paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/ov-2-slam-a-fully-online-and-versatile-visual
|
OV$^{2}$SLAM : A Fully Online and Versatile Visual SLAM for Real-Time Applications
|
2102.04060
|
https://arxiv.org/abs/2102.04060v1
|
https://arxiv.org/pdf/2102.04060v1.pdf
|
https://github.com/ov2slam/ov2slam
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/avatar-fixing-semantic-bugs-with-fix-patterns
|
AVATAR : Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations
|
1812.07270
|
http://arxiv.org/abs/1812.07270v3
|
http://arxiv.org/pdf/1812.07270v3.pdf
|
https://github.com/SerVal-Repair/AVATAR
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/general-relaxation-methods-for-initial-value
|
General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes
|
2003.03012
|
http://arxiv.org/abs/2003.03012v2
|
http://arxiv.org/pdf/2003.03012v2.pdf
|
https://github.com/ranocha/Relaxation-LMM-notebooks
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fundamental-limits-from-chaos-on-instability
|
Fundamental limits from chaos on instability time predictions in compact planetary systems
|
2001.04606
|
http://arxiv.org/abs/2001.04606v1
|
http://arxiv.org/pdf/2001.04606v1.pdf
|
https://github.com/Naireen/StabilitySetImage
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/2103-14899
|
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
|
2103.14899
|
https://arxiv.org/abs/2103.14899v2
|
https://arxiv.org/pdf/2103.14899v2.pdf
|
https://github.com/rishikksh20/CrossViT-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/automatic-in-line-quantitative-myocardial
|
Automatic In-line Quantitative Myocardial Perfusion Mapping: processing algorithm and implementation
|
1910.07119
|
http://arxiv.org/abs/1910.07119v1
|
http://arxiv.org/pdf/1910.07119v1.pdf
|
https://github.com/xueh2/QPerf
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/response-of-vertical-velocities-in
|
Response of Vertical Velocities in Extratropical Precipitation Extremes to Climate Change
|
1910.05644
|
http://arxiv.org/abs/1910.05644v2
|
http://arxiv.org/pdf/1910.05644v2.pdf
|
https://github.com/dante831/QG-omega
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/convergent-migration-renders-trappist-1-long
|
Convergent Migration Renders TRAPPIST-1 Long-lived
|
1704.02957
|
https://arxiv.org/abs/1704.02957v2
|
https://arxiv.org/pdf/1704.02957v2.pdf
|
https://github.com/dtamayo/trappist
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/spatial-organization-and-interactions-of
|
Spatial organization and interactions of harvester ants during foraging activity
|
1709.08343
|
http://arxiv.org/abs/1709.08343v1
|
http://arxiv.org/pdf/1709.08343v1.pdf
|
https://github.com/jacobdavidson/ants-spatial
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/let-s-gamble-how-a-poor-visualization-can
|
Let's Gamble: How a Poor Visualization Can Elicit Risky Behavior
|
2010.14069
|
http://arxiv.org/abs/2010.14069v1
|
http://arxiv.org/pdf/2010.14069v1.pdf
|
https://github.com/washuvis/letsgamble
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/inverse-problem-for-the-yang-mills-equations
|
Inverse problem for the Yang-Mills equations
|
2005.12578
|
http://arxiv.org/abs/2005.12578v1
|
http://arxiv.org/pdf/2005.12578v1.pdf
|
https://github.com/l-oksanen/CLOP2020
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/repairing-and-mechanising-the-javascript
|
Repairing and Mechanising the JavaScript Relaxed Memory Model
|
2005.10554
|
http://arxiv.org/abs/2005.10554v2
|
http://arxiv.org/pdf/2005.10554v2.pdf
|
https://github.com/conrad-watt/repairing-and-mechanising-the-javascript-relaxed-memory-model
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automated-essay-scoring-using-transformer
|
Automated Essay Scoring Using Transformer Models
|
2110.06874
|
https://arxiv.org/abs/2110.06874v1
|
https://arxiv.org/pdf/2110.06874v1.pdf
|
https://github.com/lucaoffice/publications
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/crafty-efficient-htm-compatible-persistent
|
Crafty: Efficient, HTM-Compatible Persistent Transactions
|
2004.00262
|
http://arxiv.org/abs/2004.00262v3
|
http://arxiv.org/pdf/2004.00262v3.pdf
|
https://github.com/PLaSSticity/Crafty
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/benchmarking-software-model-checkers-on
|
Benchmarking Software Model Checkers on Automotive Code
|
2003.11689
|
http://arxiv.org/abs/2003.11689v1
|
http://arxiv.org/pdf/2003.11689v1.pdf
|
https://github.com/lu-w/benchmarking-verifiers-for-automotive
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/summarizing-diverging-string-sequences-with
|
Summarizing Diverging String Sequences, with Applications to Chain-Letter Petitions
|
2004.08993
|
http://arxiv.org/abs/2004.08993v1
|
http://arxiv.org/pdf/2004.08993v1.pdf
|
https://github.com/tomlinsonk/diverging-string-seqs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/an-open-catalog-for-supernova-data
|
An Open Catalog for Supernova Data
|
1605.01054
|
https://arxiv.org/abs/1605.01054v2
|
https://arxiv.org/pdf/1605.01054v2.pdf
|
https://github.com/astrocatalogs/sne-external-xray
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/estimating-the-number-of-casualties-in-the
|
Estimating the number of casualties in the American Indian war: a Bayesian analysis using the power law distribution
|
1710.01662
|
https://arxiv.org/abs/1710.01662v1
|
https://arxiv.org/pdf/1710.01662v1.pdf
|
https://github.com/csgillespie/plbayes
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/coordinated-container-migration-and-base
|
Coordinated Container Migration and Base Station Handover in Mobile Edge Computing
|
2009.05682
|
http://arxiv.org/abs/2009.05682v1
|
http://arxiv.org/pdf/2009.05682v1.pdf
|
https://gitlab.com/ngovanmao/edgeapps
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lightchain-a-dht-based-blockchain-for
|
LightChain: A DHT-based Blockchain for Resource Constrained Environments
|
1904.00375
|
https://arxiv.org/abs/1904.00375v2
|
https://arxiv.org/pdf/1904.00375v2.pdf
|
https://github.com/yhassanzadeh13/lightchain-container
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/qed-at-nnlo-with-mcmule
|
QED at NNLO with McMule
|
2007.01654
|
http://arxiv.org/abs/2007.01654v2
|
http://arxiv.org/pdf/2007.01654v2.pdf
|
https://gitlab.com/mule-tools/manual
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/joint-subgraph-to-subgraph-transitions
|
Joint Subgraph-to-Subgraph Transitions -- Generalizing Triadic Closure for Powerful and Interpretable Graph Modeling
|
2009.06770
|
https://arxiv.org/abs/2009.06770v4
|
https://arxiv.org/pdf/2009.06770v4.pdf
|
https://github.com/SST-Author/Subgraph-Subgraph-Transitions
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/deep-siamese-multi-scale-convolutional
|
Change Detection in Multi-temporal VHR Images Based on Deep Siamese Multi-scale Convolutional Networks
|
1906.11479
|
https://arxiv.org/abs/1906.11479v2
|
https://arxiv.org/pdf/1906.11479v2.pdf
|
https://github.com/I-Hope-Peace/ChangeDetectionRepository
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/unsupervised-change-detection-in-multi
|
Unsupervised Change Detection in Multi-temporal VHR Images Based on Deep Kernel PCA Convolutional Mapping Network
|
1912.08628
|
https://arxiv.org/abs/1912.08628v1
|
https://arxiv.org/pdf/1912.08628v1.pdf
|
https://github.com/I-Hope-Peace/ChangeDetectionRepository
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/openbezoar-small-cost-effective-and-open
|
OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data
|
2404.12195
|
https://arxiv.org/abs/2404.12195v1
|
https://arxiv.org/pdf/2404.12195v1.pdf
|
https://bitbucket.org/paladinanalytics/qlora-finetuning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/effective-cascade-dual-decoder-model-for
|
A Cascade Dual-Decoder Model for Joint Entity and Relation Extraction
|
2106.14163
|
https://arxiv.org/abs/2106.14163v2
|
https://arxiv.org/pdf/2106.14163v2.pdf
|
https://github.com/prastunlp/DualDec
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/braille-to-text-translation-for-bengali
|
Braille to Text Translation for Bengali Language: A Geometric Approach
|
2012.01494
|
https://arxiv.org/abs/2012.01494v1
|
https://arxiv.org/pdf/2012.01494v1.pdf
|
https://github.com/MinhasKamal/BrailleToTextTranslator
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/interactive-medical-image-segmentation-via
|
Interactive Medical Image Segmentation via Point-Based Interaction and Sequential Patch Learning
|
1804.10481
|
http://arxiv.org/abs/1804.10481v2
|
http://arxiv.org/pdf/1804.10481v2.pdf
|
https://github.com/sunalbert/Sequential-patch-based-segmentation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/stellar-population-inference-with-prospector
|
Stellar Population Inference with Prospector
|
2012.01426
|
https://arxiv.org/abs/2012.01426v1
|
https://arxiv.org/pdf/2012.01426v1.pdf
|
https://github.com/bd-j/exspect
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-parametric-level-set-method-for-partially
|
A parametric level-set method for partially discrete tomography
|
1704.00568
|
https://arxiv.org/abs/1704.00568v1
|
https://arxiv.org/pdf/1704.00568v1.pdf
|
https://github.com/ajinkyakadu/PartiallyDiscreteTomo
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/bayesian-semiparametric-modelling-of-phase
|
Bayesian semiparametric modelling of phase-varying point processes
|
1812.09607
|
http://arxiv.org/abs/1812.09607v1
|
http://arxiv.org/pdf/1812.09607v1.pdf
|
https://github.com/bgalasso/Rmpp
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/improving-model-calibration-with-accuracy-1
|
Improving model calibration with accuracy versus uncertainty optimization
|
2012.07923
|
https://arxiv.org/abs/2012.07923v1
|
https://arxiv.org/pdf/2012.07923v1.pdf
|
https://github.com/IntelLabs/AVUC
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-6d-object-pose-estimation-for
|
Self-supervised 6D Object Pose Estimation for Robot Manipulation
|
1909.10159
|
https://arxiv.org/abs/1909.10159v1
|
https://arxiv.org/pdf/1909.10159v1.pdf
|
https://github.com/NVlabs/PoseCNN-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/esprit-explaining-solutions-to-physical
|
ESPRIT: Explaining Solutions to Physical Reasoning Tasks
|
2005.00730
|
https://arxiv.org/abs/2005.00730v2
|
https://arxiv.org/pdf/2005.00730v2.pdf
|
https://github.com/facebookresearch/phyre
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/solving-physics-puzzles-by-reasoning-about
|
Solving Physics Puzzles by Reasoning about Paths
|
2011.07357
|
https://arxiv.org/abs/2011.07357v1
|
https://arxiv.org/pdf/2011.07357v1.pdf
|
https://github.com/facebookresearch/phyre
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sequential-estimation-of-nonparametric
|
Sequential estimation of Spearman rank correlation using Hermite series estimators
|
2012.06287
|
https://arxiv.org/abs/2012.06287v2
|
https://arxiv.org/pdf/2012.06287v2.pdf
|
https://github.com/MikeJaredS/hermiter
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/closed-form-factorization-of-latent-semantics
|
Closed-Form Factorization of Latent Semantics in GANs
|
2007.06600
|
https://arxiv.org/abs/2007.06600v4
|
https://arxiv.org/pdf/2007.06600v4.pdf
|
https://github.com/dkn16/stylegan2-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-cuboid-detection-beyond-2d-bounding
|
Deep Cuboid Detection: Beyond 2D Bounding Boxes
|
1611.10010
|
http://arxiv.org/abs/1611.10010v1
|
http://arxiv.org/pdf/1611.10010v1.pdf
|
https://github.com/rubenve95/Deep-Cuboid-Detection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/covidhealth-a-benchmark-twitter-dataset-and
|
COVIDHealth: A Benchmark Twitter Dataset and Machine Learning based Web Application for Classifying COVID-19 Discussions
|
2402.09897
|
https://arxiv.org/abs/2402.09897v1
|
https://arxiv.org/pdf/2402.09897v1.pdf
|
https://github.com/bishal16/covid19-health-related-data-classification-website
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/posecnn-a-convolutional-neural-network-for-6d
|
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
|
1711.00199
|
http://arxiv.org/abs/1711.00199v3
|
http://arxiv.org/pdf/1711.00199v3.pdf
|
https://github.com/NVlabs/PoseCNN-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dialogxl-all-in-one-xlnet-for-multi-party
|
DialogXL: All-in-One XLNet for Multi-Party Conversation Emotion Recognition
|
2012.08695
|
https://arxiv.org/abs/2012.08695v1
|
https://arxiv.org/pdf/2012.08695v1.pdf
|
https://github.com/shenwzh3/DialogXL
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/representation-free-model-predictive-control
|
Representation-Free Model Predictive Control for Dynamic Motions in Quadrupeds
|
2012.10002
|
https://arxiv.org/abs/2012.10002v1
|
https://arxiv.org/pdf/2012.10002v1.pdf
|
https://github.com/YanranDing/RF-MPC
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/an-underwater-slam-system-using-sonar-visual
|
An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor
|
1810.03200
|
http://arxiv.org/abs/1810.03200v2
|
http://arxiv.org/pdf/1810.03200v2.pdf
|
https://github.com/sharminrahman/SVIn2
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/gamma-models-generative-temporal-difference
|
Gamma-Models: Generative Temporal Difference Learning for Infinite-Horizon Prediction
| null |
http://proceedings.neurips.cc/paper/2020/hash/12ffb0968f2f56e51a59a6beb37b2859-Abstract.html
|
http://proceedings.neurips.cc/paper/2020/file/12ffb0968f2f56e51a59a6beb37b2859-Paper.pdf
|
https://github.com/JannerM/gamma-models
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/g-models-generative-temporal-difference
|
Generative Temporal Difference Learning for Infinite-Horizon Prediction
|
2010.14496
|
https://arxiv.org/abs/2010.14496v4
|
https://arxiv.org/pdf/2010.14496v4.pdf
|
https://github.com/JannerM/gamma-models
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/information-diffusion-prediction-with-latent
|
Information Diffusion Prediction with Latent Factor Disentanglement
|
2012.08828
|
https://arxiv.org/abs/2012.08828v1
|
https://arxiv.org/pdf/2012.08828v1.pdf
|
https://github.com/buptwhr/SIDDA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/social-nce-contrastive-learning-of-socially
|
Social NCE: Contrastive Learning of Socially-aware Motion Representations
|
2012.11717
|
https://arxiv.org/abs/2012.11717v3
|
https://arxiv.org/pdf/2012.11717v3.pdf
|
https://github.com/vita-epfl/social-nce
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/smelli-the-smeft-likelihood
|
smelli -- the SMEFT Likelihood
|
2012.12211
|
https://arxiv.org/abs/2012.12211v1
|
https://arxiv.org/pdf/2012.12211v1.pdf
|
https://github.com/smelli/smelli
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generating-scientific-question-answering
|
Generating Biomedical Question Answering Corpora from Q&A forums
|
2002.02375
|
https://arxiv.org/abs/2002.02375v2
|
https://arxiv.org/pdf/2002.02375v2.pdf
|
https://github.com/lasigeBioTM/BiQA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unbiased-monte-carlo-cluster-updates-with
|
Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks
|
2105.05650
|
https://arxiv.org/abs/2105.05650v3
|
https://arxiv.org/pdf/2105.05650v3.pdf
|
https://github.com/wdphy16/neural-cluster-update
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/deep3d-fully-automatic-2d-to-3d-video
|
Deep3D: Fully Automatic 2D-to-3D Video Conversion with Deep Convolutional Neural Networks
|
1604.03650
|
http://arxiv.org/abs/1604.03650v1
|
http://arxiv.org/pdf/1604.03650v1.pdf
|
https://github.com/piiswrong/deep3d
| true
| true
| false
|
mxnet
|
https://paperswithcode.com/paper/qvmix-and-qvmix-max-extending-the-deep
|
QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative Multi-Agent Reinforcement Learning
|
2012.12062
|
https://arxiv.org/abs/2012.12062v1
|
https://arxiv.org/pdf/2012.12062v1.pdf
|
https://github.com/PaLeroy/QVMix
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/UdbhavPrasad072300/Transformer-Implementations
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/assimilation-of-disparate-data-for-enhanced
|
Assimilation of disparate data for enhanced reconstruction of turbulent mean flows
|
2103.14923
|
https://arxiv.org/abs/2103.14923v1
|
https://arxiv.org/pdf/2103.14923v1.pdf
|
https://github.com/xiaoh/DAFI
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/boarding-house-renting-price-prediction-using
|
Boarding House Renting Price Prediction Using Deep Neural Network Regression on Mobile Apps
|
2101.02033
|
https://arxiv.org/abs/2101.02033v1
|
https://arxiv.org/pdf/2101.02033v1.pdf
|
https://github.com/unofficial-stars/GetKos
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/variational-deep-embedding-an-unsupervised
|
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
|
1611.05148
|
http://arxiv.org/abs/1611.05148v3
|
http://arxiv.org/pdf/1611.05148v3.pdf
|
https://github.com/mori97/VaDE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/semi-supervised-semantic-segmentation-via
|
DMT: Dynamic Mutual Training for Semi-Supervised Learning
|
2004.08514
|
https://arxiv.org/abs/2004.08514v4
|
https://arxiv.org/pdf/2004.08514v4.pdf
|
https://github.com/voldemortX/DST-CBC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/tabnet-attentive-interpretable-tabular
|
TabNet: Attentive Interpretable Tabular Learning
|
1908.07442
|
https://arxiv.org/abs/1908.07442v5
|
https://arxiv.org/pdf/1908.07442v5.pdf
|
https://github.com/danleiQ/Mechanisms-of-Action-Classification
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/co-clustering-vertices-and-hyperedges-via
|
Co-clustering Vertices and Hyperedges via Spectral Hypergraph Partitioning
|
2102.10169
|
https://arxiv.org/abs/2102.10169v1
|
https://arxiv.org/pdf/2102.10169v1.pdf
|
https://github.com/yuzhu2019/hypergraph_cocluster
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/3d-anas-3d-asymmetric-neural-architecture
|
3D-ANAS: 3D Asymmetric Neural Architecture Search for Fast Hyperspectral Image Classification
|
2101.04287
|
https://arxiv.org/abs/2101.04287v1
|
https://arxiv.org/pdf/2101.04287v1.pdf
|
https://github.com/hkzhang91/3D-ANAS
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/investigating-entity-knowledge-in-bert-with-1
|
Investigating Entity Knowledge in BERT with Simple Neural End-To-End Entity Linking
|
2003.05473
|
https://arxiv.org/abs/2003.05473v1
|
https://arxiv.org/pdf/2003.05473v1.pdf
|
https://github.com/samuelbroscheit/entity_knowledge_in_bert
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-based-modeling-for-performance-tuning
|
Neural-based Modeling for Performance Tuning of Spark Data Analytics
|
2101.08167
|
https://arxiv.org/abs/2101.08167v1
|
https://arxiv.org/pdf/2101.08167v1.pdf
|
https://github.com/udao-modeling/code
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/alignment-of-the-straw-tracking-detectors-for
|
Alignment of the straw tracking detectors for the Fermilab Muon $g-2$ experiment and systematic studies for a muon electric dipole moment measurement
|
2012.00509
|
https://arxiv.org/abs/2012.00509v1
|
https://arxiv.org/pdf/2012.00509v1.pdf
|
https://github.com/glukicov/alignTrack
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/meta-in-context-learning-in-large-language
|
Meta-in-context learning in large language models
|
2305.12907
|
https://arxiv.org/abs/2305.12907v1
|
https://arxiv.org/pdf/2305.12907v1.pdf
|
https://github.com/juliancodaforno/meta-in-context-learning
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/deepra-predicting-joint-damage-from
|
DeepRA: Predicting Joint Damage From Radiographs Using CNN with Attention
|
2102.06982
|
https://arxiv.org/abs/2102.06982v2
|
https://arxiv.org/pdf/2102.06982v2.pdf
|
https://github.com/NC717/DeepRA
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/scalable-multi-hop-relational-reasoning-for
|
Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering
|
2005.00646
|
https://arxiv.org/abs/2005.00646v2
|
https://arxiv.org/pdf/2005.00646v2.pdf
|
https://github.com/INK-USC/MHGRN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/online-influence-maximization-under-1
|
Online Influence Maximization under Decreasing Cascade Model
|
2305.15428
|
https://arxiv.org/abs/2305.15428v1
|
https://arxiv.org/pdf/2305.15428v1.pdf
|
https://github.com/fangkongx/oim-dc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rotate-knowledge-graph-embedding-by
|
RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space
|
1902.10197
|
http://arxiv.org/abs/1902.10197v1
|
http://arxiv.org/pdf/1902.10197v1.pdf
|
https://github.com/jiean001/models_m/tree/main/rotate
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/transformer-xl-attentive-language-models
|
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
|
1901.02860
|
https://arxiv.org/abs/1901.02860v3
|
https://arxiv.org/pdf/1901.02860v3.pdf
|
https://github.com/jiean001/models_m/tree/main/transformer_xl
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/boundary-attributions-provide-normal-vector
|
Robust Models Are More Interpretable Because Attributions Look Normal
|
2103.11257
|
https://arxiv.org/abs/2103.11257v3
|
https://arxiv.org/pdf/2103.11257v3.pdf
|
https://github.com/zifanw/boundary
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/reducing-bias-in-modeling-real-world-password
|
Reducing Bias in Modeling Real-world Password Strength via Deep Learning and Dynamic Dictionaries
|
2010.12269
|
https://arxiv.org/abs/2010.12269v5
|
https://arxiv.org/pdf/2010.12269v5.pdf
|
https://github.com/TheAdamProject/adams
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/rethinking-the-inception-architecture-for
|
Rethinking the Inception Architecture for Computer Vision
|
1512.00567
|
http://arxiv.org/abs/1512.00567v3
|
http://arxiv.org/pdf/1512.00567v3.pdf
|
https://github.com/paperswithcode/model-index
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rexnet-diminishing-representational
|
Rethinking Channel Dimensions for Efficient Model Design
|
2007.00992
|
https://arxiv.org/abs/2007.00992v3
|
https://arxiv.org/pdf/2007.00992v3.pdf
|
https://github.com/paperswithcode/model-index
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pointmask-towards-interpretable-and-bias
|
PointMask: Towards Interpretable and Bias-Resilient Point Cloud Processing
|
2007.04525
|
https://arxiv.org/abs/2007.04525v1
|
https://arxiv.org/pdf/2007.04525v1.pdf
|
https://github.com/asgsaeid/PointMask
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/addressing-distributional-shifts-in
|
Addressing distributional shifts in operations management: The case of order fulfillment in customized production
|
2304.11910
|
https://arxiv.org/abs/2304.11910v1
|
https://arxiv.org/pdf/2304.11910v1.pdf
|
https://github.com/mkuzma96/customprod
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/reachability-based-trajectory-safeguard-rts-a
|
Reachability-based Trajectory Safeguard (RTS): A Safe and Fast Reinforcement Learning Safety Layer for Continuous Control
|
2011.08421
|
https://arxiv.org/abs/2011.08421v3
|
https://arxiv.org/pdf/2011.08421v3.pdf
|
https://github.com/roahmlab/reachability-based_trajectory_safeguard
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bayesian-compression-for-natural-language
|
Bayesian Compression for Natural Language Processing
|
1810.10927
|
http://arxiv.org/abs/1810.10927v2
|
http://arxiv.org/pdf/1810.10927v2.pdf
|
https://github.com/ars-ashuha/variational-dropout-sparsifies-dnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/revizor-fuzzing-for-leaks-in-black-box-cpus
|
Revizor: Testing Black-box CPUs against Speculation Contracts
|
2105.06872
|
https://arxiv.org/abs/2105.06872v3
|
https://arxiv.org/pdf/2105.06872v3.pdf
|
https://github.com/hw-sw-contracts/revizor-artifact
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multivariate-time-series-imputation-by-graph
|
Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks
|
2108.00298
|
https://arxiv.org/abs/2108.00298v3
|
https://arxiv.org/pdf/2108.00298v3.pdf
|
https://github.com/torchspatiotemporal/tsl
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/fast-and-scalable-non-parametric-bayesian
|
Fast and scalable non-parametric Bayesian inference for Poisson point processes
|
1804.03616
|
http://arxiv.org/abs/1804.03616v2
|
http://arxiv.org/pdf/1804.03616v2.pdf
|
https://github.com/mschauer/PointProcessInference.jl
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/keywords-guided-method-name-generation
|
Keywords Guided Method Name Generation
|
2103.11118
|
https://arxiv.org/abs/2103.11118v1
|
https://arxiv.org/pdf/2103.11118v1.pdf
|
https://github.com/css518/Keywords-Guided-Method-Name-Generation
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/alternating-cyclic-extrapolation-methods-for
|
Alternating cyclic extrapolation methods for optimization algorithms
|
2104.04974
|
https://arxiv.org/abs/2104.04974v2
|
https://arxiv.org/pdf/2104.04974v2.pdf
|
https://github.com/NicolasL-S/SpeedMapping.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/constructive-tt-representation-of-the-tensors
|
Constructive TT-representation of the tensors given as index interaction functions with applications
|
2206.03832
|
https://arxiv.org/abs/2206.03832v2
|
https://arxiv.org/pdf/2206.03832v2.pdf
|
https://github.com/g-ryzhakov/constructive-tt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/vqgan-clip-open-domain-image-generation-and
|
VQGAN-CLIP: Open Domain Image Generation and Editing with Natural Language Guidance
|
2204.08583
|
https://arxiv.org/abs/2204.08583v2
|
https://arxiv.org/pdf/2204.08583v2.pdf
|
https://github.com/eleutherai/vqgan-clip
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adversarial-reciprocal-points-learning-for
|
Adversarial Reciprocal Points Learning for Open Set Recognition
|
2103.00953
|
https://arxiv.org/abs/2103.00953v3
|
https://arxiv.org/pdf/2103.00953v3.pdf
|
https://github.com/iCGY96/ARPL
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/res2net-a-new-multi-scale-backbone
|
Res2Net: A New Multi-scale Backbone Architecture
|
1904.01169
|
https://arxiv.org/abs/1904.01169v3
|
https://arxiv.org/pdf/1904.01169v3.pdf
|
https://github.com/zhuhongwei1999/bsa-net
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/networkdynamics-jl-composing-and-simulating
|
NetworkDynamics.jl -- Composing and simulating complex networks in Julia
|
2012.12696
|
https://arxiv.org/abs/2012.12696v3
|
https://arxiv.org/pdf/2012.12696v3.pdf
|
https://github.com/PIK-ICoNe/NetworkDynamics.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/effective-deep-learning-for-semantic
|
Effective Deep Learning for Semantic Segmentation Based Bleeding Zone Detection in Capsule Endoscopy Images
| null |
https://ieeexplore.ieee.org/abstract/document/8451300
|
https://www.researchgate.net/profile/Tonmoy-Ghosh/publication/327995579_Effective_Deep_Learning_for_Semantic_Segmentation_Based_Bleeding_Zone_Detection_in_Capsule_Endoscopy_Images/links/5d6e843445851542789f2f72/Effective-Deep-Learning-for-Semantic-Segmentation-Based-Bleeding-Zone-Detection-in-Capsule-Endoscopy-Images.pdf
|
https://github.com/Tonmoy-Ghosh/Semantic-Segmentation-Based-Bleeding-Zone-Detection
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/moment-based-adversarial-training-for
|
Moment-based Adversarial Training for Embodied Language Comprehension
|
2204.00889
|
https://arxiv.org/abs/2204.00889v1
|
https://arxiv.org/pdf/2204.00889v1.pdf
|
https://github.com/keio-smilab23/dialmat
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/chat-vector-a-simple-approach-to-equip-llms
|
Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages
|
2310.04799
|
https://arxiv.org/abs/2310.04799v3
|
https://arxiv.org/pdf/2310.04799v3.pdf
|
https://github.com/aqweteddy/ChatVector
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/all-you-need-is-dag
|
All You Need is DAG
|
2102.08325
|
https://arxiv.org/abs/2102.08325v2
|
https://arxiv.org/pdf/2102.08325v2.pdf
|
https://github.com/asonnino/narwhal
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/off-policy-deep-reinforcement-learning
|
Off-Policy Deep Reinforcement Learning without Exploration
|
1812.02900
|
https://arxiv.org/abs/1812.02900v3
|
https://arxiv.org/pdf/1812.02900v3.pdf
|
https://github.com/HzcIrving/DLRL-PlayGround/tree/main/Offline%20RL/BCQ
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/rindnet-edge-detection-for-discontinuity-in
|
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth
|
2108.00616
|
https://arxiv.org/abs/2108.00616v1
|
https://arxiv.org/pdf/2108.00616v1.pdf
|
https://github.com/MengyangPu/RINDNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-from-correctness-without-prompting
|
Learning From Correctness Without Prompting Makes LLM Efficient Reasoner
|
2403.19094
|
https://arxiv.org/abs/2403.19094v2
|
https://arxiv.org/pdf/2403.19094v2.pdf
|
https://github.com/starrYYxuan/LeCo
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/performance-optimization-of-convolution
|
Accelerating convolutional neural network by exploiting sparsity on GPUs
|
1909.09927
|
https://arxiv.org/abs/1909.09927v6
|
https://arxiv.org/pdf/1909.09927v6.pdf
|
https://github.com/eymay/OCPA
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/segmenter-transformer-for-semantic
|
Segmenter: Transformer for Semantic Segmentation
|
2105.05633
|
https://arxiv.org/abs/2105.05633v3
|
https://arxiv.org/pdf/2105.05633v3.pdf
|
https://github.com/isaaccorley/segmenter-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/normalized-loss-functions-for-deep-learning
|
Normalized Loss Functions for Deep Learning with Noisy Labels
|
2006.13554
|
https://arxiv.org/abs/2006.13554v1
|
https://arxiv.org/pdf/2006.13554v1.pdf
|
https://github.com/XinshaoAmosWang/Emphasis-Regularisation-by-Gradient-Rescaling
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/real-time-grasp-detection-using-convolutional
|
Real-Time Grasp Detection Using Convolutional Neural Networks
|
1412.3128
|
http://arxiv.org/abs/1412.3128v2
|
http://arxiv.org/pdf/1412.3128v2.pdf
|
https://github.com/DucTranVan/grasp-detection-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bayesian-mechanics-for-stationary-processes
|
Bayesian Mechanics for Stationary Processes
|
2106.13830
|
https://arxiv.org/abs/2106.13830v3
|
https://arxiv.org/pdf/2106.13830v3.pdf
|
https://github.com/conorheins/bayesian-mechanics-sdes
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/unsupervised-domain-expansion-for-visual
|
Unsupervised Domain Expansion for Visual Categorization
|
2104.00233
|
https://arxiv.org/abs/2104.00233v1
|
https://arxiv.org/pdf/2104.00233v1.pdf
|
https://github.com/li-xirong/ude
| true
| false
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.