paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/harvesting-bat-guano-with-nitrates-non
|
Harvesting BAT-GUANO with NITRATES (Non-Imaging Transient Reconstruction And TEmporal Search): Detecting and localizing the faintest GRBs with a likelihood framework
|
2111.01769
|
https://arxiv.org/abs/2111.01769v2
|
https://arxiv.org/pdf/2111.01769v2.pdf
|
https://github.com/swift-bat/nitrates
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/universal-ehr-federated-learning-framework
|
Universal EHR Federated Learning Framework
|
2211.07300
|
https://arxiv.org/abs/2211.07300v1
|
https://arxiv.org/pdf/2211.07300v1.pdf
|
https://github.com/starmpcc/unifl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/altclip-altering-the-language-encoder-in-clip
|
AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities
|
2211.06679
|
https://arxiv.org/abs/2211.06679v2
|
https://arxiv.org/pdf/2211.06679v2.pdf
|
https://github.com/flagai-open/flagai
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pku-goodsad-a-supermarket-goods-dataset-for
|
PKU-GoodsAD: A Supermarket Goods Dataset for Unsupervised Anomaly Detection and Segmentation
|
2307.04956
|
https://arxiv.org/abs/2307.04956v2
|
https://arxiv.org/pdf/2307.04956v2.pdf
|
https://github.com/jianzhang96/goodsad
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/self-supervised-ppg-representation-learning
|
Self-Supervised PPG Representation Learning Shows High Inter-Subject Variability
|
2212.04902
|
https://arxiv.org/abs/2212.04902v2
|
https://arxiv.org/pdf/2212.04902v2.pdf
|
https://github.com/Raminghorbanii/Self-Supervised-PPG-Representation-Learning-Shows-High-Inter-Subject-Variability
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/hypergraphs-for-multiscale-cycles-in
|
Hypergraphs for multiscale cycles in structured data
|
2210.07545
|
https://arxiv.org/abs/2210.07545v1
|
https://arxiv.org/pdf/2210.07545v1.pdf
|
https://github.com/irishryoon/minimal_generators_curves
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/prototypical-networks-for-few-shot-learning
|
Prototypical Networks for Few-shot Learning
|
1703.05175
|
http://arxiv.org/abs/1703.05175v2
|
http://arxiv.org/pdf/1703.05175v2.pdf
|
https://github.com/jakesnell/prototypical-networks
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/bayesian-additive-regression-trees-for
|
Bayesian additive regression trees for probabilistic programming
|
2206.03619
|
https://arxiv.org/abs/2206.03619v4
|
https://arxiv.org/pdf/2206.03619v4.pdf
|
https://github.com/grupo-de-modelado-probabilista/bart
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/automated-classification-of-model-errors-on-1
|
Automated Classification of Model Errors on ImageNet
|
2401.02430
|
https://arxiv.org/abs/2401.02430v1
|
https://arxiv.org/pdf/2401.02430v1.pdf
|
https://github.com/eth-sri/automated-error-analysis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-data-transformer-2-multi-context
|
Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity
| null |
https://openreview.net/forum?id=CBBtMnlTGq
|
https://openreview.net/pdf?id=CBBtMnlTGq
|
https://github.com/joel99/context_general_bci
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dynamic-path-controllable-deep-unfolding
|
Dynamic Path-Controllable Deep Unfolding Network for Compressive Sensing
|
2306.16060
|
https://arxiv.org/abs/2306.16060v2
|
https://arxiv.org/pdf/2306.16060v2.pdf
|
https://github.com/songjiechong/dpc-dun
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/crossner-evaluating-cross-domain-named-entity
|
CrossNER: Evaluating Cross-Domain Named Entity Recognition
|
2012.04373
|
https://arxiv.org/abs/2012.04373v2
|
https://arxiv.org/pdf/2012.04373v2.pdf
|
https://github.com/jbogensperger/DRUG_CROSSNER
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/joint-resource-and-admission-management-for
|
Joint Resource and Admission Management for Slice-enabled Networks
|
1912.00192
|
https://arxiv.org/abs/1912.00192v2
|
https://arxiv.org/pdf/1912.00192v2.pdf
|
https://github.com/sinaebrahimi/energy-efficient-slicing
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/a-more-fine-grained-aspect-sentiment-opinion
|
A More Fine-Grained Aspect-Sentiment-Opinion Triplet Extraction Task
|
2103.15255
|
https://arxiv.org/abs/2103.15255v5
|
https://arxiv.org/pdf/2103.15255v5.pdf
|
https://github.com/l294265421/GTS-ASOTE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/impara-impact-based-metric-for-gec-using
|
IMPARA: Impact-Based Metric for GEC Using Parallel Data
| null |
https://aclanthology.org/2022.coling-1.316
|
https://aclanthology.org/2022.coling-1.316.pdf
|
https://github.com/gotutiyan/IMPARA
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/action-units-that-constitute-trainable-micro
|
How to Synthesize a Large-Scale and Trainable Micro-Expression Dataset?
|
2112.01730
|
https://arxiv.org/abs/2112.01730v7
|
https://arxiv.org/pdf/2112.01730v7.pdf
|
https://github.com/liuyvchi/mie-x
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-transformer-based-representation-learning
|
A Transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics
|
2306.00864
|
https://arxiv.org/abs/2306.00864v1
|
https://arxiv.org/pdf/2306.00864v1.pdf
|
https://github.com/rl4m/irene
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rgb-t-semantic-segmentation-with-location
|
RGB-T Semantic Segmentation with Location, Activation, and Sharpening
|
2210.14530
|
https://arxiv.org/abs/2210.14530v1
|
https://arxiv.org/pdf/2210.14530v1.pdf
|
https://github.com/mathlee/lasnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/chainforge-a-visual-toolkit-for-prompt
|
ChainForge: A Visual Toolkit for Prompt Engineering and LLM Hypothesis Testing
|
2309.09128
|
https://arxiv.org/abs/2309.09128v3
|
https://arxiv.org/pdf/2309.09128v3.pdf
|
https://github.com/ianarawjo/ChainForge
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-to-teach-large-language-models
|
Improving Large Language Models in Event Relation Logical Prediction
|
2310.09158
|
https://arxiv.org/abs/2310.09158v2
|
https://arxiv.org/pdf/2310.09158v2.pdf
|
https://github.com/chenmeiqii/teach-llm-lr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-mode-connectivity-oriented-adversarial
|
Robust Mode Connectivity-Oriented Adversarial Defense: Enhancing Neural Network Robustness Against Diversified $\ell_p$ Attacks
|
2303.10225
|
https://arxiv.org/abs/2303.10225v1
|
https://arxiv.org/pdf/2303.10225v1.pdf
|
https://github.com/wangren09/mcgr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bevpoolv2-a-cutting-edge-implementation-of
|
BEVPoolv2: A Cutting-edge Implementation of BEVDet Toward Deployment
|
2211.17111
|
https://arxiv.org/abs/2211.17111v1
|
https://arxiv.org/pdf/2211.17111v1.pdf
|
https://github.com/HuangJunJie2017/BEVDet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/comet-atomic-2020-on-symbolic-and-neural
|
COMET-ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs
|
2010.05953
|
https://arxiv.org/abs/2010.05953v2
|
https://arxiv.org/pdf/2010.05953v2.pdf
|
https://github.com/epfl-nlp/kogito
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/kogito-a-commonsense-knowledge-inference
|
kogito: A Commonsense Knowledge Inference Toolkit
|
2211.08451
|
https://arxiv.org/abs/2211.08451v3
|
https://arxiv.org/pdf/2211.08451v3.pdf
|
https://github.com/epfl-nlp/kogito
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-model-adaptation-for-continual
|
Unsupervised Model Adaptation for Continual Semantic Segmentation
|
2009.12518
|
https://arxiv.org/abs/2009.12518v2
|
https://arxiv.org/pdf/2009.12518v2.pdf
|
https://github.com/serbanstan/mas3-continual
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/finding-deep-learning-compilation-bugs-with
|
NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers
|
2207.13066
|
https://arxiv.org/abs/2207.13066v2
|
https://arxiv.org/pdf/2207.13066v2.pdf
|
https://github.com/ganler/nnsmith-asplos-artifact
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/genomic-interpreter-a-hierarchical-genomic
|
Genomic Interpreter: A Hierarchical Genomic Deep Neural Network with 1D Shifted Window Transformer
|
2306.05143
|
https://arxiv.org/abs/2306.05143v2
|
https://arxiv.org/pdf/2306.05143v2.pdf
|
https://github.com/zehui127/1d-swin
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cobaya-code-for-bayesian-analysis-of
|
Cobaya: Code for Bayesian Analysis of hierarchical physical models
|
2005.05290
|
https://arxiv.org/abs/2005.05290v2
|
https://arxiv.org/pdf/2005.05290v2.pdf
|
https://github.com/minhmpa/cobaya
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/optimal-sets-and-solution-paths-of-relu
|
Optimal Sets and Solution Paths of ReLU Networks
|
2306.00119
|
https://arxiv.org/abs/2306.00119v2
|
https://arxiv.org/pdf/2306.00119v2.pdf
|
https://github.com/pilancilab/relu_optimal_sets
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hyperbolic-vision-transformers-combining
|
Hyperbolic Vision Transformers: Combining Improvements in Metric Learning
|
2203.10833
|
https://arxiv.org/abs/2203.10833v2
|
https://arxiv.org/pdf/2203.10833v2.pdf
|
https://github.com/OML-Team/open-metric-learning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vusfavariational-universal-successor-features
|
VUSFA:Variational Universal Successor Features Approximator to Improve Transfer DRL for Target Driven Visual Navigation
|
1908.06376
|
https://arxiv.org/abs/1908.06376v1
|
https://arxiv.org/pdf/1908.06376v1.pdf
|
https://github.com/shamanez/masters-work-target-driven-visual-navigation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/acfd-asymmetric-cartoon-face-detector
|
ACFD: Asymmetric Cartoon Face Detector
|
2007.00899
|
https://arxiv.org/abs/2007.00899v1
|
https://arxiv.org/pdf/2007.00899v1.pdf
|
https://github.com/barisbatuhan/dass_det_inference
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/object-detection-for-comics-using-manga109
|
Object Detection for Comics using Manga109 Annotations
|
1803.08670
|
http://arxiv.org/abs/1803.08670v2
|
http://arxiv.org/pdf/1803.08670v2.pdf
|
https://github.com/barisbatuhan/dass_det_inference
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/contrastive-semi-supervised-learning-for
|
Contrastive Semi-supervised Learning for Domain Adaptive Segmentation Across Similar Anatomical Structures
|
2208.08605
|
https://arxiv.org/abs/2208.08605v1
|
https://arxiv.org/pdf/2208.08605v1.pdf
|
https://github.com/hilab-git/dag4mia
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/eeg-aided-boosting-of-single-lead-ecg-based
|
EEG aided boosting of single-lead ECG based sleep staging with Deep Knowledge Distillation
|
2211.13125
|
https://arxiv.org/abs/2211.13125v1
|
https://arxiv.org/pdf/2211.13125v1.pdf
|
https://github.com/acrophase/sleep_staging_kd
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/harim-evaluating-summary-quality-with
|
HaRiM$^+$: Evaluating Summary Quality with Hallucination Risk
|
2211.12118
|
https://arxiv.org/abs/2211.12118v2
|
https://arxiv.org/pdf/2211.12118v2.pdf
|
https://github.com/ncsoft/harim_plus
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/mixed-integer-linear-optimization
|
Mixed integer linear optimization formulations for learning optimal binary classification trees
|
2206.04857
|
https://arxiv.org/abs/2206.04857v2
|
https://arxiv.org/pdf/2206.04857v2.pdf
|
https://github.com/brandalston/OBCT
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/applying-machine-learning-to-crowd-sourced
|
Applying Machine Learning to Crowd-sourced Data from Earthquake Detective
|
2011.04740
|
https://arxiv.org/abs/2011.04740v2
|
https://arxiv.org/pdf/2011.04740v2.pdf
|
https://github.com/Omkar-Ranadive/Earthquake-Detective
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lsg-cpd-coherent-point-drift-with-local
|
LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration
|
2103.15039
|
https://arxiv.org/abs/2103.15039v2
|
https://arxiv.org/pdf/2103.15039v2.pdf
|
https://github.com/chirikjianlab/lsg-cpd
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/case-studies-of-development-of-verified
|
Case studies of development of verified programs with Dafny for accessibility assessment
|
2301.03224
|
https://arxiv.org/abs/2301.03224v1
|
https://arxiv.org/pdf/2301.03224v1.pdf
|
https://github.com/joaopascoalfariafeup/dafnyprojects
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/phase2vec-dynamical-systems-embedding-with-a
|
Phase2vec: Dynamical systems embedding with a physics-informed convolutional network
|
2212.03857
|
https://arxiv.org/abs/2212.03857v2
|
https://arxiv.org/pdf/2212.03857v2.pdf
|
https://github.com/nitzanlab/phase2vec
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-network-approach-to-scaling-analysis
|
Neural Network Approach to Scaling Analysis of Critical Phenomena
|
2209.01777
|
https://arxiv.org/abs/2209.01777v3
|
https://arxiv.org/pdf/2209.01777v3.pdf
|
https://github.com/yonesuke/jaxfss
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/splice-a-synthetic-paid-loss-and-incurred
|
SPLICE: A Synthetic Paid Loss and Incurred Cost Experience Simulator
|
2109.04058
|
https://arxiv.org/abs/2109.04058v4
|
https://arxiv.org/pdf/2109.04058v4.pdf
|
https://github.com/agi-lab/SPLICE
| false
| true
| true
|
none
|
https://paperswithcode.com/paper/pre-training-also-transfers-non-robustness
|
ImageNet Pre-training also Transfers Non-Robustness
|
2106.10989
|
https://arxiv.org/abs/2106.10989v4
|
https://arxiv.org/pdf/2106.10989v4.pdf
|
https://github.com/jiamingzhang94/imagenet-pretraining-transfers-non-robustness
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/roboflow-100-a-rich-multi-domain-object
|
Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark
|
2211.13523
|
https://arxiv.org/abs/2211.13523v3
|
https://arxiv.org/pdf/2211.13523v3.pdf
|
https://github.com/roboflow-ai/roboflow-100-benchmark
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/recipe-for-a-general-powerful-scalable-graph
|
Recipe for a General, Powerful, Scalable Graph Transformer
|
2205.12454
|
https://arxiv.org/abs/2205.12454v4
|
https://arxiv.org/pdf/2205.12454v4.pdf
|
https://github.com/graphcore/ogb-lsc-pcqm4mv2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/metaxl-meta-representation-transformation-for
|
MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning
|
2104.07908
|
https://arxiv.org/abs/2104.07908v1
|
https://arxiv.org/pdf/2104.07908v1.pdf
|
https://github.com/liatb282/metaxlr
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/metaxlr-mixed-language-meta-representation
|
MetaXLR -- Mixed Language Meta Representation Transformation for Low-resource Cross-lingual Learning based on Multi-Armed Bandit
|
2306.00100
|
https://arxiv.org/abs/2306.00100v1
|
https://arxiv.org/pdf/2306.00100v1.pdf
|
https://github.com/liatb282/metaxlr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/characterizing-verbatim-short-term-memory-in
|
Characterizing Verbatim Short-Term Memory in Neural Language Models
|
2210.13569
|
https://arxiv.org/abs/2210.13569v2
|
https://arxiv.org/pdf/2210.13569v2.pdf
|
https://github.com/kristijanarmeni/verbatim-memory-in-nlms
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fixed-frustratingly-easy-domain
|
FIXED: Frustratingly Easy Domain Generalization with Mixup
|
2211.05228
|
https://arxiv.org/abs/2211.05228v2
|
https://arxiv.org/pdf/2211.05228v2.pdf
|
https://github.com/jindongwang/transferlearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/an-approach-for-detecting-dynamic-communities
|
An Approach for Detecting Dynamic Communities in Social Networks
|
2212.02383
|
https://arxiv.org/abs/2212.02383v1
|
https://arxiv.org/pdf/2212.02383v1.pdf
|
https://github.com/Yquetzal/ECML_PKDD_2019
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/class-continuous-conditional-generative
|
Class-Continuous Conditional Generative Neural Radiance Field
|
2301.00950
|
https://arxiv.org/abs/2301.00950v3
|
https://arxiv.org/pdf/2301.00950v3.pdf
|
https://github.com/tom919654/C3G-NeRF
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ogb-lsc-a-large-scale-challenge-for-machine
|
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
|
2103.09430
|
https://arxiv.org/abs/2103.09430v3
|
https://arxiv.org/pdf/2103.09430v3.pdf
|
https://github.com/graphcore/ogb-lsc-pcqm4mv2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-persistent-spatial-semantic-representation
|
A Persistent Spatial Semantic Representation for High-level Natural Language Instruction Execution
|
2107.05612
|
https://arxiv.org/abs/2107.05612v3
|
https://arxiv.org/pdf/2107.05612v3.pdf
|
https://github.com/valtsblukis/hlsm
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/editing-models-with-task-arithmetic
|
Editing Models with Task Arithmetic
|
2212.04089
|
https://arxiv.org/abs/2212.04089v3
|
https://arxiv.org/pdf/2212.04089v3.pdf
|
https://github.com/mlfoundations/task_vectors
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-mixture-based-framework-for-guiding
|
A Mixture-Based Framework for Guiding Diffusion Models
|
2502.03332
|
https://arxiv.org/abs/2502.03332v1
|
https://arxiv.org/pdf/2502.03332v1.pdf
|
https://github.com/badr-moufad/mgdm
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/machine-learning-in-the-quantum-age-quantum
|
Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines
|
2310.10910
|
https://arxiv.org/abs/2310.10910v1
|
https://arxiv.org/pdf/2310.10910v1.pdf
|
https://github.com/detasar/quantum_computing_notebooks/blob/main/SVC_VS_gridSearchQSVC.ipynb
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/classification-and-transformations-of-quantum
|
Classification and transformations of quantum circuit decompositions for permutation operations
|
2312.11644
|
https://arxiv.org/abs/2312.11644v1
|
https://arxiv.org/pdf/2312.11644v1.pdf
|
https://github.com/quconot/quconot
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/siena-galaxy-atlas-2020
|
Siena Galaxy Atlas 2020
|
2307.04888
|
https://arxiv.org/abs/2307.04888v1
|
https://arxiv.org/pdf/2307.04888v1.pdf
|
https://github.com/moustakas/SGA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/megacrn-meta-graph-convolutional-recurrent
|
MegaCRN: Meta-Graph Convolutional Recurrent Network for Spatio-Temporal Modeling
|
2212.05989
|
https://arxiv.org/abs/2212.05989v2
|
https://arxiv.org/pdf/2212.05989v2.pdf
|
https://github.com/deepkashiwa20/megacrn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/elisa-a-new-tool-for-fast-modelling-of
|
ELISa: A new tool for fast modelling of eclipsing binaries
|
2106.10116
|
https://arxiv.org/abs/2106.10116v1
|
https://arxiv.org/pdf/2106.10116v1.pdf
|
https://github.com/mikecokina/elisa
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/adjusting-posteriors-from-composite-and
|
An Efficient Workflow for Modelling High-Dimensional Spatial Extremes
|
2210.00760
|
https://arxiv.org/abs/2210.00760v2
|
https://arxiv.org/pdf/2210.00760v2.pdf
|
https://github.com/siliusmv/spatialconditionalextremes
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/unsupervised-detection-of-contextualized
|
Unsupervised Detection of Contextualized Embedding Bias with Application to Ideology
|
2212.07547
|
https://arxiv.org/abs/2212.07547v1
|
https://arxiv.org/pdf/2212.07547v1.pdf
|
https://github.com/valentinhofmann/unsupervised_bias
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/crossmoda-2021-challenge-benchmark-of-cross
|
CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation
|
2201.02831
|
https://arxiv.org/abs/2201.02831v3
|
https://arxiv.org/pdf/2201.02831v3.pdf
|
https://github.com/JianghaoWu/FPL-UDA
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/designing-stable-neural-networks-using-convex
|
Designing Stable Neural Networks using Convex Analysis and ODEs
|
2306.17332
|
https://arxiv.org/abs/2306.17332v2
|
https://arxiv.org/pdf/2306.17332v2.pdf
|
https://github.com/fsherry/non-expansive-odes
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-natural-language-inference-in
|
Improving Natural Language Inference in Arabic using Transformer Models and Linguistically Informed Pre-Training
|
2307.14666
|
https://arxiv.org/abs/2307.14666v1
|
https://arxiv.org/pdf/2307.14666v1.pdf
|
https://github.com/fraunhofer-iais/arabic_nlp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-effect-of-balancing-methods-on-model
|
The Effect of Balancing Methods on Model Behavior in Imbalanced Classification Problems
|
2307.00157
|
https://arxiv.org/abs/2307.00157v1
|
https://arxiv.org/pdf/2307.00157v1.pdf
|
https://github.com/adrianstando/ecml-pkdd-2023-effects-of-data-balancing
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/make-interval-bound-propagation-great-again
|
Make Interval Bound Propagation great again
|
2410.03373
|
https://arxiv.org/abs/2410.03373v1
|
https://arxiv.org/pdf/2410.03373v1.pdf
|
https://github.com/gmum/make-interval-bound-propagation-great-again
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/nezha-deployable-and-high-performance
|
Nezha: Deployable and High-Performance Consensus Using Synchronized Clocks
|
2206.03285
|
https://arxiv.org/abs/2206.03285v10
|
https://arxiv.org/pdf/2206.03285v10.pdf
|
https://github.com/steamgjk/nezha
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/evaluating-and-improving-the-robustness-of
|
Robustness of LiDAR-Based Pose Estimation: Evaluating and Improving Odometry and Localization Under Common Point Cloud Corruptions
|
2409.10824
|
https://arxiv.org/abs/2409.10824v2
|
https://arxiv.org/pdf/2409.10824v2.pdf
|
https://github.com/boyang9602/LiDARLocRobustness
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-probabilistic-fluctuation-based-membership
|
A Probabilistic Fluctuation based Membership Inference Attack for Diffusion Models
|
2308.12143
|
https://arxiv.org/abs/2308.12143v5
|
https://arxiv.org/pdf/2308.12143v5.pdf
|
https://github.com/wjfu99/mia-gen
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-training-of-universal
|
Weakly supervised training of universal visual concepts for multi-domain semantic segmentation
|
2212.10340
|
https://arxiv.org/abs/2212.10340v3
|
https://arxiv.org/pdf/2212.10340v3.pdf
|
https://github.com/unizg-fer-d307/universal_taxonomies
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/safe-and-smooth-certified-continuous-time
|
Safe and Smooth: Certified Continuous-Time Range-Only Localization
|
2209.04266
|
https://arxiv.org/abs/2209.04266v5
|
https://arxiv.org/pdf/2209.04266v5.pdf
|
https://github.com/utiasasrl/safe_and_smooth
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/making-pre-trained-language-models-better-few
|
Making Pre-trained Language Models Better Few-shot Learners
|
2012.15723
|
https://arxiv.org/abs/2012.15723v2
|
https://arxiv.org/pdf/2012.15723v2.pdf
|
https://github.com/ucsb-nlp-chang/promptboosting
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/endomorphism-algebras-of-geometrically-split
|
Endomorphism algebras of geometrically split genus 2 Jacobians over Q
|
2212.11102
|
https://arxiv.org/abs/2212.11102v1
|
https://arxiv.org/pdf/2212.11102v1.pdf
|
https://github.com/xguitart/endalgebrasg2
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-long-term-fairness-in-recommendation
|
Towards Long-term Fairness in Recommendation
|
2101.03584
|
https://arxiv.org/abs/2101.03584v1
|
https://arxiv.org/pdf/2101.03584v1.pdf
|
https://github.com/TobyGE/FCPO
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/incomplete-multi-view-multi-label-learning
|
Incomplete Multi-View Multi-Label Learning via Label-Guided Masked View- and Category-Aware Transformers
|
2303.07180
|
https://arxiv.org/abs/2303.07180v1
|
https://arxiv.org/pdf/2303.07180v1.pdf
|
https://github.com/justsmart/LMVCAT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-physics-informed-neural-network-pinn
|
A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs
|
2409.10910
|
https://arxiv.org/abs/2409.10910v1
|
https://arxiv.org/pdf/2409.10910v1.pdf
|
https://github.com/shiv12spingo/PINN_Research/tree/main/Solidification_Problem
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/cross-view-meets-diffusion-aerial-image
|
Cross-View Meets Diffusion: Aerial Image Synthesis with Geometry and Text Guidance
|
2408.04224
|
https://arxiv.org/abs/2408.04224v2
|
https://arxiv.org/pdf/2408.04224v2.pdf
|
https://gitlab.com/vail-uvm/gpg2a
| false
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/promptboosting-black-box-text-classification
|
PromptBoosting: Black-Box Text Classification with Ten Forward Passes
|
2212.09257
|
https://arxiv.org/abs/2212.09257v2
|
https://arxiv.org/pdf/2212.09257v2.pdf
|
https://github.com/ucsb-nlp-chang/promptboosting
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/causal-triplet-an-open-challenge-for
|
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning
|
2301.05169
|
https://arxiv.org/abs/2301.05169v2
|
https://arxiv.org/pdf/2301.05169v2.pdf
|
https://github.com/CausalTriplet/causaltriplet
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/stereo-nec-enhancing-stereo-visual-inertial
|
Stereo-NEC: Enhancing Stereo Visual-Inertial SLAM Initialization with Normal Epipolar Constraints
|
2403.07225
|
https://arxiv.org/abs/2403.07225v1
|
https://arxiv.org/pdf/2403.07225v1.pdf
|
https://github.com/apdowjn/stereo-nec
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ranking-with-submodular-functions-on-the-fly
|
Ranking with submodular functions on the fly
|
2301.06787
|
https://arxiv.org/abs/2301.06787v1
|
https://arxiv.org/pdf/2301.06787v1.pdf
|
https://github.com/Guangyi-Zhang/subm-ranking-on-the-fly
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/weakly-supervised-learning-of-cortical
|
Weakly Supervised Learning of Cortical Surface Reconstruction from Segmentations
|
2406.12650
|
https://arxiv.org/abs/2406.12650v1
|
https://arxiv.org/pdf/2406.12650v1.pdf
|
https://github.com/m-qiang/CoSeg
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/comparison-between-behavior-trees-and-finite
|
Comparison between Behavior Trees and Finite State Machines
|
2405.16137
|
https://arxiv.org/abs/2405.16137v1
|
https://arxiv.org/pdf/2405.16137v1.pdf
|
https://github.com/ethz-asl/bt_fsm_comparison
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/union-subgraph-neural-networks
|
Union Subgraph Neural Networks
|
2305.15747
|
https://arxiv.org/abs/2305.15747v3
|
https://arxiv.org/pdf/2305.15747v3.pdf
|
https://github.com/angusmonroe/unionsnn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rgb-d-based-categorical-object-pose-and-shape
|
RGB-D-Based Categorical Object Pose and Shape Estimation: Methods, Datasets, and Evaluation
|
2301.08147
|
https://arxiv.org/abs/2301.08147v1
|
https://arxiv.org/pdf/2301.08147v1.pdf
|
https://github.com/roym899/pose_and_shape_evaluation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/albert-a-lite-bert-for-self-supervised
|
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
|
1909.11942
|
https://arxiv.org/abs/1909.11942v6
|
https://arxiv.org/pdf/1909.11942v6.pdf
|
https://github.com/lyqcom/albert
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-hyperspectral-imaging-dataset-and
|
A Hyperspectral Imaging Dataset and Methodology for Intraoperative Pixel-Wise Classification of Metastatic Colon Cancer in the Liver
|
2411.06969
|
https://arxiv.org/abs/2411.06969v1
|
https://arxiv.org/pdf/2411.06969v1.pdf
|
https://github.com/ikopriva/coloncancerhsi
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/measuring-faithful-and-plausible-visual
|
Measuring Faithful and Plausible Visual Grounding in VQA
|
2305.15015
|
https://arxiv.org/abs/2305.15015v2
|
https://arxiv.org/pdf/2305.15015v2.pdf
|
https://github.com/dreichcsl/fpvg
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/moment-based-kalman-filter-nonlinear-kalman
|
Moment-based Kalman Filter: Nonlinear Kalman Filtering with Exact Moment Propagation
|
2301.09130
|
https://arxiv.org/abs/2301.09130v1
|
https://arxiv.org/pdf/2301.09130v1.pdf
|
https://github.com/purewater0901/mkf
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/yosysnextpnr-an-open-source-framework-from
|
Yosys+nextpnr: an Open Source Framework from Verilog to Bitstream for Commercial FPGAs
|
1903.10407
|
http://arxiv.org/abs/1903.10407v1
|
http://arxiv.org/pdf/1903.10407v1.pdf
|
https://github.com/gatecat/nextpnr-xilinx
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/moment-based-exact-uncertainty-propagation
|
Moment-Based Exact Uncertainty Propagation Through Nonlinear Stochastic Autonomous Systems
|
2101.12490
|
https://arxiv.org/abs/2101.12490v1
|
https://arxiv.org/pdf/2101.12490v1.pdf
|
https://github.com/purewater0901/mkf
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/near-linear-time-algorithm-to-detect
|
Near linear time algorithm to detect community structures in large-scale networks
|
0709.2938
|
http://arxiv.org/abs/0709.2938v1
|
http://arxiv.org/pdf/0709.2938v1.pdf
|
https://github.com/ionicf/copra-communities-seq
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/finding-overlapping-communities-in-networks
|
Finding overlapping communities in networks by label propagation
|
0910.5516
|
http://arxiv.org/abs/0910.5516v3
|
http://arxiv.org/pdf/0910.5516v3.pdf
|
https://github.com/ionicf/copra-communities-seq
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/opencitations-meta
|
OpenCitations Meta
|
2306.16191
|
https://arxiv.org/abs/2306.16191v1
|
https://arxiv.org/pdf/2306.16191v1.pdf
|
https://github.com/opencitations/oc_meta
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/data-consistent-deep-rigid-mri-motion
|
Data Consistent Deep Rigid MRI Motion Correction
|
2301.10365
|
https://arxiv.org/abs/2301.10365v2
|
https://arxiv.org/pdf/2301.10365v2.pdf
|
https://github.com/nalinimsingh/neuromoco
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/lemma-bootstrapping-high-level-mathematical
|
LEMMA: Bootstrapping High-Level Mathematical Reasoning with Learned Symbolic Abstractions
|
2211.08671
|
https://arxiv.org/abs/2211.08671v1
|
https://arxiv.org/pdf/2211.08671v1.pdf
|
https://github.com/uranium11010/lemma
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/inductive-reasoning-for-coinductive-types
|
Inductive Reasoning for Coinductive Types
|
2301.09802
|
https://arxiv.org/abs/2301.09802v2
|
https://arxiv.org/pdf/2301.09802v2.pdf
|
https://github.com/bagnalla/algco
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/closing-the-loop-testing-chatgpt-to-generate
|
Closing the Loop: Testing ChatGPT to Generate Model Explanations to Improve Human Labelling of Sponsored Content on Social Media
|
2306.05115
|
https://arxiv.org/abs/2306.05115v1
|
https://arxiv.org/pdf/2306.05115v1.pdf
|
https://github.com/thalesbertaglia/chatgpt-explanations-sponsored-content
| true
| true
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.