paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/medical-data-wrangling-with-sequential
Medical data wrangling with sequential variational autoencoders
2103.07206
https://arxiv.org/abs/2103.07206v2
https://arxiv.org/pdf/2103.07206v2.pdf
https://github.com/dbarrejon/Shi-VAE
true
true
true
pytorch
https://paperswithcode.com/paper/meta-fine-tuning-neural-language-models-for
Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining
2003.13003
https://arxiv.org/abs/2003.13003v2
https://arxiv.org/pdf/2003.13003v2.pdf
https://github.com/AntheaLi/cs224nProject
false
false
true
pytorch
https://paperswithcode.com/paper/xamg-a-library-for-solving-linear-systems
XAMG: A library for solving linear systems with multiple right-hand side vectors
2103.07329
https://arxiv.org/abs/2103.07329v1
https://arxiv.org/pdf/2103.07329v1.pdf
https://gitlab.com/xamg/xamg
true
true
false
none
https://paperswithcode.com/paper/dynamic-and-application-aware-provisioning-of
Dynamic and Application-Aware Provisioning of Chained Virtual Security Network Functions
1901.01704
https://arxiv.org/abs/1901.01704v4
https://arxiv.org/pdf/1901.01704v4.pdf
https://github.com/doriguzzi/pess-security
true
false
false
none
https://paperswithcode.com/paper/dialogpt-large-scale-generative-pre-training
DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation
1911.00536
https://arxiv.org/abs/1911.00536v3
https://arxiv.org/pdf/1911.00536v3.pdf
https://github.com/lemon234071/clean-dialog
false
false
true
none
https://paperswithcode.com/paper/right-for-the-right-concept-revising-neuro
Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations
2011.12854
https://arxiv.org/abs/2011.12854v6
https://arxiv.org/pdf/2011.12854v6.pdf
https://github.com/ml-research/CLEVR-Hans
true
true
true
none
https://paperswithcode.com/paper/separation-and-concentration-in-deep-networks
Separation and Concentration in Deep Networks
2012.10424
https://arxiv.org/abs/2012.10424v2
https://arxiv.org/pdf/2012.10424v2.pdf
https://github.com/j-zarka/separation_concentration_deepnets
true
true
false
pytorch
https://paperswithcode.com/paper/neural-machine-translation-of-rare-words-with
Neural Machine Translation of Rare Words with Subword Units
1508.07909
http://arxiv.org/abs/1508.07909v5
http://arxiv.org/pdf/1508.07909v5.pdf
https://github.com/nyu-dl/dl4mt-cdec
false
false
true
none
https://paperswithcode.com/paper/incorporating-long-range-consistency-in-cnn
Incorporating long-range consistency in CNN-based texture generation
1606.01286
http://arxiv.org/abs/1606.01286v2
http://arxiv.org/pdf/1606.01286v2.pdf
https://github.com/guillaumebrg/texture_generation
true
true
false
none
https://paperswithcode.com/paper/representation-learning-for-sequence-data-1
Representation Learning for Sequence Data with Deep Autoencoding Predictive Components
2010.03135
https://arxiv.org/abs/2010.03135v2
https://arxiv.org/pdf/2010.03135v2.pdf
https://github.com/JunwenBai/DAPC
true
false
true
pytorch
https://paperswithcode.com/paper/unsupervised-pre-training-of-bidirectional
Unsupervised Pre-training of Bidirectional Speech Encoders via Masked Reconstruction
2001.10603
https://arxiv.org/abs/2001.10603v2
https://arxiv.org/pdf/2001.10603v2.pdf
https://github.com/JunwenBai/DAPC
false
false
true
pytorch
https://paperswithcode.com/paper/ultra-high-definition-image-dehazing-via
Ultra-High-Definition Image Dehazing via Multi-Guided Bilateral Learning
null
http://openaccess.thecvf.com//content/CVPR2021/html/Zheng_Ultra-High-Definition_Image_Dehazing_via_Multi-Guided_Bilateral_Learning_CVPR_2021_paper.html
http://openaccess.thecvf.com//content/CVPR2021/papers/Zheng_Ultra-High-Definition_Image_Dehazing_via_Multi-Guided_Bilateral_Learning_CVPR_2021_paper.pdf
https://github.com/zzr-idam/4KDehazing
true
false
false
pytorch
https://paperswithcode.com/paper/overfeat-integrated-recognition-localization
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
1312.6229
http://arxiv.org/abs/1312.6229v4
http://arxiv.org/pdf/1312.6229v4.pdf
https://github.com/soumith/imagenet-multiGPU.torch
false
false
true
torch
https://paperswithcode.com/paper/discovery-of-physics-and-characterization-of
Discovery of Physics and Characterization of Microstructure from Data with Bayesian Hidden Physics Models
2103.07502
https://arxiv.org/abs/2103.07502v1
https://arxiv.org/pdf/2103.07502v1.pdf
https://github.com/sdatkinson/BHPM-Ultrasound
true
false
false
jax
https://paperswithcode.com/paper/gradskip-communication-accelerated-local
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
2210.16402
https://arxiv.org/abs/2210.16402v3
https://arxiv.org/pdf/2210.16402v3.pdf
https://github.com/artomaranjyan/GradSkip-code
true
false
false
none
https://paperswithcode.com/paper/residual-flows-for-invertible-generative
Residual Flows for Invertible Generative Modeling
1906.02735
https://arxiv.org/abs/1906.02735v6
https://arxiv.org/pdf/1906.02735v6.pdf
https://github.com/thu-ml/implicit-normalizing-flows
false
false
true
pytorch
https://paperswithcode.com/paper/graph-random-neural-network
Graph Random Neural Network for Semi-Supervised Learning on Graphs
2005.11079
https://arxiv.org/abs/2005.11079v4
https://arxiv.org/pdf/2005.11079v4.pdf
https://github.com/dmlc/dgl/tree/master/examples/pytorch/grand
false
false
false
pytorch
https://paperswithcode.com/paper/hydrodynamically-interrupted-droplet-growth
Hydrodynamically interrupted droplet growth in scalar active matter
1907.04819
https://arxiv.org/abs/1907.04819v2
https://arxiv.org/pdf/1907.04819v2.pdf
https://github.com/rajeshrinet/pyGL
false
false
true
none
https://paperswithcode.com/paper/divide-and-rule-training-context-aware-multi
Divide and Rule: Effective Pre-Training for Context-Aware Multi-Encoder Translation Models
2103.17151
https://arxiv.org/abs/2103.17151v2
https://arxiv.org/pdf/2103.17151v2.pdf
https://github.com/lorelupo/divide-and-rule
true
true
true
pytorch
https://paperswithcode.com/paper/interpreting-the-latent-space-of-gans-for
Interpreting the Latent Space of GANs for Semantic Face Editing
1907.10786
https://arxiv.org/abs/1907.10786v3
https://arxiv.org/pdf/1907.10786v3.pdf
https://github.com/genforce/interfacegan
false
false
true
tf
https://paperswithcode.com/paper/interfacegan-interpreting-the-disentangled
InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs
2005.09635
https://arxiv.org/abs/2005.09635v2
https://arxiv.org/pdf/2005.09635v2.pdf
https://github.com/genforce/interfacegan
false
false
true
tf
https://paperswithcode.com/paper/progressive-growing-of-gans-for-improved
Progressive Growing of GANs for Improved Quality, Stability, and Variation
1710.10196
http://arxiv.org/abs/1710.10196v3
http://arxiv.org/pdf/1710.10196v3.pdf
https://github.com/genforce/interfacegan
false
false
true
tf
https://paperswithcode.com/paper/a-style-based-generator-architecture-for
A Style-Based Generator Architecture for Generative Adversarial Networks
1812.04948
http://arxiv.org/abs/1812.04948v3
http://arxiv.org/pdf/1812.04948v3.pdf
https://github.com/genforce/interfacegan
false
false
true
tf
https://paperswithcode.com/paper/a-unified-mrc-framework-for-named-entity
A Unified MRC Framework for Named Entity Recognition
1910.11476
https://arxiv.org/abs/1910.11476v7
https://arxiv.org/pdf/1910.11476v7.pdf
https://github.com/allenyummy/EHR_NER
false
false
true
pytorch
https://paperswithcode.com/paper/self-supervised-spatio-temporal-2
Self-Supervised Visual Learning by Variable Playback Speeds Prediction of a Video
2003.02692
https://arxiv.org/abs/2003.02692v2
https://arxiv.org/pdf/2003.02692v2.pdf
https://github.com/hyeon-jo/PSPNet
true
true
true
pytorch
https://paperswithcode.com/paper/probabilistic-robust-linear-quadratic
Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes
2105.07668
https://arxiv.org/abs/2105.07668v2
https://arxiv.org/pdf/2105.07668v2.pdf
https://github.com/Data-Science-in-Mechanical-Engineering/prlqr
true
true
true
none
https://paperswithcode.com/paper/automated-test-generation-for-rest-apis-no
Automated Test Generation for REST APIs: No Time to Rest Yet
2204.08348
https://arxiv.org/abs/2204.08348v3
https://arxiv.org/pdf/2204.08348v3.pdf
https://github.com/randomqwerqwer/issta-main
true
true
false
none
https://paperswithcode.com/paper/two-at-once-enhancing-learning-and
Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net
1807.09441
https://arxiv.org/abs/1807.09441v3
https://arxiv.org/pdf/1807.09441v3.pdf
https://github.com/alibaba/cluster-contrast
false
false
true
pytorch
https://paperswithcode.com/paper/learning-to-answer-questions-in-dynamic-audio
Learning to Answer Questions in Dynamic Audio-Visual Scenarios
2203.14072
https://arxiv.org/abs/2203.14072v2
https://arxiv.org/pdf/2203.14072v2.pdf
https://github.com/GeWu-Lab/MUSIC-AVQA
true
false
false
pytorch
https://paperswithcode.com/paper/improving-the-transferability-of-speech
Improving the transferability of speech separation by meta-learning
2203.05882
https://arxiv.org/abs/2203.05882v1
https://arxiv.org/pdf/2203.05882v1.pdf
https://github.com/nobel861017/mtss
true
true
false
none
https://paperswithcode.com/paper/large-language-models-can-accurately-predict
Large language models can accurately predict searcher preferences
2309.10621
https://arxiv.org/abs/2309.10621v3
https://arxiv.org/pdf/2309.10621v3.pdf
https://github.com/RikiyaT/LARA
false
false
true
pytorch
https://paperswithcode.com/paper/direct-evaluation-of-chain-of-thought-in
Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs
2402.11199
https://arxiv.org/abs/2402.11199v2
https://arxiv.org/pdf/2402.11199v2.pdf
https://github.com/minhvuong2000/llmreasoncert
true
true
true
none
https://paperswithcode.com/paper/a-large-scale-study-of-relevance-assessments
A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look
2411.08275
https://arxiv.org/abs/2411.08275v1
https://arxiv.org/pdf/2411.08275v1.pdf
https://github.com/RikiyaT/LARA
false
false
true
pytorch
https://paperswithcode.com/paper/tutorial-on-deep-learning-for-human-activity
Tutorial on Deep Learning for Human Activity Recognition
2110.06663
https://arxiv.org/abs/2110.06663v1
https://arxiv.org/pdf/2110.06663v1.pdf
https://github.com/mariusbock/dl-for-har/tree/main/tutorial_notebooks
true
false
false
pytorch
https://paperswithcode.com/paper/meta-pu-an-arbitrary-scale-upsampling-network-1
Meta-PU: An Arbitrary-Scale Upsampling Network for Point Cloud
null
https://ieeexplore.ieee.org/document/9351772/
https://ieeexplore.ieee.org/document/9351772/
https://github.com/pleaseconnectwifi/Meta-PU
false
false
false
pytorch
https://paperswithcode.com/paper/unsupervised-image-translation-using
Unsupervised Image Translation using Adversarial Networks for Improved Plant Disease Recognition
1909.11915
https://arxiv.org/abs/1909.11915v1
https://arxiv.org/pdf/1909.11915v1.pdf
https://github.com/mlandcv/Auxilliary_Reconstruction_GAN
true
false
false
none
https://paperswithcode.com/paper/price-response-functions-and-spread-impact-in
Price response functions and spread impact in correlated financial markets
2010.15105
https://arxiv.org/abs/2010.15105v1
https://arxiv.org/pdf/2010.15105v1.pdf
https://github.com/juanhenao21/forex_response_spread_year
false
false
true
none
https://paperswithcode.com/paper/modeling-relational-data-with-graph
Modeling Relational Data with Graph Convolutional Networks
1703.06103
http://arxiv.org/abs/1703.06103v4
http://arxiv.org/pdf/1703.06103v4.pdf
https://github.com/dmlc/dgl/tree/master/examples/tensorflow/rgcn
false
false
false
pytorch
https://paperswithcode.com/paper/date-detecting-anomalies-in-text-via-self
DATE: Detecting Anomalies in Text via Self-Supervision of Transformers
2104.05591
https://arxiv.org/abs/2104.05591v1
https://arxiv.org/pdf/2104.05591v1.pdf
https://github.com/bit-ml/date
true
true
true
pytorch
https://paperswithcode.com/paper/interval-neural-networks-as-instability
Interval Neural Networks as Instability Detectors for Image Reconstructions
2003.13471
https://arxiv.org/abs/2003.13471v1
https://arxiv.org/pdf/2003.13471v1.pdf
https://github.com/luisoala/inn
true
false
false
tf
https://paperswithcode.com/paper/interval-neural-networks-uncertainty-scores
Interval Neural Networks: Uncertainty Scores
2003.11566
https://arxiv.org/abs/2003.11566v1
https://arxiv.org/pdf/2003.11566v1.pdf
https://github.com/luisoala/inn
true
false
false
tf
https://paperswithcode.com/paper/conformative-filtering-for-implicit-feedback
Conformative Filtering for Implicit Feedback Data
1704.01889
http://arxiv.org/abs/1704.01889v2
http://arxiv.org/pdf/1704.01889v2.pdf
https://github.com/fkhawar/Conformative-Filtering
true
false
true
none
https://paperswithcode.com/paper/crystallography-companion-agent-for-high
Crystallography companion agent for high-throughput materials discovery
2008.00283
https://arxiv.org/abs/2008.00283v2
https://arxiv.org/pdf/2008.00283v2.pdf
https://github.com/bnl/pub-Maffettone_2020_08
false
false
true
tf
https://paperswithcode.com/paper/orb-slam3-an-accurate-open-source-library-for
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM
2007.11898
https://arxiv.org/abs/2007.11898v2
https://arxiv.org/pdf/2007.11898v2.pdf
https://github.com/baaixw/ORB_SLAM_test
false
false
true
none
https://paperswithcode.com/paper/180309746
Lenstronomy: multi-purpose gravitational lens modelling software package
1803.09746
http://arxiv.org/abs/1803.09746v2
http://arxiv.org/pdf/1803.09746v2.pdf
https://github.com/sibirrer/curved_arcs
false
false
true
none
https://paperswithcode.com/paper/a-guide-to-convolution-arithmetic-for-deep
A guide to convolution arithmetic for deep learning
1603.07285
http://arxiv.org/abs/1603.07285v2
http://arxiv.org/pdf/1603.07285v2.pdf
https://github.com/mrdbourke/tensorflow-deep-learning
false
false
true
tf
https://paperswithcode.com/paper/universal-language-model-fine-tuning-for-text
Universal Language Model Fine-tuning for Text Classification
1801.06146
http://arxiv.org/abs/1801.06146v5
http://arxiv.org/pdf/1801.06146v5.pdf
https://github.com/mrdbourke/tensorflow-deep-learning
false
false
true
tf
https://paperswithcode.com/paper/pubmed-200k-rct-a-dataset-for-sequential
PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts
1710.06071
http://arxiv.org/abs/1710.06071v1
http://arxiv.org/pdf/1710.06071v1.pdf
https://github.com/mrdbourke/tensorflow-deep-learning
false
false
true
tf
https://paperswithcode.com/paper/assessing-the-reliability-of-large-language
Assessing the Reliability of Large Language Model Knowledge
2310.09820
https://arxiv.org/abs/2310.09820v1
https://arxiv.org/pdf/2310.09820v1.pdf
https://github.com/vicky-wil/monitor
true
true
false
pytorch
https://paperswithcode.com/paper/pixel-interactive-light-system-design-based
PIXEL: Interactive Light System Design Based On Simple Gesture Recognition
2010.10180
http://arxiv.org/abs/2010.10180v1
http://arxiv.org/pdf/2010.10180v1.pdf
https://github.com/actbee/Interactive-Light-System-Design-Based-On-Simple-Gesture-Recognition-
false
false
true
none
https://paperswithcode.com/paper/transverse-confinement-of-electron-beams-in-a
Transverse Confinement of Electron Beams in a 2D Optical Lattice for Compact Coherent X-Ray Sources
2104.11586
https://arxiv.org/abs/2104.11586v2
https://arxiv.org/pdf/2104.11586v2.pdf
https://github.com/aryafallahi/mithra
true
true
false
none
https://paperswithcode.com/paper/multipoint-cross-spectral-registration-of
MultiPoint: Cross-spectral registration of thermal and optical aerial imagery
null
https://proceedings.mlr.press/v155/achermann21a
https://proceedings.mlr.press/v155/achermann21a/achermann21a.pdf
https://github.com/ethz-asl/multipoint
false
true
false
pytorch
https://paperswithcode.com/paper/skin-lesion-analysis-toward-melanoma
Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)
1710.05006
http://arxiv.org/abs/1710.05006v3
http://arxiv.org/pdf/1710.05006v3.pdf
https://github.com/datascisteven/Melanoma-Image-Classification
false
false
true
tf
https://paperswithcode.com/paper/skin-lesion-analysis-toward-melanoma-1
Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC)
1902.03368
http://arxiv.org/abs/1902.03368v2
http://arxiv.org/pdf/1902.03368v2.pdf
https://github.com/datascisteven/Melanoma-Image-Classification
false
false
true
tf
https://paperswithcode.com/paper/mmdetection-open-mmlab-detection-toolbox-and
MMDetection: Open MMLab Detection Toolbox and Benchmark
1906.07155
https://arxiv.org/abs/1906.07155v1
https://arxiv.org/pdf/1906.07155v1.pdf
https://github.com/SiriusKY/SceneTextDetector
false
false
true
pytorch
https://paperswithcode.com/paper/end-to-end-asr-system-with-automatic
End to End ASR System with Automatic Punctuation Insertion
2012.02012
https://arxiv.org/abs/2012.02012v1
https://arxiv.org/pdf/2012.02012v1.pdf
https://github.com/GavinGuan95/Punctuator.Pytorch
true
false
false
pytorch
https://paperswithcode.com/paper/teaching-agents-how-to-map-spatial-reasoning
Teaching Agents how to Map: Spatial Reasoning for Multi-Object Navigation
2107.06011
https://arxiv.org/abs/2107.06011v4
https://arxiv.org/pdf/2107.06011v4.pdf
https://github.com/PierreMarza/teaching_agents_how_to_map
true
true
true
pytorch
https://paperswithcode.com/paper/sufficient-dimension-reduction-for
Sufficient dimension reduction for classification using principal optimal transport direction
2010.09921
https://arxiv.org/abs/2010.09921v4
https://arxiv.org/pdf/2010.09921v4.pdf
https://github.com/ChengzijunAixiaoli/POTD
true
false
false
none
https://paperswithcode.com/paper/tabtransformer-tabular-data-modeling-using
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
2012.06678
https://arxiv.org/abs/2012.06678v1
https://arxiv.org/pdf/2012.06678v1.pdf
https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TabTransformer.py
false
false
false
pytorch
https://paperswithcode.com/paper/opt-open-pre-trained-transformer-language
OPT: Open Pre-trained Transformer Language Models
2205.01068
https://arxiv.org/abs/2205.01068v4
https://arxiv.org/pdf/2205.01068v4.pdf
https://github.com/2023-MindSpore-1/ms-code-218/tree/main/opt
false
false
false
mindspore
https://paperswithcode.com/paper/wasserstein-gan
Wasserstein GAN
1701.07875
http://arxiv.org/abs/1701.07875v3
http://arxiv.org/pdf/1701.07875v3.pdf
https://github.com/2023-MindSpore-1/ms-code-7/tree/main/WGAN_GP
false
false
false
mindspore
https://paperswithcode.com/paper/recursive-contour-saliency-blending-network
Recursive Contour Saliency Blending Network for Accurate Salient Object Detection
2105.13865
https://arxiv.org/abs/2105.13865v3
https://arxiv.org/pdf/2105.13865v3.pdf
https://github.com/BarCodeReader/RCSB-PyTorch
true
true
false
pytorch
https://paperswithcode.com/paper/supervised-learning-of-universal-sentence
Supervised Learning of Universal Sentence Representations from Natural Language Inference Data
1705.02364
http://arxiv.org/abs/1705.02364v5
http://arxiv.org/pdf/1705.02364v5.pdf
https://github.com/menajosep/AleatoricSent
false
false
true
tf
https://paperswithcode.com/paper/yolact-better-real-time-instance-segmentation
YOLACT++: Better Real-time Instance Segmentation
1912.06218
https://arxiv.org/abs/1912.06218v2
https://arxiv.org/pdf/1912.06218v2.pdf
https://github.com/2023-MindSpore-1/ms-code-7/tree/main/WGAN_GP
false
false
false
mindspore
https://paperswithcode.com/paper/asking-and-answering-questions-to-evaluate
Asking and Answering Questions to Evaluate the Factual Consistency of Summaries
2004.04228
https://arxiv.org/abs/2004.04228v1
https://arxiv.org/pdf/2004.04228v1.pdf
https://github.com/W4ngatang/qags
true
true
true
pytorch
https://paperswithcode.com/paper/augmenting-sequential-recommendation-with
Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer
2105.00522
https://arxiv.org/abs/2105.00522v1
https://arxiv.org/pdf/2105.00522v1.pdf
https://github.com/DyGRec/ASReP
true
true
true
tf
https://paperswithcode.com/paper/quartile-based-prediction-of-event-types-and
A Comparison of Deep-Learning Methods for Analysing and Predicting Business Processes
2102.07838
https://arxiv.org/abs/2102.07838v2
https://arxiv.org/pdf/2102.07838v2.pdf
https://github.com/ishwarvenugopal/GCN-ProcessPrediction
true
true
false
pytorch
https://paperswithcode.com/paper/eec-learning-to-encode-and-regenerate-images-1
EEC: Learning to Encode and Regenerate Images for Continual Learning
2101.04904
https://arxiv.org/abs/2101.04904v4
https://arxiv.org/pdf/2101.04904v4.pdf
https://github.com/aliayub7/EEC
true
true
true
pytorch
https://paperswithcode.com/paper/edge-enhanced-feature-distillation-network
Edge-enhanced Feature Distillation Network for Efficient Super-Resolution
2204.08759
https://arxiv.org/abs/2204.08759v2
https://arxiv.org/pdf/2204.08759v2.pdf
https://github.com/icandle/efdn
true
true
true
pytorch
https://paperswithcode.com/paper/bart-denoising-sequence-to-sequence-pre
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
1910.13461
https://arxiv.org/abs/1910.13461v1
https://arxiv.org/pdf/1910.13461v1.pdf
https://github.com/W4ngatang/qags
false
false
true
pytorch
https://paperswithcode.com/paper/newsqa-a-machine-comprehension-dataset
NewsQA: A Machine Comprehension Dataset
1611.09830
http://arxiv.org/abs/1611.09830v3
http://arxiv.org/pdf/1611.09830v3.pdf
https://github.com/W4ngatang/qags
false
false
true
pytorch
https://paperswithcode.com/paper/bottom-up-abstractive-summarization
Bottom-Up Abstractive Summarization
1808.10792
http://arxiv.org/abs/1808.10792v2
http://arxiv.org/pdf/1808.10792v2.pdf
https://github.com/W4ngatang/qags
false
false
true
pytorch
https://paperswithcode.com/paper/hasco-towards-agile-hardware-and-software-co
HASCO: Towards Agile HArdware and Software CO-design for Tensor Computation
2105.01585
https://arxiv.org/abs/2105.01585v1
https://arxiv.org/pdf/2105.01585v1.pdf
https://github.com/pku-liang/HASCO
true
true
true
none
https://paperswithcode.com/paper/neural-ray-tracing-learning-surfaces-and
Neural Ray-Tracing: Learning Surfaces and Reflectance for Relighting and View Synthesis
2104.13562
https://arxiv.org/abs/2104.13562v2
https://arxiv.org/pdf/2104.13562v2.pdf
https://github.com/princeton-computational-imaging/neural_raytracing
true
true
true
pytorch
https://paperswithcode.com/paper/towards-making-deep-learning-based
Towards Making Deep Learning-based Vulnerability Detectors Robust
2108.00669
https://arxiv.org/abs/2108.00669v2
https://arxiv.org/pdf/2108.00669v2.pdf
https://github.com/ZigZagframework/zigzag_framework
true
true
false
none
https://paperswithcode.com/paper/a-reinforcement-learning-environment-for-job
A Reinforcement Learning Environment For Job-Shop Scheduling
2104.03760
https://arxiv.org/abs/2104.03760v1
https://arxiv.org/pdf/2104.03760v1.pdf
https://github.com/prosysscience/JSS
true
true
true
tf
https://paperswithcode.com/paper/multipole-graph-neural-operator-for
Multipole Graph Neural Operator for Parametric Partial Differential Equations
2006.09535
https://arxiv.org/abs/2006.09535v2
https://arxiv.org/pdf/2006.09535v2.pdf
https://github.com/zongyi-li/graph-pde
true
false
true
pytorch
https://paperswithcode.com/paper/ac-dc-alternating-compressed-decompressed
AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks
2106.12379
https://arxiv.org/abs/2106.12379v2
https://arxiv.org/pdf/2106.12379v2.pdf
https://github.com/IST-DASLab/ACDC
true
true
true
pytorch
https://paperswithcode.com/paper/logistic-regression-through-the-veil-of
Logistic Regression Through the Veil of Imprecise Data
2106.00492
https://arxiv.org/abs/2106.00492v2
https://arxiv.org/pdf/2106.00492v2.pdf
https://github.com/ngg1995/LR-python
true
true
false
none
https://paperswithcode.com/paper/homomorphic-payment-addresses-and-the-pay-to
Homomorphic Payment Addresses and the Pay-to-Contract Protocol
1212.3257
http://arxiv.org/abs/1212.3257v1
http://arxiv.org/pdf/1212.3257v1.pdf
https://github.com/bitcoinjs/bitcoinjs-lib
false
false
false
none
https://paperswithcode.com/paper/soft-attention-improves-skin-cancer
Soft-Attention Improves Skin Cancer Classification Performance
2105.03358
https://arxiv.org/abs/2105.03358v3
https://arxiv.org/pdf/2105.03358v3.pdf
https://github.com/skrantidatta/Attention-based-Skin-Cancer-Classification
true
true
true
tf
https://paperswithcode.com/paper/conversations-are-not-flat-modeling-the
Conversations Are Not Flat: Modeling the Dynamic Information Flow across Dialogue Utterances
2106.02227
https://arxiv.org/abs/2106.02227v1
https://arxiv.org/pdf/2106.02227v1.pdf
https://github.com/ictnlp/DialoFlow
true
true
true
pytorch
https://paperswithcode.com/paper/fine-grained-angular-contrastive-learning
Fine-grained Angular Contrastive Learning with Coarse Labels
2012.03515
https://arxiv.org/abs/2012.03515v3
https://arxiv.org/pdf/2012.03515v3.pdf
https://github.com/guybuk/ANCOR
true
true
true
pytorch
https://paperswithcode.com/paper/group-cam-group-score-weighted-visual
Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks
2103.13859
https://arxiv.org/abs/2103.13859v4
https://arxiv.org/pdf/2103.13859v4.pdf
https://github.com/wofmanaf/Group-CAM
true
true
true
pytorch
https://paperswithcode.com/paper/distance-matters-in-human-object-interaction
Distance Matters in Human-Object Interaction Detection
2207.01869
https://arxiv.org/abs/2207.01869v1
https://arxiv.org/pdf/2207.01869v1.pdf
https://github.com/daoyuan98/sdt-hoi
true
true
false
pytorch
https://paperswithcode.com/paper/spectral-embedding-for-dynamic-networks-with
Spectral embedding for dynamic networks with stability guarantees
2106.01282
https://arxiv.org/abs/2106.01282v2
https://arxiv.org/pdf/2106.01282v2.pdf
https://github.com/iggallagher/Dynamic-Network-Embedding
true
true
false
none
https://paperswithcode.com/paper/attentivenas-improving-neural-architecture
AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling
2011.09011
https://arxiv.org/abs/2011.09011v2
https://arxiv.org/pdf/2011.09011v2.pdf
https://github.com/facebookresearch/AlphaNet
false
false
true
pytorch
https://paperswithcode.com/paper/towards-efficient-unconstrained-palmprint
Towards Efficient Unconstrained Palmprint Recognition via Deep Distillation Hashing
2004.03303
https://arxiv.org/abs/2004.03303v1
https://arxiv.org/pdf/2004.03303v1.pdf
https://github.com/HuikaiShao/DDH
false
false
true
tf
https://paperswithcode.com/paper/sum-of-ranked-range-loss-for-supervised
Sum of Ranked Range Loss for Supervised Learning
2106.03300
https://arxiv.org/abs/2106.03300v2
https://arxiv.org/pdf/2106.03300v2.pdf
https://github.com/discovershu/SoRR
true
true
false
pytorch
https://paperswithcode.com/paper/anomalous-thermal-expansion-in-ising-like
Anomalous thermal expansion in Ising-like puckered sheets
2105.10015
https://arxiv.org/abs/2105.10015v2
https://arxiv.org/pdf/2105.10015v2.pdf
https://github.com/phanakata/programmable-matter
true
false
false
none
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
1905.11946
https://arxiv.org/abs/1905.11946v5
https://arxiv.org/pdf/1905.11946v5.pdf
https://github.com/houstonsantos/CassavaLeafDisease
false
false
true
none
https://paperswithcode.com/paper/probabilistic-transformers
Probabilistic Transformers
2010.15583
https://arxiv.org/abs/2010.15583v3
https://arxiv.org/pdf/2010.15583v3.pdf
https://github.com/apple/ml-probabilistic-attention
false
false
true
pytorch
https://paperswithcode.com/paper/shape-modeling-with-spline-partitions
Shape Modeling with Spline Partitions
2108.02507
https://arxiv.org/abs/2108.02507v2
https://arxiv.org/pdf/2108.02507v2.pdf
https://github.com/ShufeiGe/Shape-Modeling-with-Spline-Partitions
true
true
true
none
https://paperswithcode.com/paper/junction-tree-variational-autoencoder-for
Junction Tree Variational Autoencoder for Molecular Graph Generation
1802.04364
http://arxiv.org/abs/1802.04364v4
http://arxiv.org/pdf/1802.04364v4.pdf
https://github.com/LiamWilbraham/jtnnencoder
false
false
true
pytorch
https://paperswithcode.com/paper/prognet-a-transferable-deep-network-for
ProgNet: A Transferable Deep Network for Aircraft Engine Damage Propagation Prognosis under Real Flight Conditions
null
https://www.mdpi.com/2226-4310/10/1/10
https://www.mdpi.com/2226-4310/10/1/10
https://github.com/TBdevellopper/NEW_CMAPSS_Dataset-2021-
false
false
false
none
https://paperswithcode.com/paper/region-aware-adaptive-instance-normalization
Region-aware Adaptive Instance Normalization for Image Harmonization
2106.02853
https://arxiv.org/abs/2106.02853v1
https://arxiv.org/pdf/2106.02853v1.pdf
https://github.com/junleen/RainNet
true
true
true
pytorch
https://paperswithcode.com/paper/once-for-all-train-one-network-and-specialize
Once-for-All: Train One Network and Specialize it for Efficient Deployment
1908.09791
https://arxiv.org/abs/1908.09791v5
https://arxiv.org/pdf/1908.09791v5.pdf
https://github.com/twice154/ofa-for-super-resolution
false
false
true
pytorch
https://paperswithcode.com/paper/vitae-vision-transformer-advanced-by
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
2106.03348
https://arxiv.org/abs/2106.03348v4
https://arxiv.org/pdf/2106.03348v4.pdf
https://github.com/Annbless/ViTAE
true
true
true
pytorch
https://paperswithcode.com/paper/professional-differences-a-comparative-study
Professional Differences: A Comparative Study of Visualization Task Performance and Spatial Ability Across Disciplines
2108.02333
https://arxiv.org/abs/2108.02333v1
https://arxiv.org/pdf/2108.02333v1.pdf
https://github.com/vialab/spatial-abilities-public
true
true
false
none
https://paperswithcode.com/paper/decoding-the-protein-ligand-interactions
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks
2111.15144
https://arxiv.org/abs/2111.15144v1
https://arxiv.org/pdf/2111.15144v1.pdf
https://github.com/nkkchem/pf-gnn_pli
true
true
false
pytorch