paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/x-modaler-a-versatile-and-high-performance
|
X-modaler: A Versatile and High-performance Codebase for Cross-modal Analytics
|
2108.08217
|
https://arxiv.org/abs/2108.08217v1
|
https://arxiv.org/pdf/2108.08217v1.pdf
|
https://github.com/yehli/xmodaler
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-cryptoguards-deployability-for
|
Enhancing CryptoGuards Deployability for Continuous Software Security Scanning
|
2201.07651
|
https://arxiv.org/abs/2201.07651v1
|
https://arxiv.org/pdf/2201.07651v1.pdf
|
https://github.com/CryptoGuardOSS/cryptoguard
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pixelsnail-an-improved-autoregressive
|
PixelSNAIL: An Improved Autoregressive Generative Model
|
1712.09763
|
http://arxiv.org/abs/1712.09763v1
|
http://arxiv.org/pdf/1712.09763v1.pdf
|
https://github.com/neocxi/pixelsnail-public
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/weakly-supervised-fingerspelling-recognition
|
Weakly-supervised Fingerspelling Recognition in British Sign Language Videos
|
2211.08954
|
https://arxiv.org/abs/2211.08954v1
|
https://arxiv.org/pdf/2211.08954v1.pdf
|
https://github.com/prajwalkr/transpeller
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-neural-conversation-generation-model-via
|
A Neural Conversation Generation Model via Equivalent Shared Memory Investigation
|
2108.09164
|
https://arxiv.org/abs/2108.09164v1
|
https://arxiv.org/pdf/2108.09164v1.pdf
|
https://github.com/jichangzhen/drmn
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/machine-learning-based-multiscale
|
Machine learning-based multiscale constitutive modelling: Development and application to dual-porosity mass transfer
|
2108.08847
|
https://arxiv.org/abs/2108.08847v1
|
https://arxiv.org/pdf/2108.08847v1.pdf
|
https://github.com/mashworth11/ml-mm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rethinking-coarse-to-fine-approach-in-single
|
Rethinking Coarse-to-Fine Approach in Single Image Deblurring
|
2108.05054
|
https://arxiv.org/abs/2108.05054v2
|
https://arxiv.org/pdf/2108.05054v2.pdf
|
https://github.com/chosj95/mimo-unet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-scene-text-recognition-with-automatic
|
Robust Scene Text Recognition with Automatic Rectification
|
1603.03915
|
http://arxiv.org/abs/1603.03915v2
|
http://arxiv.org/pdf/1603.03915v2.pdf
|
https://github.com/Media-Smart/vedastr
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/an-efficient-2d-method-for-training-super
|
An Efficient 2D Method for Training Super-Large Deep Learning Models
|
2104.05343
|
https://arxiv.org/abs/2104.05343v1
|
https://arxiv.org/pdf/2104.05343v1.pdf
|
https://github.com/xuqifan897/Optimus
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-remote-sensing-image-dataset-for-cloud
|
A Remote Sensing Image Dataset for Cloud Removal
|
1901.00600
|
http://arxiv.org/abs/1901.00600v1
|
http://arxiv.org/pdf/1901.00600v1.pdf
|
https://github.com/BUPTLdy/RICE_DATASET
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fitsmap-a-simple-lightweight-tool-for
|
FitsMap: A Simple, Lightweight Tool For Displaying Interactive Astronomical Image and Catalog Data
|
2201.12308
|
https://arxiv.org/abs/2201.12308v1
|
https://arxiv.org/pdf/2201.12308v1.pdf
|
https://github.com/ryanhausen/fitsmap
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dynamic-slate-recommendation-with-gated
|
Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling
|
2104.15046
|
https://arxiv.org/abs/2104.15046v1
|
https://arxiv.org/pdf/2104.15046v1.pdf
|
https://github.com/finn-no/recsys_slates_dataset
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/models-of-rotating-coronae
|
Models of rotating coronae
|
1809.03437
|
http://arxiv.org/abs/1809.03437v1
|
http://arxiv.org/pdf/1809.03437v1.pdf
|
https://github.com/sormani/coropy
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/an-artificial-immune-system-for-adaptive-test
|
An Artificial Immune System for Adaptive Test Selection
| null |
https://ieeexplore.ieee.org/document/9308528
|
https://ieeexplore.ieee.org/document/9308528
|
https://github.com/LagLukas/adaptiveTestSelection
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/ensemble-of-heterogeneous-flexible-neural
|
Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming
|
1705.05592
|
http://arxiv.org/abs/1705.05592v1
|
http://arxiv.org/pdf/1705.05592v1.pdf
|
https://github.com/vojha-code/Neural-Tree-Software
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/deep-anomaly-detection-on-attributed-networks
|
Deep Anomaly Detection on Attributed Networks
| null |
https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.67
|
https://www.public.asu.edu/~kding9/pdf/SDM2019_Deep.pdf
|
https://github.com/pygod-team/pygod
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/anomalydae-dual-autoencoder-for-anomaly
|
AnomalyDAE: Dual autoencoder for anomaly detection on attributed networks
|
2002.03665
|
https://arxiv.org/abs/2002.03665v2
|
https://arxiv.org/pdf/2002.03665v2.pdf
|
https://github.com/pygod-team/pygod
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/on-modality-bias-recognition-and-reduction
|
On Modality Bias Recognition and Reduction
|
2202.12690
|
https://arxiv.org/abs/2202.12690v2
|
https://arxiv.org/pdf/2202.12690v2.pdf
|
https://github.com/guoyang9/AdaVQA
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/comparing-classes-of-estimators-when-does
|
Comparing Classes of Estimators: When does Gradient Descent Beat Ridge Regression in Linear Models?
|
2108.11872
|
https://arxiv.org/abs/2108.11872v2
|
https://arxiv.org/pdf/2108.11872v2.pdf
|
https://github.com/dominicrichards/comparinggradientdescentridge
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/interpretable-click-through-rate-prediction
|
Interpretable Click-Through Rate Prediction through Hierarchical Attention
| null |
https://dl.acm.org/doi/10.1145/3336191.3371785
|
https://dl.acm.org/doi/pdf/10.1145/3336191.3371785
|
https://github.com/zyli93/InterHAt
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/photospheric-prompt-emission-from-long-gamma-1
|
Photospheric Prompt Emission From Long Gamma Ray Burst Simulations -- II. Spectropolarimetry
|
2108.11412
|
https://arxiv.org/abs/2108.11412v2
|
https://arxiv.org/pdf/2108.11412v2.pdf
|
https://github.com/lazzati-astro/MCRaT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/photospheric-prompt-emission-from-long-gamma-1
|
Photospheric Prompt Emission From Long Gamma Ray Burst Simulations -- II. Spectropolarimetry
|
2108.11412
|
https://arxiv.org/abs/2108.11412v2
|
https://arxiv.org/pdf/2108.11412v2.pdf
|
https://github.com/parsotat/ProcessMCRaT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/electra-pre-training-text-encoders-as-1
|
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
|
2003.10555
|
https://arxiv.org/abs/2003.10555v1
|
https://arxiv.org/pdf/2003.10555v1.pdf
|
https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/electra
| false
| false
| false
|
paddle
|
https://paperswithcode.com/paper/nonlinear-state-space-identification-using
|
Nonlinear state-space identification using deep encoder networks
|
2012.07697
|
https://arxiv.org/abs/2012.07697v2
|
https://arxiv.org/pdf/2012.07697v2.pdf
|
https://github.com/GerbenBeintema/SS-encoder-WH-Silver
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hierarchical-inference-with-bayesian-neural
|
Hierarchical Inference With Bayesian Neural Networks: An Application to Strong Gravitational Lensing
|
2010.13787
|
https://arxiv.org/abs/2010.13787v3
|
https://arxiv.org/pdf/2010.13787v3.pdf
|
https://github.com/swagnercarena/ovejero
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/180309746
|
Lenstronomy: multi-purpose gravitational lens modelling software package
|
1803.09746
|
http://arxiv.org/abs/1803.09746v2
|
http://arxiv.org/pdf/1803.09746v2.pdf
|
https://github.com/swagnercarena/ovejero
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/structure-aware-hierarchical-graph-pooling
|
Structure-Aware Hierarchical Graph Pooling using Information Bottleneck
|
2104.13012
|
https://arxiv.org/abs/2104.13012v1
|
https://arxiv.org/pdf/2104.13012v1.pdf
|
https://github.com/forkkr/HIBPool
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-functional-skeleton-transfer
|
A functional skeleton transfer
|
2108.12041
|
https://arxiv.org/abs/2108.12041v1
|
https://arxiv.org/pdf/2108.12041v1.pdf
|
https://github.com/pietromsn/functional-skeleton-transfer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/baryon-acoustic-oscillations-in-thin-redshift
|
Baryon acoustic oscillations in thin redshift shells from BOSS DR12 and eBOSS DR16 galaxies
|
2112.10000
|
https://arxiv.org/abs/2112.10000v2
|
https://arxiv.org/pdf/2112.10000v2.pdf
|
https://github.com/ranier137/angularbao
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/metadata-shaping-natural-language-annotations
|
Metadata Shaping: Natural Language Annotations for the Tail
|
2110.08430
|
https://arxiv.org/abs/2110.08430v1
|
https://arxiv.org/pdf/2110.08430v1.pdf
|
https://github.com/simran-arora/metadatashaping
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/self-distilled-self-supervised-representation
|
Self-Distilled Self-Supervised Representation Learning
|
2111.12958
|
https://arxiv.org/abs/2111.12958v3
|
https://arxiv.org/pdf/2111.12958v3.pdf
|
https://github.com/hagiss/sdssl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/an-unsupervised-method-for-building-sentence
|
An Unsupervised Method for Building Sentence Simplification Corpora in Multiple Languages
|
2109.00165
|
https://arxiv.org/abs/2109.00165v1
|
https://arxiv.org/pdf/2109.00165v1.pdf
|
https://github.com/luxinyu1/trans-ss
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/pits-variational-pitch-inference-without
|
PITS: Variational Pitch Inference without Fundamental Frequency for End-to-End Pitch-controllable TTS
|
2302.12391
|
https://arxiv.org/abs/2302.12391v3
|
https://arxiv.org/pdf/2302.12391v3.pdf
|
https://github.com/anonymous-pits/pits
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/modeling-state-transition-dynamics-in-brain
|
Modeling state-transition dynamics in resting-state brain signals by the hidden Markov and Gaussian mixture models
|
2001.08369
|
https://arxiv.org/abs/2001.08369v3
|
https://arxiv.org/pdf/2001.08369v3.pdf
|
https://github.com/tkEzaki/gmm_hmm_comparison
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/simplot-a-python-application-for-representing
|
SimPlot++: a Python application for representing sequence similarity and detecting recombination
|
2112.09755
|
https://arxiv.org/abs/2112.09755v2
|
https://arxiv.org/pdf/2112.09755v2.pdf
|
https://github.com/stephane-s/simplot_plusplus
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/arpist-provably-accurate-and-stable-numerical
|
ARPIST: Provably Accurate and Stable Numerical Integration over Spherical Triangles
|
2201.00261
|
https://arxiv.org/abs/2201.00261v2
|
https://arxiv.org/pdf/2201.00261v2.pdf
|
https://github.com/numgeom/arpist
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/modality-aware-mutual-learning-for-multi
|
Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation
|
2107.09842
|
https://arxiv.org/abs/2107.09842v1
|
https://arxiv.org/pdf/2107.09842v1.pdf
|
https://github.com/YaoZhang93/MAML
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/George-Ogden/Mask-RCNN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/symmetrygan-symmetry-discovery-with-deep
|
SymmetryGAN: Symmetry Discovery with Deep Learning
|
2112.05722
|
https://arxiv.org/abs/2112.05722v2
|
https://arxiv.org/pdf/2112.05722v2.pdf
|
https://github.com/hep-lbdl/symmetrydiscovery
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/emerging-jets-displaced-into-the-future
|
Emerging Jets Displaced into the Future
|
2112.05690
|
https://arxiv.org/abs/2112.05690v1
|
https://arxiv.org/pdf/2112.05690v1.pdf
|
https://github.com/DLinthorne/LLP-Experiments
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multi-objective-loss-balancing-for-physics
|
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
|
2110.09813
|
https://arxiv.org/abs/2110.09813v2
|
https://arxiv.org/pdf/2110.09813v2.pdf
|
https://github.com/rbischof/relative_balancing
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/jasjeetIM/Mask-RCNN
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/gtg-shapley-efficient-and-accurate
|
GTG-Shapley: Efficient and Accurate Participant Contribution Evaluation in Federated Learning
|
2109.02053
|
https://arxiv.org/abs/2109.02053v1
|
https://arxiv.org/pdf/2109.02053v1.pdf
|
https://github.com/liuzelei13/gtg-shapley
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improving-joint-learning-of-chest-x-ray-and
|
Improving Joint Learning of Chest X-Ray and Radiology Report by Word Region Alignment
|
2109.01949
|
https://arxiv.org/abs/2109.01949v1
|
https://arxiv.org/pdf/2109.01949v1.pdf
|
https://github.com/mshaikh2/joimter_mlmi_2021
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/pu-flow-a-point-cloud-upsampling-networkwith
|
PU-Flow: a Point Cloud Upsampling Network with Normalizing Flows
|
2107.05893
|
https://arxiv.org/abs/2107.05893v4
|
https://arxiv.org/pdf/2107.05893v4.pdf
|
https://github.com/unknownue/pu-flow
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/data-augmentation-for-cross-domain-named
|
Data Augmentation for Cross-Domain Named Entity Recognition
|
2109.01758
|
https://arxiv.org/abs/2109.01758v1
|
https://arxiv.org/pdf/2109.01758v1.pdf
|
https://github.com/ritual-uh/style_ner
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/recurrent-back-projection-network-for-video
|
Recurrent Back-Projection Network for Video Super-Resolution
|
1903.10128
|
http://arxiv.org/abs/1903.10128v1
|
http://arxiv.org/pdf/1903.10128v1.pdf
|
https://github.com/xiuyu0000/new_papers_codes/tree/main/rbpn
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/learning-from-the-memory-of-atari-2600
|
Learning from the memory of Atari 2600
|
1605.01335
|
http://arxiv.org/abs/1605.01335v1
|
http://arxiv.org/pdf/1605.01335v1.pdf
|
https://github.com/ulstu/ml
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deepdiva-a-highly-functional-python-framework
|
DeepDIVA: A Highly-Functional Python Framework for Reproducible Experiments
|
1805.00329
|
http://arxiv.org/abs/1805.00329v1
|
http://arxiv.org/pdf/1805.00329v1.pdf
|
https://github.com/ajoino/ADL-Jacob-Pedro-Tosin
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/federated-learning-with-randomized-douglas
|
FedDR -- Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization
|
2103.03452
|
https://arxiv.org/abs/2103.03452v3
|
https://arxiv.org/pdf/2103.03452v3.pdf
|
https://github.com/unc-optimization/FedDR
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/analysis-of-language-change-in-collaborative
|
Analysis of Language Change in Collaborative Instruction Following
|
2109.04452
|
https://arxiv.org/abs/2109.04452v1
|
https://arxiv.org/pdf/2109.04452v1.pdf
|
https://github.com/lil-lab/cb-analysis
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/preservational-learning-improves-self
|
Preservational Learning Improves Self-supervised Medical Image Models by Reconstructing Diverse Contexts
|
2109.04379
|
https://arxiv.org/abs/2109.04379v2
|
https://arxiv.org/pdf/2109.04379v2.pdf
|
https://github.com/luchixiang/pcrl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/translating-visual-art-into-music
|
Translating Visual Art into Music
|
1909.01218
|
https://arxiv.org/abs/1909.01218v1
|
https://arxiv.org/pdf/1909.01218v1.pdf
|
https://github.com/personads/synvae
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/mine-mutual-information-neural-estimation
|
MINE: Mutual Information Neural Estimation
|
1801.04062
|
https://arxiv.org/abs/1801.04062v5
|
https://arxiv.org/pdf/1801.04062v5.pdf
|
https://github.com/personads/synvae
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/distributional-reinforcement-learning-with-1
|
Distributional Reinforcement Learning with Quantile Regression
|
1710.10044
|
http://arxiv.org/abs/1710.10044v1
|
http://arxiv.org/pdf/1710.10044v1.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/how-powerful-are-graph-neural-networks
|
How Powerful are Graph Neural Networks?
|
1810.00826
|
http://arxiv.org/abs/1810.00826v3
|
http://arxiv.org/pdf/1810.00826v3.pdf
|
https://github.com/karolismart/dropgnn
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/simple-random-search-provides-a-competitive
|
Simple random search provides a competitive approach to reinforcement learning
|
1803.07055
|
http://arxiv.org/abs/1803.07055v1
|
http://arxiv.org/pdf/1803.07055v1.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/labeling-free-comparison-testing-of-deep
|
LaF: Labeling-Free Model Selection for Automated Deep Neural Network Reusing
|
2204.03994
|
https://arxiv.org/abs/2204.03994v2
|
https://arxiv.org/pdf/2204.03994v2.pdf
|
https://github.com/testing-cs/laf-model-selection
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/personalisation-in-cyber-physical-social
|
Personalisation in Cyber-Physical-Social Systems: A Multi-stakeholder aware Recommendation and Guidance
| null |
https://dl.acm.org/doi/abs/10.1145/3450613.3456847
|
https://dl.acm.org/doi/pdf/10.1145/3450613.3456847
|
https://github.com/Bekyilma/Multi-Stakeholder_Recommendation
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/conditional-deformable-image-registration
|
Conditional Deformable Image Registration with Convolutional Neural Network
|
2106.12673
|
https://arxiv.org/abs/2106.12673v2
|
https://arxiv.org/pdf/2106.12673v2.pdf
|
https://github.com/cwmok/LapIRN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/predictable-universally-unique-identification
|
Predictable universally unique identification of sequential events on complex objects
|
2109.06028
|
https://arxiv.org/abs/2109.06028v1
|
https://arxiv.org/pdf/2109.06028v1.pdf
|
https://github.com/davips/garoupa
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/latent-hatred-a-benchmark-for-understanding
|
Latent Hatred: A Benchmark for Understanding Implicit Hate Speech
|
2109.05322
|
https://arxiv.org/abs/2109.05322v1
|
https://arxiv.org/pdf/2109.05322v1.pdf
|
https://github.com/gt-salt/implicit-hate
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automatic-instrument-recognition-in
|
Automatic Instrument Recognition in Polyphonic Music Using Convolutional Neural Networks
|
1511.05520
|
http://arxiv.org/abs/1511.05520v1
|
http://arxiv.org/pdf/1511.05520v1.pdf
|
https://github.com/glennq/instrument-recognition
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generative-adversarial-nets-for-multiple-text
|
Generative Adversarial Nets for Multiple Text Corpora
|
1712.09127
|
http://arxiv.org/abs/1712.09127v1
|
http://arxiv.org/pdf/1712.09127v1.pdf
|
https://github.com/baiyangwang/emgan
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-to-play-othello-with-deep-neural
|
Learning to Play Othello with Deep Neural Networks
|
1711.06583
|
http://arxiv.org/abs/1711.06583v1
|
http://arxiv.org/pdf/1711.06583v1.pdf
|
https://github.com/wjaskowski/dnnothello
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-mimo-detection
|
Deep MIMO Detection
|
1706.01151
|
http://arxiv.org/abs/1706.01151v1
|
http://arxiv.org/pdf/1706.01151v1.pdf
|
https://github.com/Deeksha96/Deep-MIMO-Detection
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-learning-for-optimal-energy-efficient
|
A Globally Optimal Energy-Efficient Power Control Framework and its Efficient Implementation in Wireless Interference Networks
|
1812.06920
|
https://arxiv.org/abs/1812.06920v2
|
https://arxiv.org/pdf/1812.06920v2.pdf
|
https://github.com/bmatthiesen/deep-EE-opt
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/the-case-for-learned-index-structures
|
The Case for Learned Index Structures
|
1712.01208
|
http://arxiv.org/abs/1712.01208v3
|
http://arxiv.org/pdf/1712.01208v3.pdf
|
https://github.com/ArnabRaxit/learned_indexes
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/spanning-tree-auxiliary-graphs
|
Spanning Tree Auxiliary Graphs
|
1705.00119
|
http://arxiv.org/abs/1705.00119v1
|
http://arxiv.org/pdf/1705.00119v1.pdf
|
https://github.com/abhishekgarg2009/Spanning-Tree-Auxiliary-Graphs
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/infinite-size-density-matrix-renormalization
|
Infinite size density matrix renormalization group, revisited
|
0804.2509
|
http://arxiv.org/abs/0804.2509v1
|
http://arxiv.org/pdf/0804.2509v1.pdf
|
https://github.com/empter/DMRGwithMPSandMPO
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/multi-modal-factorized-bilinear-pooling-with
|
Multi-modal Factorized Bilinear Pooling with Co-Attention Learning for Visual Question Answering
|
1708.01471
|
http://arxiv.org/abs/1708.01471v1
|
http://arxiv.org/pdf/1708.01471v1.pdf
|
https://github.com/yuzcccc/mfb
| true
| true
| true
|
caffe2
|
https://paperswithcode.com/paper/beyond-bilinear-generalized-multi-modal
|
Beyond Bilinear: Generalized Multimodal Factorized High-order Pooling for Visual Question Answering
|
1708.03619
|
https://arxiv.org/abs/1708.03619v2
|
https://arxiv.org/pdf/1708.03619v2.pdf
|
https://github.com/yuzcccc/mfb
| true
| true
| true
|
caffe2
|
https://paperswithcode.com/paper/self-diagnosing-gan-diagnosing
|
Self-Diagnosing GAN: Diagnosing Underrepresented Samples in Generative Adversarial Networks
|
2102.12033
|
https://arxiv.org/abs/2102.12033v3
|
https://arxiv.org/pdf/2102.12033v3.pdf
|
https://github.com/grayhong/self-diagnosing-gan
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/explaining-and-harnessing-adversarial
|
Explaining and Harnessing Adversarial Examples
|
1412.6572
|
http://arxiv.org/abs/1412.6572v3
|
http://arxiv.org/pdf/1412.6572v3.pdf
|
https://github.com/henry8527/GCE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/provable-defenses-against-adversarial
|
Provable defenses against adversarial examples via the convex outer adversarial polytope
|
1711.00851
|
http://arxiv.org/abs/1711.00851v3
|
http://arxiv.org/pdf/1711.00851v3.pdf
|
https://github.com/huanzhang12/CROWN-Robustness-Certification
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/post-data-augmentation-to-improve-deep-pose
|
Post-Data Augmentation to Improve Deep Pose Estimation of Extreme and Wild Motions
|
1902.04250
|
http://arxiv.org/abs/1902.04250v1
|
http://arxiv.org/pdf/1902.04250v1.pdf
|
https://github.com/ktoyod/rotatedpose
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-survey-of-motion-planning-and-control
|
A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles
|
1604.07446
|
http://arxiv.org/abs/1604.07446v1
|
http://arxiv.org/pdf/1604.07446v1.pdf
|
https://github.com/gtg162y/Resources
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deepwarp-dnn-based-nonlinear-deformation
|
DeepWarp: DNN-based Nonlinear Deformation
|
1803.09109
|
http://arxiv.org/abs/1803.09109v1
|
http://arxiv.org/pdf/1803.09109v1.pdf
|
https://github.com/kidyan0000/cloth_simulation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/estimating-sample-specific-regulatory
|
Estimating sample-specific regulatory networks
|
1505.06440
|
http://arxiv.org/abs/1505.06440v2
|
http://arxiv.org/pdf/1505.06440v2.pdf
|
https://github.com/twangxxx/netZooR
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/propagate-selector-detecting-supporting
|
Propagate-Selector: Detecting Supporting Sentences for Question Answering via Graph Neural Networks
|
1908.09137
|
https://arxiv.org/abs/1908.09137v2
|
https://arxiv.org/pdf/1908.09137v2.pdf
|
https://github.com/david-yoon/propagate-selector
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/oifits-2-the-2nd-version-of-the-data-exchange
|
OIFITS 2: the 2nd version of the Data Exchange Standard for Optical (Visible/IR) Interferometry
|
1510.04556
|
http://arxiv.org/abs/1510.04556v4
|
http://arxiv.org/pdf/1510.04556v4.pdf
|
https://github.com/UnofficialJuliaMirrorSnapshots/OIFITS.jl-53eb397e-dec1-5dcf-8dc9-2db916067267
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/enhancing-the-lexvec-distributed-word
|
Enhancing the LexVec Distributed Word Representation Model Using Positional Contexts and External Memory
|
1606.01283
|
http://arxiv.org/abs/1606.01283v1
|
http://arxiv.org/pdf/1606.01283v1.pdf
|
https://github.com/alexandres/lexvec
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/cost-effective-on-device-continual-learning
|
Cost-effective On-device Continual Learning over Memory Hierarchy with Miro
|
2308.06053
|
https://arxiv.org/abs/2308.06053v4
|
https://arxiv.org/pdf/2308.06053v4.pdf
|
https://github.com/omnia-unist/Miro
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/nicholasbao/nlp_job
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/product-based-neural-networks-for-user-1
|
Product-based Neural Networks for User Response Prediction over Multi-field Categorical Data
|
1807.00311
|
http://arxiv.org/abs/1807.00311v1
|
http://arxiv.org/pdf/1807.00311v1.pdf
|
https://github.com/Atomu2014/product-nets-distributed
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/ZC119/Handwritten-CycleGAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/testing-the-number-of-components-in-finite
|
Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data
|
2210.02824
|
https://arxiv.org/abs/2210.02824v2
|
https://arxiv.org/pdf/2210.02824v2.pdf
|
https://github.com/JasmineHao/NormalRegPanelMixture
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/Wentong-DST/up-down-captioner
| false
| false
| true
|
caffe2
|
https://paperswithcode.com/paper/actor-critic-versus-direct-policy-search-a
|
Actor-critic versus direct policy search: a comparison based on sample complexity
|
1606.09152
|
http://arxiv.org/abs/1606.09152v2
|
http://arxiv.org/pdf/1606.09152v2.pdf
|
https://github.com/MOCR/DDPG
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/generating-focussed-molecule-libraries-for
|
Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks
|
1701.01329
|
http://arxiv.org/abs/1701.01329v1
|
http://arxiv.org/pdf/1701.01329v1.pdf
|
https://github.com/jaechanglim/molecule-generator
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deterministic-memory-abstraction-and
|
Deterministic Memory Abstraction and Supporting Multicore System Architecture
|
1707.05260
|
https://arxiv.org/abs/1707.05260v4
|
https://arxiv.org/pdf/1707.05260v4.pdf
|
https://github.com/farzadfch/gem5-cache-partitioning
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dynamic-coattention-networks-for-question
|
Dynamic Coattention Networks For Question Answering
|
1611.01604
|
http://arxiv.org/abs/1611.01604v4
|
http://arxiv.org/pdf/1611.01604v4.pdf
|
https://github.com/Lou1sM/AML-Project
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/sbetageri/MaskRCNN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/introducing-astrocytes-on-a-neuromorphic
|
Introducing Astrocytes on a Neuromorphic Processor: Synchronization, Local Plasticity and Edge of Chaos
|
1907.01620
|
https://arxiv.org/abs/1907.01620v2
|
https://arxiv.org/pdf/1907.01620v2.pdf
|
https://github.com/combra-lab/combra_loihi
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/Ksuryateja/DCGAN-CIFAR10-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-sparse-hierarchical-graph-classifiers
|
Towards Sparse Hierarchical Graph Classifiers
|
1811.01287
|
http://arxiv.org/abs/1811.01287v1
|
http://arxiv.org/pdf/1811.01287v1.pdf
|
https://github.com/HeapHop30/hierarchical-pooling
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-quantum-approximate-optimization-algorithm-1
|
A Quantum Approximate Optimization Algorithm
|
1411.4028
|
http://arxiv.org/abs/1411.4028v1
|
http://arxiv.org/pdf/1411.4028v1.pdf
|
https://github.com/kdalkafoukis/quantum_computing
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/swin-transformer-hierarchical-vision
|
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
|
2103.14030
|
https://arxiv.org/abs/2103.14030v2
|
https://arxiv.org/pdf/2103.14030v2.pdf
|
https://github.com/mindspore-courses/External-Attention-MindSpore/blob/main/model/backbone/swin_transformer.py
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/scalable-string-reconciliation-by-recursive
|
Scalable String Reconciliation by Recursive Content-Dependent Shingling
|
1910.00536
|
https://arxiv.org/abs/1910.00536v1
|
https://arxiv.org/pdf/1910.00536v1.pdf
|
https://github.com/String-Reconciliation-Ditributed-System/RCDS_GO
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/forward-modeling-of-large-scale-structure-an
|
Forward Modeling of Large-Scale Structure: An open-source approach with Halotools
|
1606.04106
|
http://arxiv.org/abs/1606.04106v2
|
http://arxiv.org/pdf/1606.04106v2.pdf
|
https://github.com/mclaughlin6464/halotools_old
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.