paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/privacy-issues-in-large-language-models-a
|
Privacy Issues in Large Language Models: A Survey
|
2312.06717
|
https://arxiv.org/abs/2312.06717v4
|
https://arxiv.org/pdf/2312.06717v4.pdf
|
https://github.com/safr-ml-lab/survey-llm
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/effects-of-diversity-incentives-on-sample
|
Effects of diversity incentives on sample diversity and downstream model performance in LLM-based text augmentation
|
2401.06643
|
https://arxiv.org/abs/2401.06643v3
|
https://arxiv.org/pdf/2401.06643v3.pdf
|
https://github.com/kinit-sk/llm-div-incts
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/detecting-attended-visual-targets-in-video
|
Detecting Attended Visual Targets in Video
|
2003.02501
|
https://arxiv.org/abs/2003.02501v2
|
https://arxiv.org/pdf/2003.02501v2.pdf
|
https://github.com/ejcgt/attention-target-detection
| false
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/spatially-adaptive-self-supervised-learning
|
Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising
|
2303.14934
|
https://arxiv.org/abs/2303.14934v1
|
https://arxiv.org/pdf/2303.14934v1.pdf
|
https://github.com/nagejacob/spatiallyadaptivessid
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/rethinking-node-wise-propagation-for-large
|
Rethinking Node-wise Propagation for Large-scale Graph Learning
|
2402.06128
|
https://arxiv.org/abs/2402.06128v1
|
https://arxiv.org/pdf/2402.06128v1.pdf
|
https://github.com/xkli-allen/atp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-granularity-correspondence-learning-1
|
Multi-granularity Correspondence Learning from Long-term Noisy Videos
|
2401.16702
|
https://arxiv.org/abs/2401.16702v1
|
https://arxiv.org/pdf/2401.16702v1.pdf
|
https://github.com/XLearning-SCU/2024-ICLR-Norton
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/llm4eda-emerging-progress-in-large-language
|
LLM4EDA: Emerging Progress in Large Language Models for Electronic Design Automation
|
2401.12224
|
https://arxiv.org/abs/2401.12224v1
|
https://arxiv.org/pdf/2401.12224v1.pdf
|
https://github.com/thinklab-sjtu/awesome-llm4eda
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/training-on-test-proteins-improves-fitness
|
Training on test proteins improves fitness, structure, and function prediction
|
2411.02109
|
https://arxiv.org/abs/2411.02109v1
|
https://arxiv.org/pdf/2411.02109v1.pdf
|
https://github.com/anton-bushuiev/ProteinTTT
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/structured-complex-and-time-complete-temporal
|
SCTc-TE: A Comprehensive Formulation and Benchmark for Temporal Event Forecasting
|
2312.01052
|
https://arxiv.org/abs/2312.01052v2
|
https://arxiv.org/pdf/2312.01052v2.pdf
|
https://github.com/yecchen/gdelt-complexevent
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-robust-ensemble-algorithm-for-ischemic
|
A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge
|
2403.19425
|
https://arxiv.org/abs/2403.19425v2
|
https://arxiv.org/pdf/2403.19425v2.pdf
|
https://github.com/ezequieldlrosa/isles22
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/khronos-a-unified-approach-for-spatio
|
Khronos: A Unified Approach for Spatio-Temporal Metric-Semantic SLAM in Dynamic Environments
|
2402.13817
|
https://arxiv.org/abs/2402.13817v2
|
https://arxiv.org/pdf/2402.13817v2.pdf
|
https://github.com/mit-spark/khronos
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/scene-graph-generation-from-hierarchical
|
Hierarchical Relationships: A New Perspective to Enhance Scene Graph Generation
|
2303.06842
|
https://arxiv.org/abs/2303.06842v5
|
https://arxiv.org/pdf/2303.06842v5.pdf
|
https://github.com/bowen-upenn/scene_graph_commonsense
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-closed-form-solution-to-best-rank-1-tensor
|
Fast Tucker Rank Reduction for Non-Negative Tensors Using Mean-Field Approximation
|
2103.02898
|
https://arxiv.org/abs/2103.02898v3
|
https://arxiv.org/pdf/2103.02898v3.pdf
|
https://github.com/gkazunii/Legendre-tucker-rank-reduction
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/translating-images-to-road-network-a-non-1
|
Translating Images to Road Network: A Sequence-to-Sequence Perspective
|
2402.08207
|
https://arxiv.org/abs/2402.08207v2
|
https://arxiv.org/pdf/2402.08207v2.pdf
|
https://github.com/MindSpore-scientific-2/code-3/tree/main/translating-math-formula-images
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/activerag-revealing-the-treasures-of
|
ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents
|
2402.13547
|
https://arxiv.org/abs/2402.13547v2
|
https://arxiv.org/pdf/2402.13547v2.pdf
|
https://github.com/openmatch/activerag
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/instruction-tuned-language-models-are-better
|
Instruction-tuned Language Models are Better Knowledge Learners
|
2402.12847
|
https://arxiv.org/abs/2402.12847v2
|
https://arxiv.org/pdf/2402.12847v2.pdf
|
https://github.com/edward-sun/pit
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/scale-match-for-tiny-person-detection
|
Scale Match for Tiny Person Detection
|
1912.10664
|
https://arxiv.org/abs/1912.10664v1
|
https://arxiv.org/pdf/1912.10664v1.pdf
|
https://github.com/ucas-vg/TinyBenchmark
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/object-localization-under-single-coarse-point
|
Object Localization under Single Coarse Point Supervision
|
2203.09338
|
https://arxiv.org/abs/2203.09338v1
|
https://arxiv.org/pdf/2203.09338v1.pdf
|
https://github.com/ucas-vg/TinyBenchmark
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/point-to-box-network-for-accurate-object
|
Point-to-Box Network for Accurate Object Detection via Single Point Supervision
|
2207.06827
|
https://arxiv.org/abs/2207.06827v2
|
https://arxiv.org/pdf/2207.06827v2.pdf
|
https://github.com/ucas-vg/TinyBenchmark
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cpr-object-localization-via-single-coarse
|
CPR++: Object Localization via Single Coarse Point Supervision
|
2401.17203
|
https://arxiv.org/abs/2401.17203v1
|
https://arxiv.org/pdf/2401.17203v1.pdf
|
https://github.com/ucas-vg/TinyBenchmark
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/caphuman-capture-your-moments-in-parallel
|
CapHuman: Capture Your Moments in Parallel Universes
|
2402.00627
|
https://arxiv.org/abs/2402.00627v3
|
https://arxiv.org/pdf/2402.00627v3.pdf
|
https://github.com/vamosc/caphuman
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pap-rec-personalized-automatic-prompt-for
|
PAP-REC: Personalized Automatic Prompt for Recommendation Language Model
|
2402.00284
|
https://arxiv.org/abs/2402.00284v1
|
https://arxiv.org/pdf/2402.00284v1.pdf
|
https://github.com/rutgerswiselab/pap-rec
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/wordepth-variational-language-prior-for
|
WorDepth: Variational Language Prior for Monocular Depth Estimation
|
2404.03635
|
https://arxiv.org/abs/2404.03635v4
|
https://arxiv.org/pdf/2404.03635v4.pdf
|
https://github.com/adonis-galaxy/wordepth
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-multimodal-classification-of-social
|
Improving Multimodal Classification of Social Media Posts by Leveraging Image-Text Auxiliary Tasks
|
2309.07794
|
https://arxiv.org/abs/2309.07794v2
|
https://arxiv.org/pdf/2309.07794v2.pdf
|
https://github.com/danaesavi/socialmedia-textimage-classification-auxlosses
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/attention-based-simple-primitives-for-open
|
Attention Based Simple Primitives for Open World Compositional Zero-Shot Learning
|
2407.13715
|
https://arxiv.org/abs/2407.13715v1
|
https://arxiv.org/pdf/2407.13715v1.pdf
|
https://github.com/ans92/ASP
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-semantic-proxies-from-visual-prompts
|
Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning
|
2402.02340
|
https://arxiv.org/abs/2402.02340v2
|
https://arxiv.org/pdf/2402.02340v2.pdf
|
https://github.com/noahsark/parameterefficient-dml
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fade-fusing-the-assets-of-decoder-and-encoder
|
FADE: Fusing the Assets of Decoder and Encoder for Task-Agnostic Upsampling
|
2207.10392
|
https://arxiv.org/abs/2207.10392v2
|
https://arxiv.org/pdf/2207.10392v2.pdf
|
https://github.com/poppinace/fade
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/promptrr-diffusion-models-as-prompt
|
PromptRR: Diffusion Models as Prompt Generators for Single Image Reflection Removal
|
2402.02374
|
https://arxiv.org/abs/2402.02374v1
|
https://arxiv.org/pdf/2402.02374v1.pdf
|
https://github.com/taowangzj/promptrr
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/boosting-adversarial-transferability-across
|
Boosting Adversarial Transferability across Model Genus by Deformation-Constrained Warping
|
2402.03951
|
https://arxiv.org/abs/2402.03951v1
|
https://arxiv.org/pdf/2402.03951v1.pdf
|
https://github.com/linqinliang/decowa
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-to-simulate-complex-physics-with
|
Learning to Simulate Complex Physics with Graph Networks
|
2002.09405
|
https://arxiv.org/abs/2002.09405v2
|
https://arxiv.org/pdf/2002.09405v2.pdf
|
https://github.com/tumaer/lagrangebench
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/feedback-loops-with-language-models-drive-in
|
Feedback Loops With Language Models Drive In-Context Reward Hacking
|
2402.06627
|
https://arxiv.org/abs/2402.06627v3
|
https://arxiv.org/pdf/2402.06627v3.pdf
|
https://github.com/aypan17/llm-feedback
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/how-faithful-is-your-synthetic-data-sample
|
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
|
2102.08921
|
https://arxiv.org/abs/2102.08921v2
|
https://arxiv.org/pdf/2102.08921v2.pdf
|
https://github.com/amazon-science/tabsyn
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/actor-critic-algorithms-for-fiber-sampling
|
Learning to sample fibers for goodness-of-fit testing
|
2405.13950
|
https://arxiv.org/abs/2405.13950v3
|
https://arxiv.org/pdf/2405.13950v3.pdf
|
https://github.com/DLR-RM/stable-baselines3
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/knowledge-driven-cross-document-relation
|
Knowledge-Driven Cross-Document Relation Extraction
|
2405.13546
|
https://arxiv.org/abs/2405.13546v2
|
https://arxiv.org/pdf/2405.13546v2.pdf
|
https://github.com/kracr/cross-doc-relation-extraction
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-optimizer-equation-decay-function-and
|
Neural Optimizer Equation, Decay Function, and Learning Rate Schedule Joint Evolution
|
2404.06679
|
https://arxiv.org/abs/2404.06679v1
|
https://arxiv.org/pdf/2404.06679v1.pdf
|
https://github.com/oustudent/neuraloptimizersearch
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/how-to-tune-a-multilingual-encoder-model-for
|
How to Tune a Multilingual Encoder Model for Germanic Languages: A Study of PEFT, Full Fine-Tuning, and Language Adapters
|
2501.06025
|
https://arxiv.org/abs/2501.06025v1
|
https://arxiv.org/pdf/2501.06025v1.pdf
|
https://github.com/rominaoji/german-language-adapter
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fails-a-framework-for-automated-collection
|
FAILS: A Framework for Automated Collection and Analysis of LLM Service Incidents
|
2503.12185
|
https://arxiv.org/abs/2503.12185v1
|
https://arxiv.org/pdf/2503.12185v1.pdf
|
https://github.com/atlarge-research/fails
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-understanding-jailbreak-attacks-in
|
Towards Understanding Jailbreak Attacks in LLMs: A Representation Space Analysis
|
2406.10794
|
https://arxiv.org/abs/2406.10794v3
|
https://arxiv.org/pdf/2406.10794v3.pdf
|
https://github.com/yuplin2333/representation-space-jailbreak
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/shuttleset-a-human-annotated-stroke-level
|
ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton Tactical Analysis
|
2306.04948
|
https://arxiv.org/abs/2306.04948v1
|
https://arxiv.org/pdf/2306.04948v1.pdf
|
https://github.com/andychiangsh/badge
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ehrnoteqa-a-patient-specific-question
|
EHRNoteQA: An LLM Benchmark for Real-World Clinical Practice Using Discharge Summaries
|
2402.16040
|
https://arxiv.org/abs/2402.16040v5
|
https://arxiv.org/pdf/2402.16040v5.pdf
|
https://github.com/ji-youn-kim/ehrnoteqa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fvit-a-focal-vision-transformer-with-gabor
|
FViT: A Focal Vision Transformer with Gabor Filter
|
2402.11303
|
https://arxiv.org/abs/2402.11303v3
|
https://arxiv.org/pdf/2402.11303v3.pdf
|
https://github.com/nkusyl/fvit
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-3d-part-assembly-via-part-whole
|
Generative 3D Part Assembly via Part-Whole-Hierarchy Message Passing
|
2402.17464
|
https://arxiv.org/abs/2402.17464v3
|
https://arxiv.org/pdf/2402.17464v3.pdf
|
https://github.com/pkudba/3dhpa
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/pcr-99-a-practical-method-for-point-cloud
|
PCR-99: A Practical Method for Point Cloud Registration with 99 Percent Outliers
|
2402.16598
|
https://arxiv.org/abs/2402.16598v6
|
https://arxiv.org/pdf/2402.16598v6.pdf
|
https://github.com/sunghoon031/pcr-99
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-framework-for-standardizing-similarity
|
A Framework for Standardizing Similarity Measures in a Rapidly Evolving Field
|
2409.18333
|
https://arxiv.org/abs/2409.18333v1
|
https://arxiv.org/pdf/2409.18333v1.pdf
|
https://github.com/nacloos/similarity-repository
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/soul-unlocking-the-power-of-second-order
|
SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning
|
2404.18239
|
https://arxiv.org/abs/2404.18239v4
|
https://arxiv.org/pdf/2404.18239v4.pdf
|
https://github.com/optml-group/soul
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/label-informed-contrastive-pretraining-for
|
Label Informed Contrastive Pretraining for Node Importance Estimation on Knowledge Graphs
|
2402.17791
|
https://arxiv.org/abs/2402.17791v1
|
https://arxiv.org/pdf/2402.17791v1.pdf
|
https://github.com/zhangtia16/licap
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/univs-unified-and-universal-video
|
UniVS: Unified and Universal Video Segmentation with Prompts as Queries
|
2402.18115
|
https://arxiv.org/abs/2402.18115v2
|
https://arxiv.org/pdf/2402.18115v2.pdf
|
https://github.com/minghanli/univs
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/rethinking-centered-kernel-alignment-in
|
Rethinking Centered Kernel Alignment in Knowledge Distillation
|
2401.11824
|
https://arxiv.org/abs/2401.11824v4
|
https://arxiv.org/pdf/2401.11824v4.pdf
|
https://github.com/klayand/pcka
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/retaining-key-information-under-high
|
Retaining Key Information under High Compression Ratios: Query-Guided Compressor for LLMs
|
2406.02376
|
https://arxiv.org/abs/2406.02376v2
|
https://arxiv.org/pdf/2406.02376v2.pdf
|
https://github.com/DeepLearnXMU/QGC
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sonata-self-supervised-learning-of-reliable
|
Sonata: Self-Supervised Learning of Reliable Point Representations
|
2503.16429
|
https://arxiv.org/abs/2503.16429v1
|
https://arxiv.org/pdf/2503.16429v1.pdf
|
https://github.com/facebookresearch/sonata
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dimal-deep-isometric-manifold-learning-using
|
DIMAL: Deep Isometric Manifold Learning Using Sparse Geodesic Sampling
|
1711.06011
|
http://arxiv.org/abs/1711.06011v2
|
http://arxiv.org/pdf/1711.06011v2.pdf
|
https://github.com/paigautam/DIMAL
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mila-multi-view-intensive-fidelity-long-term
|
MiLA: Multi-view Intensive-fidelity Long-term Video Generation World Model for Autonomous Driving
|
2503.15875
|
https://arxiv.org/abs/2503.15875v1
|
https://arxiv.org/pdf/2503.15875v1.pdf
|
https://github.com/xiaomi-mlab/mila.github.io
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fast-graph-condensation-with-structure-based
|
Fast Graph Condensation with Structure-based Neural Tangent Kernel
|
2310.11046
|
https://arxiv.org/abs/2310.11046v2
|
https://arxiv.org/pdf/2310.11046v2.pdf
|
https://github.com/wanglin0126/gcsntk
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/usat-a-universal-speaker-adaptive-text-to
|
USAT: A Universal Speaker-Adaptive Text-to-Speech Approach
|
2404.18094
|
https://arxiv.org/abs/2404.18094v1
|
https://arxiv.org/pdf/2404.18094v1.pdf
|
https://github.com/mushanshanshan/esltts
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/safe-deep-model-based-reinforcement-learning
|
Safe Deep Model-Based Reinforcement Learning with Lyapunov Functions
|
2405.16184
|
https://arxiv.org/abs/2405.16184v1
|
https://arxiv.org/pdf/2405.16184v1.pdf
|
https://github.com/harryzhangOG/salved
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/clip-ebc-clip-can-count-accurately-through
|
CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification
|
2403.09281
|
https://arxiv.org/abs/2403.09281v3
|
https://arxiv.org/pdf/2403.09281v3.pdf
|
https://github.com/Yiming-M/CLIP-EBC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/3am-an-ambiguity-aware-multi-modal-machine
|
3AM: An Ambiguity-Aware Multi-Modal Machine Translation Dataset
|
2404.18413
|
https://arxiv.org/abs/2404.18413v1
|
https://arxiv.org/pdf/2404.18413v1.pdf
|
https://github.com/maxylee/3am
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/oodrobustbench-benchmarking-and-analyzing
|
OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift
|
2310.12793
|
https://arxiv.org/abs/2310.12793v2
|
https://arxiv.org/pdf/2310.12793v2.pdf
|
https://github.com/treelli/apt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/what-do-we-learn-from-inverting-clip-models
|
What do we learn from inverting CLIP models?
|
2403.02580
|
https://arxiv.org/abs/2403.02580v1
|
https://arxiv.org/pdf/2403.02580v1.pdf
|
https://github.com/hamidkazemi22/clipinversion
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/xoftr-cross-modal-feature-matching
|
XoFTR: Cross-modal Feature Matching Transformer
|
2404.09692
|
https://arxiv.org/abs/2404.09692v1
|
https://arxiv.org/pdf/2404.09692v1.pdf
|
https://github.com/ondert/xoftr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/actor-identified-spatiotemporal-action
|
Actor-identified Spatiotemporal Action Detection --- Detecting Who Is Doing What in Videos
|
2208.12940
|
https://arxiv.org/abs/2208.12940v2
|
https://arxiv.org/pdf/2208.12940v2.pdf
|
https://github.com/fandulu/asad
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/inverse-decision-making-using-neural
|
Inverse decision-making using neural amortized Bayesian actors
|
2409.03710
|
https://arxiv.org/abs/2409.03710v2
|
https://arxiv.org/pdf/2409.03710v2.pdf
|
https://github.com/rothkopflab/naba
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/approach-to-predicting-news-a-precise-multi
|
Approach to Predicting News -- A Precise Multi-LSTM Network With BERT
|
2204.12093
|
https://arxiv.org/abs/2204.12093v1
|
https://arxiv.org/pdf/2204.12093v1.pdf
|
https://github.com/LanaChen0/Predict_News
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/language-model-adaptation-to-specialized
|
Language Model Adaptation to Specialized Domains through Selective Masking based on Genre and Topical Characteristics
|
2402.12036
|
https://arxiv.org/abs/2402.12036v2
|
https://arxiv.org/pdf/2402.12036v2.pdf
|
https://github.com/ygorg/legal-masking
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/rephrase-and-respond-let-large-language
|
Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
|
2311.04205
|
https://arxiv.org/abs/2311.04205v2
|
https://arxiv.org/pdf/2311.04205v2.pdf
|
https://github.com/xirui-li/drattack
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/data-filtering-networks
|
Data Filtering Networks
|
2309.17425
|
https://arxiv.org/abs/2309.17425v3
|
https://arxiv.org/pdf/2309.17425v3.pdf
|
https://github.com/apple/ml-mobileclip
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sigmoid-loss-for-language-image-pre-training
|
Sigmoid Loss for Language Image Pre-Training
|
2303.15343
|
https://arxiv.org/abs/2303.15343v4
|
https://arxiv.org/pdf/2303.15343v4.pdf
|
https://github.com/apple/ml-mobileclip
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-transferable-visual-models-from
|
Learning Transferable Visual Models From Natural Language Supervision
|
2103.00020
|
https://arxiv.org/abs/2103.00020v1
|
https://arxiv.org/pdf/2103.00020v1.pdf
|
https://github.com/apple/ml-mobileclip
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/llm-as-os-llmao-agents-as-apps-envisioning
|
LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem
|
2312.03815
|
https://arxiv.org/abs/2312.03815v2
|
https://arxiv.org/pdf/2312.03815v2.pdf
|
https://github.com/agiresearch/aios
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/on-the-convergence-of-locally-adaptive-and
|
On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors
|
2403.08609
|
https://arxiv.org/abs/2403.08609v2
|
https://arxiv.org/pdf/2403.08609v2.pdf
|
https://github.com/timrensmeyer/Convergence-Experiments
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tetrasphere-a-neural-descriptor-for-o-3
|
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis
|
2211.14456
|
https://arxiv.org/abs/2211.14456v6
|
https://arxiv.org/pdf/2211.14456v6.pdf
|
https://github.com/pavlo-melnyk/tetrasphere
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-ensemble-deep-learning-severe
|
Generative ensemble deep learning severe weather prediction from a deterministic convection-allowing model
|
2310.06045
|
https://arxiv.org/abs/2310.06045v2
|
https://arxiv.org/pdf/2310.06045v2.pdf
|
https://github.com/yingkaisha/aies_d_23_0094
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/balancing-act-constraining-disparate-impact
|
Balancing Act: Constraining Disparate Impact in Sparse Models
|
2310.20673
|
https://arxiv.org/abs/2310.20673v2
|
https://arxiv.org/pdf/2310.20673v2.pdf
|
https://github.com/merajhashemi/balancing-act
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pathfinding-future-pim-architectures-by
|
Pathfinding Future PIM Architectures by Demystifying a Commercial PIM Technology
|
2308.00846
|
https://arxiv.org/abs/2308.00846v3
|
https://arxiv.org/pdf/2308.00846v3.pdf
|
https://github.com/via-research/upimulator
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/core-llm-as-interpreter-for-natural-language
|
AIOS Compiler: LLM as Interpreter for Natural Language Programming and Flow Programming of AI Agents
|
2405.06907
|
https://arxiv.org/abs/2405.06907v2
|
https://arxiv.org/pdf/2405.06907v2.pdf
|
https://github.com/agiresearch/aios
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/contextual-learning-in-fourier-complex-field
|
Contextual Learning in Fourier Complex Field for VHR Remote Sensing Images
|
2210.15972
|
https://arxiv.org/abs/2210.15972v1
|
https://arxiv.org/pdf/2210.15972v1.pdf
|
https://github.com/MindCode-4/code-11/tree/main/contextual-learning
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/approaching-test-time-augmentation-in-the
|
Approaching Test Time Augmentation in the Context of Uncertainty Calibration for Deep Neural Networks
|
2304.05104
|
https://arxiv.org/abs/2304.05104v2
|
https://arxiv.org/pdf/2304.05104v2.pdf
|
https://github.com/pedrormconde/mv-atta
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/orco-towards-better-generalization-via
|
OrCo: Towards Better Generalization via Orthogonality and Contrast for Few-Shot Class-Incremental Learning
|
2403.18550
|
https://arxiv.org/abs/2403.18550v1
|
https://arxiv.org/pdf/2403.18550v1.pdf
|
https://github.com/noorahmedds/orco
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/computational-sentence-level-metrics
|
Computational Sentence-level Metrics Predicting Human Sentence Comprehension
|
2403.15822
|
https://arxiv.org/abs/2403.15822v2
|
https://arxiv.org/pdf/2403.15822v2.pdf
|
https://github.com/fivehills/sentence-relevance-and-sentence-surprisal
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/homogeneous-tokenizer-matters-homogeneous
|
Homogeneous Tokenizer Matters: Homogeneous Visual Tokenizer for Remote Sensing Image Understanding
|
2403.18593
|
https://arxiv.org/abs/2403.18593v2
|
https://arxiv.org/pdf/2403.18593v2.pdf
|
https://github.com/geox-lab/hook
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deepsdf-learning-continuous-signed-distance
|
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
|
1901.05103
|
http://arxiv.org/abs/1901.05103v1
|
http://arxiv.org/pdf/1901.05103v1.pdf
|
https://github.com/maurock/deepsdf
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/clip-fields-weakly-supervised-semantic-fields
|
CLIP-Fields: Weakly Supervised Semantic Fields for Robotic Memory
|
2210.05663
|
https://arxiv.org/abs/2210.05663v3
|
https://arxiv.org/pdf/2210.05663v3.pdf
|
https://github.com/notmahi/clip-fields
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/diffusionface-towards-a-comprehensive-dataset
|
DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis
|
2403.18471
|
https://arxiv.org/abs/2403.18471v1
|
https://arxiv.org/pdf/2403.18471v1.pdf
|
https://github.com/rapisurazurite/diffface
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unprocessing-seven-years-of-algorithmic
|
Unprocessing Seven Years of Algorithmic Fairness
|
2306.07261
|
https://arxiv.org/abs/2306.07261v5
|
https://arxiv.org/pdf/2306.07261v5.pdf
|
https://github.com/socialfoundations/error-parity
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/weight-inherited-distillation-for-task
|
Weight-Inherited Distillation for Task-Agnostic BERT Compression
|
2305.09098
|
https://arxiv.org/abs/2305.09098v2
|
https://arxiv.org/pdf/2305.09098v2.pdf
|
https://github.com/wutaiqiang/WID-NAACL2024
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-structural-text-based-scaling-model-for
|
A Structural Text-Based Scaling Model for Analyzing Political Discourse
|
2410.11897
|
https://arxiv.org/abs/2410.11897v1
|
https://arxiv.org/pdf/2410.11897v1.pdf
|
https://github.com/vavrajan/stbs
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/nach0-multimodal-natural-and-chemical
|
nach0: Multimodal Natural and Chemical Languages Foundation Model
|
2311.12410
|
https://arxiv.org/abs/2311.12410v3
|
https://arxiv.org/pdf/2311.12410v3.pdf
|
https://github.com/insilicomedicine/nach0
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/decode-neural-signal-as-speech
|
NeuSpeech: Decode Neural signal as Speech
|
2403.01748
|
https://arxiv.org/abs/2403.01748v3
|
https://arxiv.org/pdf/2403.01748v3.pdf
|
https://github.com/mikewangwzhl/eeg-to-text
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/gptscore-evaluate-as-you-desire
|
GPTScore: Evaluate as You Desire
|
2302.04166
|
https://arxiv.org/abs/2302.04166v2
|
https://arxiv.org/pdf/2302.04166v2.pdf
|
https://github.com/osu-nlp-group/llm-cn-eval
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/using-pre-trained-language-models-for
|
Using Pre-Trained Language Models for Producing Counter Narratives Against Hate Speech: a Comparative Study
|
2204.01440
|
https://arxiv.org/abs/2204.01440v1
|
https://arxiv.org/pdf/2204.01440v1.pdf
|
https://github.com/osu-nlp-group/llm-cn-eval
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mmoe-mixture-of-multimodal-interaction
|
MMoE: Enhancing Multimodal Models with Mixtures of Multimodal Interaction Experts
|
2311.09580
|
https://arxiv.org/abs/2311.09580v3
|
https://arxiv.org/pdf/2311.09580v3.pdf
|
https://github.com/lwaekfjlk/mmoe
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/on-interference-rejection-using-riemannian
|
On Interference-Rejection Using Riemannian Geometry for Direction of Arrival Estimation
|
2301.03399
|
https://arxiv.org/abs/2301.03399v2
|
https://arxiv.org/pdf/2301.03399v2.pdf
|
https://github.com/amitaybar/interference-rejection-using-riemannian-geometry-for-doa-estimation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/integrate-the-essence-and-eliminate-the-dross
|
Integrate the Essence and Eliminate the Dross: Fine-Grained Self-Consistency for Free-Form Language Generation
|
2407.02056
|
https://arxiv.org/abs/2407.02056v1
|
https://arxiv.org/pdf/2407.02056v1.pdf
|
https://github.com/WangXinglin/FSC
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/aetta-label-free-accuracy-estimation-for-test
|
AETTA: Label-Free Accuracy Estimation for Test-Time Adaptation
|
2404.01351
|
https://arxiv.org/abs/2404.01351v1
|
https://arxiv.org/pdf/2404.01351v1.pdf
|
https://github.com/taeckyung/aetta
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/age-of-information-in-prioritized-random
|
Age of Information in Prioritized Random Access
|
2112.01182
|
https://arxiv.org/abs/2112.01182v1
|
https://arxiv.org/pdf/2112.01182v1.pdf
|
https://github.com/khachoang1412/AoI_prioritized_random_access
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/quantifying-distribution-shifts-and
|
Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications
|
2405.01978
|
https://arxiv.org/abs/2405.01978v1
|
https://arxiv.org/pdf/2405.01978v1.pdf
|
https://github.com/veflo/uncert_quant
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/scalable-3d-registration-via-truncated-entry
|
Scalable 3D Registration via Truncated Entry-wise Absolute Residuals
|
2404.00915
|
https://arxiv.org/abs/2404.00915v2
|
https://arxiv.org/pdf/2404.00915v2.pdf
|
https://github.com/tyhuang98/tear-release
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pixel-wise-agricultural-image-time-series
|
Pixel-wise Agricultural Image Time Series Classification: Comparisons and a Deformable Prototype-based Approach
|
2303.12533
|
https://arxiv.org/abs/2303.12533v2
|
https://arxiv.org/pdf/2303.12533v2.pdf
|
https://github.com/elliotvincent/agriitsc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/comparing-personalized-relevance-algorithms
|
Comparing Personalized Relevance Algorithms for Directed Graphs
|
2405.02261
|
https://arxiv.org/abs/2405.02261v1
|
https://arxiv.org/pdf/2405.02261v1.pdf
|
https://github.com/cyclerank/cyclerank-demo
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/nuqmm-quantized-matmul-for-efficient
|
LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models
|
2206.09557
|
https://arxiv.org/abs/2206.09557v4
|
https://arxiv.org/pdf/2206.09557v4.pdf
|
https://github.com/naver-aics/lut-gemm
| true
| true
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.