paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/benchmarking-chinese-text-recognition
|
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
|
2112.15093
|
https://arxiv.org/abs/2112.15093v2
|
https://arxiv.org/pdf/2112.15093v2.pdf
|
https://github.com/fudanvi/benchmarking-chinese-text-recognition
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fbnetgen-task-aware-gnn-based-fmri-analysis
|
FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
|
2205.12465
|
https://arxiv.org/abs/2205.12465v2
|
https://arxiv.org/pdf/2205.12465v2.pdf
|
https://github.com/wayfear/fbnetgen
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/affect2mm-affective-analysis-of-multimedia
|
Affect2MM: Affective Analysis of Multimedia Content Using Emotion Causality
|
2103.06541
|
https://arxiv.org/abs/2103.06541v1
|
https://arxiv.org/pdf/2103.06541v1.pdf
|
https://github.com/mikecheninoulu/Emotional-gesture-papers
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/survey-on-emotional-body-gesture-recognition
|
Survey on Emotional Body Gesture Recognition
|
1801.07481
|
http://arxiv.org/abs/1801.07481v1
|
http://arxiv.org/pdf/1801.07481v1.pdf
|
https://github.com/mikecheninoulu/Emotional-gesture-papers
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-prototype-oriented-framework-for
|
A Prototype-Oriented Framework for Unsupervised Domain Adaptation
|
2110.12024
|
https://arxiv.org/abs/2110.12024v1
|
https://arxiv.org/pdf/2110.12024v1.pdf
|
https://github.com/korawat-tanwisuth/proto_da
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/visually-dehallucinative-instruction-1
|
Visually Dehallucinative Instruction Generation: Know What You Don't Know
|
2402.09717
|
https://arxiv.org/abs/2402.09717v1
|
https://arxiv.org/pdf/2402.09717v1.pdf
|
https://github.com/ncsoft/idk
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/sub-instruction-aware-vision-and-language
|
Sub-Instruction Aware Vision-and-Language Navigation
|
2004.02707
|
https://arxiv.org/abs/2004.02707v2
|
https://arxiv.org/pdf/2004.02707v2.pdf
|
https://github.com/YicongHong/Fine-Grained-R2R
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/meta-learning-via-learned-loss
|
Meta-Learning via Learned Loss
|
1906.05374
|
https://arxiv.org/abs/1906.05374v4
|
https://arxiv.org/pdf/1906.05374v4.pdf
|
https://github.com/facebookresearch/higher
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/global-convergence-and-induced-kernels-of
|
Global Convergence and Generalization Bound of Gradient-Based Meta-Learning with Deep Neural Nets
|
2006.14606
|
https://arxiv.org/abs/2006.14606v2
|
https://arxiv.org/pdf/2006.14606v2.pdf
|
https://github.com/facebookresearch/higher
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/meta-learning-symmetries-by
|
Meta-Learning Symmetries by Reparameterization
|
2007.02933
|
https://arxiv.org/abs/2007.02933v3
|
https://arxiv.org/pdf/2007.02933v3.pdf
|
https://github.com/facebookresearch/higher
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fat-deepffm-field-attentive-deep-field-aware
|
FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine
|
1905.06336
|
https://arxiv.org/abs/1905.06336v1
|
https://arxiv.org/pdf/1905.06336v1.pdf
|
https://github.com/mindspore-ai/models/tree/master/research/recommend/Fat-DeepFFM
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/statistically-unbiased-prediction-enables
|
Statistically unbiased prediction enables accurate denoising of voltage imaging data
| null |
https://www.biorxiv.org/content/10.1101/2022.11.17.516709v1.abstract
|
https://www.biorxiv.org/content/10.1101/2022.11.17.516709v1.full.pdf
|
https://github.com/NICALab/SUPPORT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/pinto-faithful-language-reasoning-using
|
PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales
|
2211.01562
|
https://arxiv.org/abs/2211.01562v3
|
https://arxiv.org/pdf/2211.01562v3.pdf
|
https://github.com/wangpf3/pinto-faithful-language-reasoning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-selective-rationalization-with
|
Unsupervised Selective Rationalization with Noise Injection
|
2305.17534
|
https://arxiv.org/abs/2305.17534v1
|
https://arxiv.org/pdf/2305.17534v1.pdf
|
https://github.com/adamstorek/noise_injection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/you-only-look-once-unified-real-time-object
|
You Only Look Once: Unified, Real-Time Object Detection
|
1506.02640
|
http://arxiv.org/abs/1506.02640v5
|
http://arxiv.org/pdf/1506.02640v5.pdf
|
https://github.com/Kartik-Aggarwal/Real-Time-Traffic-Sign-Detection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/or-gym-a-reinforcement-learning-library-for
|
OR-Gym: A Reinforcement Learning Library for Operations Research Problems
|
2008.06319
|
https://arxiv.org/abs/2008.06319v2
|
https://arxiv.org/pdf/2008.06319v2.pdf
|
https://github.com/ashwin-M-D/DM-Gym
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/caching-in-networks-without-regret
|
LeadCache: Regret-Optimal Caching in Networks
|
2009.08228
|
https://arxiv.org/abs/2009.08228v4
|
https://arxiv.org/pdf/2009.08228v4.pdf
|
https://github.com/abhishekmitiitm/leadcache-neurips21
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/david8862/keras-YOLOv3-model-set
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/data-engineering-for-scaling-language-models
|
Data Engineering for Scaling Language Models to 128K Context
|
2402.10171
|
https://arxiv.org/abs/2402.10171v1
|
https://arxiv.org/pdf/2402.10171v1.pdf
|
https://github.com/franxyao/long-context-data-engineering
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/implicit-sparse-regularization-the-impact-of
|
Implicit Sparse Regularization: The Impact of Depth and Early Stopping
|
2108.05574
|
https://arxiv.org/abs/2108.05574v2
|
https://arxiv.org/pdf/2108.05574v2.pdf
|
https://github.com/jiangyuan2li/implicit-sparse-regularization
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/discourse-aware-unsupervised-summarization
|
Discourse-Aware Unsupervised Summarization for Long Scientific Documents
| null |
https://aclanthology.org/2021.eacl-main.93
|
https://aclanthology.org/2021.eacl-main.93.pdf
|
https://github.com/mirandrom/HipoRank
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/crowd-counting-on-images-with-scale-variation
|
Crowd Counting on Images with Scale Variation and Isolated Clusters
|
1909.03839
|
https://arxiv.org/abs/1909.03839v1
|
https://arxiv.org/pdf/1909.03839v1.pdf
|
https://github.com/HaoyueBaiZJU/SACANet-VisDrone-Crowd
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-agent-variational-occlusion-inference
|
Multi-Agent Variational Occlusion Inference Using People as Sensors
|
2109.02173
|
https://arxiv.org/abs/2109.02173v3
|
https://arxiv.org/pdf/2109.02173v3.pdf
|
https://github.com/sisl/MultiAgentVariationalOcclusionInference
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/sisl/MultiAgentVariationalOcclusionInference
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adam-a-method-for-stochastic-optimization
|
Adam: A Method for Stochastic Optimization
|
1412.6980
|
http://arxiv.org/abs/1412.6980v9
|
http://arxiv.org/pdf/1412.6980v9.pdf
|
https://github.com/sisl/MultiAgentVariationalOcclusionInference
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/leveraging-locality-in-abstractive-text
|
Leveraging Locality in Abstractive Text Summarization
|
2205.12476
|
https://arxiv.org/abs/2205.12476v2
|
https://arxiv.org/pdf/2205.12476v2.pdf
|
https://github.com/yixinl7/pagesum
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/reflection-from-a-multi-species-material-and
|
Reflection from a multi-species material and its transmitted effective wavenumber
|
1712.05427
|
http://arxiv.org/abs/1712.05427v3
|
http://arxiv.org/pdf/1712.05427v3.pdf
|
https://github.com/arturgower/EffectiveWaves.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/intermediate-layers-matter-in-momentum
|
Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning
|
2110.14805
|
https://arxiv.org/abs/2110.14805v1
|
https://arxiv.org/pdf/2110.14805v1.pdf
|
https://github.com/aakashrkaku/intermdiate_layer_matter_ssl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bag-of-tricks-and-a-strong-baseline-for-image
|
Bag of Tricks and A Strong baseline for Image Copy Detection
|
2111.08004
|
https://arxiv.org/abs/2111.08004v2
|
https://arxiv.org/pdf/2111.08004v2.pdf
|
https://github.com/wangwenhao0716/isc-track2-submission
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/domain-decomposition-for-entropy-regularized
|
Domain decomposition for entropy regularized optimal transport
|
2001.10986
|
https://arxiv.org/abs/2001.10986v2
|
https://arxiv.org/pdf/2001.10986v2.pdf
|
https://github.com/ismedina/DomDecOT.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/computational-performance-of-deep
|
Computational Performance of Deep Reinforcement Learning to find Nash Equilibria
|
2104.12895
|
https://arxiv.org/abs/2104.12895v1
|
https://arxiv.org/pdf/2104.12895v1.pdf
|
https://github.com/ckrk/bidding_learning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multimodal-knowledge-expansion
|
Multimodal Knowledge Expansion
|
2103.14431
|
https://arxiv.org/abs/2103.14431v3
|
https://arxiv.org/pdf/2103.14431v3.pdf
|
https://github.com/zihuixue/mke
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/accelerating-the-super-resolution
|
Accelerating the Super-Resolution Convolutional Neural Network
|
1608.00367
|
http://arxiv.org/abs/1608.00367v1
|
http://arxiv.org/pdf/1608.00367v1.pdf
|
https://github.com/MohammedAlkhrashi/TMA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-soccer-juggling-skills-with-layer
|
Learning Soccer Juggling Skills with Layer-wise Mixture-of-Experts
| null |
https://dl.acm.org/doi/10.1145/3528233.3530735
|
https://www.cs.ubc.ca/~van/papers/2022-SIGGRAPH-juggle/soccer_juggling.pdf
|
https://github.com/ZhaomingXie/soccer_juggle_release
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/time-series-forecasting-with-llms
|
Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities
|
2402.10835
|
https://arxiv.org/abs/2402.10835v5
|
https://arxiv.org/pdf/2402.10835v5.pdf
|
https://github.com/mingyuj666/time-series-forecasting-with-llms
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/proton-probing-schema-linking-information
|
Proton: Probing Schema Linking Information from Pre-trained Language Models for Text-to-SQL Parsing
|
2206.14017
|
https://arxiv.org/abs/2206.14017v2
|
https://arxiv.org/pdf/2206.14017v2.pdf
|
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/proton
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/person-transfer-gan-to-bridge-domain-gap-for
|
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
|
1711.08565
|
http://arxiv.org/abs/1711.08565v2
|
http://arxiv.org/pdf/1711.08565v2.pdf
|
https://github.com/ucas-vg/groupsampling
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-monte-carlo-tree-search-for-weighted
|
On Monte Carlo Tree Search for Weighted Vertex Coloring
|
2202.01665
|
https://arxiv.org/abs/2202.01665v2
|
https://arxiv.org/pdf/2202.01665v2.pdf
|
https://github.com/cyril-grelier/gc_wvcp_mcts
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-theory-of-continuous-generative-flow
|
A theory of continuous generative flow networks
|
2301.12594
|
https://arxiv.org/abs/2301.12594v2
|
https://arxiv.org/pdf/2301.12594v2.pdf
|
https://github.com/saleml/continuous-gfn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/nlatool-an-application-for-enhanced-deep-text
|
NLATool: an Application for Enhanced Deep Text Understanding
| null |
https://aclanthology.org/C18-2026
|
https://aclanthology.org/C18-2026.pdf
|
https://github.com/interactionlab/nlatool
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sub-word-information-in-pre-trained
|
Sub-word information in pre-trained biomedical word representations: evaluation and hyper-parameter optimization
| null |
https://aclanthology.org/W18-2307
|
https://aclanthology.org/W18-2307.pdf
|
https://github.com/dterg/bionlp-embed
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-polarization-reconstruction-with-pdavis
|
Deep Polarization Reconstruction With PDAVIS Events
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Mei_Deep_Polarization_Reconstruction_With_PDAVIS_Events_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Mei_Deep_Polarization_Reconstruction_With_PDAVIS_Events_CVPR_2023_paper.pdf
|
https://github.com/sensorsini/e2p
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-perturbation-based-out-of-sample-extension
|
A Perturbation-Based Kernel Approximation Framework
|
2009.02955
|
https://arxiv.org/abs/2009.02955v2
|
https://arxiv.org/pdf/2009.02955v2.pdf
|
https://github.com/roymitz/perturbation_out_of_sample_extension
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/unbiased-risk-estimation-in-the-normal-means
|
Unbiased Risk Estimation in the Normal Means Problem via Coupled Bootstrap Techniques
|
2111.09447
|
https://arxiv.org/abs/2111.09447v3
|
https://arxiv.org/pdf/2111.09447v3.pdf
|
https://github.com/nloliveira/coupled-bootstrap-risk-estimation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/intrinsic-dimensionality-estimation-within
|
Intrinsic Dimensionality Estimation within Tight Localities: A Theoretical and Experimental Analysis
|
2209.14475
|
https://arxiv.org/abs/2209.14475v1
|
https://arxiv.org/pdf/2209.14475v1.pdf
|
https://github.com/radacha/tle
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/real-time-classification-geolocation-and
|
Real-time Classification, Geolocation and Interactive Visualization of COVID-19 Information Shared on Social Media to Better Understand Global Developments
| null |
https://aclanthology.org/2020.nlpcovid19-2.37
|
https://aclanthology.org/2020.nlpcovid19-2.37.pdf
|
https://github.com/mirandrom/crisistweetmap
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dialogstitch-synthetic-deeper-and-multi
|
DialogStitch: Synthetic Deeper and Multi-Context Task-Oriented Dialogs
| null |
https://aclanthology.org/2021.sigdial-1.3
|
https://aclanthology.org/2021.sigdial-1.3.pdf
|
https://github.com/facebookresearch/dialogstitch
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/effective-approaches-to-attention-based
|
Effective Approaches to Attention-based Neural Machine Translation
|
1508.04025
|
http://arxiv.org/abs/1508.04025v5
|
http://arxiv.org/pdf/1508.04025v5.pdf
|
https://github.com/bplank/teaching-dl4nlp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-contextualized-word-representations
|
Deep contextualized word representations
|
1802.05365
|
http://arxiv.org/abs/1802.05365v2
|
http://arxiv.org/pdf/1802.05365v2.pdf
|
https://github.com/bplank/teaching-dl4nlp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of
|
SimCSE: Simple Contrastive Learning of Sentence Embeddings
|
2104.08821
|
https://arxiv.org/abs/2104.08821v4
|
https://arxiv.org/pdf/2104.08821v4.pdf
|
https://github.com/shuxinyin/SimCSE-Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/panoptic-segformer
|
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
|
2109.03814
|
https://arxiv.org/abs/2109.03814v4
|
https://arxiv.org/pdf/2109.03814v4.pdf
|
https://github.com/zhiqi-li/Panoptic-SegFormer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/memory-efficient-meta-learning-with-large
|
Memory Efficient Meta-Learning with Large Images
|
2107.01105
|
https://arxiv.org/abs/2107.01105v2
|
https://arxiv.org/pdf/2107.01105v2.pdf
|
https://github.com/cambridge-mlg/LITE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/reduced-operator-inference-for-nonlinear
|
Reduced operator inference for nonlinear partial differential equations
|
2102.00083
|
https://arxiv.org/abs/2102.00083v2
|
https://arxiv.org/pdf/2102.00083v2.pdf
|
https://github.com/elizqian/operator-inference
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-to-compose-with-professional
|
Learning to Compose with Professional Photographs on the Web
|
1702.00503
|
http://arxiv.org/abs/1702.00503v2
|
http://arxiv.org/pdf/1702.00503v2.pdf
|
https://github.com/yiling-chen/view-finding-network
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/lift-learn-physics-informed-machine-learning
|
Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems
|
1912.08177
|
https://arxiv.org/abs/1912.08177v5
|
https://arxiv.org/pdf/1912.08177v5.pdf
|
https://github.com/elizqian/operator-inference
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ucc-uncertainty-guided-cross-head-co-training
|
UCC: Uncertainty guided Cross-head Co-training for Semi-Supervised Semantic Segmentation
|
2205.10334
|
https://arxiv.org/abs/2205.10334v2
|
https://arxiv.org/pdf/2205.10334v2.pdf
|
https://github.com/voldemortX/DST-CBC
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-gradient-based-bilevel-optimization
|
Towards Gradient-based Bilevel Optimization with Non-convex Followers and Beyond
|
2110.00455
|
https://arxiv.org/abs/2110.00455v2
|
https://arxiv.org/pdf/2110.00455v2.pdf
|
https://github.com/vis-opt-group/iaptt-gm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adam-a-method-for-stochastic-optimization
|
Adam: A Method for Stochastic Optimization
|
1412.6980
|
http://arxiv.org/abs/1412.6980v9
|
http://arxiv.org/pdf/1412.6980v9.pdf
|
https://github.com/mirzaevinom/data_science_bowl_2018
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/mirzaevinom/data_science_bowl_2018
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-prototype-representations-across-few
|
Learning Prototype Representations Across Few-Shot Tasks for Event Detection
| null |
https://aclanthology.org/2021.emnlp-main.427
|
https://aclanthology.org/2021.emnlp-main.427.pdf
|
https://github.com/laiviet/fsl-proact
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/generative-planning-for-temporally-1
|
Generative Planning for Temporally Coordinated Exploration in Reinforcement Learning
|
2201.09765
|
https://arxiv.org/abs/2201.09765v2
|
https://arxiv.org/pdf/2201.09765v2.pdf
|
https://github.com/Haichao-Zhang/generative-planning
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/metric-learning-cross-entropy-vs-pairwise
|
A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses
|
2003.08983
|
https://arxiv.org/abs/2003.08983v3
|
https://arxiv.org/pdf/2003.08983v3.pdf
|
https://github.com/jeromerony/dml_cross_entropy
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/fully-convolutional-siamese-neural-networks
|
Fully convolutional Siamese neural networks for buildings damage assessment from satellite images
|
2111.00508
|
https://arxiv.org/abs/2111.00508v1
|
https://arxiv.org/pdf/2111.00508v1.pdf
|
https://github.com/bloodaxe/xview2-solution
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/progressive-growing-of-gans-for-improved
|
Progressive Growing of GANs for Improved Quality, Stability, and Variation
|
1710.10196
|
http://arxiv.org/abs/1710.10196v3
|
http://arxiv.org/pdf/1710.10196v3.pdf
|
https://github.com/valentingol/GANJax
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/cross-domain-cross-architecture-black-box
|
Cross-domain Cross-architecture Black-box Attacks on Fine-tuned Models with Transferred Evolutionary Strategies
|
2208.13182
|
https://arxiv.org/abs/2208.13182v1
|
https://arxiv.org/pdf/2208.13182v1.pdf
|
https://github.com/hkust-knowcomp/tes
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/visual-reasoning-strategies-for-effect-size
|
Visual Reasoning Strategies for Effect Size Judgments and Decisions
|
2007.14516
|
https://arxiv.org/abs/2007.14516v3
|
https://arxiv.org/pdf/2007.14516v3.pdf
|
https://github.com/fredhohman/awesome-mathematical-notation-design
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sciencemeter-tracking-scientific-knowledge
|
ScienceMeter: Tracking Scientific Knowledge Updates in Language Models
|
2505.24302
|
https://arxiv.org/abs/2505.24302v1
|
https://arxiv.org/pdf/2505.24302v1.pdf
|
https://github.com/yikee/sciencemeter
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-3d-registration-with-accurate
|
Fast 3D registration with accurate optimisation and little learning for Learn2Reg 2021
|
2112.03053
|
https://arxiv.org/abs/2112.03053v1
|
https://arxiv.org/pdf/2112.03053v1.pdf
|
https://github.com/multimodallearning/convexadam
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/melgan-generative-adversarial-networks-for
|
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
|
1910.06711
|
https://arxiv.org/abs/1910.06711v3
|
https://arxiv.org/pdf/1910.06711v3.pdf
|
https://github.com/jaywalnut310/melgan-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mcmi-multi-cycle-image-translation-with
|
MCMI: Multi-Cycle Image Translation with Mutual Information Constraints
|
2007.02919
|
https://arxiv.org/abs/2007.02919v1
|
https://arxiv.org/pdf/2007.02919v1.pdf
|
https://github.com/yuzhenmao/MI_P2V
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pix2vox-multi-scale-context-aware-3d-object
|
Pix2Vox++: Multi-scale Context-aware 3D Object Reconstruction from Single and Multiple Images
|
2006.12250
|
https://arxiv.org/abs/2006.12250v2
|
https://arxiv.org/pdf/2006.12250v2.pdf
|
https://github.com/yuzhenmao/MI_P2V
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-unified-view-on-graph-neural-networks-as-1
|
A Unified View on Graph Neural Networks as Graph Signal Denoising
|
2010.01777
|
https://arxiv.org/abs/2010.01777v2
|
https://arxiv.org/pdf/2010.01777v2.pdf
|
https://github.com/alge24/ADA-UGNN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/systematic-analysis-of-programming-languages
|
Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks
|
2111.12528
|
https://arxiv.org/abs/2111.12528v1
|
https://arxiv.org/pdf/2111.12528v1.pdf
|
https://github.com/misc0110/pteditor
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/merger-rate-density-of-binary-black-holes-1
|
Merger rate density of binary black holes through isolated Population I, II, III and extremely metal-poor binary star evolution
|
2110.10846
|
https://arxiv.org/abs/2110.10846v4
|
https://arxiv.org/pdf/2110.10846v4.pdf
|
https://github.com/atrtnkw/bseemp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/physics-based-model-to-predict-the-acoustic
|
Physics-based model to predict the acoustic detection distance of terrestrial autonomous recording units over the diel cycle and across seasons: insights from an Alpine and a Neotropical forest
|
2211.16077
|
https://arxiv.org/abs/2211.16077v1
|
https://arxiv.org/pdf/2211.16077v1.pdf
|
https://github.com/shaupert/haupert_mee_2022
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multidimensional-representations-in-late-life
|
Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
|
2110.11347
|
https://arxiv.org/abs/2110.11347v2
|
https://arxiv.org/pdf/2110.11347v2.pdf
|
https://github.com/anbai106/mlni
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/reproducible-evaluation-of-diffusion-mri
|
Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimers disease
|
1812.11183
|
https://arxiv.org/abs/1812.11183v4
|
https://arxiv.org/pdf/1812.11183v4.pdf
|
https://github.com/anbai106/mlni
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/are-transformers-more-robust-than-cnns
|
Are Transformers More Robust Than CNNs?
|
2111.05464
|
https://arxiv.org/abs/2111.05464v1
|
https://arxiv.org/pdf/2111.05464v1.pdf
|
https://github.com/ytongbai/ViTs-vs-CNNs
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/controlled-text-generation-as-continuous
|
Controlled Text Generation as Continuous Optimization with Multiple Constraints
|
2108.01850
|
https://arxiv.org/abs/2108.01850v1
|
https://arxiv.org/pdf/2108.01850v1.pdf
|
https://github.com/sachin19/mucoco
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/texttt-express-extensible-high-level
|
$\texttt{express}$: extensible, high-level workflows for swifter $\textit{ab initio}$ materials modeling
|
2109.11724
|
https://arxiv.org/abs/2109.11724v1
|
https://arxiv.org/pdf/2109.11724v1.pdf
|
https://github.com/MineralsCloud/Express.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/let-each-quantum-bit-choose-its-basis-gates
|
Let Each Quantum Bit Choose Its Basis Gates
|
2208.13380
|
https://arxiv.org/abs/2208.13380v2
|
https://arxiv.org/pdf/2208.13380v2.pdf
|
https://github.com/sophlin/nonstandard_2qbasis_gates
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/issafe-improving-semantic-segmentation-in
|
ISSAFE: Improving Semantic Segmentation in Accidents by Fusing Event-based Data
|
2008.08974
|
https://arxiv.org/abs/2008.08974v2
|
https://arxiv.org/pdf/2008.08974v2.pdf
|
https://github.com/jamycheung/ISSAFE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/exploring-event-driven-dynamic-context-for
|
Exploring Event-driven Dynamic Context for Accident Scene Segmentation
|
2112.05006
|
https://arxiv.org/abs/2112.05006v1
|
https://arxiv.org/pdf/2112.05006v1.pdf
|
https://github.com/jamycheung/ISSAFE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/antipodal-robotic-grasping-using-generative
|
Antipodal Robotic Grasping using Generative Residual Convolutional Neural Network
|
1909.04810
|
https://arxiv.org/abs/1909.04810v4
|
https://arxiv.org/pdf/1909.04810v4.pdf
|
https://github.com/SteveHao74/shahao_GR-ConvNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/physics-guided-deep-learning-for-data
|
Utilising physics-guided deep learning to overcome data scarcity
|
2211.15664
|
https://arxiv.org/abs/2211.15664v3
|
https://arxiv.org/pdf/2211.15664v3.pdf
|
https://github.com/jinshuaibai/pgdl_review
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/yake-keyword-extraction-from-single-documents
|
YAKE! Keyword extraction from single documents using multiple local features
| null |
https://repositorio.inesctec.pt/server/api/core/bitstreams/ef121a01-a0a6-4be8-945d-3324a58fc944/content
|
https://repositorio.inesctec.pt/server/api/core/bitstreams/ef121a01-a0a6-4be8-945d-3324a58fc944/content
|
https://github.com/LIAAD/yake
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/denoising-of-3d-mr-images-using-a-voxel-wise
|
Denoising of 3D MR images using a voxel-wise hybrid residual MLP-CNN model to improve small lesion diagnostic confidence
|
2209.13818
|
https://arxiv.org/abs/2209.13818v1
|
https://arxiv.org/pdf/2209.13818v1.pdf
|
https://github.com/laowangbobo/residual_mlp_cnn_mixer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/detect-consolidate-delineate-scalable-mapping
|
Detect, consolidate, delineate: scalable mapping of field boundaries using satellite images
| null |
https://www.mdpi.com/2072-4292/13/11/2197
|
https://www.mdpi.com/2072-4292/13/11/2197/pdf
|
https://github.com/waldnerf/decode
| false
| true
| false
|
mxnet
|
https://paperswithcode.com/paper/size-limits-sensitivity-in-all-kinetic
|
Size limits sensitivity in all kinetic schemes
|
2112.07777
|
https://arxiv.org/abs/2112.07777v1
|
https://arxiv.org/pdf/2112.07777v1.pdf
|
https://github.com/jaowen/nested-hysteresis
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/generalization-bounds-for-meta-learning-an
|
Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis
|
2109.14595
|
https://arxiv.org/abs/2109.14595v2
|
https://arxiv.org/pdf/2109.14595v2.pdf
|
https://github.com/livreq/meta-sgld
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/optab-public-code-for-generating-gas-opacity
|
Optab: Public code for generating gas opacity tables for radiation hydrodynamics simulations
|
2112.05689
|
https://arxiv.org/abs/2112.05689v1
|
https://arxiv.org/pdf/2112.05689v1.pdf
|
https://github.com/nombac/optab
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/automatically-learning-compact-quality-aware
|
Automatically Learning Compact Quality-aware Surrogates for Optimization Problems
|
2006.10815
|
https://arxiv.org/abs/2006.10815v2
|
https://arxiv.org/pdf/2006.10815v2.pdf
|
https://github.com/PredOptwithSoftConstraint/PredOptwithSoftConstraint
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/an-imaging-search-for-post-main-sequence
|
An Imaging Search for Post-Main-Sequence Planets of Sirius B
|
2112.05234
|
https://arxiv.org/abs/2112.05234v1
|
https://arxiv.org/pdf/2112.05234v1.pdf
|
https://github.com/mileslucas/sirius-b
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/online-mixed-integer-optimization-in
|
Online Mixed-Integer Optimization in Milliseconds
|
1907.02206
|
https://arxiv.org/abs/1907.02206v4
|
https://arxiv.org/pdf/1907.02206v4.pdf
|
https://github.com/bstellato/mlopt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-mixed-integer-convex-optimization
|
Learning Mixed-Integer Convex Optimization Strategies for Robot Planning and Control
|
2004.03736
|
https://arxiv.org/abs/2004.03736v2
|
https://arxiv.org/pdf/2004.03736v2.pdf
|
https://github.com/bstellato/mlopt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-twin-decoder-structure-for-incompressible
|
A twin-decoder structure for incompressible laminar flow reconstruction with uncertainty estimation around 2D obstacles
|
2104.03619
|
https://arxiv.org/abs/2104.03619v2
|
https://arxiv.org/pdf/2104.03619v2.pdf
|
https://github.com/jviquerat/twin_autoencoder
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-deep-knowledge-distillation-framework-for
|
A Deep Knowledge Distillation framework for EEG assisted enhancement of single-lead ECG based sleep staging
|
2112.07252
|
https://arxiv.org/abs/2112.07252v2
|
https://arxiv.org/pdf/2112.07252v2.pdf
|
https://github.com/acrophase/sleep_staging_kd
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/efficient-convnet-for-real-time-semantic
|
Efficient ConvNet for Real-time Semantic Segmentation
| null |
https://ieeexplore.ieee.org/document/7995966
|
https://ieeexplore.ieee.org/document/7995966
|
https://github.com/yangyucheng000/erfnet
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/u-time-a-fully-convolutional-network-for-time
|
U-Time: A Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging
|
1910.11162
|
https://arxiv.org/abs/1910.11162v1
|
https://arxiv.org/pdf/1910.11162v1.pdf
|
https://github.com/acrophase/sleep_staging_kd
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/product1m-towards-weakly-supervised-instance
|
Product1M: Towards Weakly Supervised Instance-Level Product Retrieval via Cross-modal Pretraining
|
2107.14572
|
https://arxiv.org/abs/2107.14572v2
|
https://arxiv.org/pdf/2107.14572v2.pdf
|
https://github.com/zhanxlin/product1m
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.