
|
https://arxiv.org/abs/2303.07539v2
|
https://arxiv.org/pdf/2303.07539v2.pdf
|
https://github.com/hotnany/x-index
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deepsphere-a-graph-based-spherical-cnn-1
|
DeepSphere: a graph-based spherical CNN
|
2012.15000
|
https://arxiv.org/abs/2012.15000v1
|
https://arxiv.org/pdf/2012.15000v1.pdf
|
https://github.com/smsharma/neural-global-astrometry
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mining-for-dark-matter-substructure-inferring
|
Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning
|
1909.02005
|
https://arxiv.org/abs/1909.02005v2
|
https://arxiv.org/pdf/1909.02005v2.pdf
|
https://github.com/smsharma/neural-global-astrometry
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/random-feature-stein-discrepancies
|
Random Feature Stein Discrepancies
|
1806.07788
|
https://arxiv.org/abs/1806.07788v5
|
https://arxiv.org/pdf/1806.07788v5.pdf
|
https://bitbucket.org/jhhuggins/random-feature-stein-discrepancies
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/exploring-simple-siamese-representation
|
Exploring Simple Siamese Representation Learning
|
2011.10566
|
https://arxiv.org/abs/2011.10566v1
|
https://arxiv.org/pdf/2011.10566v1.pdf
|
https://github.com/reza-safdari/simsiam-91.9-top1-acc-on-cifar10
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/additive-margin-softmax-for-face-verification
|
Additive Margin Softmax for Face Verification
|
1801.05599
|
http://arxiv.org/abs/1801.05599v4
|
http://arxiv.org/pdf/1801.05599v4.pdf
|
https://github.com/dalisson/am_softmax
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-siamese-cnn-for-image-steganalysis
|
A Siamese CNN for Image Steganalysis
| null |
https://ieeexplore.ieee.org/abstract/document/9153041
|
https://ieeexplore.ieee.org/abstract/document/9153041
|
https://github.com/albblgb/Deep-Steganalysis
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-data-centric-framework-for-crystal
|
A data-centric framework for crystal structure identification in atomistic simulations using machine learning
|
2010.04815
|
https://arxiv.org/abs/2010.04815v5
|
https://arxiv.org/pdf/2010.04815v5.pdf
|
https://github.com/freitas-rodrigo/dc3
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-unified-framework-for-closed-form
|
A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian Processes
|
2012.06846
|
https://arxiv.org/abs/2012.06846v2
|
https://arxiv.org/pdf/2012.06846v2.pdf
|
https://github.com/benavoli/SkewGP
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/domain-specific-bias-filtering-for-single
|
Domain-Specific Bias Filtering for Single Labeled Domain Generalization
|
2110.00726
|
https://arxiv.org/abs/2110.00726v3
|
https://arxiv.org/pdf/2110.00726v3.pdf
|
https://github.com/junkunyuan/dsbf
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.