paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/medical-data-wrangling-with-sequential
|
Medical data wrangling with sequential variational autoencoders
|
2103.07206
|
https://arxiv.org/abs/2103.07206v2
|
https://arxiv.org/pdf/2103.07206v2.pdf
|
https://github.com/dbarrejon/Shi-VAE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/meta-fine-tuning-neural-language-models-for
|
Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining
|
2003.13003
|
https://arxiv.org/abs/2003.13003v2
|
https://arxiv.org/pdf/2003.13003v2.pdf
|
https://github.com/AntheaLi/cs224nProject
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/xamg-a-library-for-solving-linear-systems
|
XAMG: A library for solving linear systems with multiple right-hand side vectors
|
2103.07329
|
https://arxiv.org/abs/2103.07329v1
|
https://arxiv.org/pdf/2103.07329v1.pdf
|
https://gitlab.com/xamg/xamg
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dynamic-and-application-aware-provisioning-of
|
Dynamic and Application-Aware Provisioning of Chained Virtual Security Network Functions
|
1901.01704
|
https://arxiv.org/abs/1901.01704v4
|
https://arxiv.org/pdf/1901.01704v4.pdf
|
https://github.com/doriguzzi/pess-security
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/dialogpt-large-scale-generative-pre-training
|
DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation
|
1911.00536
|
https://arxiv.org/abs/1911.00536v3
|
https://arxiv.org/pdf/1911.00536v3.pdf
|
https://github.com/lemon234071/clean-dialog
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/right-for-the-right-concept-revising-neuro
|
Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations
|
2011.12854
|
https://arxiv.org/abs/2011.12854v6
|
https://arxiv.org/pdf/2011.12854v6.pdf
|
https://github.com/ml-research/CLEVR-Hans
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/separation-and-concentration-in-deep-networks
|
Separation and Concentration in Deep Networks
|
2012.10424
|
https://arxiv.org/abs/2012.10424v2
|
https://arxiv.org/pdf/2012.10424v2.pdf
|
https://github.com/j-zarka/separation_concentration_deepnets
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-machine-translation-of-rare-words-with
|
Neural Machine Translation of Rare Words with Subword Units
|
1508.07909
|
http://arxiv.org/abs/1508.07909v5
|
http://arxiv.org/pdf/1508.07909v5.pdf
|
https://github.com/nyu-dl/dl4mt-cdec
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/incorporating-long-range-consistency-in-cnn
|
Incorporating long-range consistency in CNN-based texture generation
|
1606.01286
|
http://arxiv.org/abs/1606.01286v2
|
http://arxiv.org/pdf/1606.01286v2.pdf
|
https://github.com/guillaumebrg/texture_generation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/representation-learning-for-sequence-data-1
|
Representation Learning for Sequence Data with Deep Autoencoding Predictive Components
|
2010.03135
|
https://arxiv.org/abs/2010.03135v2
|
https://arxiv.org/pdf/2010.03135v2.pdf
|
https://github.com/JunwenBai/DAPC
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-pre-training-of-bidirectional
|
Unsupervised Pre-training of Bidirectional Speech Encoders via Masked Reconstruction
|
2001.10603
|
https://arxiv.org/abs/2001.10603v2
|
https://arxiv.org/pdf/2001.10603v2.pdf
|
https://github.com/JunwenBai/DAPC
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ultra-high-definition-image-dehazing-via
|
Ultra-High-Definition Image Dehazing via Multi-Guided Bilateral Learning
| null |
http://openaccess.thecvf.com//content/CVPR2021/html/Zheng_Ultra-High-Definition_Image_Dehazing_via_Multi-Guided_Bilateral_Learning_CVPR_2021_paper.html
|
http://openaccess.thecvf.com//content/CVPR2021/papers/Zheng_Ultra-High-Definition_Image_Dehazing_via_Multi-Guided_Bilateral_Learning_CVPR_2021_paper.pdf
|
https://github.com/zzr-idam/4KDehazing
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/overfeat-integrated-recognition-localization
|
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
|
1312.6229
|
http://arxiv.org/abs/1312.6229v4
|
http://arxiv.org/pdf/1312.6229v4.pdf
|
https://github.com/soumith/imagenet-multiGPU.torch
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/discovery-of-physics-and-characterization-of
|
Discovery of Physics and Characterization of Microstructure from Data with Bayesian Hidden Physics Models
|
2103.07502
|
https://arxiv.org/abs/2103.07502v1
|
https://arxiv.org/pdf/2103.07502v1.pdf
|
https://github.com/sdatkinson/BHPM-Ultrasound
| true
| false
| false
|
jax
|
https://paperswithcode.com/paper/gradskip-communication-accelerated-local
|
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
|
2210.16402
|
https://arxiv.org/abs/2210.16402v3
|
https://arxiv.org/pdf/2210.16402v3.pdf
|
https://github.com/artomaranjyan/GradSkip-code
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/residual-flows-for-invertible-generative
|
Residual Flows for Invertible Generative Modeling
|
1906.02735
|
https://arxiv.org/abs/1906.02735v6
|
https://arxiv.org/pdf/1906.02735v6.pdf
|
https://github.com/thu-ml/implicit-normalizing-flows
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/graph-random-neural-network
|
Graph Random Neural Network for Semi-Supervised Learning on Graphs
|
2005.11079
|
https://arxiv.org/abs/2005.11079v4
|
https://arxiv.org/pdf/2005.11079v4.pdf
|
https://github.com/dmlc/dgl/tree/master/examples/pytorch/grand
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/hydrodynamically-interrupted-droplet-growth
|
Hydrodynamically interrupted droplet growth in scalar active matter
|
1907.04819
|
https://arxiv.org/abs/1907.04819v2
|
https://arxiv.org/pdf/1907.04819v2.pdf
|
https://github.com/rajeshrinet/pyGL
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/divide-and-rule-training-context-aware-multi
|
Divide and Rule: Effective Pre-Training for Context-Aware Multi-Encoder Translation Models
|
2103.17151
|
https://arxiv.org/abs/2103.17151v2
|
https://arxiv.org/pdf/2103.17151v2.pdf
|
https://github.com/lorelupo/divide-and-rule
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/interpreting-the-latent-space-of-gans-for
|
Interpreting the Latent Space of GANs for Semantic Face Editing
|
1907.10786
|
https://arxiv.org/abs/1907.10786v3
|
https://arxiv.org/pdf/1907.10786v3.pdf
|
https://github.com/genforce/interfacegan
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/interfacegan-interpreting-the-disentangled
|
InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs
|
2005.09635
|
https://arxiv.org/abs/2005.09635v2
|
https://arxiv.org/pdf/2005.09635v2.pdf
|
https://github.com/genforce/interfacegan
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/progressive-growing-of-gans-for-improved
|
Progressive Growing of GANs for Improved Quality, Stability, and Variation
|
1710.10196
|
http://arxiv.org/abs/1710.10196v3
|
http://arxiv.org/pdf/1710.10196v3.pdf
|
https://github.com/genforce/interfacegan
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-style-based-generator-architecture-for
|
A Style-Based Generator Architecture for Generative Adversarial Networks
|
1812.04948
|
http://arxiv.org/abs/1812.04948v3
|
http://arxiv.org/pdf/1812.04948v3.pdf
|
https://github.com/genforce/interfacegan
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-unified-mrc-framework-for-named-entity
|
A Unified MRC Framework for Named Entity Recognition
|
1910.11476
|
https://arxiv.org/abs/1910.11476v7
|
https://arxiv.org/pdf/1910.11476v7.pdf
|
https://github.com/allenyummy/EHR_NER
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-spatio-temporal-2
|
Self-Supervised Visual Learning by Variable Playback Speeds Prediction of a Video
|
2003.02692
|
https://arxiv.org/abs/2003.02692v2
|
https://arxiv.org/pdf/2003.02692v2.pdf
|
https://github.com/hyeon-jo/PSPNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/probabilistic-robust-linear-quadratic
|
Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes
|
2105.07668
|
https://arxiv.org/abs/2105.07668v2
|
https://arxiv.org/pdf/2105.07668v2.pdf
|
https://github.com/Data-Science-in-Mechanical-Engineering/prlqr
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/automated-test-generation-for-rest-apis-no
|
Automated Test Generation for REST APIs: No Time to Rest Yet
|
2204.08348
|
https://arxiv.org/abs/2204.08348v3
|
https://arxiv.org/pdf/2204.08348v3.pdf
|
https://github.com/randomqwerqwer/issta-main
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/two-at-once-enhancing-learning-and
|
Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net
|
1807.09441
|
https://arxiv.org/abs/1807.09441v3
|
https://arxiv.org/pdf/1807.09441v3.pdf
|
https://github.com/alibaba/cluster-contrast
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-answer-questions-in-dynamic-audio
|
Learning to Answer Questions in Dynamic Audio-Visual Scenarios
|
2203.14072
|
https://arxiv.org/abs/2203.14072v2
|
https://arxiv.org/pdf/2203.14072v2.pdf
|
https://github.com/GeWu-Lab/MUSIC-AVQA
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/improving-the-transferability-of-speech
|
Improving the transferability of speech separation by meta-learning
|
2203.05882
|
https://arxiv.org/abs/2203.05882v1
|
https://arxiv.org/pdf/2203.05882v1.pdf
|
https://github.com/nobel861017/mtss
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/large-language-models-can-accurately-predict
|
Large language models can accurately predict searcher preferences
|
2309.10621
|
https://arxiv.org/abs/2309.10621v3
|
https://arxiv.org/pdf/2309.10621v3.pdf
|
https://github.com/RikiyaT/LARA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/direct-evaluation-of-chain-of-thought-in
|
Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs
|
2402.11199
|
https://arxiv.org/abs/2402.11199v2
|
https://arxiv.org/pdf/2402.11199v2.pdf
|
https://github.com/minhvuong2000/llmreasoncert
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-large-scale-study-of-relevance-assessments
|
A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look
|
2411.08275
|
https://arxiv.org/abs/2411.08275v1
|
https://arxiv.org/pdf/2411.08275v1.pdf
|
https://github.com/RikiyaT/LARA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tutorial-on-deep-learning-for-human-activity
|
Tutorial on Deep Learning for Human Activity Recognition
|
2110.06663
|
https://arxiv.org/abs/2110.06663v1
|
https://arxiv.org/pdf/2110.06663v1.pdf
|
https://github.com/mariusbock/dl-for-har/tree/main/tutorial_notebooks
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/meta-pu-an-arbitrary-scale-upsampling-network-1
|
Meta-PU: An Arbitrary-Scale Upsampling Network for Point Cloud
| null |
https://ieeexplore.ieee.org/document/9351772/
|
https://ieeexplore.ieee.org/document/9351772/
|
https://github.com/pleaseconnectwifi/Meta-PU
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-image-translation-using
|
Unsupervised Image Translation using Adversarial Networks for Improved Plant Disease Recognition
|
1909.11915
|
https://arxiv.org/abs/1909.11915v1
|
https://arxiv.org/pdf/1909.11915v1.pdf
|
https://github.com/mlandcv/Auxilliary_Reconstruction_GAN
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/price-response-functions-and-spread-impact-in
|
Price response functions and spread impact in correlated financial markets
|
2010.15105
|
https://arxiv.org/abs/2010.15105v1
|
https://arxiv.org/pdf/2010.15105v1.pdf
|
https://github.com/juanhenao21/forex_response_spread_year
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/modeling-relational-data-with-graph
|
Modeling Relational Data with Graph Convolutional Networks
|
1703.06103
|
http://arxiv.org/abs/1703.06103v4
|
http://arxiv.org/pdf/1703.06103v4.pdf
|
https://github.com/dmlc/dgl/tree/master/examples/tensorflow/rgcn
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/date-detecting-anomalies-in-text-via-self
|
DATE: Detecting Anomalies in Text via Self-Supervision of Transformers
|
2104.05591
|
https://arxiv.org/abs/2104.05591v1
|
https://arxiv.org/pdf/2104.05591v1.pdf
|
https://github.com/bit-ml/date
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/interval-neural-networks-as-instability
|
Interval Neural Networks as Instability Detectors for Image Reconstructions
|
2003.13471
|
https://arxiv.org/abs/2003.13471v1
|
https://arxiv.org/pdf/2003.13471v1.pdf
|
https://github.com/luisoala/inn
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/interval-neural-networks-uncertainty-scores
|
Interval Neural Networks: Uncertainty Scores
|
2003.11566
|
https://arxiv.org/abs/2003.11566v1
|
https://arxiv.org/pdf/2003.11566v1.pdf
|
https://github.com/luisoala/inn
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/conformative-filtering-for-implicit-feedback
|
Conformative Filtering for Implicit Feedback Data
|
1704.01889
|
http://arxiv.org/abs/1704.01889v2
|
http://arxiv.org/pdf/1704.01889v2.pdf
|
https://github.com/fkhawar/Conformative-Filtering
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/crystallography-companion-agent-for-high
|
Crystallography companion agent for high-throughput materials discovery
|
2008.00283
|
https://arxiv.org/abs/2008.00283v2
|
https://arxiv.org/pdf/2008.00283v2.pdf
|
https://github.com/bnl/pub-Maffettone_2020_08
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/orb-slam3-an-accurate-open-source-library-for
|
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM
|
2007.11898
|
https://arxiv.org/abs/2007.11898v2
|
https://arxiv.org/pdf/2007.11898v2.pdf
|
https://github.com/baaixw/ORB_SLAM_test
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/180309746
|
Lenstronomy: multi-purpose gravitational lens modelling software package
|
1803.09746
|
http://arxiv.org/abs/1803.09746v2
|
http://arxiv.org/pdf/1803.09746v2.pdf
|
https://github.com/sibirrer/curved_arcs
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-guide-to-convolution-arithmetic-for-deep
|
A guide to convolution arithmetic for deep learning
|
1603.07285
|
http://arxiv.org/abs/1603.07285v2
|
http://arxiv.org/pdf/1603.07285v2.pdf
|
https://github.com/mrdbourke/tensorflow-deep-learning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/universal-language-model-fine-tuning-for-text
|
Universal Language Model Fine-tuning for Text Classification
|
1801.06146
|
http://arxiv.org/abs/1801.06146v5
|
http://arxiv.org/pdf/1801.06146v5.pdf
|
https://github.com/mrdbourke/tensorflow-deep-learning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/pubmed-200k-rct-a-dataset-for-sequential
|
PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts
|
1710.06071
|
http://arxiv.org/abs/1710.06071v1
|
http://arxiv.org/pdf/1710.06071v1.pdf
|
https://github.com/mrdbourke/tensorflow-deep-learning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/assessing-the-reliability-of-large-language
|
Assessing the Reliability of Large Language Model Knowledge
|
2310.09820
|
https://arxiv.org/abs/2310.09820v1
|
https://arxiv.org/pdf/2310.09820v1.pdf
|
https://github.com/vicky-wil/monitor
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/pixel-interactive-light-system-design-based
|
PIXEL: Interactive Light System Design Based On Simple Gesture Recognition
|
2010.10180
|
http://arxiv.org/abs/2010.10180v1
|
http://arxiv.org/pdf/2010.10180v1.pdf
|
https://github.com/actbee/Interactive-Light-System-Design-Based-On-Simple-Gesture-Recognition-
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/transverse-confinement-of-electron-beams-in-a
|
Transverse Confinement of Electron Beams in a 2D Optical Lattice for Compact Coherent X-Ray Sources
|
2104.11586
|
https://arxiv.org/abs/2104.11586v2
|
https://arxiv.org/pdf/2104.11586v2.pdf
|
https://github.com/aryafallahi/mithra
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multipoint-cross-spectral-registration-of
|
MultiPoint: Cross-spectral registration of thermal and optical aerial imagery
| null |
https://proceedings.mlr.press/v155/achermann21a
|
https://proceedings.mlr.press/v155/achermann21a/achermann21a.pdf
|
https://github.com/ethz-asl/multipoint
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/skin-lesion-analysis-toward-melanoma
|
Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)
|
1710.05006
|
http://arxiv.org/abs/1710.05006v3
|
http://arxiv.org/pdf/1710.05006v3.pdf
|
https://github.com/datascisteven/Melanoma-Image-Classification
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/skin-lesion-analysis-toward-melanoma-1
|
Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC)
|
1902.03368
|
http://arxiv.org/abs/1902.03368v2
|
http://arxiv.org/pdf/1902.03368v2.pdf
|
https://github.com/datascisteven/Melanoma-Image-Classification
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mmdetection-open-mmlab-detection-toolbox-and
|
MMDetection: Open MMLab Detection Toolbox and Benchmark
|
1906.07155
|
https://arxiv.org/abs/1906.07155v1
|
https://arxiv.org/pdf/1906.07155v1.pdf
|
https://github.com/SiriusKY/SceneTextDetector
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/end-to-end-asr-system-with-automatic
|
End to End ASR System with Automatic Punctuation Insertion
|
2012.02012
|
https://arxiv.org/abs/2012.02012v1
|
https://arxiv.org/pdf/2012.02012v1.pdf
|
https://github.com/GavinGuan95/Punctuator.Pytorch
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/teaching-agents-how-to-map-spatial-reasoning
|
Teaching Agents how to Map: Spatial Reasoning for Multi-Object Navigation
|
2107.06011
|
https://arxiv.org/abs/2107.06011v4
|
https://arxiv.org/pdf/2107.06011v4.pdf
|
https://github.com/PierreMarza/teaching_agents_how_to_map
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sufficient-dimension-reduction-for
|
Sufficient dimension reduction for classification using principal optimal transport direction
|
2010.09921
|
https://arxiv.org/abs/2010.09921v4
|
https://arxiv.org/pdf/2010.09921v4.pdf
|
https://github.com/ChengzijunAixiaoli/POTD
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/tabtransformer-tabular-data-modeling-using
|
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
|
2012.06678
|
https://arxiv.org/abs/2012.06678v1
|
https://arxiv.org/pdf/2012.06678v1.pdf
|
https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TabTransformer.py
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/opt-open-pre-trained-transformer-language
|
OPT: Open Pre-trained Transformer Language Models
|
2205.01068
|
https://arxiv.org/abs/2205.01068v4
|
https://arxiv.org/pdf/2205.01068v4.pdf
|
https://github.com/2023-MindSpore-1/ms-code-218/tree/main/opt
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/wasserstein-gan
|
Wasserstein GAN
|
1701.07875
|
http://arxiv.org/abs/1701.07875v3
|
http://arxiv.org/pdf/1701.07875v3.pdf
|
https://github.com/2023-MindSpore-1/ms-code-7/tree/main/WGAN_GP
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/recursive-contour-saliency-blending-network
|
Recursive Contour Saliency Blending Network for Accurate Salient Object Detection
|
2105.13865
|
https://arxiv.org/abs/2105.13865v3
|
https://arxiv.org/pdf/2105.13865v3.pdf
|
https://github.com/BarCodeReader/RCSB-PyTorch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/supervised-learning-of-universal-sentence
|
Supervised Learning of Universal Sentence Representations from Natural Language Inference Data
|
1705.02364
|
http://arxiv.org/abs/1705.02364v5
|
http://arxiv.org/pdf/1705.02364v5.pdf
|
https://github.com/menajosep/AleatoricSent
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/yolact-better-real-time-instance-segmentation
|
YOLACT++: Better Real-time Instance Segmentation
|
1912.06218
|
https://arxiv.org/abs/1912.06218v2
|
https://arxiv.org/pdf/1912.06218v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-7/tree/main/WGAN_GP
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/asking-and-answering-questions-to-evaluate
|
Asking and Answering Questions to Evaluate the Factual Consistency of Summaries
|
2004.04228
|
https://arxiv.org/abs/2004.04228v1
|
https://arxiv.org/pdf/2004.04228v1.pdf
|
https://github.com/W4ngatang/qags
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/augmenting-sequential-recommendation-with
|
Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer
|
2105.00522
|
https://arxiv.org/abs/2105.00522v1
|
https://arxiv.org/pdf/2105.00522v1.pdf
|
https://github.com/DyGRec/ASReP
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/quartile-based-prediction-of-event-types-and
|
A Comparison of Deep-Learning Methods for Analysing and Predicting Business Processes
|
2102.07838
|
https://arxiv.org/abs/2102.07838v2
|
https://arxiv.org/pdf/2102.07838v2.pdf
|
https://github.com/ishwarvenugopal/GCN-ProcessPrediction
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/eec-learning-to-encode-and-regenerate-images-1
|
EEC: Learning to Encode and Regenerate Images for Continual Learning
|
2101.04904
|
https://arxiv.org/abs/2101.04904v4
|
https://arxiv.org/pdf/2101.04904v4.pdf
|
https://github.com/aliayub7/EEC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/edge-enhanced-feature-distillation-network
|
Edge-enhanced Feature Distillation Network for Efficient Super-Resolution
|
2204.08759
|
https://arxiv.org/abs/2204.08759v2
|
https://arxiv.org/pdf/2204.08759v2.pdf
|
https://github.com/icandle/efdn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/bart-denoising-sequence-to-sequence-pre
|
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
|
1910.13461
|
https://arxiv.org/abs/1910.13461v1
|
https://arxiv.org/pdf/1910.13461v1.pdf
|
https://github.com/W4ngatang/qags
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/newsqa-a-machine-comprehension-dataset
|
NewsQA: A Machine Comprehension Dataset
|
1611.09830
|
http://arxiv.org/abs/1611.09830v3
|
http://arxiv.org/pdf/1611.09830v3.pdf
|
https://github.com/W4ngatang/qags
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bottom-up-abstractive-summarization
|
Bottom-Up Abstractive Summarization
|
1808.10792
|
http://arxiv.org/abs/1808.10792v2
|
http://arxiv.org/pdf/1808.10792v2.pdf
|
https://github.com/W4ngatang/qags
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hasco-towards-agile-hardware-and-software-co
|
HASCO: Towards Agile HArdware and Software CO-design for Tensor Computation
|
2105.01585
|
https://arxiv.org/abs/2105.01585v1
|
https://arxiv.org/pdf/2105.01585v1.pdf
|
https://github.com/pku-liang/HASCO
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/neural-ray-tracing-learning-surfaces-and
|
Neural Ray-Tracing: Learning Surfaces and Reflectance for Relighting and View Synthesis
|
2104.13562
|
https://arxiv.org/abs/2104.13562v2
|
https://arxiv.org/pdf/2104.13562v2.pdf
|
https://github.com/princeton-computational-imaging/neural_raytracing
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-making-deep-learning-based
|
Towards Making Deep Learning-based Vulnerability Detectors Robust
|
2108.00669
|
https://arxiv.org/abs/2108.00669v2
|
https://arxiv.org/pdf/2108.00669v2.pdf
|
https://github.com/ZigZagframework/zigzag_framework
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-reinforcement-learning-environment-for-job
|
A Reinforcement Learning Environment For Job-Shop Scheduling
|
2104.03760
|
https://arxiv.org/abs/2104.03760v1
|
https://arxiv.org/pdf/2104.03760v1.pdf
|
https://github.com/prosysscience/JSS
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/multipole-graph-neural-operator-for
|
Multipole Graph Neural Operator for Parametric Partial Differential Equations
|
2006.09535
|
https://arxiv.org/abs/2006.09535v2
|
https://arxiv.org/pdf/2006.09535v2.pdf
|
https://github.com/zongyi-li/graph-pde
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ac-dc-alternating-compressed-decompressed
|
AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks
|
2106.12379
|
https://arxiv.org/abs/2106.12379v2
|
https://arxiv.org/pdf/2106.12379v2.pdf
|
https://github.com/IST-DASLab/ACDC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/logistic-regression-through-the-veil-of
|
Logistic Regression Through the Veil of Imprecise Data
|
2106.00492
|
https://arxiv.org/abs/2106.00492v2
|
https://arxiv.org/pdf/2106.00492v2.pdf
|
https://github.com/ngg1995/LR-python
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/homomorphic-payment-addresses-and-the-pay-to
|
Homomorphic Payment Addresses and the Pay-to-Contract Protocol
|
1212.3257
|
http://arxiv.org/abs/1212.3257v1
|
http://arxiv.org/pdf/1212.3257v1.pdf
|
https://github.com/bitcoinjs/bitcoinjs-lib
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/soft-attention-improves-skin-cancer
|
Soft-Attention Improves Skin Cancer Classification Performance
|
2105.03358
|
https://arxiv.org/abs/2105.03358v3
|
https://arxiv.org/pdf/2105.03358v3.pdf
|
https://github.com/skrantidatta/Attention-based-Skin-Cancer-Classification
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/conversations-are-not-flat-modeling-the
|
Conversations Are Not Flat: Modeling the Dynamic Information Flow across Dialogue Utterances
|
2106.02227
|
https://arxiv.org/abs/2106.02227v1
|
https://arxiv.org/pdf/2106.02227v1.pdf
|
https://github.com/ictnlp/DialoFlow
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fine-grained-angular-contrastive-learning
|
Fine-grained Angular Contrastive Learning with Coarse Labels
|
2012.03515
|
https://arxiv.org/abs/2012.03515v3
|
https://arxiv.org/pdf/2012.03515v3.pdf
|
https://github.com/guybuk/ANCOR
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/group-cam-group-score-weighted-visual
|
Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks
|
2103.13859
|
https://arxiv.org/abs/2103.13859v4
|
https://arxiv.org/pdf/2103.13859v4.pdf
|
https://github.com/wofmanaf/Group-CAM
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/distance-matters-in-human-object-interaction
|
Distance Matters in Human-Object Interaction Detection
|
2207.01869
|
https://arxiv.org/abs/2207.01869v1
|
https://arxiv.org/pdf/2207.01869v1.pdf
|
https://github.com/daoyuan98/sdt-hoi
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/spectral-embedding-for-dynamic-networks-with
|
Spectral embedding for dynamic networks with stability guarantees
|
2106.01282
|
https://arxiv.org/abs/2106.01282v2
|
https://arxiv.org/pdf/2106.01282v2.pdf
|
https://github.com/iggallagher/Dynamic-Network-Embedding
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/attentivenas-improving-neural-architecture
|
AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling
|
2011.09011
|
https://arxiv.org/abs/2011.09011v2
|
https://arxiv.org/pdf/2011.09011v2.pdf
|
https://github.com/facebookresearch/AlphaNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-efficient-unconstrained-palmprint
|
Towards Efficient Unconstrained Palmprint Recognition via Deep Distillation Hashing
|
2004.03303
|
https://arxiv.org/abs/2004.03303v1
|
https://arxiv.org/pdf/2004.03303v1.pdf
|
https://github.com/HuikaiShao/DDH
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/sum-of-ranked-range-loss-for-supervised
|
Sum of Ranked Range Loss for Supervised Learning
|
2106.03300
|
https://arxiv.org/abs/2106.03300v2
|
https://arxiv.org/pdf/2106.03300v2.pdf
|
https://github.com/discovershu/SoRR
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/anomalous-thermal-expansion-in-ising-like
|
Anomalous thermal expansion in Ising-like puckered sheets
|
2105.10015
|
https://arxiv.org/abs/2105.10015v2
|
https://arxiv.org/pdf/2105.10015v2.pdf
|
https://github.com/phanakata/programmable-matter
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
|
1905.11946
|
https://arxiv.org/abs/1905.11946v5
|
https://arxiv.org/pdf/1905.11946v5.pdf
|
https://github.com/houstonsantos/CassavaLeafDisease
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/probabilistic-transformers
|
Probabilistic Transformers
|
2010.15583
|
https://arxiv.org/abs/2010.15583v3
|
https://arxiv.org/pdf/2010.15583v3.pdf
|
https://github.com/apple/ml-probabilistic-attention
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/shape-modeling-with-spline-partitions
|
Shape Modeling with Spline Partitions
|
2108.02507
|
https://arxiv.org/abs/2108.02507v2
|
https://arxiv.org/pdf/2108.02507v2.pdf
|
https://github.com/ShufeiGe/Shape-Modeling-with-Spline-Partitions
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/junction-tree-variational-autoencoder-for
|
Junction Tree Variational Autoencoder for Molecular Graph Generation
|
1802.04364
|
http://arxiv.org/abs/1802.04364v4
|
http://arxiv.org/pdf/1802.04364v4.pdf
|
https://github.com/LiamWilbraham/jtnnencoder
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/prognet-a-transferable-deep-network-for
|
ProgNet: A Transferable Deep Network for Aircraft Engine Damage Propagation Prognosis under Real Flight Conditions
| null |
https://www.mdpi.com/2226-4310/10/1/10
|
https://www.mdpi.com/2226-4310/10/1/10
|
https://github.com/TBdevellopper/NEW_CMAPSS_Dataset-2021-
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/region-aware-adaptive-instance-normalization
|
Region-aware Adaptive Instance Normalization for Image Harmonization
|
2106.02853
|
https://arxiv.org/abs/2106.02853v1
|
https://arxiv.org/pdf/2106.02853v1.pdf
|
https://github.com/junleen/RainNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/once-for-all-train-one-network-and-specialize
|
Once-for-All: Train One Network and Specialize it for Efficient Deployment
|
1908.09791
|
https://arxiv.org/abs/1908.09791v5
|
https://arxiv.org/pdf/1908.09791v5.pdf
|
https://github.com/twice154/ofa-for-super-resolution
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vitae-vision-transformer-advanced-by
|
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
|
2106.03348
|
https://arxiv.org/abs/2106.03348v4
|
https://arxiv.org/pdf/2106.03348v4.pdf
|
https://github.com/Annbless/ViTAE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/professional-differences-a-comparative-study
|
Professional Differences: A Comparative Study of Visualization Task Performance and Spatial Ability Across Disciplines
|
2108.02333
|
https://arxiv.org/abs/2108.02333v1
|
https://arxiv.org/pdf/2108.02333v1.pdf
|
https://github.com/vialab/spatial-abilities-public
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/decoding-the-protein-ligand-interactions
|
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks
|
2111.15144
|
https://arxiv.org/abs/2111.15144v1
|
https://arxiv.org/pdf/2111.15144v1.pdf
|
https://github.com/nkkchem/pf-gnn_pli
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.