paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/fedentropy-efficient-device-grouping-for
|
FedEntropy: Efficient Device Grouping for Federated Learning Using Maximum Entropy Judgment
|
2205.12038
|
https://arxiv.org/abs/2205.12038v1
|
https://arxiv.org/pdf/2205.12038v1.pdf
|
https://github.com/fedentropy/fedentropy
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-transferable-visual-models-from
|
Learning Transferable Visual Models From Natural Language Supervision
|
2103.00020
|
https://arxiv.org/abs/2103.00020v1
|
https://arxiv.org/pdf/2103.00020v1.pdf
|
https://github.com/sberbank-ai/ru-clip
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tackling-fake-news-detection-by-continually
|
Tackling Fake News Detection by Continually Improving Social Context Representations using Graph Neural Networks
| null |
https://aclanthology.org/2022.acl-long.97
|
https://aclanthology.org/2022.acl-long.97.pdf
|
https://github.com/hockeybro12/fakenews_inference_operators
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bayesian-functional-principal-components-1
|
Bayesian modeling of nearly mutually orthogonal processes
|
2205.12361
|
https://arxiv.org/abs/2205.12361v3
|
https://arxiv.org/pdf/2205.12361v3.pdf
|
https://github.com/jamesmatuk/remo-fpca
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bionic-tracking-using-eye-tracking-to-track
|
Bionic Tracking: Using Eye Tracking to Track Biological Cells in Virtual Reality
|
2005.00387
|
https://arxiv.org/abs/2005.00387v2
|
https://arxiv.org/pdf/2005.00387v2.pdf
|
https://github.com/scenerygraphics/bionic-tracking
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-neuro-symbolic-brain
|
The Neuro-Symbolic Brain
|
2205.13440
|
https://arxiv.org/abs/2205.13440v1
|
https://arxiv.org/pdf/2205.13440v1.pdf
|
https://github.com/robertlizee/neuro-symbolic-vm
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/flexible-and-fast-estimation-of-binary-merger
|
Flexible and Fast Estimation of Binary Merger Population Distributions with Adaptive KDE
|
2112.12659
|
https://arxiv.org/abs/2112.12659v3
|
https://arxiv.org/pdf/2112.12659v3.pdf
|
https://github.com/jamsadiq/peakdetectionalgorithm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/domain-adaptive-faster-r-cnn-for-object
|
Domain Adaptive Faster R-CNN for Object Detection in the Wild
|
1803.03243
|
http://arxiv.org/abs/1803.03243v1
|
http://arxiv.org/pdf/1803.03243v1.pdf
|
https://github.com/shreyasrajesh/DA-Object-Detection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cross-modality-discrepant-interaction-network
|
Cross-modality Discrepant Interaction Network for RGB-D Salient Object Detection
|
2108.01971
|
https://arxiv.org/abs/2108.01971v1
|
https://arxiv.org/pdf/2108.01971v1.pdf
|
https://github.com/kingcong/CDINet
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/extending-the-design-space-of-graph-neural-1
|
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
|
2306.03266
|
https://arxiv.org/abs/2306.03266v3
|
https://arxiv.org/pdf/2306.03266v3.pdf
|
https://github.com/jiaruifeng/n2gnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/transfuser-imitation-with-transformer-based
|
TransFuser: Imitation with Transformer-Based Sensor Fusion for Autonomous Driving
|
2205.15997
|
https://arxiv.org/abs/2205.15997v1
|
https://arxiv.org/pdf/2205.15997v1.pdf
|
https://github.com/autonomousvision/transfuser
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-unified-weight-initialization-paradigm-for
|
A Unified Weight Initialization Paradigm for Tensorial Convolutional Neural Networks
|
2205.15307
|
https://arxiv.org/abs/2205.15307v2
|
https://arxiv.org/pdf/2205.15307v2.pdf
|
https://github.com/tnbar/tednet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/preparing-an-endangered-language-for-the
|
Preparing an Endangered Language for the Digital Age: The Case of Judeo-Spanish
|
2205.15599
|
https://arxiv.org/abs/2205.15599v1
|
https://arxiv.org/pdf/2205.15599v1.pdf
|
https://github.com/collectivat-dev/espanyol-ladino-translation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep
|
Aggregated Residual Transformations for Deep Neural Networks
|
1611.05431
|
http://arxiv.org/abs/1611.05431v2
|
http://arxiv.org/pdf/1611.05431v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-13
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-theoretical-study-on-solving-continual
|
A Theoretical Study on Solving Continual Learning
|
2211.02633
|
https://arxiv.org/abs/2211.02633v1
|
https://arxiv.org/pdf/2211.02633v1.pdf
|
https://github.com/k-gyuhak/wptp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/OML-Team/open-metric-learning
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/constrained-variational-policy-optimization
|
Constrained Variational Policy Optimization for Safe Reinforcement Learning
|
2201.11927
|
https://arxiv.org/abs/2201.11927v3
|
https://arxiv.org/pdf/2201.11927v3.pdf
|
https://github.com/liuzuxin/cvpo-safe-rl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pgmpy-a-python-toolkit-for-bayesian-networks
|
pgmpy: A Python Toolkit for Bayesian Networks
|
2304.08639
|
https://arxiv.org/abs/2304.08639v1
|
https://arxiv.org/pdf/2304.08639v1.pdf
|
https://github.com/pgmpy/pgmpy
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cyclemix-a-holistic-strategy-for-medical
|
CycleMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision
|
2203.01475
|
https://arxiv.org/abs/2203.01475v2
|
https://arxiv.org/pdf/2203.01475v2.pdf
|
https://github.com/bwgzk/cyclemix
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/recbole-2-0-towards-a-more-up-to-date
|
RecBole 2.0: Towards a More Up-to-Date Recommendation Library
|
2206.07351
|
https://arxiv.org/abs/2206.07351v2
|
https://arxiv.org/pdf/2206.07351v2.pdf
|
https://github.com/rucaibox/recbole2.0
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/emerging-properties-in-self-supervised-vision
|
Emerging Properties in Self-Supervised Vision Transformers
|
2104.14294
|
https://arxiv.org/abs/2104.14294v2
|
https://arxiv.org/pdf/2104.14294v2.pdf
|
https://github.com/OML-Team/open-metric-learning
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/bevdet-high-performance-multi-camera-3d
|
BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View
|
2112.11790
|
https://arxiv.org/abs/2112.11790v3
|
https://arxiv.org/pdf/2112.11790v3.pdf
|
https://github.com/HuangJunJie2017/BEVDet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-surprising-behaviour-of-node2vec
|
On the Surprising Behaviour of node2vec
|
2206.08252
|
https://arxiv.org/abs/2206.08252v2
|
https://arxiv.org/pdf/2206.08252v2.pdf
|
https://github.com/aidos-lab/node2vec-surprises
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/distributionally-robust-losses-for-latent
|
Distributionally Robust Losses for Latent Covariate Mixtures
|
2007.13982
|
https://arxiv.org/abs/2007.13982v2
|
https://arxiv.org/pdf/2007.13982v2.pdf
|
https://github.com/hsnamkoong/marginal-dro
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/projection-scrubbing-a-more-effective-data
|
Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing
|
2108.00319
|
https://arxiv.org/abs/2108.00319v4
|
https://arxiv.org/pdf/2108.00319v4.pdf
|
https://github.com/cran/fMRIscrub
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-stochastic-parametric-differentiable
|
Learning Stochastic Parametric Differentiable Predictive Control Policies
|
2203.01447
|
https://arxiv.org/abs/2203.01447v2
|
https://arxiv.org/pdf/2203.01447v2.pdf
|
https://github.com/pnnl/neuromancer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-inverse-kinematics
|
Neural Inverse Kinematics
|
2205.10837
|
https://arxiv.org/abs/2205.10837v1
|
https://arxiv.org/pdf/2205.10837v1.pdf
|
https://github.com/RaphaelBensTAU/NeuralInverseKinematics
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/instant-neural-graphics-primitives-with-a
|
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
|
2201.05989
|
https://arxiv.org/abs/2201.05989v2
|
https://arxiv.org/pdf/2201.05989v2.pdf
|
https://github.com/kair-bair/nerfacc
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/the-sigma-8-tension-is-a-drag
|
The Sigma-8 Tension is a Drag
|
2209.06217
|
https://arxiv.org/abs/2209.06217v2
|
https://arxiv.org/pdf/2209.06217v2.pdf
|
https://github.com/brinckmann/montepython_public
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automatic-correction-of-human-translations
|
Automatic Correction of Human Translations
|
2206.08593
|
https://arxiv.org/abs/2206.08593v1
|
https://arxiv.org/pdf/2206.08593v1.pdf
|
https://github.com/lilt/tec
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/thompson-sampling-for-robust-transfer-in
|
Thompson Sampling for Robust Transfer in Multi-Task Bandits
|
2206.08556
|
https://arxiv.org/abs/2206.08556v1
|
https://arxiv.org/pdf/2206.08556v1.pdf
|
https://github.com/zhiwang123/eps-mpmab-ts
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/object-structural-points-representation-for
|
Object Structural Points Representation for Graph-based Semantic Monocular Localization and Mapping
|
2206.10263
|
https://arxiv.org/abs/2206.10263v1
|
https://arxiv.org/pdf/2206.10263v1.pdf
|
https://github.com/airlab-polimi/c-slam
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/diagnostic-tool-for-out-of-sample-model
|
Diagnostic Tool for Out-of-Sample Model Evaluation
|
2206.10982
|
https://arxiv.org/abs/2206.10982v3
|
https://arxiv.org/pdf/2206.10982v3.pdf
|
https://github.com/el-hult/lal
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/panoramic-panoptic-segmentation-insights-into
|
Panoramic Panoptic Segmentation: Insights Into Surrounding Parsing for Mobile Agents via Unsupervised Contrastive Learning
|
2206.10711
|
https://arxiv.org/abs/2206.10711v2
|
https://arxiv.org/pdf/2206.10711v2.pdf
|
https://github.com/alexanderjaus/PPS
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-novel-approach-for-exploring-the-light
|
A Novel Approach for Exploring the Light Traveling Path in the Medium with a Spherically Symmetric Refractive Index
|
2212.02642
|
https://arxiv.org/abs/2212.02642v1
|
https://arxiv.org/pdf/2212.02642v1.pdf
|
https://github.com/shengyangzhuang/A-Novel-Approach-for-Exploring-the-Light-Traveling-Path-in-the-Spherically-Symmetric-Medium
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/symmetric-network-with-spatial-relationship
|
Symmetric Network with Spatial Relationship Modeling for Natural Language-based Vehicle Retrieval
|
2206.10879
|
https://arxiv.org/abs/2206.10879v1
|
https://arxiv.org/pdf/2206.10879v1.pdf
|
https://github.com/hbchen121/aicity2022_track2_ssm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/visfis-visual-feature-importance-supervision
|
VisFIS: Visual Feature Importance Supervision with Right-for-the-Right-Reason Objectives
|
2206.11212
|
https://arxiv.org/abs/2206.11212v2
|
https://arxiv.org/pdf/2206.11212v2.pdf
|
https://github.com/zfying/visfis
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/matrix-completion-and-low-rank-svd-via-fast
|
Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares
|
1410.2596
|
http://arxiv.org/abs/1410.2596v1
|
http://arxiv.org/pdf/1410.2596v1.pdf
|
https://github.com/travisbrady/py-soft-impute
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/block-diffusion-interpolating-between
|
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
|
2503.09573
|
https://arxiv.org/abs/2503.09573v3
|
https://arxiv.org/pdf/2503.09573v3.pdf
|
https://github.com/MindSpore-scientific/code-12/tree/main/Block_Model
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-simple-and-efficient-sampling-based
|
A Simple and Efficient Sampling-based Algorithm for General Reachability Analysis
|
2112.05745
|
https://arxiv.org/abs/2112.05745v3
|
https://arxiv.org/pdf/2112.05745v3.pdf
|
https://github.com/stanfordasl/stochasticedl
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/a-multi-head-model-for-continual-learning-via
|
A Multi-Head Model for Continual Learning via Out-of-Distribution Replay
|
2208.09734
|
https://arxiv.org/abs/2208.09734v1
|
https://arxiv.org/pdf/2208.09734v1.pdf
|
https://github.com/k-gyuhak/wptp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/udacity/MLND-CN-Capstone-TGSImage
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rethinking-atrous-convolution-for-semantic
|
Rethinking Atrous Convolution for Semantic Image Segmentation
|
1706.05587
|
http://arxiv.org/abs/1706.05587v3
|
http://arxiv.org/pdf/1706.05587v3.pdf
|
https://github.com/udacity/MLND-CN-Capstone-TGSImage
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/image-aesthetics-assessment-using-graph
|
Image Aesthetics Assessment Using Graph Attention Network
|
2206.12869
|
https://arxiv.org/abs/2206.12869v2
|
https://arxiv.org/pdf/2206.12869v2.pdf
|
https://github.com/koustav123/aesthetics_assessment_using_graphs
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rethinking-cnn-models-for-audio
|
Rethinking CNN Models for Audio Classification
|
2007.11154
|
https://arxiv.org/abs/2007.11154v2
|
https://arxiv.org/pdf/2007.11154v2.pdf
|
https://github.com/shijing001/unicertainty_calibration_audio_classifiers
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/uncertainty-calibration-for-deep-audio
|
Uncertainty Calibration for Deep Audio Classifiers
|
2206.13071
|
https://arxiv.org/abs/2206.13071v1
|
https://arxiv.org/pdf/2206.13071v1.pdf
|
https://github.com/shijing001/unicertainty_calibration_audio_classifiers
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-stochastic-petri-net-based
|
Enhancing Stochastic Petri Net-based Remaining Time Prediction using k-Nearest Neighbors
|
2206.13109
|
https://arxiv.org/abs/2206.13109v1
|
https://arxiv.org/pdf/2206.13109v1.pdf
|
https://github.com/jarnevdb/bp-time-prediction-using-knn
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/190807919
|
Deep High-Resolution Representation Learning for Visual Recognition
|
1908.07919
|
https://arxiv.org/abs/1908.07919v2
|
https://arxiv.org/pdf/1908.07919v2.pdf
|
https://github.com/kingcong/gpu_HRNetW48_cls
| false
| false
| true
|
mindspore
|
https://paperswithcode.com/paper/feature-overcorrelation-in-deep-graph-neural
|
Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective
|
2206.07743
|
https://arxiv.org/abs/2206.07743v1
|
https://arxiv.org/pdf/2206.07743v1.pdf
|
https://github.com/chandlerbang/decorr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-overcoming-data-scarcity-in-materials
|
Towards overcoming data scarcity in materials science: unifying models and datasets with a mixture of experts framework
|
2207.13880
|
https://arxiv.org/abs/2207.13880v1
|
https://arxiv.org/pdf/2207.13880v1.pdf
|
https://github.com/rees-c/moe
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/direct-preference-optimization-your-language
|
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
|
2305.18290
|
https://arxiv.org/abs/2305.18290v3
|
https://arxiv.org/pdf/2305.18290v3.pdf
|
https://github.com/KomeijiForce/Active_Passive_Constraint_Koishiday_2024
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ego-planner-an-esdf-free-gradient-based-local
|
EGO-Planner: An ESDF-free Gradient-based Local Planner for Quadrotors
|
2008.08835
|
https://arxiv.org/abs/2008.08835v1
|
https://arxiv.org/pdf/2008.08835v1.pdf
|
https://github.com/j-marple-dev/ego-planner
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-maritime-obstacle-detection-from
|
Learning Maritime Obstacle Detection from Weak Annotations by Scaffolding
|
2108.00564
|
https://arxiv.org/abs/2108.00564v1
|
https://arxiv.org/pdf/2108.00564v1.pdf
|
https://github.com/lojzezust/slr
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sparse-distillation-speeding-up-text
|
Sparse Distillation: Speeding Up Text Classification by Using Bigger Student Models
|
2110.08536
|
https://arxiv.org/abs/2110.08536v2
|
https://arxiv.org/pdf/2110.08536v2.pdf
|
https://github.com/ink-usc/sparse-distillation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/in-defense-of-the-triplet-loss-for-person-re
|
In Defense of the Triplet Loss for Person Re-Identification
|
1703.07737
|
http://arxiv.org/abs/1703.07737v4
|
http://arxiv.org/pdf/1703.07737v4.pdf
|
https://github.com/OML-Team/open-metric-learning
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/non-gaussianity-in-cmb-lensing-from-full-sky
|
Non-Gaussianity in CMB lensing from full-sky simulations
|
2411.02774
|
https://arxiv.org/abs/2411.02774v3
|
https://arxiv.org/pdf/2411.02774v3.pdf
|
https://github.com/Kang-Yuqi/FLAReS
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/serendipity-in-dark-photon-searches
|
Serendipity in dark photon searches
|
1801.04847
|
https://arxiv.org/abs/1801.04847v2
|
https://arxiv.org/pdf/1801.04847v2.pdf
|
https://gitlab.com/philten/darkcast
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/transformcode-a-contrastive-learning
|
TransformCode: A Contrastive Learning Framework for Code Embedding via Subtree Transformation
|
2311.08157
|
https://arxiv.org/abs/2311.08157v2
|
https://arxiv.org/pdf/2311.08157v2.pdf
|
https://github.com/iamfaith/transformcode
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/technical-report-large-language-models-can
|
Large Language Models can Strategically Deceive their Users when Put Under Pressure
|
2311.07590
|
https://arxiv.org/abs/2311.07590v4
|
https://arxiv.org/pdf/2311.07590v4.pdf
|
https://github.com/apolloresearch/insider-trading
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/detecting-covariate-drift-in-text-data-using
|
Detecting covariate drift in text data using document embeddings and dimensionality reduction
|
2309.10000
|
https://arxiv.org/abs/2309.10000v1
|
https://arxiv.org/pdf/2309.10000v1.pdf
|
https://github.com/vinayaksodar/nlp_drift_paper_code
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/adaptive-measurement-strategy-for-quantum
|
Adaptive measurement strategy for quantum subspace methods
|
2311.07893
|
https://arxiv.org/abs/2311.07893v2
|
https://arxiv.org/pdf/2311.07893v2.pdf
|
https://github.com/quantum-programming/adaptive-subspace
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/coatnet-marrying-convolution-and-attention
|
CoAtNet: Marrying Convolution and Attention for All Data Sizes
|
2106.04803
|
https://arxiv.org/abs/2106.04803v2
|
https://arxiv.org/pdf/2106.04803v2.pdf
|
https://github.com/MS-Mind/MS-Code-02/tree/main/configs/coat
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-study-of-slang-representation-methods
|
A Study of Slang Representation Methods
|
2212.05613
|
https://arxiv.org/abs/2212.05613v3
|
https://arxiv.org/pdf/2212.05613v3.pdf
|
https://github.com/usc-isi-i2/slang-representation-learning
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/traffic-state-data-imputation-an-efficient
|
Traffic state data imputation: An efficient generating method based on the graph aggregator
| null |
https://ieeexplore.ieee.org/abstract/document/9582618
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9582618
|
https://github.com/pihang/GA-GAN
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/ask2transformers-zero-shot-domain-labelling-1
|
Ask2Transformers: Zero-Shot Domain labelling with Pretrained Language Models
| null |
https://aclanthology.org/2021.gwc-1.6
|
https://aclanthology.org/2021.gwc-1.6.pdf
|
https://github.com/osainz59/Ask2Transformers
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-field-test-of-bandit-algorithms-for
|
A Field Test of Bandit Algorithms for Recommendations: Understanding the Validity of Assumptions on Human Preferences in Multi-armed Bandits
|
2304.09088
|
https://arxiv.org/abs/2304.09088v1
|
https://arxiv.org/pdf/2304.09088v1.pdf
|
https://github.com/humainlab/human-bandit-evaluation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/probabilistic-embeddings-for-cross-modal
|
Probabilistic Embeddings for Cross-Modal Retrieval
|
2101.05068
|
https://arxiv.org/abs/2101.05068v2
|
https://arxiv.org/pdf/2101.05068v2.pdf
|
https://github.com/naver-ai/pcme
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/computing-and-exploiting-document-structure
|
Computing and Exploiting Document Structure to Improve Unsupervised Extractive Summarization of Legal Case Decisions
|
2211.03229
|
https://arxiv.org/abs/2211.03229v1
|
https://arxiv.org/pdf/2211.03229v1.pdf
|
https://github.com/cs329yangzhong/documentstructurelegalsum
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/meta-networks
|
Meta Networks
|
1703.00837
|
http://arxiv.org/abs/1703.00837v2
|
http://arxiv.org/pdf/1703.00837v2.pdf
|
https://bitbucket.org/tsendeemts/metanet
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/model-predictive-control-of-nonlinear-latent
|
Model Predictive Control of Nonlinear Latent Force Models: A Scenario-Based Approach
|
2207.13872
|
https://arxiv.org/abs/2207.13872v1
|
https://arxiv.org/pdf/2207.13872v1.pdf
|
https://github.com/KU-ISSL/MPC-NLFM-Scenario-ICRA21
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/eccv-caption-correcting-false-negatives-by
|
ECCV Caption: Correcting False Negatives by Collecting Machine-and-Human-verified Image-Caption Associations for MS-COCO
|
2204.03359
|
https://arxiv.org/abs/2204.03359v5
|
https://arxiv.org/pdf/2204.03359v5.pdf
|
https://github.com/naver-ai/pcme
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/4k-haze-a-dehazing-benchmark-with-4k
|
4K-HAZE: A Dehazing Benchmark with 4K Resolution Hazy and Haze-Free Images
|
2303.15848
|
https://arxiv.org/abs/2303.15848v1
|
https://arxiv.org/pdf/2303.15848v1.pdf
|
https://github.com/zzr-idam/4KDehazing
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/foundationpose-unified-6d-pose-estimation-and
|
FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
|
2312.08344
|
https://arxiv.org/abs/2312.08344v2
|
https://arxiv.org/pdf/2312.08344v2.pdf
|
https://github.com/NVlabs/FoundationStereo
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-generative-approach-for-script-event-1
|
A Generative Approach for Script Event Prediction via Contrastive Fine-tuning
|
2212.03496
|
https://arxiv.org/abs/2212.03496v3
|
https://arxiv.org/pdf/2212.03496v3.pdf
|
https://github.com/zhufq00/mcnc
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bootstrap-state-representation-using-style
|
Bootstrap State Representation using Style Transfer for Better Generalization in Deep Reinforcement Learning
|
2207.07749
|
https://arxiv.org/abs/2207.07749v1
|
https://arxiv.org/pdf/2207.07749v1.pdf
|
https://github.com/masud99r/thinker
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dual-branch-hybrid-learning-network-for
|
Dual-branch Hybrid Learning Network for Unbiased Scene Graph Generation
|
2207.07913
|
https://arxiv.org/abs/2207.07913v1
|
https://arxiv.org/pdf/2207.07913v1.pdf
|
https://github.com/aa200647963/sgg-dhl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/facial-expression-and-attributes-recognition-1
|
Facial expression and attributes recognition based on multi-task learning of lightweight neural networks
|
2103.17107
|
https://arxiv.org/abs/2103.17107v3
|
https://arxiv.org/pdf/2103.17107v3.pdf
|
https://github.com/tomas-gajarsky/facetorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/slowly-varying-regression-under-sparsity
|
Slowly Varying Regression under Sparsity
|
2102.10773
|
https://arxiv.org/abs/2102.10773v5
|
https://arxiv.org/pdf/2102.10773v5.pdf
|
https://github.com/vvdigalakis/ssvregression
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/one-person-one-model-learning-compound-router
|
One Person, One Model--Learning Compound Router for Sequential Recommendation
|
2211.02824
|
https://arxiv.org/abs/2211.02824v2
|
https://arxiv.org/pdf/2211.02824v2.pdf
|
https://github.com/icantnamemyself/canet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/networked-federated-multi-task-learning
|
Clustered Federated Learning via Generalized Total Variation Minimization
|
2105.12769
|
https://arxiv.org/abs/2105.12769v4
|
https://arxiv.org/pdf/2105.12769v4.pdf
|
https://github.com/sahelyiyi/FederatedLearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-federated-learning-personalization-1
|
Improving Federated Learning Personalization via Model Agnostic Meta Learning
|
1909.12488
|
https://arxiv.org/abs/1909.12488v2
|
https://arxiv.org/pdf/1909.12488v2.pdf
|
https://github.com/xiuyu0000/new_papers_codes/tree/main/FSMAFL
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/preconditioned-nonlinear-conjugate-gradient-2
|
Preconditioned Nonlinear Conjugate Gradient Method for Real-time Interior-point Hyperelasticity
|
2405.08001
|
https://arxiv.org/abs/2405.08001v1
|
https://arxiv.org/pdf/2405.08001v1.pdf
|
https://github.com/Xingbaji/PNCG_IPC
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/mfan-multi-modal-feature-enhanced-attention
|
MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection
| null |
https://www.ijcai.org/proceedings/2022/335
|
https://www.ijcai.org/proceedings/2022/0335.pdf
|
https://github.com/drivsaf/MFAN
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/bit-depth-enhancement-detection-for
|
Bit-depth enhancement detection for compressed video
|
2211.04799
|
https://arxiv.org/abs/2211.04799v1
|
https://arxiv.org/pdf/2211.04799v1.pdf
|
https://github.com/msu-video-group/bdedm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-hierarchical-semantic-segmentation
|
A hierarchical semantic segmentation framework for computer vision-based bridge damage detection
|
2207.08878
|
https://arxiv.org/abs/2207.08878v2
|
https://arxiv.org/pdf/2207.08878v2.pdf
|
https://github.com/jingxiaoliu/bridge-damage-segmentation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/kold-korean-offensive-language-dataset
|
KOLD: Korean Offensive Language Dataset
|
2205.11315
|
https://arxiv.org/abs/2205.11315v2
|
https://arxiv.org/pdf/2205.11315v2.pdf
|
https://github.com/boychaboy/kold
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/wenet-2-0-more-productive-end-to-end-speech
|
WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit
|
2203.15455
|
https://arxiv.org/abs/2203.15455v2
|
https://arxiv.org/pdf/2203.15455v2.pdf
|
https://github.com/wenet-e2e/wenet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/interpretable-semantic-photo-geolocalization
|
Interpretable Semantic Photo Geolocation
|
2104.14995
|
https://arxiv.org/abs/2104.14995v2
|
https://arxiv.org/pdf/2104.14995v2.pdf
|
https://github.com/jtheiner/semantic_geo_partitioning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/high-resolution-image-synthesis-with-latent
|
High-Resolution Image Synthesis with Latent Diffusion Models
|
2112.10752
|
https://arxiv.org/abs/2112.10752v2
|
https://arxiv.org/pdf/2112.10752v2.pdf
|
https://github.com/joanrod/ocr-vqgan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/taming-transformers-for-high-resolution-image
|
Taming Transformers for High-Resolution Image Synthesis
|
2012.09841
|
https://arxiv.org/abs/2012.09841v3
|
https://arxiv.org/pdf/2012.09841v3.pdf
|
https://github.com/joanrod/ocr-vqgan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/character-region-awareness-for-text-detection
|
Character Region Awareness for Text Detection
|
1904.01941
|
http://arxiv.org/abs/1904.01941v1
|
http://arxiv.org/pdf/1904.01941v1.pdf
|
https://github.com/joanrod/ocr-vqgan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cryptanalyzing-an-image-encryption-algorithm-1
|
Cryptanalyzing an Image Encryption Algorithm Underpinned by 2D Lag-Complex Logistic Map
|
2208.06774
|
https://arxiv.org/abs/2208.06774v1
|
https://arxiv.org/pdf/2208.06774v1.pdf
|
https://github.com/chengqingli/mm-iealm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rethinking-image-mixture-for-unsupervised
|
Un-Mix: Rethinking Image Mixtures for Unsupervised Visual Representation Learning
|
2003.05438
|
https://arxiv.org/abs/2003.05438v5
|
https://arxiv.org/pdf/2003.05438v5.pdf
|
https://github.com/szq0214/Rethinking-Image-Mixture-for-Unsupervised-Learning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/tristereonet-a-trinocular-framework-for-multi
|
TriStereoNet: A Trinocular Framework for Multi-baseline Disparity Estimation
|
2111.12502
|
https://arxiv.org/abs/2111.12502v2
|
https://arxiv.org/pdf/2111.12502v2.pdf
|
https://github.com/cogsys-tuebingen/tristereonet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mid-fusion-octree-based-object-level-multi
|
MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic SLAM
|
1812.07976
|
http://arxiv.org/abs/1812.07976v4
|
http://arxiv.org/pdf/1812.07976v4.pdf
|
https://github.com/smartroboticslab/mid-fusion
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-graph-library-towards-efficient-and
|
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
|
1909.01315
|
https://arxiv.org/abs/1909.01315v2
|
https://arxiv.org/pdf/1909.01315v2.pdf
|
https://github.com/OweysMomenzada/Graph-Neural-Networks-for-effecient-Recommender-Systems
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/self-guided-contrastive-learning-for-bert
|
Self-Guided Contrastive Learning for BERT Sentence Representations
|
2106.07345
|
https://arxiv.org/abs/2106.07345v1
|
https://arxiv.org/pdf/2106.07345v1.pdf
|
https://github.com/galsang/SG-BERT
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/xnor-net-imagenet-classification-using-binary
|
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
|
1603.05279
|
http://arxiv.org/abs/1603.05279v4
|
http://arxiv.org/pdf/1603.05279v4.pdf
|
https://github.com/pminhtam/xnor_conv_pytorch_extension
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/fleet-policy-learning-via-weight-merging-and
|
Robot Fleet Learning via Policy Merging
|
2310.01362
|
https://arxiv.org/abs/2310.01362v3
|
https://arxiv.org/pdf/2310.01362v3.pdf
|
https://github.com/liruiw/fleet-tools
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/multiclass-sgcn-sparse-graph-based-trajectory
|
Multiclass-SGCN: Sparse Graph-based Trajectory Prediction with Agent Class Embedding
|
2206.15275
|
https://arxiv.org/abs/2206.15275v1
|
https://arxiv.org/pdf/2206.15275v1.pdf
|
https://github.com/carrotsniper/multiclass-sgcn
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.