paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/xception-deep-learning-with-depthwise
|
Xception: Deep Learning with Depthwise Separable Convolutions
|
1610.02357
|
http://arxiv.org/abs/1610.02357v3
|
http://arxiv.org/pdf/1610.02357v3.pdf
|
https://github.com/MindSpore-paper-code-2/code400/tree/main/Inception/xception
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/generating-a-structured-summary-of-numerous
|
Generating a Structured Summary of Numerous Academic Papers: Dataset and Method
|
2302.04580
|
https://arxiv.org/abs/2302.04580v1
|
https://arxiv.org/pdf/2302.04580v1.pdf
|
https://github.com/stevenlau6/bigsurvey
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/complex-network-for-complex-problems-a
|
Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN
|
2302.04584
|
https://arxiv.org/abs/2302.04584v1
|
https://arxiv.org/pdf/2302.04584v1.pdf
|
https://github.com/soumickmj/pytorch-complex
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/toward-extremely-lightweight-distracted
|
Toward Extremely Lightweight Distracted Driver Recognition With Distillation-Based Neural Architecture Search and Knowledge Transfer
|
2302.04527
|
https://arxiv.org/abs/2302.04527v1
|
https://arxiv.org/pdf/2302.04527v1.pdf
|
https://github.com/dichao-liu/lightweight_distracted_driver_recognition_with_distillation-based_nas_and_knowledge_transfer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/emvd-dataset-a-dataset-of-extreme-vocal
|
EMVD dataset: a dataset of extreme vocal distortion techniques used in heavy metal
|
2406.17732
|
https://arxiv.org/abs/2406.17732v1
|
https://arxiv.org/pdf/2406.17732v1.pdf
|
https://github.com/modantailleur/extrememetalvocalsdataset
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/contain-a-community-based-algorithm-for
|
CONTAIN: A Community-based Algorithm for Network Immunization
|
2303.01934
|
https://arxiv.org/abs/2303.01934v2
|
https://arxiv.org/pdf/2303.01934v2.pdf
|
https://github.com/ds4ai-upb/contain
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-cosmic-linear-anisotropy-solving-system-1
|
The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes
|
1104.2933
|
http://arxiv.org/abs/1104.2933v3
|
http://arxiv.org/pdf/1104.2933v3.pdf
|
https://github.com/zachjweiner/class_public
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sparse-bayesian-optimization
|
Sparse Bayesian Optimization
|
2203.01900
|
https://arxiv.org/abs/2203.01900v2
|
https://arxiv.org/pdf/2203.01900v2.pdf
|
https://github.com/facebookresearch/sparsebo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/gdcnet-calibrationless-geometric-distortion
|
GDCNet: Calibrationless geometric distortion correction of echo planar imaging data using deep learning
|
2402.18777
|
https://arxiv.org/abs/2402.18777v1
|
https://arxiv.org/pdf/2402.18777v1.pdf
|
https://github.com/imr-framework/gdcnet
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/towards-democratizing-joint-embedding-self
|
Towards Democratizing Joint-Embedding Self-Supervised Learning
|
2303.01986
|
https://arxiv.org/abs/2303.01986v1
|
https://arxiv.org/pdf/2303.01986v1.pdf
|
https://github.com/facebookresearch/ffcv-ssl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sequence-to-sequence-learning-with-neural
|
Sequence to Sequence Learning with Neural Networks
|
1409.3215
|
http://arxiv.org/abs/1409.3215v3
|
http://arxiv.org/pdf/1409.3215v3.pdf
|
https://github.com/Mind23-2/MindCode-73
| false
| false
| true
|
mindspore
|
https://paperswithcode.com/paper/multi-task-learning-as-multi-objective
|
Multi-Task Learning as Multi-Objective Optimization
|
1810.04650
|
http://arxiv.org/abs/1810.04650v2
|
http://arxiv.org/pdf/1810.04650v2.pdf
|
https://github.com/isl-org/multiobjectiveoptimization
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-factual-error-correction-by
|
Improving Factual Error Correction by Learning to Inject Factual Errors
|
2312.07049
|
https://arxiv.org/abs/2312.07049v1
|
https://arxiv.org/pdf/2312.07049v1.pdf
|
https://github.com/nlpcode/life
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/attentron-few-shot-text-to-speech-utilizing-1
|
Attentron: Few-Shot Text-to-Speech Utilizing Attention-Based Variable-Length Embedding
|
2005.08484
|
http://arxiv.org/abs/2005.08484v2
|
http://arxiv.org/pdf/2005.08484v2.pdf
|
https://github.com/jasminsternkopf/mel_cepstral_distance
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/towards-universal-soccer-video-understanding
|
Towards Universal Soccer Video Understanding
|
2412.01820
|
https://arxiv.org/abs/2412.01820v2
|
https://arxiv.org/pdf/2412.01820v2.pdf
|
https://github.com/jyrao/UniSoccer
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/sconna-a-stochastic-computing-based-optical
|
SCONNA: A Stochastic Computing Based Optical Accelerator for Ultra-Fast, Energy-Efficient Inference of Integer-Quantized CNNs
|
2302.07036
|
https://arxiv.org/abs/2302.07036v1
|
https://arxiv.org/pdf/2302.07036v1.pdf
|
https://github.com/uky-ucat/sc_onn_sim
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/team-detr-guide-queries-as-a-professional
|
Team DETR: Guide Queries as a Professional Team in Detection Transformers
|
2302.07116
|
https://arxiv.org/abs/2302.07116v3
|
https://arxiv.org/pdf/2302.07116v3.pdf
|
https://github.com/horrible-dong/teamdetr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sp-nas-serial-to-parallel-backbone-search-for
|
SP-NAS: Serial-to-Parallel Backbone Search for Object Detection
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Jiang_SP-NAS_Serial-to-Parallel_Backbone_Search_for_Object_Detection_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Jiang_SP-NAS_Serial-to-Parallel_Backbone_Search_for_Object_Detection_CVPR_2020_paper.pdf
|
https://github.com/2023-MindSpore-4/Code11/tree/main/Spnas
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/euca-a-practical-prototyping-framework
|
EUCA: the End-User-Centered Explainable AI Framework
|
2102.02437
|
https://arxiv.org/abs/2102.02437v2
|
https://arxiv.org/pdf/2102.02437v2.pdf
|
https://github.com/weinajin/euca
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-language-of-opinion-change-on-social
|
The language of opinion change on social media under the lens of communicative action
|
2210.17234
|
https://arxiv.org/abs/2210.17234v1
|
https://arxiv.org/pdf/2210.17234v1.pdf
|
https://github.com/corradomonti/10-dim-of-op-change
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/hierarchical-text-conditional-image
|
Hierarchical Text-Conditional Image Generation with CLIP Latents
|
2204.06125
|
https://arxiv.org/abs/2204.06125v1
|
https://arxiv.org/pdf/2204.06125v1.pdf
|
https://github.com/laion-ai/conditioned-prior
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dp-bart-for-privatized-text-rewriting-under
|
DP-BART for Privatized Text Rewriting under Local Differential Privacy
|
2302.07636
|
https://arxiv.org/abs/2302.07636v2
|
https://arxiv.org/pdf/2302.07636v2.pdf
|
https://github.com/trusthlt/dp-bart-private-rewriting
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/optical-flow-estimation-with-event-based
|
Optical flow estimation from event-based cameras and spiking neural networks
|
2302.06492
|
https://arxiv.org/abs/2302.06492v2
|
https://arxiv.org/pdf/2302.06492v2.pdf
|
https://github.com/j-cuadrado/of_ev_snn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-enmity-paradox
|
The Enmity Paradox
|
2304.10076
|
https://arxiv.org/abs/2304.10076v1
|
https://arxiv.org/pdf/2304.10076v1.pdf
|
https://github.com/aghasemian/enmityparadox
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/human-guided-ground-truth-generation-for
|
Human Guided Ground-truth Generation for Realistic Image Super-resolution
|
2303.13069
|
https://arxiv.org/abs/2303.13069v1
|
https://arxiv.org/pdf/2303.13069v1.pdf
|
https://github.com/chrisdud0257/hggt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/frequency-assisted-mamba-for-remote-sensing
|
Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution
|
2405.04964
|
https://arxiv.org/abs/2405.04964v2
|
https://arxiv.org/pdf/2405.04964v2.pdf
|
https://github.com/XY-boy/FreMamba
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multi3woz-a-multilingual-multi-domain-multi
|
Multi3WOZ: A Multilingual, Multi-Domain, Multi-Parallel Dataset for Training and Evaluating Culturally Adapted Task-Oriented Dialog Systems
|
2307.14031
|
https://arxiv.org/abs/2307.14031v1
|
https://arxiv.org/pdf/2307.14031v1.pdf
|
https://github.com/cambridgeltl/multi3woz
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/rgbd-object-tracking-an-in-depth-review
|
RGBD Object Tracking: An In-depth Review
|
2203.14134
|
https://arxiv.org/abs/2203.14134v1
|
https://arxiv.org/pdf/2203.14134v1.pdf
|
https://github.com/memoryunreal/rgbd-tracking-review
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/alias-free-convnets-fractional-shift
|
Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations
|
2303.08085
|
https://arxiv.org/abs/2303.08085v2
|
https://arxiv.org/pdf/2303.08085v2.pdf
|
https://github.com/hmichaeli/alias_free_convnets
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-legendre-gauss-pseudospectral-collocation
|
A Legendre-Gauss Pseudospectral Collocation Method for Trajectory Optimization in Second Order Systems
|
2302.09036
|
https://arxiv.org/abs/2302.09036v1
|
https://arxiv.org/pdf/2302.09036v1.pdf
|
https://github.com/aunsiro/optibot
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/marginalised-gaussian-processes-with-nested
|
Marginalised Gaussian Processes with Nested Sampling
|
2010.16344
|
https://arxiv.org/abs/2010.16344v2
|
https://arxiv.org/pdf/2010.16344v2.pdf
|
https://github.com/frgsimpson/nsampling
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/filtering-distillation-and-hard-negatives-for
|
Filtering, Distillation, and Hard Negatives for Vision-Language Pre-Training
|
2301.02280
|
https://arxiv.org/abs/2301.02280v2
|
https://arxiv.org/pdf/2301.02280v2.pdf
|
https://github.com/facebookresearch/diht
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-modal-self-supervised-learning-for
|
Multi-Modal Self-Supervised Learning for Recommendation
|
2302.10632
|
https://arxiv.org/abs/2302.10632v5
|
https://arxiv.org/pdf/2302.10632v5.pdf
|
https://github.com/hkuds/mmssl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/graph-attention-networks
|
Graph Attention Networks
|
1710.10903
|
http://arxiv.org/abs/1710.10903v3
|
http://arxiv.org/pdf/1710.10903v3.pdf
|
https://github.com/taishan1994/pytorch_gat
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/logit-margin-matters-improving-transferable
|
Logit Margin Matters: Improving Transferable Targeted Adversarial Attack by Logit Calibration
|
2303.03680
|
https://arxiv.org/abs/2303.03680v1
|
https://arxiv.org/pdf/2303.03680v1.pdf
|
https://github.com/wjjll/target-attack
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/weigh-your-own-words-improving-hate-speech
|
Weigh Your Own Words: Improving Hate Speech Counter Narrative Generation via Attention Regularization
|
2309.02311
|
https://arxiv.org/abs/2309.02311v1
|
https://arxiv.org/pdf/2309.02311v1.pdf
|
https://github.com/milanlproc/weigh-your-own-words
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bidirectional-reachable-hierarchical
|
Bidirectional-Reachable Hierarchical Reinforcement Learning with Mutually Responsive Policies
|
2406.18053
|
https://arxiv.org/abs/2406.18053v1
|
https://arxiv.org/pdf/2406.18053v1.pdf
|
https://github.com/roythuly/brhpo
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/quantifying-uncertainties-in-the-solar-axion
|
Quantifying uncertainties in the solar axion flux and their impact on determining axion model parameters
|
2101.08789
|
https://arxiv.org/abs/2101.08789v3
|
https://arxiv.org/pdf/2101.08789v3.pdf
|
https://github.com/sebhoof/SolarAxionFlux
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/axion-helioscopes-as-solar-thermometers
|
Axion Helioscopes as Solar Thermometers
|
2306.00077
|
https://arxiv.org/abs/2306.00077v2
|
https://arxiv.org/pdf/2306.00077v2.pdf
|
https://github.com/sebhoof/SolarAxionFlux
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/domain-adaptation-of-echocardiography
|
Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning
|
2406.17902
|
https://arxiv.org/abs/2406.17902v1
|
https://arxiv.org/pdf/2406.17902v1.pdf
|
https://github.com/arnaudjudge/rl4seg
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-barker-proposal-combining-robustness-and
|
The Barker proposal: combining robustness and efficiency in gradient-based MCMC
|
1908.11812
|
http://arxiv.org/abs/1908.11812v2
|
http://arxiv.org/pdf/1908.11812v2.pdf
|
https://github.com/UCL/rmcmc
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/unsupervised-domain-expansion-for-visual
|
Unsupervised Domain Expansion for Visual Categorization
|
2104.00233
|
https://arxiv.org/abs/2104.00233v1
|
https://arxiv.org/pdf/2104.00233v1.pdf
|
https://github.com/theeighthday/co-teaching
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/face-fast-accurate-and-context-aware-audio
|
Face: Fast, Accurate and Context-Aware Audio Annotation and Classification
|
2303.03666
|
https://arxiv.org/abs/2303.03666v1
|
https://arxiv.org/pdf/2303.03666v1.pdf
|
https://github.com/gitmehrdad/face
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/what-learned-representations-and-influence
|
What Learned Representations and Influence Functions Can Tell Us About Adversarial Examples
|
2309.10916
|
https://arxiv.org/abs/2309.10916v3
|
https://arxiv.org/pdf/2309.10916v3.pdf
|
https://github.com/sjabin/nnif
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/patchbackdoor-backdoor-attack-against-deep
|
PatchBackdoor: Backdoor Attack against Deep Neural Networks without Model Modification
|
2308.11822
|
https://arxiv.org/abs/2308.11822v1
|
https://arxiv.org/pdf/2308.11822v1.pdf
|
https://github.com/xaiveryuan/patchbackdoor
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/on-slicing-sorted-integer-sequences
|
On Slicing Sorted Integer Sequences
|
1907.01032
|
https://arxiv.org/abs/1907.01032v2
|
https://arxiv.org/pdf/1907.01032v2.pdf
|
https://github.com/jermp/s_indexes
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/techniques-for-inverted-index-compression
|
Techniques for Inverted Index Compression
|
1908.10598
|
https://arxiv.org/abs/1908.10598v2
|
https://arxiv.org/pdf/1908.10598v2.pdf
|
https://github.com/jermp/s_indexes
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rlx2-training-a-sparse-deep-reinforcement
|
RLx2: Training a Sparse Deep Reinforcement Learning Model from Scratch
|
2205.15043
|
https://arxiv.org/abs/2205.15043v2
|
https://arxiv.org/pdf/2205.15043v2.pdf
|
https://github.com/tyq1024/rlx2
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/evotorch-scalable-evolutionary-computation-in
|
EvoTorch: Scalable Evolutionary Computation in Python
|
2302.12600
|
https://arxiv.org/abs/2302.12600v3
|
https://arxiv.org/pdf/2302.12600v3.pdf
|
https://github.com/nnaisense/evotorch
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/semantic-segmentation-for-autonomous-driving
|
Semantic Segmentation for Autonomous Driving: Model Evaluation, Dataset Generation, Perspective Comparison, and Real-Time Capability
|
2207.12939
|
https://arxiv.org/abs/2207.12939v1
|
https://arxiv.org/pdf/2207.12939v1.pdf
|
https://github.com/sinop97/drive_sim_road_generation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fastami-a-monte-carlo-approach-to-the
|
FastAMI -- a Monte Carlo Approach to the Adjustment for Chance in Clustering Comparison Metrics
|
2305.03022
|
https://arxiv.org/abs/2305.03022v1
|
https://arxiv.org/pdf/2305.03022v1.pdf
|
https://github.com/mad-lab-fau/fastami
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/interpolation-in-generative-models
|
Feature-Based Interpolation and Geodesics in the Latent Spaces of Generative Models
|
1904.03445
|
https://arxiv.org/abs/1904.03445v3
|
https://arxiv.org/pdf/1904.03445v3.pdf
|
https://github.com/gmum/feature-based-interpolation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/universal-construction-of-decoders-from
|
Universal construction of decoders from encoding black boxes
|
2110.00258
|
https://arxiv.org/abs/2110.00258v5
|
https://arxiv.org/pdf/2110.00258v5.pdf
|
https://github.com/sy3104/isometry_inversion
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/conserved-currents-for-kerr-and-orthogonality
|
Conserved currents for Kerr and orthogonality of quasinormal modes
|
2210.15935
|
https://arxiv.org/abs/2210.15935v3
|
https://arxiv.org/pdf/2210.15935v3.pdf
|
https://github.com/sprogl/h-k-tensors
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/styleganex-stylegan-based-manipulation-beyond
|
StyleGANEX: StyleGAN-Based Manipulation Beyond Cropped Aligned Faces
|
2303.06146
|
https://arxiv.org/abs/2303.06146v2
|
https://arxiv.org/pdf/2303.06146v2.pdf
|
https://github.com/williamyang1991/styleganex
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/simple-domain-generalization-methods-are
|
Simple Domain Generalization Methods are Strong Baselines for Open Domain Generalization
|
2303.18031
|
https://arxiv.org/abs/2303.18031v1
|
https://arxiv.org/pdf/2303.18031v1.pdf
|
https://github.com/shiralab/opendg-eval
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cbam-convolutional-block-attention-module
|
CBAM: Convolutional Block Attention Module
|
1807.06521
|
http://arxiv.org/abs/1807.06521v2
|
http://arxiv.org/pdf/1807.06521v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-6/tree/main/CBAM
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/cliff-carrying-location-information-in-full
|
CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation
|
2208.00571
|
https://arxiv.org/abs/2208.00571v2
|
https://arxiv.org/pdf/2208.00571v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-6/tree/main/CLIFF
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/bandwidth-selection-for-gaussian-kernel-ridge
|
Bandwidth Selection for Gaussian Kernel Ridge Regression via Jacobian Control
|
2205.11956
|
https://arxiv.org/abs/2205.11956v4
|
https://arxiv.org/pdf/2205.11956v4.pdf
|
https://github.com/allerbo/jacobian_bandwidth_selection
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/managing-power-grids-through-topology-actions
|
Managing power grids through topology actions: A comparative study between advanced rule-based and reinforcement learning agents
|
2304.00765
|
https://arxiv.org/abs/2304.00765v2
|
https://arxiv.org/pdf/2304.00765v2.pdf
|
https://github.com/fraunhoferiee/curriculumagent
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gradient-driven-3d-segmentation-and
|
Gradient-Driven 3D Segmentation and Affordance Transfer in Gaussian Splatting Using 2D Masks
|
2409.11681
|
https://arxiv.org/abs/2409.11681v1
|
https://arxiv.org/pdf/2409.11681v1.pdf
|
https://github.com/JojiJoseph/3dgs-gradient-segmentation
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/uniformer-unified-multi-view-fusion
|
UniFusion: Unified Multi-view Fusion Transformer for Spatial-Temporal Representation in Bird's-Eye-View
|
2207.08536
|
https://arxiv.org/abs/2207.08536v2
|
https://arxiv.org/pdf/2207.08536v2.pdf
|
https://github.com/cfzd/unifusion
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deepinteraction-3d-object-detection-via
|
DeepInteraction: 3D Object Detection via Modality Interaction
|
2208.11112
|
https://arxiv.org/abs/2208.11112v4
|
https://arxiv.org/pdf/2208.11112v4.pdf
|
https://github.com/fudan-zvg/gss
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/differentially-private-algorithms-for-3
|
Differentially Private Algorithms for Synthetic Power System Datasets
|
2303.11079
|
https://arxiv.org/abs/2303.11079v1
|
https://arxiv.org/pdf/2303.11079v1.pdf
|
https://github.com/wdvorkin/syntheticdata
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/vectornet-encoding-hd-maps-and-agent-dynamics
|
VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation
|
2005.04259
|
https://arxiv.org/abs/2005.04259v1
|
https://arxiv.org/pdf/2005.04259v1.pdf
|
https://github.com/henry1iu/tnt-trajectory-prediction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tnt-target-driven-trajectory-prediction
|
TNT: Target-driveN Trajectory Prediction
|
2008.08294
|
https://arxiv.org/abs/2008.08294v2
|
https://arxiv.org/pdf/2008.08294v2.pdf
|
https://github.com/henry1iu/tnt-trajectory-prediction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/triaan-vc-triple-adaptive-attention
|
TriAAN-VC: Triple Adaptive Attention Normalization for Any-to-Any Voice Conversion
|
2303.09057
|
https://arxiv.org/abs/2303.09057v1
|
https://arxiv.org/pdf/2303.09057v1.pdf
|
https://github.com/winddori2002/TriAAN-VC
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/clip-goes-3d-leveraging-prompt-tuning-for
|
CLIP goes 3D: Leveraging Prompt Tuning for Language Grounded 3D Recognition
|
2303.11313
|
https://arxiv.org/abs/2303.11313v3
|
https://arxiv.org/pdf/2303.11313v3.pdf
|
https://github.com/deeptibhegde/clip-goes-3d
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-semantic-segmentation
|
Generative Semantic Segmentation
|
2303.11316
|
https://arxiv.org/abs/2303.11316v2
|
https://arxiv.org/pdf/2303.11316v2.pdf
|
https://github.com/fudan-zvg/gss
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-learning-for-multimodal-non
|
Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching
|
2303.10971
|
https://arxiv.org/abs/2303.10971v1
|
https://arxiv.org/pdf/2303.10971v1.pdf
|
https://github.com/dongliangcao/Self-Supervised-Multimodal-Shape-Matching
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/less-is-more-reducing-task-and-model
|
Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation
|
2303.11203
|
https://arxiv.org/abs/2303.11203v2
|
https://arxiv.org/pdf/2303.11203v2.pdf
|
https://github.com/l1997i/lim3d
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/natcs-eliciting-natural-customer-support
|
NatCS: Eliciting Natural Customer Support Dialogues
|
2305.03007
|
https://arxiv.org/abs/2305.03007v1
|
https://arxiv.org/pdf/2305.03007v1.pdf
|
https://github.com/amazon-research/dstc11-track2-intent-induction
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/intent-induction-from-conversations-for-task
|
Intent Induction from Conversations for Task-Oriented Dialogue Track at DSTC 11
|
2304.12982
|
https://arxiv.org/abs/2304.12982v1
|
https://arxiv.org/pdf/2304.12982v1.pdf
|
https://github.com/amazon-research/dstc11-track2-intent-induction
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/query-encoder-distillation-via-embedding
|
Query Encoder Distillation via Embedding Alignment is a Strong Baseline Method to Boost Dense Retriever Online Efficiency
|
2306.11550
|
https://arxiv.org/abs/2306.11550v1
|
https://arxiv.org/pdf/2306.11550v1.pdf
|
https://github.com/guest400123064/distill-retriever
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/generative-multiplane-neural-radiance-for-3d
|
Generative Multiplane Neural Radiance for 3D-Aware Image Generation
|
2304.01172
|
https://arxiv.org/abs/2304.01172v1
|
https://arxiv.org/pdf/2304.01172v1.pdf
|
https://github.com/virobo-15/gmnr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-discontinuous-galerkin-approach-for
|
A discontinuous Galerkin approach for atmospheric flows with implicit condensation
|
2305.13847
|
https://arxiv.org/abs/2305.13847v3
|
https://arxiv.org/pdf/2305.13847v3.pdf
|
https://github.com/hvonwah/cloud-models-code
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/magvlt-masked-generative-vision-and-language
|
MAGVLT: Masked Generative Vision-and-Language Transformer
|
2303.12208
|
https://arxiv.org/abs/2303.12208v1
|
https://arxiv.org/pdf/2303.12208v1.pdf
|
https://github.com/kakaobrain/magvlt
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multimodal-industrial-anomaly-detection-by
|
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
|
2312.04521
|
https://arxiv.org/abs/2312.04521v2
|
https://arxiv.org/pdf/2312.04521v2.pdf
|
https://github.com/cvlab-unibo/crossmodal-feature-mapping
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tabret-pre-training-transformer-based-tabular
|
TabRet: Pre-training Transformer-based Tabular Models for Unseen Columns
|
2303.15747
|
https://arxiv.org/abs/2303.15747v4
|
https://arxiv.org/pdf/2303.15747v4.pdf
|
https://github.com/pfnet-research/tabret
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pynet-qxq-a-distilled-pynet-for-qxq-bayer
|
PyNET-QxQ: An Efficient PyNET Variant for QxQ Bayer Pattern Demosaicing in CMOS Image Sensors
|
2203.04314
|
https://arxiv.org/abs/2203.04314v2
|
https://arxiv.org/pdf/2203.04314v2.pdf
|
https://github.com/minhyeok01/pynet-qxq
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/polynomial-time-and-dependent-types
|
Polynomial Time and Dependent Types
|
2307.09145
|
https://arxiv.org/abs/2307.09145v2
|
https://arxiv.org/pdf/2307.09145v2.pdf
|
https://github.com/bobatkey/qtt-models
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/how-to-boost-face-recognition-with-stylegan
|
How to Boost Face Recognition with StyleGAN?
|
2210.10090
|
https://arxiv.org/abs/2210.10090v2
|
https://arxiv.org/pdf/2210.10090v2.pdf
|
https://github.com/seva100/stylegan-for-facerec
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/defending-llms-against-jailbreaking-attacks
|
Defending LLMs against Jailbreaking Attacks via Backtranslation
|
2402.16459
|
https://arxiv.org/abs/2402.16459v3
|
https://arxiv.org/pdf/2402.16459v3.pdf
|
https://github.com/yihanwang617/llm-jailbreaking-defense
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mirror-cognitive-inner-monologue-between
|
MIRROR: Cognitive Inner Monologue Between Conversational Turns for Persistent Reflection and Reasoning in Conversational LLMs
|
2506.00430
|
https://arxiv.org/abs/2506.00430v1
|
https://arxiv.org/pdf/2506.00430v1.pdf
|
https://github.com/nicolehsing/MIRROR
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/mci-net-multi-scale-context-integrated
|
Mci-net: multi-scale context integrated network for liver ct image segmentation
| null |
https://www.sciencedirect.com/science/article/pii/S0045790622003408
|
https://www.sciencedirect.com/science/article/pii/S0045790622003408
|
https://github.com/Xie-Xiwang/MCI-Net
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/breaking-the-silence-detecting-and-mitigating
|
Breaking the Silence Detecting and Mitigating Gendered Abuse in Hindi, Tamil, and Indian English Online Spaces
|
2404.02013
|
https://arxiv.org/abs/2404.02013v2
|
https://arxiv.org/pdf/2404.02013v2.pdf
|
https://github.com/advaithavetagiri/cnlp-nits-pp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/music-demixing-with-the-slicq-transform
|
Music demixing with the sliCQ transform
|
2112.05509
|
https://arxiv.org/abs/2112.05509v1
|
https://arxiv.org/pdf/2112.05509v1.pdf
|
https://github.com/sevagh/xumx-slicq
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/snrgan-the-semi-noise-reduction-gan-for-image
|
SNRGAN: The Semi Noise Reduction GAN for Image Denoising
| null |
https://ieeexplore.ieee.org/abstract/document/10475264
|
https://ieeexplore.ieee.org/abstract/document/10475264
|
https://github.com/mehrshadmmt/SNRGAN-The-Semi-Noise-Reduction-GAN-for-Image-Denoising
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/airloc-object-based-indoor-relocalization
|
AirLoc: Object-based Indoor Relocalization
|
2304.00954
|
https://arxiv.org/abs/2304.00954v1
|
https://arxiv.org/pdf/2304.00954v1.pdf
|
https://github.com/sair-lab/airloc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/privacy-preserving-representations-are-not
|
Privacy-Preserving Representations are not Enough -- Recovering Scene Content from Camera Poses
|
2305.04603
|
https://arxiv.org/abs/2305.04603v1
|
https://arxiv.org/pdf/2305.04603v1.pdf
|
https://github.com/kunalchelani/objectpositioningfromposes
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bi-mapper-holistic-bev-semantic-mapping-for
|
Bi-Mapper: Holistic BEV Semantic Mapping for Autonomous Driving
|
2305.04205
|
https://arxiv.org/abs/2305.04205v3
|
https://arxiv.org/pdf/2305.04205v3.pdf
|
https://github.com/lynn-yu/bi-mapper
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hatemm-a-multi-modal-dataset-for-hate-video
|
HateMM: A Multi-Modal Dataset for Hate Video Classification
|
2305.03915
|
https://arxiv.org/abs/2305.03915v1
|
https://arxiv.org/pdf/2305.03915v1.pdf
|
https://github.com/hate-alert/hatemm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-metric-space-of-collider-events
|
The Metric Space of Collider Events
|
1902.02346
|
http://arxiv.org/abs/1902.02346v3
|
http://arxiv.org/pdf/1902.02346v3.pdf
|
https://github.com/jet-net/jetnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-evaluation-of-generative-models-in
|
Evaluating generative models in high energy physics
|
2211.10295
|
https://arxiv.org/abs/2211.10295v2
|
https://arxiv.org/pdf/2211.10295v2.pdf
|
https://github.com/jet-net/jetnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-neural-hawkes-process-a-neurally-self
|
The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process
|
1612.09328
|
http://arxiv.org/abs/1612.09328v3
|
http://arxiv.org/pdf/1612.09328v3.pdf
|
https://github.com/sohamch/Neural-Hawkes-study
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/attacking-pre-trained-recommendation
|
Attacking Pre-trained Recommendation
|
2305.03995
|
https://arxiv.org/abs/2305.03995v1
|
https://arxiv.org/pdf/2305.03995v1.pdf
|
https://github.com/wyqing20/aprec
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/monocular-3d-human-pose-estimation-for-sports
|
Monocular 3D Human Pose Estimation for Sports Broadcasts using Partial Sports Field Registration
|
2304.04437
|
https://arxiv.org/abs/2304.04437v1
|
https://arxiv.org/pdf/2304.04437v1.pdf
|
https://github.com/tobibaum/partialsportsfieldreg_3dhpe
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-to-estimate-external-forces-of-human
|
Learning to Estimate External Forces of Human Motion in Video
|
2207.05845
|
https://arxiv.org/abs/2207.05845v1
|
https://arxiv.org/pdf/2207.05845v1.pdf
|
https://github.com/michigancog/forcepose
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/low-cost-portable-easy-to-use-kiosks-to
|
Low-cost, portable, easy-to-use kiosks to facilitate home-cage testing of non-human primates during vision-based behavioral tasks
|
2401.03727
|
https://arxiv.org/abs/2401.03727v1
|
https://arxiv.org/pdf/2401.03727v1.pdf
|
https://github.com/vital-kolab/nhp-turk
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/intelligent-client-selection-for-federated
|
Intelligent Client Selection for Federated Learning using Cellular Automata
|
2310.00627
|
https://arxiv.org/abs/2310.00627v2
|
https://arxiv.org/pdf/2310.00627v2.pdf
|
https://github.com/nikopavl4/ca_client_selection
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.