paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/transformer-interpretability-beyond-attention
|
Transformer Interpretability Beyond Attention Visualization
|
2012.09838
|
https://arxiv.org/abs/2012.09838v2
|
https://arxiv.org/pdf/2012.09838v2.pdf
|
https://github.com/TiagoFilipeSousaGoncalves/survey-attention-medical-imaging
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/optimal-vaccination-at-high-reproductive
|
Optimal vaccination at high reproductive numbers: sharp transitions and counter-intuitive allocations
|
2202.03909
|
https://arxiv.org/abs/2202.03909v1
|
https://arxiv.org/pdf/2202.03909v1.pdf
|
https://github.com/ngavish/highr0
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/spineparsenet-spine-parsing-for-volumetric-mr
|
SpineParseNet: Spine Parsing for Volumetric MR Image by a Two-Stage Segmentation Framework with Semantic Image Representation
| null |
https://ieeexplore.ieee.org/document/9201093
|
https://ieeexplore.ieee.org/document/9201093
|
https://github.com/pangshumao/SpineParseNet
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/exploiting-anti-monotonicity-of-multi-label
|
Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules
|
1812.06833
|
http://arxiv.org/abs/1812.06833v1
|
http://arxiv.org/pdf/1812.06833v1.pdf
|
https://github.com/keelm/SeCo-MLC
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/efficient-discovery-of-expressive-multi-label
|
Efficient Discovery of Expressive Multi-label Rules using Relaxed Pruning
|
1908.06874
|
https://arxiv.org/abs/1908.06874v1
|
https://arxiv.org/pdf/1908.06874v1.pdf
|
https://github.com/keelm/SeCo-MLC
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/towards-demystifying-representation-learning-1
|
Towards Demystifying Representation Learning with Non-contrastive Self-supervision
|
2110.04947
|
https://arxiv.org/abs/2110.04947v2
|
https://arxiv.org/pdf/2110.04947v2.pdf
|
https://github.com/miszkur/SelfSupervisedLearning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/bootstrap-your-own-latent-a-new-approach-to
|
Bootstrap your own latent: A new approach to self-supervised Learning
|
2006.07733
|
https://arxiv.org/abs/2006.07733v3
|
https://arxiv.org/pdf/2006.07733v3.pdf
|
https://github.com/miszkur/SelfSupervisedLearning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/grad-cam-visual-explanations-from-deep
|
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
|
1610.02391
|
https://arxiv.org/abs/1610.02391v4
|
https://arxiv.org/pdf/1610.02391v4.pdf
|
https://github.com/karandesaiii/CheXNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/chexnet-radiologist-level-pneumonia-detection
|
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
|
1711.05225
|
http://arxiv.org/abs/1711.05225v3
|
http://arxiv.org/pdf/1711.05225v3.pdf
|
https://github.com/karandesaiii/CheXNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-diagnose-from-scratch-by
|
Learning to diagnose from scratch by exploiting dependencies among labels
|
1710.10501
|
http://arxiv.org/abs/1710.10501v2
|
http://arxiv.org/pdf/1710.10501v2.pdf
|
https://github.com/karandesaiii/CheXNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/chestx-ray8-hospital-scale-chest-x-ray
|
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
|
1705.02315
|
http://arxiv.org/abs/1705.02315v5
|
http://arxiv.org/pdf/1705.02315v5.pdf
|
https://github.com/karandesaiii/CheXNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-r2d2-prior-for-generalized-linear-mixed
|
The R2D2 Prior for Generalized Linear Mixed Models
|
2111.10718
|
https://arxiv.org/abs/2111.10718v3
|
https://arxiv.org/pdf/2111.10718v3.pdf
|
https://github.com/eyanchenko/r2d2glmm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/how-to-fine-tune-bert-for-text-classification
|
How to Fine-Tune BERT for Text Classification?
|
1905.05583
|
https://arxiv.org/abs/1905.05583v3
|
https://arxiv.org/pdf/1905.05583v3.pdf
|
https://github.com/Derposoft/ai-educator
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-network-structure-of-cultural-distances
|
Cultures as networks of cultural traits: A unifying framework for measuring culture and cultural distances
|
2007.02359
|
https://arxiv.org/abs/2007.02359v5
|
https://arxiv.org/pdf/2007.02359v5.pdf
|
https://github.com/rrondinelli/cultural-networks
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deformable-detr-deformable-transformers-for-1
|
Deformable DETR: Deformable Transformers for End-to-End Object Detection
|
2010.04159
|
https://arxiv.org/abs/2010.04159v4
|
https://arxiv.org/pdf/2010.04159v4.pdf
|
https://github.com/Li-ai-cell/Interpretation_DETR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/end-to-end-object-detection-with-transformers
|
End-to-End Object Detection with Transformers
|
2005.12872
|
https://arxiv.org/abs/2005.12872v3
|
https://arxiv.org/pdf/2005.12872v3.pdf
|
https://github.com/Li-ai-cell/Interpretation_DETR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/maslow-s-hammer-for-catastrophic-forgetting
|
Maslow's Hammer for Catastrophic Forgetting: Node Re-Use vs Node Activation
|
2205.09029
|
https://arxiv.org/abs/2205.09029v1
|
https://arxiv.org/pdf/2205.09029v1.pdf
|
https://github.com/seblee97/student_teacher_catastrophic
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/auto-encoding-score-distribution-regression
|
Auto-Encoding Score Distribution Regression for Action Quality Assessment
|
2111.11029
|
https://arxiv.org/abs/2111.11029v2
|
https://arxiv.org/pdf/2111.11029v2.pdf
|
https://github.com/InfoX-SEU/DAE-AQA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-quantized-sparse-matrix-operations
|
Efficient Quantized Sparse Matrix Operations on Tensor Cores
|
2209.06979
|
https://arxiv.org/abs/2209.06979v4
|
https://arxiv.org/pdf/2209.06979v4.pdf
|
https://github.com/shigangli/magicube
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-better-stability-and-adaptability
|
Towards Better Stability and Adaptability: Improve Online Self-Training for Model Adaptation in Semantic Segmentation
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Zhao_Towards_Better_Stability_and_Adaptability_Improve_Online_Self-Training_for_Model_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Zhao_Towards_Better_Stability_and_Adaptability_Improve_Online_Self-Training_for_Model_CVPR_2023_paper.pdf
|
https://github.com/dzhaoxd/dt-st
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/random-quantum-neural-networks-rqnn-for-noisy
|
Random Quantum Neural Networks (RQNN) for Noisy Image Recognition
|
2203.01764
|
https://arxiv.org/abs/2203.01764v1
|
https://arxiv.org/pdf/2203.01764v1.pdf
|
https://github.com/darthsimpus/RQNN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/selecting-the-best-optimizing-system
|
Selecting the Best Optimizing System
|
2201.03065
|
https://arxiv.org/abs/2201.03065v1
|
https://arxiv.org/pdf/2201.03065v1.pdf
|
https://github.com/nian-si/selectoptsys
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/exploiting-adapters-for-cross-lingual-low
|
Exploiting Adapters for Cross-lingual Low-resource Speech Recognition
|
2105.11905
|
https://arxiv.org/abs/2105.11905v2
|
https://arxiv.org/pdf/2105.11905v2.pdf
|
https://github.com/jindongwang/transferlearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/rate-coding-or-direct-coding-which-one-is
|
Rate Coding or Direct Coding: Which One is Better for Accurate, Robust, and Energy-efficient Spiking Neural Networks?
|
2202.03133
|
https://arxiv.org/abs/2202.03133v2
|
https://arxiv.org/pdf/2202.03133v2.pdf
|
https://github.com/intelligent-computing-lab-yale/rate-vs-direct
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/frozen-in-time-a-joint-video-and-image
|
Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval
|
2104.00650
|
https://arxiv.org/abs/2104.00650v2
|
https://arxiv.org/pdf/2104.00650v2.pdf
|
https://github.com/princetonvisualai/mqvr
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/token-labeling-training-a-85-5-top-1-accuracy
|
All Tokens Matter: Token Labeling for Training Better Vision Transformers
|
2104.10858
|
https://arxiv.org/abs/2104.10858v3
|
https://arxiv.org/pdf/2104.10858v3.pdf
|
https://github.com/sail-sg/dualformer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/grad-cam-visual-explanations-from-deep
|
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
|
1610.02391
|
https://arxiv.org/abs/1610.02391v4
|
https://arxiv.org/pdf/1610.02391v4.pdf
|
https://github.com/sail-sg/dualformer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-scale-one-class-recurrent-neural
|
Multi-Scale One-Class Recurrent Neural Networks for Discrete Event Sequence Anomaly Detection
|
2008.13361
|
https://arxiv.org/abs/2008.13361v1
|
https://arxiv.org/pdf/2008.13361v1.pdf
|
https://github.com/KnowledgeDiscovery/OC4Seq
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/narwhal-and-tusk-a-dag-based-mempool-and
|
Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus
|
2105.11827
|
https://arxiv.org/abs/2105.11827v4
|
https://arxiv.org/pdf/2105.11827v4.pdf
|
https://github.com/asonnino/narwhal
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/multi-uav-path-planning-for-wireless-data
|
Multi-UAV Path Planning for Wireless Data Harvesting with Deep Reinforcement Learning
|
2010.12461
|
https://arxiv.org/abs/2010.12461v3
|
https://arxiv.org/pdf/2010.12461v3.pdf
|
https://github.com/hbayerlein/uav_data_harvesting
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/multivariate-functional-group-sparse
|
Multivariate functional group sparse regression: functional predictor selection
|
2107.02146
|
https://arxiv.org/abs/2107.02146v2
|
https://arxiv.org/pdf/2107.02146v2.pdf
|
https://github.com/Ali-Mahzarnia/MFSGrp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/graph-convolutional-modules-for-traffic
|
DDP-GCN: Multi-Graph Convolutional Network for Spatiotemporal Traffic Forecasting
|
1905.12256
|
https://arxiv.org/abs/1905.12256v3
|
https://arxiv.org/pdf/1905.12256v3.pdf
|
https://github.com/snu-adsl/DDP-GCN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/inferring-dark-matter-substructure-with
|
Inferring dark matter substructure with astrometric lensing beyond the power spectrum
|
2110.01620
|
https://arxiv.org/abs/2110.01620v2
|
https://arxiv.org/pdf/2110.01620v2.pdf
|
https://github.com/smsharma/neural-global-astrometry
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/3d-shape-reconstruction-from-free-hand
|
3D Shape Reconstruction from Free-Hand Sketches
|
2006.09694
|
https://arxiv.org/abs/2006.09694v2
|
https://arxiv.org/pdf/2006.09694v2.pdf
|
https://github.com/samaonline/3D-Shape-Reconstruction-from-Free-Hand-Sketches
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/learning-selection-masks-for-deep-neural
|
Input Selection for Bandwidth-Limited Neural Network Inference
|
1906.04673
|
https://arxiv.org/abs/1906.04673v2
|
https://arxiv.org/pdf/1906.04673v2.pdf
|
https://github.com/stefoe/selection-masks
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/transmil-transformer-based-correlated
|
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification
|
2106.00908
|
https://arxiv.org/abs/2106.00908v2
|
https://arxiv.org/pdf/2106.00908v2.pdf
|
https://github.com/Ycblue/TransMIL
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/boosting-multiple-sclerosis-lesion
|
Boosting multiple sclerosis lesion segmentation through attention mechanism
|
2304.10790
|
https://arxiv.org/abs/2304.10790v1
|
https://arxiv.org/pdf/2304.10790v1.pdf
|
https://github.com/ictlab-unict/attention-cnn-MS-segmentation
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/latent-autoregressive-source-separation
|
Latent Autoregressive Source Separation
|
2301.08562
|
https://arxiv.org/abs/2301.08562v1
|
https://arxiv.org/pdf/2301.08562v1.pdf
|
https://github.com/gladia-research-group/latent-autoregressive-source-separation
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/on-approximate-data-reduction-for-the-rural
|
On approximate data reduction for the Rural Postman Problem: Theory and experiments
|
1812.10131
|
http://arxiv.org/abs/1812.10131v3
|
http://arxiv.org/pdf/1812.10131v3.pdf
|
https://gitlab.com/rvb/rpp-psaks
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hvs-inspired-signal-degradation-network-for
|
HVS-Inspired Signal Degradation Network for Just Noticeable Difference Estimation
|
2208.07583
|
https://arxiv.org/abs/2208.07583v1
|
https://arxiv.org/pdf/2208.07583v1.pdf
|
https://github.com/jianjin008/hvs-sd-jnd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improving-unsupervised-defect-segmentation-by
|
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
|
1807.02011
|
http://arxiv.org/abs/1807.02011v3
|
http://arxiv.org/pdf/1807.02011v3.pdf
|
https://github.com/meitalB/NN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/semantic-communication-an-information
|
Semantic Information Recovery in Wireless Networks
|
2204.13366
|
https://arxiv.org/abs/2204.13366v4
|
https://arxiv.org/pdf/2204.13366v4.pdf
|
https://github.com/ant-uni-bremen/sinfony
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/qagan-adversarial-approach-to-learning-domain
|
QAGAN: Adversarial Approach To Learning Domain Invariant Language Features
|
2206.12388
|
https://arxiv.org/abs/2206.12388v1
|
https://arxiv.org/pdf/2206.12388v1.pdf
|
https://github.com/towardsautonomy/qagan
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adarnn-adaptive-learning-and-forecasting-of
|
AdaRNN: Adaptive Learning and Forecasting of Time Series
|
2108.04443
|
https://arxiv.org/abs/2108.04443v2
|
https://arxiv.org/pdf/2108.04443v2.pdf
|
https://github.com/jindongwang/transferlearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/kan-kolmogorov-arnold-networks
|
KAN: Kolmogorov-Arnold Networks
|
2404.19756
|
https://arxiv.org/abs/2404.19756v5
|
https://arxiv.org/pdf/2404.19756v5.pdf
|
https://github.com/Ipsedo/KolmogorovArnoldNetworks
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/searching-for-activation-functions
|
Searching for Activation Functions
|
1710.05941
|
http://arxiv.org/abs/1710.05941v2
|
http://arxiv.org/pdf/1710.05941v2.pdf
|
https://github.com/ShubAn1901/License-Plate-Recognition
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/temporal-robustness-of-stochastic-signals
|
Temporal Robustness of Stochastic Signals
|
2202.02583
|
https://arxiv.org/abs/2202.02583v2
|
https://arxiv.org/pdf/2202.02583v2.pdf
|
https://github.com/temporalrobrisk/temporal-robustness-risk
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/hypergraph-neural-networks-for-hypergraph
|
Hypergraph Neural Networks for Hypergraph Matching
| null |
http://openaccess.thecvf.com//content/ICCV2021/html/Liao_Hypergraph_Neural_Networks_for_Hypergraph_Matching_ICCV_2021_paper.html
|
http://openaccess.thecvf.com//content/ICCV2021/papers/Liao_Hypergraph_Neural_Networks_for_Hypergraph_Matching_ICCV_2021_paper.pdf
|
https://github.com/xwliao/hnn-hm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/libact-pool-based-active-learning-in-python
|
libact: Pool-based Active Learning in Python
|
1710.00379
|
http://arxiv.org/abs/1710.00379v1
|
http://arxiv.org/pdf/1710.00379v1.pdf
|
https://github.com/melkherj/puddle
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/realistic-evaluation-of-deep-semi-supervised
|
Realistic Evaluation of Deep Semi-Supervised Learning Algorithms
|
1804.09170
|
https://arxiv.org/abs/1804.09170v4
|
https://arxiv.org/pdf/1804.09170v4.pdf
|
https://github.com/melkherj/puddle
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-predictive-coding-networks-for-video
|
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
|
1605.08104
|
http://arxiv.org/abs/1605.08104v5
|
http://arxiv.org/pdf/1605.08104v5.pdf
|
https://github.com/nikolasmcneal/music-prediction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/curriculum-learning-with-infant-egocentric
|
Curriculum Learning With Infant Egocentric Videos
| null |
https://openreview.net/forum?id=zkfyOkBVpz
|
https://openreview.net/pdf?id=zkfyOkBVpz
|
https://github.com/ssheybani/baby-vision-curriculum
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/channel-aware-contrastive-conditional
|
Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting
|
2410.02168
|
https://arxiv.org/abs/2410.02168v1
|
https://arxiv.org/pdf/2410.02168v1.pdf
|
https://github.com/LSY-Cython/CCDM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-dual-input-aware-factorization-machine-for
|
A Dual Input-aware Factorization Machine for CTR Prediction
| null |
https://www.ijcai.org/proceedings/2020/434
|
https://www.ijcai.org/proceedings/2020/0434.pdf
|
https://github.com/Andy1314Chen/DIFM-Paddle
| false
| false
| false
|
paddle
|
https://paperswithcode.com/paper/xci-sketch-extraction-of-color-information
|
XCI-Sketch: Extraction of Color Information from Images for Generation of Colored Outlines and Sketches
|
2108.11554
|
https://arxiv.org/abs/2108.11554v2
|
https://arxiv.org/pdf/2108.11554v2.pdf
|
https://github.com/Sampai28/XCI-Sketch
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/constrained-policy-optimization
|
Constrained Policy Optimization
|
1705.10528
|
http://arxiv.org/abs/1705.10528v1
|
http://arxiv.org/pdf/1705.10528v1.pdf
|
https://github.com/Bigpig4396/PyTorch-Constrained-Policy-Optimization-CPO
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/autolabel-clip-based-framework-for-open-set
|
AutoLabel: CLIP-based framework for Open-set Video Domain Adaptation
|
2304.01110
|
https://arxiv.org/abs/2304.01110v2
|
https://arxiv.org/pdf/2304.01110v2.pdf
|
https://github.com/gzaraunitn/autolabel
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/respecting-time-series-properties-makes-deep
|
Respecting Time Series Properties Makes Deep Time Series Forecasting Perfect
|
2207.10941
|
https://arxiv.org/abs/2207.10941v1
|
https://arxiv.org/pdf/2207.10941v1.pdf
|
https://github.com/origamisl/rtnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/algorithms-and-radiation-dynamics-for-the
|
Algorithms and radiation dynamics for the vicinity of black holes I. Methods and codes
|
2212.01532
|
https://arxiv.org/abs/2212.01532v1
|
https://arxiv.org/pdf/2212.01532v1.pdf
|
https://gitlab.com/leelamichaels/Tranquillity
| false
| true
| false
|
none
|
https://paperswithcode.com/paper/leaping-through-tree-space-continuous
|
Leaping through tree space: continuous phylogenetic inference for rooted and unrooted trees
|
2306.05739
|
https://arxiv.org/abs/2306.05739v4
|
https://arxiv.org/pdf/2306.05739v4.pdf
|
https://github.com/neclow/gradme
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/biomimetic-tactile-receptors-for-3d-printed
|
Artificial SA-I and RA-I Afferents for Tactile Sensing of Ridges and Gratings
|
2107.02084
|
https://arxiv.org/abs/2107.02084v3
|
https://arxiv.org/pdf/2107.02084v3.pdf
|
https://github.com/nlepora/afferents-tactile-gratings-jrsi2022
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/exploring-the-state-of-the-art-language
|
Transformers on Multilingual Clause-Level Morphology
|
2211.01736
|
https://arxiv.org/abs/2211.01736v2
|
https://arxiv.org/pdf/2211.01736v2.pdf
|
https://github.com/emrecanacikgoz/mrl2022
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/lovecon-text-driven-training-free-long-video
|
LOVECon: Text-driven Training-Free Long Video Editing with ControlNet
|
2310.09711
|
https://arxiv.org/abs/2310.09711v3
|
https://arxiv.org/pdf/2310.09711v3.pdf
|
https://github.com/zhijie-group/lovecon
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/simulations-of-crystal-nucleation-from
|
Simulations of Crystal Nucleation from Solution at Constant Chemical Potential
|
1907.04037
|
https://arxiv.org/abs/1907.04037v1
|
https://arxiv.org/pdf/1907.04037v1.pdf
|
https://github.com/Tarakk/plumed-cumd
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/convex-clustering-through-mm-an-efficient
|
Convex Clustering through MM: An Efficient Algorithm to Perform Hierarchical Clustering
|
2211.01877
|
https://arxiv.org/abs/2211.01877v2
|
https://arxiv.org/pdf/2211.01877v2.pdf
|
https://github.com/djwtouw/ccmm-paper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/argscichat-a-dataset-for-argumentative
|
ArgSciChat: A Dataset for Argumentative Dialogues on Scientific Papers
|
2202.06690
|
https://arxiv.org/abs/2202.06690v3
|
https://arxiv.org/pdf/2202.06690v3.pdf
|
https://github.com/federicoruggeri/argscichat_project
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hawkeye-a-pytorch-based-library-for-fine
|
Hawkeye: A PyTorch-based Library for Fine-Grained Image Recognition with Deep Learning
|
2310.09600
|
https://arxiv.org/abs/2310.09600v2
|
https://arxiv.org/pdf/2310.09600v2.pdf
|
https://github.com/hawkeye-finegrained/hawkeye
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/twitter-dataset-for-2022-russo-ukrainian
|
Twitter Dataset for 2022 Russo-Ukrainian Crisis
|
2203.02955
|
https://arxiv.org/abs/2203.02955v1
|
https://arxiv.org/pdf/2203.02955v1.pdf
|
https://github.com/ehsanulhaq1/russo_ukraine_dataset
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/an-approach-for-generating-families-of
|
An Approach for Generating Families of Energetically Optimal Gaits from Passive Dynamic Walking Gaits
|
2303.14750
|
https://arxiv.org/abs/2303.14750v2
|
https://arxiv.org/pdf/2303.14750v2.pdf
|
https://github.com/nr-codes/optimalgaitsforcompassgait
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/how-much-does-attention-actually-attend
|
How Much Does Attention Actually Attend? Questioning the Importance of Attention in Pretrained Transformers
|
2211.03495
|
https://arxiv.org/abs/2211.03495v1
|
https://arxiv.org/pdf/2211.03495v1.pdf
|
https://github.com/schwartz-lab-nlp/papa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/on-first-order-meta-learning-algorithms
|
On First-Order Meta-Learning Algorithms
|
1803.02999
|
http://arxiv.org/abs/1803.02999v3
|
http://arxiv.org/pdf/1803.02999v3.pdf
|
https://github.com/Yuzhe-CHEN/NerfSNN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/semantics-adaptive-activation-intervention
|
Semantics-Adaptive Activation Intervention for LLMs via Dynamic Steering Vectors
|
2410.12299
|
https://arxiv.org/abs/2410.12299v1
|
https://arxiv.org/pdf/2410.12299v1.pdf
|
https://github.com/weixuan-wang123/SADI
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-recommender-system-for-automatic-picking-of
|
A recommender system for automatic picking of subsurface formation tops
|
2202.08869
|
https://arxiv.org/abs/2202.08869v1
|
https://arxiv.org/pdf/2202.08869v1.pdf
|
https://github.com/jessepisel/matrixfactorization
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/disco-remedy-self-supervised-learning-on
|
DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning
|
2104.09124
|
https://arxiv.org/abs/2104.09124v7
|
https://arxiv.org/pdf/2104.09124v7.pdf
|
https://github.com/Yuting-Gao/DisCo-pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dual-path-cnn-with-max-gated-block-for-text
|
Dual-path CNN with Max Gated block for Text-Based Person Re-identification
|
2009.09343
|
https://arxiv.org/abs/2009.09343v1
|
https://arxiv.org/pdf/2009.09343v1.pdf
|
https://github.com/voriarty/Dual-path-CNN-with-Max-Gated-block-for-Text-Based-Person-Re-identification
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/solving-satisfiability-modulo-counting-for
|
Solving Satisfiability Modulo Counting for Symbolic and Statistical AI Integration With Provable Guarantees
|
2309.08883
|
https://arxiv.org/abs/2309.08883v2
|
https://arxiv.org/pdf/2309.08883v2.pdf
|
https://github.com/jil016/xor-smc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-automatic-feasibility-study-for-machine
|
Automatic Feasibility Study via Data Quality Analysis for ML: A Case-Study on Label Noise
|
2010.08410
|
https://arxiv.org/abs/2010.08410v4
|
https://arxiv.org/pdf/2010.08410v4.pdf
|
https://github.com/ds3lab/snoopy-paper
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/residual-network-and-embedding-usage-new
|
Residual Network and Embedding Usage: New Tricks of Node Classification with Graph Convolutional Networks
|
2105.08330
|
https://arxiv.org/abs/2105.08330v2
|
https://arxiv.org/pdf/2105.08330v2.pdf
|
https://github.com/ytchx1999/GCN_res-CS-v2
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/talking-heads-attention
|
Talking-Heads Attention
|
2003.02436
|
https://arxiv.org/abs/2003.02436v1
|
https://arxiv.org/pdf/2003.02436v1.pdf
|
https://github.com/zygmuntz/hyperband
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/interpretable-self-aware-neural-networks-for
|
Interpretable Self-Aware Neural Networks for Robust Trajectory Prediction
|
2211.08701
|
https://arxiv.org/abs/2211.08701v1
|
https://arxiv.org/pdf/2211.08701v1.pdf
|
https://github.com/sisl/interpretableselfawareprediction
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/bsn-boundary-sensitive-network-for-temporal
|
BSN: Boundary Sensitive Network for Temporal Action Proposal Generation
|
1806.02964
|
http://arxiv.org/abs/1806.02964v3
|
http://arxiv.org/pdf/1806.02964v3.pdf
|
https://github.com/wzmsltw/BSN-boundary-sensitive-network
| false
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/type-driven-multi-turn-corrections-for
|
Type-Driven Multi-Turn Corrections for Grammatical Error Correction
|
2203.09136
|
https://arxiv.org/abs/2203.09136v1
|
https://arxiv.org/pdf/2203.09136v1.pdf
|
https://github.com/deeplearnxmu/tmtc
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/koopman-based-differentiable-predictive
|
Koopman-based Differentiable Predictive Control for the Dynamics-Aware Economic Dispatch Problem
|
2203.08984
|
https://arxiv.org/abs/2203.08984v1
|
https://arxiv.org/pdf/2203.08984v1.pdf
|
https://github.com/pnnl/neuromancer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/modeling-microlensing-events-with-mulensmodel
|
Modeling microlensing events with MulensModel
|
1803.01003
|
http://arxiv.org/abs/1803.01003v3
|
http://arxiv.org/pdf/1803.01003v3.pdf
|
https://github.com/rpoleski/MulensModel
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/edge-based-local-push-for-personalized
|
Edge-based Local Push for Personalized PageRank
|
2203.07937
|
https://arxiv.org/abs/2203.07937v2
|
https://arxiv.org/pdf/2203.07937v2.pdf
|
https://github.com/wanghzccls/edgepush
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/streaming-velocity-effects-on-the-post
|
Streaming Velocity Effects on the Post-reionization 21 cm Baryon Acoustic Oscillation Signal
|
2107.07615
|
https://arxiv.org/abs/2107.07615v2
|
https://arxiv.org/pdf/2107.07615v2.pdf
|
https://github.com/cosmosheep/hipowerspectrum
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-reduction-to-binary-approach-for-debiasing
|
A Reduction to Binary Approach for Debiasing Multiclass Datasets
|
2205.15860
|
https://arxiv.org/abs/2205.15860v2
|
https://arxiv.org/pdf/2205.15860v2.pdf
|
https://github.com/google-research/google-research/tree/master/ml_debiaser
| true
| false
| false
|
jax
|
https://paperswithcode.com/paper/dverge-diversifying-vulnerabilities-for
|
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles
|
2009.14720
|
https://arxiv.org/abs/2009.14720v2
|
https://arxiv.org/pdf/2009.14720v2.pdf
|
https://github.com/wang-axis/dna
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/disrupting-adversarial-transferability-in
|
Disrupting Adversarial Transferability in Deep Neural Networks
|
2108.12492
|
https://arxiv.org/abs/2108.12492v3
|
https://arxiv.org/pdf/2108.12492v3.pdf
|
https://github.com/wang-axis/dna
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-unified-transformer-framework-for-group
|
A Unified Transformer Framework for Group-based Segmentation: Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection
|
2203.04708
|
https://arxiv.org/abs/2203.04708v2
|
https://arxiv.org/pdf/2203.04708v2.pdf
|
https://github.com/suyukun666/UFO
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/end-to-end-symbolic-regression-with
|
End-to-end symbolic regression with transformers
|
2204.10532
|
https://arxiv.org/abs/2204.10532v1
|
https://arxiv.org/pdf/2204.10532v1.pdf
|
https://github.com/facebookresearch/symbolicregression
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-microlensing-search-of-700-million-vvv
|
A microlensing search of 700 million VVV light curves
|
2106.15617
|
https://arxiv.org/abs/2106.15617v1
|
https://arxiv.org/pdf/2106.15617v1.pdf
|
https://github.com/zofiakaczmarek/nested_ulens_parallax
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/dynesty-a-dynamic-nested-sampling-package-for
|
dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences
|
1904.02180
|
http://arxiv.org/abs/1904.02180v1
|
http://arxiv.org/pdf/1904.02180v1.pdf
|
https://github.com/zofiakaczmarek/nested_ulens_parallax
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/convert-an-application-to-faq-answering
|
ConveRT for FAQ Answering
|
2108.00719
|
https://arxiv.org/abs/2108.00719v3
|
https://arxiv.org/pdf/2108.00719v3.pdf
|
https://github.com/clips/ADATaLKS
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-accurate-unsupervised-method-for-joint
|
An Accurate Unsupervised Method for Joint Entity Alignment and Dangling Entity Detection
|
2203.05147
|
https://arxiv.org/abs/2203.05147v1
|
https://arxiv.org/pdf/2203.05147v1.pdf
|
https://github.com/luosx18/ued
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/modeling-relational-data-with-graph
|
Modeling Relational Data with Graph Convolutional Networks
|
1703.06103
|
http://arxiv.org/abs/1703.06103v4
|
http://arxiv.org/pdf/1703.06103v4.pdf
|
https://github.com/shijx12/kqapro_baselines
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bart-denoising-sequence-to-sequence-pre
|
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
|
1910.13461
|
https://arxiv.org/abs/1910.13461v1
|
https://arxiv.org/pdf/1910.13461v1.pdf
|
https://github.com/shijx12/kqapro_baselines
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cross-modal-map-learning-for-vision-and
|
Cross-modal Map Learning for Vision and Language Navigation
|
2203.05137
|
https://arxiv.org/abs/2203.05137v3
|
https://arxiv.org/pdf/2203.05137v3.pdf
|
https://github.com/ggeorgak11/cm2
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/large-scale-gan-training-for-high-fidelity
|
Large Scale GAN Training for High Fidelity Natural Image Synthesis
|
1809.11096
|
http://arxiv.org/abs/1809.11096v2
|
http://arxiv.org/pdf/1809.11096v2.pdf
|
https://github.com/abhi8585/GeneratedART-NFT-VISION
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/self-attention-generative-adversarial
|
Self-Attention Generative Adversarial Networks
|
1805.08318
|
https://arxiv.org/abs/1805.08318v2
|
https://arxiv.org/pdf/1805.08318v2.pdf
|
https://github.com/abhi8585/GeneratedART-NFT-VISION
| false
| false
| true
|
tf
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.