paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/sequence-learning-using-equilibrium
|
Sequence Learning Using Equilibrium Propagation
|
2209.09626
|
https://arxiv.org/abs/2209.09626v4
|
https://arxiv.org/pdf/2209.09626v4.pdf
|
https://github.com/neurocomplab-psu/eqprop-seqlearning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/syntax-driven-approach-for-semantic-role
|
Syntax-driven Approach for Semantic Role Labeling
| null |
https://aclanthology.org/2022.lrec-1.772
|
https://aclanthology.org/2022.lrec-1.772.pdf
|
https://github.com/synlp/srl-mm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-japanese-dataset-for-subjective-and
|
A Japanese Dataset for Subjective and Objective Sentiment Polarity Classification in Micro Blog Domain
| null |
https://aclanthology.org/2022.lrec-1.759
|
https://aclanthology.org/2022.lrec-1.759.pdf
|
https://github.com/ids-cv/wrime
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dynamic-convolution-attention-over
|
Dynamic Convolution: Attention over Convolution Kernels
|
1912.03458
|
https://arxiv.org/abs/1912.03458v2
|
https://arxiv.org/pdf/1912.03458v2.pdf
|
https://github.com/mindspore-courses/External-Attention-MindSpore/blob/main/model/conv/DynamicConv.py
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/accurate-explanation-model-for-image
|
Accurate Explanation Model for Image Classifiers using Class Association Embedding
|
2406.07961
|
https://arxiv.org/abs/2406.07961v3
|
https://arxiv.org/pdf/2406.07961v3.pdf
|
https://github.com/xrt11/xai-code
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multimodality-for-nlp-centered-applications
|
Multimodality for NLP-Centered Applications: Resources, Advances and Frontiers
| null |
https://aclanthology.org/2022.lrec-1.738
|
https://aclanthology.org/2022.lrec-1.738.pdf
|
https://github.com/drmuskangarg/multimodal-datasets
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bat-lz-out-of-hell
|
BAT-LZ Out of Hell
|
2403.09893
|
https://arxiv.org/abs/2403.09893v2
|
https://arxiv.org/pdf/2403.09893v2.pdf
|
https://github.com/fmasillo/bat-lz
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/explainable-reinforcement-learning-via-model
|
Explainable Reinforcement Learning via Model Transforms
|
2209.12006
|
https://arxiv.org/abs/2209.12006v2
|
https://arxiv.org/pdf/2209.12006v2.pdf
|
https://github.com/sarah-keren/rlpe
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-free-open-source-morphological-analyser-and
|
A Free/Open-Source Morphological Analyser and Generator for Sakha
| null |
https://aclanthology.org/2022.lrec-1.550
|
https://aclanthology.org/2022.lrec-1.550.pdf
|
https://github.com/apertium/apertium-sah
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/hyperreel-high-fidelity-6-dof-video-with-ray
|
HyperReel: High-Fidelity 6-DoF Video with Ray-Conditioned Sampling
|
2301.02238
|
https://arxiv.org/abs/2301.02238v2
|
https://arxiv.org/pdf/2301.02238v2.pdf
|
https://github.com/facebookresearch/hyperreel
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/basicvsr-the-search-for-essential-components
|
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond
|
2012.02181
|
https://arxiv.org/abs/2012.02181v2
|
https://arxiv.org/pdf/2012.02181v2.pdf
|
https://github.com/XPixelGroup/BasicSR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/evaluating-explainability-for-graph-neural
|
Evaluating Explainability for Graph Neural Networks
|
2208.09339
|
https://arxiv.org/abs/2208.09339v2
|
https://arxiv.org/pdf/2208.09339v2.pdf
|
https://github.com/mims-harvard/graphxai
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/reproducibility-report-contrastive-learning
|
Reproducibility Report: Contrastive Learning of Socially-aware Motion Representations
|
2208.09284
|
https://arxiv.org/abs/2208.09284v1
|
https://arxiv.org/pdf/2208.09284v1.pdf
|
https://github.com/vita-epfl/social-nce
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/amr-similarity-metrics-from-principles
|
AMR Similarity Metrics from Principles
|
2001.10929
|
https://arxiv.org/abs/2001.10929v2
|
https://arxiv.org/pdf/2001.10929v2.pdf
|
https://github.com/flipz357/amr-metric-suite
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/dcsf-deep-convolutional-set-functions-for
|
DCSF: Deep Convolutional Set Functions for Classification of Asynchronous Time Series
|
2208.11374
|
https://arxiv.org/abs/2208.11374v1
|
https://arxiv.org/pdf/2208.11374v1.pdf
|
https://github.com/yalavarthivk/dcsf
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/entropy-solutions-of-non-local-scalar
|
Entropy solutions of non-local scalar conservation laws with congestion via deterministic particle method
|
2107.10760
|
https://arxiv.org/abs/2107.10760v2
|
https://arxiv.org/pdf/2107.10760v2.pdf
|
https://github.com/FedericoStra/cons-laws
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/semi-supervised-conditional-gan-for
|
Semi-supervised Conditional GAN for Simultaneous Generation and Detection of Phishing URLs: A Game theoretic Perspective
|
2108.01852
|
https://arxiv.org/abs/2108.01852v3
|
https://arxiv.org/pdf/2108.01852v3.pdf
|
https://github.com/SharifAmit/Semi-supervised-Phishing-Detection-GAN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/decoding-demographic-un-fairness-from-indian
|
Decoding Demographic un-fairness from Indian Names
|
2209.03089
|
https://arxiv.org/abs/2209.03089v1
|
https://arxiv.org/pdf/2209.03089v1.pdf
|
https://github.com/vahini01/indiandemographics
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/social-media-engagement-and-cryptocurrency
|
Social Media Engagement and Cryptocurrency Performance
|
2209.02911
|
https://arxiv.org/abs/2209.02911v1
|
https://arxiv.org/pdf/2209.02911v1.pdf
|
https://github.com/kai-trading-bot/crypto_engagement
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/3d-bounding-box-estimation-using-deep
|
3D Bounding Box Estimation Using Deep Learning and Geometry
|
1612.00496
|
http://arxiv.org/abs/1612.00496v2
|
http://arxiv.org/pdf/1612.00496v2.pdf
|
https://github.com/ruhyadi/YOLO3D
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/constrained-update-projection-approach-to
|
Constrained Update Projection Approach to Safe Policy Optimization
|
2209.07089
|
https://arxiv.org/abs/2209.07089v2
|
https://arxiv.org/pdf/2209.07089v2.pdf
|
https://github.com/zmsn-2077/cup-safe-rl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/nsnet-a-general-neural-probabilistic
|
NSNet: A General Neural Probabilistic Framework for Satisfiability Problems
|
2211.03880
|
https://arxiv.org/abs/2211.03880v1
|
https://arxiv.org/pdf/2211.03880v1.pdf
|
https://github.com/zhaoyu-li/nsnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-japanese-masked-language-model-for-academic
|
A Japanese Masked Language Model for Academic Domain
| null |
https://aclanthology.org/2022.sdp-1.16
|
https://aclanthology.org/2022.sdp-1.16.pdf
|
https://github.com/hirokiyamauch/academicroberta
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/transfer-learning-in-ecg-diagnosis-is-it
|
Transfer Learning in ECG Diagnosis: Is It Effective?
|
2402.02021
|
https://arxiv.org/abs/2402.02021v2
|
https://arxiv.org/pdf/2402.02021v2.pdf
|
https://github.com/cuongvng/transfer-learning-ecg-diagnosis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/conformal-inference-for-cell-type-annotation
|
Conformal inference for cell type annotation with graph-structured constraints
|
2410.23786
|
https://arxiv.org/abs/2410.23786v1
|
https://arxiv.org/pdf/2410.23786v1.pdf
|
https://github.com/ccb-hms/scconform
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-surprising-effectiveness-of-mappo-in
|
The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
|
2103.01955
|
https://arxiv.org/abs/2103.01955v4
|
https://arxiv.org/pdf/2103.01955v4.pdf
|
https://github.com/tjuhaoxiaotian/pymarl3
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-practical-guide-and-software-for-analysing
|
A practical guide and software for analysing pairwise comparison experiments
|
1712.03686
|
http://arxiv.org/abs/1712.03686v2
|
http://arxiv.org/pdf/1712.03686v2.pdf
|
https://github.com/mantiuk/pwcmp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lapred-lane-aware-prediction-of-multi-modal
|
LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of Dynamic Agents
|
2104.00249
|
https://arxiv.org/abs/2104.00249v1
|
https://arxiv.org/pdf/2104.00249v1.pdf
|
https://github.com/bdokim/LaPred
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generating-artificial-light-curves-revisited
|
Generating artificial light curves: Revisited and updated
|
1305.0304
|
https://arxiv.org/abs/1305.0304v1
|
https://arxiv.org/pdf/1305.0304v1.pdf
|
https://github.com/lena-lin/emmanoulopoulos
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-automated-process-for-2d-and-3d-finite
|
Automated 2D and 3D Finite Element Overclosure Adjustment and Mesh Morphing Using Generalized Regression Neural Networks
|
2209.06948
|
https://arxiv.org/abs/2209.06948v3
|
https://arxiv.org/pdf/2209.06948v3.pdf
|
https://github.com/thor-andreassen/femors
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/investigating-semantic-subspaces-of
|
Investigating semantic subspaces of Transformer sentence embeddings through linear structural probing
|
2310.11923
|
https://arxiv.org/abs/2310.11923v1
|
https://arxiv.org/pdf/2310.11923v1.pdf
|
https://github.com/macleginn/semantic-subspaces-code
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/introduction-to-astroml-machine-learning-for
|
Introduction to astroML: Machine Learning for Astrophysics
|
1411.5039
|
http://arxiv.org/abs/1411.5039v1
|
http://arxiv.org/pdf/1411.5039v1.pdf
|
https://github.com/LBJ-Wade/astroML
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-adaptive-kernel-estimator-for-the
|
An adaptive kernel estimator for the intensity function of spatio-temporal point processes
|
2208.12026
|
https://arxiv.org/abs/2208.12026v1
|
https://arxiv.org/pdf/2208.12026v1.pdf
|
https://github.com/jagm03/kernstadapt
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bayesian-quadrature-for-probability-threshold
|
An Active Learning Reliability Method for Systems with Partially Defined Performance Functions
|
2210.02168
|
https://arxiv.org/abs/2210.02168v2
|
https://arxiv.org/pdf/2210.02168v2.pdf
|
https://github.com/fiveai/hgp_experiments
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/investigating-the-effect-of-circuit-cutting
|
Investigating the effect of circuit cutting in QAOA for the MaxCut problem on NISQ devices
|
2302.01792
|
https://arxiv.org/abs/2302.01792v2
|
https://arxiv.org/pdf/2302.01792v2.pdf
|
https://github.com/anonym-scientist/cut-qaoa-paper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/3d-vsg-long-term-semantic-scene-change
|
3D VSG: Long-term Semantic Scene Change Prediction through 3D Variable Scene Graphs
|
2209.07896
|
https://arxiv.org/abs/2209.07896v2
|
https://arxiv.org/pdf/2209.07896v2.pdf
|
https://github.com/ethz-asl/3d_vsg
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/estimation-of-optical-aberrations-in-3d
|
Estimation of Optical Aberrations in 3D Microscopic Bioimages
|
2209.07911
|
https://arxiv.org/abs/2209.07911v1
|
https://arxiv.org/pdf/2209.07911v1.pdf
|
https://github.com/kiraving/aberration
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-learning-for-brain-metastasis-detection
|
Deep learning for brain metastasis detection and segmentation in longitudinal MRI data
|
2112.11833
|
https://arxiv.org/abs/2112.11833v5
|
https://arxiv.org/pdf/2112.11833v5.pdf
|
https://github.com/yixinghuang/deepmedicplus
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/high-resolution-image-synthesis-with-latent
|
High-Resolution Image Synthesis with Latent Diffusion Models
|
2112.10752
|
https://arxiv.org/abs/2112.10752v2
|
https://arxiv.org/pdf/2112.10752v2.pdf
|
https://github.com/compvis/stable-diffusion
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-attractor-network-for-single-microphone
|
Deep attractor network for single-microphone speaker separation
|
1611.08930
|
http://arxiv.org/abs/1611.08930v2
|
http://arxiv.org/pdf/1611.08930v2.pdf
|
https://github.com/KMASAHIRO/DANet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/serialized-interacting-mixed-membership
|
Serialized Interacting Mixed Membership Stochastic Block Model
|
2209.07813
|
https://arxiv.org/abs/2209.07813v1
|
https://arxiv.org/pdf/2209.07813v1.pdf
|
https://github.com/gaelpouxmedard/simsbm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/comparison-of-high-dimensional-bayesian
|
Comparison of High-Dimensional Bayesian Optimization Algorithms on BBOB
|
2303.00890
|
https://arxiv.org/abs/2303.00890v3
|
https://arxiv.org/pdf/2303.00890v3.pdf
|
https://github.com/marialaurasantoni/ioh-profiler-hdbo-comparison
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/robust-vocal-quality-feature-embeddings-for
|
Robust Vocal Quality Feature Embeddings for Dysphonic Voice Detection
|
2211.09858
|
https://arxiv.org/abs/2211.09858v2
|
https://arxiv.org/pdf/2211.09858v2.pdf
|
https://github.com/vigor-jzhang/dysphonic-emb
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/d-d-learning-human-dynamics-from-dynamic
|
D&D: Learning Human Dynamics from Dynamic Camera
|
2209.08790
|
https://arxiv.org/abs/2209.08790v1
|
https://arxiv.org/pdf/2209.08790v1.pdf
|
https://github.com/jeff-sjtu/dnd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hybrik-a-hybrid-analytical-neural-inverse
|
HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation
|
2011.14672
|
https://arxiv.org/abs/2011.14672v4
|
https://arxiv.org/pdf/2011.14672v4.pdf
|
https://github.com/jeff-sjtu/dnd
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cerberus-low-drift-visual-inertial-leg
|
Cerberus: Low-Drift Visual-Inertial-Leg Odometry For Agile Locomotion
|
2209.07654
|
https://arxiv.org/abs/2209.07654v1
|
https://arxiv.org/pdf/2209.07654v1.pdf
|
https://github.com/shuoyangrobotics/cerberus
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/monacobert-monotonic-attention-based-convbert
|
MonaCoBERT: Monotonic attention based ConvBERT for Knowledge Tracing
|
2208.12615
|
https://arxiv.org/abs/2208.12615v2
|
https://arxiv.org/pdf/2208.12615v2.pdf
|
https://github.com/codingchild2424/MonaCoBERT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/rucola-russian-corpus-of-linguistic
|
RuCoLA: Russian Corpus of Linguistic Acceptability
|
2210.12814
|
https://arxiv.org/abs/2210.12814v1
|
https://arxiv.org/pdf/2210.12814v1.pdf
|
https://github.com/russiannlp/rucola
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/apollo-an-adaptive-parameter-wise-diagonal
|
Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method for Nonconvex Stochastic Optimization
|
2009.13586
|
https://arxiv.org/abs/2009.13586v6
|
https://arxiv.org/pdf/2009.13586v6.pdf
|
https://github.com/XuezheMax/fairseq-apollo
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/panoramic-panoptic-segmentation-towards
|
Panoramic Panoptic Segmentation: Towards Complete Surrounding Understanding via Unsupervised Contrastive Learning
|
2103.00868
|
https://arxiv.org/abs/2103.00868v2
|
https://arxiv.org/pdf/2103.00868v2.pdf
|
https://github.com/alexanderjaus/PPS
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/phabox-a-web-server-for-identifying-and
|
PhaBOX: A web server for identifying and characterizing phage contigs in metagenomic data
|
2303.15707
|
https://arxiv.org/abs/2303.15707v3
|
https://arxiv.org/pdf/2303.15707v3.pdf
|
https://github.com/kennthshang/phabox
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/thinking-hallucination-for-video-captioning
|
Thinking Hallucination for Video Captioning
|
2209.13853
|
https://arxiv.org/abs/2209.13853v1
|
https://arxiv.org/pdf/2209.13853v1.pdf
|
https://github.com/nasib-ullah/THVC
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/pushing-the-limits-of-the-wiener-filter-in
|
Pushing The Limits of the Wiener Filter in Image Denoising
|
2303.16640
|
https://arxiv.org/abs/2303.16640v1
|
https://arxiv.org/pdf/2303.16640v1.pdf
|
https://github.com/mrbled/icicp_2023_wiener
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/forward-mode-automatic-differentiation-in
|
Forward-Mode Automatic Differentiation in Julia
|
1607.07892
|
http://arxiv.org/abs/1607.07892v1
|
http://arxiv.org/pdf/1607.07892v1.pdf
|
https://github.com/jesse-sharp/sharp2021b
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/generating-astronomical-spectra-from
|
Generating astronomical spectra from photometry with conditional diffusion models
|
2211.05556
|
https://arxiv.org/abs/2211.05556v1
|
https://arxiv.org/pdf/2211.05556v1.pdf
|
https://github.com/larsdoorenbos/generate-spectra
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cetn-contrast-enhanced-through-network-for
|
CETN: Contrast-enhanced Through Network for CTR Prediction
|
2312.09715
|
https://arxiv.org/abs/2312.09715v2
|
https://arxiv.org/pdf/2312.09715v2.pdf
|
https://github.com/salmon1802/cetn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/ditto-quantization-aware-secure-inference-of
|
Ditto: Quantization-aware Secure Inference of Transformers upon MPC
|
2405.05525
|
https://arxiv.org/abs/2405.05525v1
|
https://arxiv.org/pdf/2405.05525v1.pdf
|
https://github.com/secretflow/spu
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/a-concise-but-effective-network-for-image
|
A Concise but High-performing Network for Image Guided Depth Completion in Autonomous Driving
|
2401.15902
|
https://arxiv.org/abs/2401.15902v2
|
https://arxiv.org/pdf/2401.15902v2.pdf
|
https://github.com/lmomoy/chnet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cairl-a-high-performance-reinforcement
|
CaiRL: A High-Performance Reinforcement Learning Environment Toolkit
|
2210.01235
|
https://arxiv.org/abs/2210.01235v1
|
https://arxiv.org/pdf/2210.01235v1.pdf
|
https://github.com/cair/rl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/gantouch-an-attack-resilient-framework-for
|
GANTouch: An Attack-Resilient Framework for Touch-based Continuous Authentication System
|
2210.01594
|
https://arxiv.org/abs/2210.01594v1
|
https://arxiv.org/pdf/2210.01594v1.pdf
|
https://github.com/midas-research/gantouch-tbiom
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hyperbolic-geometry-in-computer-vision-a
|
Fully Hyperbolic Convolutional Neural Networks for Computer Vision
|
2303.15919
|
https://arxiv.org/abs/2303.15919v3
|
https://arxiv.org/pdf/2303.15919v3.pdf
|
https://github.com/kschwethelm/hyperboliccv
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/join-operation-for-the-bruhat-order-and-verma
|
Join operation for the Bruhat order and Verma modules
|
2109.01067
|
https://arxiv.org/abs/2109.01067v1
|
https://arxiv.org/pdf/2109.01067v1.pdf
|
https://github.com/rafael-mrden/BGG-Category-O-and-related-combinatorics
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/roaring-bitmaps-implementation-of-an
|
Roaring Bitmaps: Implementation of an Optimized Software Library
|
1709.07821
|
https://arxiv.org/abs/1709.07821v6
|
https://arxiv.org/pdf/1709.07821v6.pdf
|
https://github.com/RoaringBitmap/roaring
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/some-homological-properties-of-category
|
Some homological properties of category $\mathcal{O}$, V
|
2007.00342
|
http://arxiv.org/abs/2007.00342v3
|
http://arxiv.org/pdf/2007.00342v3.pdf
|
https://github.com/rafael-mrden/BGG-Category-O-and-related-combinatorics
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/entropy-based-active-learning-of-graph-neural
|
Entropy-based Active Learning of Graph Neural Network Surrogate Models for Materials Properties
|
2108.02077
|
https://arxiv.org/abs/2108.02077v2
|
https://arxiv.org/pdf/2108.02077v2.pdf
|
https://github.com/keeeto/gp-net
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/towards-interactive-and-learnable-cooperative
|
Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework
|
2409.12812
|
https://arxiv.org/abs/2409.12812v2
|
https://arxiv.org/pdf/2409.12812v2.pdf
|
https://github.com/fangshiyuu/codrivingllm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/benchmarking-graphormer-on-large-scale
|
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
|
2203.04810
|
https://arxiv.org/abs/2203.04810v2
|
https://arxiv.org/pdf/2203.04810v2.pdf
|
https://github.com/lsj2408/Transformer-M
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-scale-invariant-generator-with
|
Efficient Scale-Invariant Generator with Column-Row Entangled Pixel Synthesis
|
2303.14157
|
https://arxiv.org/abs/2303.14157v3
|
https://arxiv.org/pdf/2303.14157v3.pdf
|
https://github.com/vinairesearch/creps
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/core-to-core-x-ray-emission-spectra-from
|
Core-to-Core X-ray Emission Spectra from Wannier Based Multiplet Ligand Field Theory
|
2304.14582
|
https://arxiv.org/abs/2304.14582v1
|
https://arxiv.org/pdf/2304.14582v1.pdf
|
https://github.com/seidler-lab/crcl2kaxes_example
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cascaded-debiasing-studying-the-cumulative
|
Cascaded Debiasing: Studying the Cumulative Effect of Multiple Fairness-Enhancing Interventions
|
2202.03734
|
https://arxiv.org/abs/2202.03734v2
|
https://arxiv.org/pdf/2202.03734v2.pdf
|
https://github.com/bhavyaghai/cascaded-debiasing
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/incorporating-texture-information-into
|
Incorporating Texture Information into Dimensionality Reduction for High-Dimensional Images
|
2202.09179
|
https://arxiv.org/abs/2202.09179v2
|
https://arxiv.org/pdf/2202.09179v2.pdf
|
https://github.com/biovault/spidr
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fcc-ee-polarimeter
|
FCC-ee polarimeter
|
1803.09595
|
https://arxiv.org/abs/1803.09595v1
|
https://arxiv.org/pdf/1803.09595v1.pdf
|
https://github.com/muchnoi/FCCee-Polarimeter
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bi-directional-weakly-supervised-knowledge
|
Bi-directional Weakly Supervised Knowledge Distillation for Whole Slide Image Classification
|
2210.03664
|
https://arxiv.org/abs/2210.03664v2
|
https://arxiv.org/pdf/2210.03664v2.pdf
|
https://github.com/miccaiif/weno
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-joint-modeling-approach-to-study-the
|
A joint modeling approach to study the association between subject-level longitudinal marker variabilities and repeated outcomes
|
2309.08000
|
https://arxiv.org/abs/2309.08000v1
|
https://arxiv.org/pdf/2309.08000v1.pdf
|
https://github.com/realirena/jelo
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/longtonotes-ontonotes-with-longer-coreference
|
Longtonotes: OntoNotes with Longer Coreference Chains
|
2210.03650
|
https://arxiv.org/abs/2210.03650v1
|
https://arxiv.org/pdf/2210.03650v1.pdf
|
https://github.com/kumar-shridhar/longtonotes
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hate-speech-and-offensive-language-detection-1
|
Hate Speech and Offensive Language Detection in Bengali
|
2210.03479
|
https://arxiv.org/abs/2210.03479v1
|
https://arxiv.org/pdf/2210.03479v1.pdf
|
https://github.com/hate-alert/bengali_hate
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-resnet-is-all-you-need-modeling-a-strong
|
A ResNet is All You Need? Modeling A Strong Baseline for Detecting Referable Diabetic Retinopathy in Fundus Images
|
2210.03180
|
https://arxiv.org/abs/2210.03180v1
|
https://arxiv.org/pdf/2210.03180v1.pdf
|
https://github.com/tomascast/sipaim-2022-resnet
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/self-supervised-visual-representation-2
|
Self-Supervised Visual Representation Learning with Semantic Grouping
|
2205.15288
|
https://arxiv.org/abs/2205.15288v2
|
https://arxiv.org/pdf/2205.15288v2.pdf
|
https://github.com/CVMI-Lab/SlotCon
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/integrating-random-effects-in-deep-neural
|
Integrating Random Effects in Deep Neural Networks
|
2206.03314
|
https://arxiv.org/abs/2206.03314v3
|
https://arxiv.org/pdf/2206.03314v3.pdf
|
https://github.com/gsimchoni/lmmnn
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/metadrive-composing-diverse-driving-scenarios
|
MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning
|
2109.12674
|
https://arxiv.org/abs/2109.12674v3
|
https://arxiv.org/pdf/2109.12674v3.pdf
|
https://github.com/metadriverse/metadrive
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/one-shot-federated-learning-without-server
|
One-shot Federated Learning without Server-side Training
|
2204.12493
|
https://arxiv.org/abs/2204.12493v2
|
https://arxiv.org/pdf/2204.12493v2.pdf
|
https://github.com/fudanvi/maecho
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/classical-simulators-as-quantum-error
|
Classical simulators as quantum error mitigators via circuit cutting
|
2212.07335
|
https://arxiv.org/abs/2212.07335v1
|
https://arxiv.org/pdf/2212.07335v1.pdf
|
https://github.com/revilooliver/cut4mitigation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/online-incremental-non-gaussian-inference-for
|
Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows
|
2110.00876
|
https://arxiv.org/abs/2110.00876v2
|
https://arxiv.org/pdf/2110.00876v2.pdf
|
https://github.com/marineroboticsgroup/nf-isam
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/feta-a-benchmark-for-few-sample-task-transfer
|
FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue
|
2205.06262
|
https://arxiv.org/abs/2205.06262v2
|
https://arxiv.org/pdf/2205.06262v2.pdf
|
https://github.com/alon-albalak/tlidb
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/detection-of-dementia-through-3d
|
Detection of Dementia Through 3D Convolutional Neural Networks Based on Amyloid PET
| null |
https://ieeexplore.ieee.org/document/9660102
|
https://espositoandrea.github.io/assets/papers/Castellano2021Detection.pdf
|
https://github.com/espositoandrea/Detecting-Alzheimer-Using-Amiloyd-PET-Scans
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/skateformer-skeletal-temporal-transformer-for
|
SkateFormer: Skeletal-Temporal Transformer for Human Action Recognition
|
2403.09508
|
https://arxiv.org/abs/2403.09508v3
|
https://arxiv.org/pdf/2403.09508v3.pdf
|
https://github.com/KAIST-VICLab/SkateFormer
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-few-shot-entity-recognition-in-1
|
Towards Few-shot Entity Recognition in Document Images: A Label-aware Sequence-to-Sequence Framework
|
2204.05819
|
https://arxiv.org/abs/2204.05819v1
|
https://arxiv.org/pdf/2204.05819v1.pdf
|
https://github.com/zlwang-cs/laser-release
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/panoramic-direct-lidar-assisted-visual
|
Panoramic Direct LiDAR-assisted Visual Odometry
|
2409.09287
|
https://arxiv.org/abs/2409.09287v1
|
https://arxiv.org/pdf/2409.09287v1.pdf
|
https://github.com/ZikangYuan/panoramic_lidar_dso
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/codonmt-modeling-cohesion-devices-for
|
CoDoNMT: Modeling Cohesion Devices for Document-Level Neural Machine Translation
| null |
https://aclanthology.org/2022.coling-1.462
|
https://aclanthology.org/2022.coling-1.462.pdf
|
https://github.com/codeboy311/codonmt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/robustness-certification-of-visual-perception
|
Robustness Certification of Visual Perception Models via Camera Motion Smoothing
|
2210.04625
|
https://arxiv.org/abs/2210.04625v2
|
https://arxiv.org/pdf/2210.04625v2.pdf
|
https://github.com/hanjianghu/camera-motion-smoothing
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/subeventwriter-iterative-sub-event-sequence
|
SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller
|
2210.06694
|
https://arxiv.org/abs/2210.06694v3
|
https://arxiv.org/pdf/2210.06694v3.pdf
|
https://github.com/hkust-knowcomp/subeventwriter
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/kerple-kernelized-relative-positional
|
KERPLE: Kernelized Relative Positional Embedding for Length Extrapolation
|
2205.09921
|
https://arxiv.org/abs/2205.09921v2
|
https://arxiv.org/pdf/2205.09921v2.pdf
|
https://github.com/chijames/kerple
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-efficient-3d-object-detection-with
|
Towards Efficient 3D Object Detection with Knowledge Distillation
|
2205.15156
|
https://arxiv.org/abs/2205.15156v3
|
https://arxiv.org/pdf/2205.15156v3.pdf
|
https://github.com/cvmi-lab/sparsekd
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/technical-debt-management-in-oss-projects-an
|
Technical Debt Management in OSS Projects: An Empirical Study on GitHub
|
2212.05537
|
https://arxiv.org/abs/2212.05537v1
|
https://arxiv.org/pdf/2212.05537v1.pdf
|
https://github.com/ypyixiuxiu/tdmdatasets
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cabvit-cross-attention-among-blocks-for
|
Fcaformer: Forward Cross Attention in Hybrid Vision Transformer
|
2211.07198
|
https://arxiv.org/abs/2211.07198v2
|
https://arxiv.org/pdf/2211.07198v2.pdf
|
https://github.com/hkzhang91/cabvit
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/oneformer-one-transformer-to-rule-universal
|
OneFormer: One Transformer to Rule Universal Image Segmentation
|
2211.06220
|
https://arxiv.org/abs/2211.06220v2
|
https://arxiv.org/pdf/2211.06220v2.pdf
|
https://github.com/SHI-Labs/OneFormer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fragment-based-molecular-generative-model
|
Fragment-based molecular generative model with high generalization ability and synthetic accessibility
|
2111.12907
|
https://arxiv.org/abs/2111.12907v1
|
https://arxiv.org/pdf/2111.12907v1.pdf
|
https://github.com/jaechang-hits/bbar-pytorch
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/quantum-approximate-optimization-algorithm-8
|
Quantum Approximate Optimization Algorithm Parameter Prediction Using a Convolutional Neural Network
|
2211.09513
|
https://arxiv.org/abs/2211.09513v3
|
https://arxiv.org/pdf/2211.09513v3.pdf
|
https://github.com/NingyiXie/Parameter-to-Parameter-Convolutional-Neural-Network
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-a-unified-conformer-structure-from
|
Towards A Unified Conformer Structure: from ASR to ASV Task
|
2211.07201
|
https://arxiv.org/abs/2211.07201v2
|
https://arxiv.org/pdf/2211.07201v2.pdf
|
https://github.com/Snowdar/asv-subtools
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/decoding-memes-a-comparative-study-of-machine
|
Decoding Memes: A Comparative Study of Machine Learning Models for Template Identification
|
2408.08126
|
https://arxiv.org/abs/2408.08126v1
|
https://arxiv.org/pdf/2408.08126v1.pdf
|
https://github.com/hsdslab/meme-research
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.